linux_dsm_epyc7002/include/linux/uio.h
Jens Axboe 875f1d0769 iov_iter: add ITER_BVEC_FLAG_NO_REF flag
For ITER_BVEC, if we're holding on to kernel pages, the caller
doesn't need to grab a reference to the bvec pages, and drop that
same reference on IO completion. This is essentially safe for any
ITER_BVEC, but some use cases end up reusing pages and uncondtionally
dropping a page reference on completion. And example of that is
sendfile(2), that ends up being a splice_in + splice_out on the
pipe pages.

Add a flag that tells us it's fine to not grab a page reference
to the bvec pages, since that caller knows not to drop a reference
when it's done with the pages.

Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-03-18 10:44:48 -06:00

309 lines
9.2 KiB
C

/*
* Berkeley style UIO structures - Alan Cox 1994.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#ifndef __LINUX_UIO_H
#define __LINUX_UIO_H
#include <linux/kernel.h>
#include <linux/thread_info.h>
#include <crypto/hash.h>
#include <uapi/linux/uio.h>
struct page;
struct pipe_inode_info;
struct kvec {
void *iov_base; /* and that should *never* hold a userland pointer */
size_t iov_len;
};
enum iter_type {
/* set if ITER_BVEC doesn't hold a bv_page ref */
ITER_BVEC_FLAG_NO_REF = 2,
/* iter types */
ITER_IOVEC = 4,
ITER_KVEC = 8,
ITER_BVEC = 16,
ITER_PIPE = 32,
ITER_DISCARD = 64,
};
struct iov_iter {
/*
* Bit 0 is the read/write bit, set if we're writing.
* Bit 1 is the BVEC_FLAG_NO_REF bit, set if type is a bvec and
* the caller isn't expecting to drop a page reference when done.
*/
unsigned int type;
size_t iov_offset;
size_t count;
union {
const struct iovec *iov;
const struct kvec *kvec;
const struct bio_vec *bvec;
struct pipe_inode_info *pipe;
};
union {
unsigned long nr_segs;
struct {
int idx;
int start_idx;
};
};
};
static inline enum iter_type iov_iter_type(const struct iov_iter *i)
{
return i->type & ~(READ | WRITE);
}
static inline bool iter_is_iovec(const struct iov_iter *i)
{
return iov_iter_type(i) == ITER_IOVEC;
}
static inline bool iov_iter_is_kvec(const struct iov_iter *i)
{
return iov_iter_type(i) == ITER_KVEC;
}
static inline bool iov_iter_is_bvec(const struct iov_iter *i)
{
return iov_iter_type(i) == ITER_BVEC;
}
static inline bool iov_iter_is_pipe(const struct iov_iter *i)
{
return iov_iter_type(i) == ITER_PIPE;
}
static inline bool iov_iter_is_discard(const struct iov_iter *i)
{
return iov_iter_type(i) == ITER_DISCARD;
}
static inline unsigned char iov_iter_rw(const struct iov_iter *i)
{
return i->type & (READ | WRITE);
}
static inline bool iov_iter_bvec_no_ref(const struct iov_iter *i)
{
return (i->type & ITER_BVEC_FLAG_NO_REF) != 0;
}
/*
* Total number of bytes covered by an iovec.
*
* NOTE that it is not safe to use this function until all the iovec's
* segment lengths have been validated. Because the individual lengths can
* overflow a size_t when added together.
*/
static inline size_t iov_length(const struct iovec *iov, unsigned long nr_segs)
{
unsigned long seg;
size_t ret = 0;
for (seg = 0; seg < nr_segs; seg++)
ret += iov[seg].iov_len;
return ret;
}
static inline struct iovec iov_iter_iovec(const struct iov_iter *iter)
{
return (struct iovec) {
.iov_base = iter->iov->iov_base + iter->iov_offset,
.iov_len = min(iter->count,
iter->iov->iov_len - iter->iov_offset),
};
}
#define iov_for_each(iov, iter, start) \
if (iov_iter_type(start) == ITER_IOVEC || \
iov_iter_type(start) == ITER_KVEC) \
for (iter = (start); \
(iter).count && \
((iov = iov_iter_iovec(&(iter))), 1); \
iov_iter_advance(&(iter), (iov).iov_len))
size_t iov_iter_copy_from_user_atomic(struct page *page,
struct iov_iter *i, unsigned long offset, size_t bytes);
void iov_iter_advance(struct iov_iter *i, size_t bytes);
void iov_iter_revert(struct iov_iter *i, size_t bytes);
int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes);
size_t iov_iter_single_seg_count(const struct iov_iter *i);
size_t copy_page_to_iter(struct page *page, size_t offset, size_t bytes,
struct iov_iter *i);
size_t copy_page_from_iter(struct page *page, size_t offset, size_t bytes,
struct iov_iter *i);
size_t _copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i);
size_t _copy_from_iter(void *addr, size_t bytes, struct iov_iter *i);
bool _copy_from_iter_full(void *addr, size_t bytes, struct iov_iter *i);
size_t _copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i);
bool _copy_from_iter_full_nocache(void *addr, size_t bytes, struct iov_iter *i);
static __always_inline __must_check
size_t copy_to_iter(const void *addr, size_t bytes, struct iov_iter *i)
{
if (unlikely(!check_copy_size(addr, bytes, true)))
return 0;
else
return _copy_to_iter(addr, bytes, i);
}
static __always_inline __must_check
size_t copy_from_iter(void *addr, size_t bytes, struct iov_iter *i)
{
if (unlikely(!check_copy_size(addr, bytes, false)))
return 0;
else
return _copy_from_iter(addr, bytes, i);
}
static __always_inline __must_check
bool copy_from_iter_full(void *addr, size_t bytes, struct iov_iter *i)
{
if (unlikely(!check_copy_size(addr, bytes, false)))
return false;
else
return _copy_from_iter_full(addr, bytes, i);
}
static __always_inline __must_check
size_t copy_from_iter_nocache(void *addr, size_t bytes, struct iov_iter *i)
{
if (unlikely(!check_copy_size(addr, bytes, false)))
return 0;
else
return _copy_from_iter_nocache(addr, bytes, i);
}
static __always_inline __must_check
bool copy_from_iter_full_nocache(void *addr, size_t bytes, struct iov_iter *i)
{
if (unlikely(!check_copy_size(addr, bytes, false)))
return false;
else
return _copy_from_iter_full_nocache(addr, bytes, i);
}
#ifdef CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE
/*
* Note, users like pmem that depend on the stricter semantics of
* copy_from_iter_flushcache() than copy_from_iter_nocache() must check for
* IS_ENABLED(CONFIG_ARCH_HAS_UACCESS_FLUSHCACHE) before assuming that the
* destination is flushed from the cache on return.
*/
size_t _copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i);
#else
#define _copy_from_iter_flushcache _copy_from_iter_nocache
#endif
#ifdef CONFIG_ARCH_HAS_UACCESS_MCSAFE
size_t _copy_to_iter_mcsafe(const void *addr, size_t bytes, struct iov_iter *i);
#else
#define _copy_to_iter_mcsafe _copy_to_iter
#endif
static __always_inline __must_check
size_t copy_from_iter_flushcache(void *addr, size_t bytes, struct iov_iter *i)
{
if (unlikely(!check_copy_size(addr, bytes, false)))
return 0;
else
return _copy_from_iter_flushcache(addr, bytes, i);
}
static __always_inline __must_check
size_t copy_to_iter_mcsafe(void *addr, size_t bytes, struct iov_iter *i)
{
if (unlikely(!check_copy_size(addr, bytes, true)))
return 0;
else
return _copy_to_iter_mcsafe(addr, bytes, i);
}
size_t iov_iter_zero(size_t bytes, struct iov_iter *);
unsigned long iov_iter_alignment(const struct iov_iter *i);
unsigned long iov_iter_gap_alignment(const struct iov_iter *i);
void iov_iter_init(struct iov_iter *i, unsigned int direction, const struct iovec *iov,
unsigned long nr_segs, size_t count);
void iov_iter_kvec(struct iov_iter *i, unsigned int direction, const struct kvec *kvec,
unsigned long nr_segs, size_t count);
void iov_iter_bvec(struct iov_iter *i, unsigned int direction, const struct bio_vec *bvec,
unsigned long nr_segs, size_t count);
void iov_iter_pipe(struct iov_iter *i, unsigned int direction, struct pipe_inode_info *pipe,
size_t count);
void iov_iter_discard(struct iov_iter *i, unsigned int direction, size_t count);
ssize_t iov_iter_get_pages(struct iov_iter *i, struct page **pages,
size_t maxsize, unsigned maxpages, size_t *start);
ssize_t iov_iter_get_pages_alloc(struct iov_iter *i, struct page ***pages,
size_t maxsize, size_t *start);
int iov_iter_npages(const struct iov_iter *i, int maxpages);
const void *dup_iter(struct iov_iter *new, struct iov_iter *old, gfp_t flags);
static inline size_t iov_iter_count(const struct iov_iter *i)
{
return i->count;
}
/*
* Cap the iov_iter by given limit; note that the second argument is
* *not* the new size - it's upper limit for such. Passing it a value
* greater than the amount of data in iov_iter is fine - it'll just do
* nothing in that case.
*/
static inline void iov_iter_truncate(struct iov_iter *i, u64 count)
{
/*
* count doesn't have to fit in size_t - comparison extends both
* operands to u64 here and any value that would be truncated by
* conversion in assignement is by definition greater than all
* values of size_t, including old i->count.
*/
if (i->count > count)
i->count = count;
}
/*
* reexpand a previously truncated iterator; count must be no more than how much
* we had shrunk it.
*/
static inline void iov_iter_reexpand(struct iov_iter *i, size_t count)
{
i->count = count;
}
size_t csum_and_copy_to_iter(const void *addr, size_t bytes, void *csump, struct iov_iter *i);
size_t csum_and_copy_from_iter(void *addr, size_t bytes, __wsum *csum, struct iov_iter *i);
bool csum_and_copy_from_iter_full(void *addr, size_t bytes, __wsum *csum, struct iov_iter *i);
size_t hash_and_copy_to_iter(const void *addr, size_t bytes, void *hashp,
struct iov_iter *i);
int import_iovec(int type, const struct iovec __user * uvector,
unsigned nr_segs, unsigned fast_segs,
struct iovec **iov, struct iov_iter *i);
#ifdef CONFIG_COMPAT
struct compat_iovec;
int compat_import_iovec(int type, const struct compat_iovec __user * uvector,
unsigned nr_segs, unsigned fast_segs,
struct iovec **iov, struct iov_iter *i);
#endif
int import_single_range(int type, void __user *buf, size_t len,
struct iovec *iov, struct iov_iter *i);
int iov_iter_for_each_range(struct iov_iter *i, size_t bytes,
int (*f)(struct kvec *vec, void *context),
void *context);
#endif