linux_dsm_epyc7002/net/rxrpc/af_rxrpc.c
David Howells be6e6707f6 rxrpc: Rework peer object handling to use hash table and RCU
Rework peer object handling to use a hash table instead of a flat list and
to use RCU.  Peer objects are no longer destroyed by passing them to a
workqueue to process, but rather are just passed to the RCU garbage
collector as kfree'able objects.

The hash function uses the local endpoint plus all the components of the
remote address, except for the RxRPC service ID.  Peers thus represent a
UDP port on the remote machine as contacted by a UDP port on this machine.

The RCU read lock is used to handle non-creating lookups so that they can
be called from bottom half context in the sk_error_report handler without
having to lock the hash table against modification.
rxrpc_lookup_peer_rcu() *does* take a reference on the peer object as in
the future, this will be passed to a work item for error distribution in
the error_report path and this function will cease being used in the
data_ready path.

Creating lookups are done under spinlock rather than mutex as they might be
set up due to an external stimulus if the local endpoint is a server.

Captured network error messages (ICMP) are handled with respect to this
struct and MTU size and RTT are cached here.

Signed-off-by: David Howells <dhowells@redhat.com>
2016-06-15 10:12:33 +01:00

854 lines
19 KiB
C

/* AF_RXRPC implementation
*
* Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
* Written by David Howells (dhowells@redhat.com)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/net.h>
#include <linux/slab.h>
#include <linux/skbuff.h>
#include <linux/poll.h>
#include <linux/proc_fs.h>
#include <linux/key-type.h>
#include <net/net_namespace.h>
#include <net/sock.h>
#include <net/af_rxrpc.h>
#include "ar-internal.h"
MODULE_DESCRIPTION("RxRPC network protocol");
MODULE_AUTHOR("Red Hat, Inc.");
MODULE_LICENSE("GPL");
MODULE_ALIAS_NETPROTO(PF_RXRPC);
unsigned int rxrpc_debug; // = RXRPC_DEBUG_KPROTO;
module_param_named(debug, rxrpc_debug, uint, S_IWUSR | S_IRUGO);
MODULE_PARM_DESC(debug, "RxRPC debugging mask");
static struct proto rxrpc_proto;
static const struct proto_ops rxrpc_rpc_ops;
/* local epoch for detecting local-end reset */
u32 rxrpc_epoch;
/* current debugging ID */
atomic_t rxrpc_debug_id;
/* count of skbs currently in use */
atomic_t rxrpc_n_skbs;
struct workqueue_struct *rxrpc_workqueue;
static void rxrpc_sock_destructor(struct sock *);
/*
* see if an RxRPC socket is currently writable
*/
static inline int rxrpc_writable(struct sock *sk)
{
return atomic_read(&sk->sk_wmem_alloc) < (size_t) sk->sk_sndbuf;
}
/*
* wait for write bufferage to become available
*/
static void rxrpc_write_space(struct sock *sk)
{
_enter("%p", sk);
rcu_read_lock();
if (rxrpc_writable(sk)) {
struct socket_wq *wq = rcu_dereference(sk->sk_wq);
if (skwq_has_sleeper(wq))
wake_up_interruptible(&wq->wait);
sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
}
rcu_read_unlock();
}
/*
* validate an RxRPC address
*/
static int rxrpc_validate_address(struct rxrpc_sock *rx,
struct sockaddr_rxrpc *srx,
int len)
{
unsigned int tail;
if (len < sizeof(struct sockaddr_rxrpc))
return -EINVAL;
if (srx->srx_family != AF_RXRPC)
return -EAFNOSUPPORT;
if (srx->transport_type != SOCK_DGRAM)
return -ESOCKTNOSUPPORT;
len -= offsetof(struct sockaddr_rxrpc, transport);
if (srx->transport_len < sizeof(sa_family_t) ||
srx->transport_len > len)
return -EINVAL;
if (srx->transport.family != rx->proto)
return -EAFNOSUPPORT;
switch (srx->transport.family) {
case AF_INET:
_debug("INET: %x @ %pI4",
ntohs(srx->transport.sin.sin_port),
&srx->transport.sin.sin_addr);
tail = offsetof(struct sockaddr_rxrpc, transport.sin.__pad);
break;
case AF_INET6:
default:
return -EAFNOSUPPORT;
}
if (tail < len)
memset((void *)srx + tail, 0, len - tail);
return 0;
}
/*
* bind a local address to an RxRPC socket
*/
static int rxrpc_bind(struct socket *sock, struct sockaddr *saddr, int len)
{
struct sockaddr_rxrpc *srx = (struct sockaddr_rxrpc *)saddr;
struct sock *sk = sock->sk;
struct rxrpc_local *local;
struct rxrpc_sock *rx = rxrpc_sk(sk), *prx;
int ret;
_enter("%p,%p,%d", rx, saddr, len);
ret = rxrpc_validate_address(rx, srx, len);
if (ret < 0)
goto error;
lock_sock(&rx->sk);
if (rx->sk.sk_state != RXRPC_UNBOUND) {
ret = -EINVAL;
goto error_unlock;
}
memcpy(&rx->srx, srx, sizeof(rx->srx));
local = rxrpc_lookup_local(&rx->srx);
if (IS_ERR(local)) {
ret = PTR_ERR(local);
goto error_unlock;
}
if (rx->srx.srx_service) {
write_lock_bh(&local->services_lock);
list_for_each_entry(prx, &local->services, listen_link) {
if (prx->srx.srx_service == rx->srx.srx_service)
goto service_in_use;
}
rx->local = local;
list_add_tail(&rx->listen_link, &local->services);
write_unlock_bh(&local->services_lock);
rx->sk.sk_state = RXRPC_SERVER_BOUND;
} else {
rx->local = local;
rx->sk.sk_state = RXRPC_CLIENT_BOUND;
}
release_sock(&rx->sk);
_leave(" = 0");
return 0;
service_in_use:
write_unlock_bh(&local->services_lock);
rxrpc_put_local(local);
ret = -EADDRINUSE;
error_unlock:
release_sock(&rx->sk);
error:
_leave(" = %d", ret);
return ret;
}
/*
* set the number of pending calls permitted on a listening socket
*/
static int rxrpc_listen(struct socket *sock, int backlog)
{
struct sock *sk = sock->sk;
struct rxrpc_sock *rx = rxrpc_sk(sk);
unsigned int max;
int ret;
_enter("%p,%d", rx, backlog);
lock_sock(&rx->sk);
switch (rx->sk.sk_state) {
case RXRPC_UNBOUND:
ret = -EADDRNOTAVAIL;
break;
case RXRPC_SERVER_BOUND:
ASSERT(rx->local != NULL);
max = READ_ONCE(rxrpc_max_backlog);
ret = -EINVAL;
if (backlog == INT_MAX)
backlog = max;
else if (backlog < 0 || backlog > max)
break;
sk->sk_max_ack_backlog = backlog;
rx->sk.sk_state = RXRPC_SERVER_LISTENING;
ret = 0;
break;
default:
ret = -EBUSY;
break;
}
release_sock(&rx->sk);
_leave(" = %d", ret);
return ret;
}
/*
* find a transport by address
*/
struct rxrpc_transport *rxrpc_name_to_transport(struct rxrpc_sock *rx,
struct sockaddr *addr,
int addr_len, int flags,
gfp_t gfp)
{
struct sockaddr_rxrpc *srx = (struct sockaddr_rxrpc *) addr;
struct rxrpc_transport *trans;
struct rxrpc_peer *peer;
_enter("%p,%p,%d,%d", rx, addr, addr_len, flags);
ASSERT(rx->local != NULL);
if (rx->srx.transport_type != srx->transport_type)
return ERR_PTR(-ESOCKTNOSUPPORT);
if (rx->srx.transport.family != srx->transport.family)
return ERR_PTR(-EAFNOSUPPORT);
/* find a remote transport endpoint from the local one */
peer = rxrpc_lookup_peer(rx->local, srx, gfp);
if (IS_ERR(peer))
return ERR_CAST(peer);
/* find a transport */
trans = rxrpc_get_transport(rx->local, peer, gfp);
rxrpc_put_peer(peer);
_leave(" = %p", trans);
return trans;
}
/**
* rxrpc_kernel_begin_call - Allow a kernel service to begin a call
* @sock: The socket on which to make the call
* @srx: The address of the peer to contact
* @key: The security context to use (defaults to socket setting)
* @user_call_ID: The ID to use
*
* Allow a kernel service to begin a call on the nominated socket. This just
* sets up all the internal tracking structures and allocates connection and
* call IDs as appropriate. The call to be used is returned.
*
* The default socket destination address and security may be overridden by
* supplying @srx and @key.
*/
struct rxrpc_call *rxrpc_kernel_begin_call(struct socket *sock,
struct sockaddr_rxrpc *srx,
struct key *key,
unsigned long user_call_ID,
gfp_t gfp)
{
struct rxrpc_conn_bundle *bundle;
struct rxrpc_transport *trans;
struct rxrpc_call *call;
struct rxrpc_sock *rx = rxrpc_sk(sock->sk);
_enter(",,%x,%lx", key_serial(key), user_call_ID);
lock_sock(&rx->sk);
trans = rxrpc_name_to_transport(rx, (struct sockaddr *)srx,
sizeof(*srx), 0, gfp);
if (IS_ERR(trans)) {
call = ERR_CAST(trans);
trans = NULL;
goto out_notrans;
}
if (!key)
key = rx->key;
if (key && !key->payload.data[0])
key = NULL; /* a no-security key */
bundle = rxrpc_get_bundle(rx, trans, key, srx->srx_service, gfp);
if (IS_ERR(bundle)) {
call = ERR_CAST(bundle);
goto out;
}
call = rxrpc_new_client_call(rx, trans, bundle, user_call_ID, gfp);
rxrpc_put_bundle(trans, bundle);
out:
rxrpc_put_transport(trans);
out_notrans:
release_sock(&rx->sk);
_leave(" = %p", call);
return call;
}
EXPORT_SYMBOL(rxrpc_kernel_begin_call);
/**
* rxrpc_kernel_end_call - Allow a kernel service to end a call it was using
* @call: The call to end
*
* Allow a kernel service to end a call it was using. The call must be
* complete before this is called (the call should be aborted if necessary).
*/
void rxrpc_kernel_end_call(struct rxrpc_call *call)
{
_enter("%d{%d}", call->debug_id, atomic_read(&call->usage));
rxrpc_remove_user_ID(call->socket, call);
rxrpc_put_call(call);
}
EXPORT_SYMBOL(rxrpc_kernel_end_call);
/**
* rxrpc_kernel_intercept_rx_messages - Intercept received RxRPC messages
* @sock: The socket to intercept received messages on
* @interceptor: The function to pass the messages to
*
* Allow a kernel service to intercept messages heading for the Rx queue on an
* RxRPC socket. They get passed to the specified function instead.
* @interceptor should free the socket buffers it is given. @interceptor is
* called with the socket receive queue spinlock held and softirqs disabled -
* this ensures that the messages will be delivered in the right order.
*/
void rxrpc_kernel_intercept_rx_messages(struct socket *sock,
rxrpc_interceptor_t interceptor)
{
struct rxrpc_sock *rx = rxrpc_sk(sock->sk);
_enter("");
rx->interceptor = interceptor;
}
EXPORT_SYMBOL(rxrpc_kernel_intercept_rx_messages);
/*
* connect an RxRPC socket
* - this just targets it at a specific destination; no actual connection
* negotiation takes place
*/
static int rxrpc_connect(struct socket *sock, struct sockaddr *addr,
int addr_len, int flags)
{
struct sockaddr_rxrpc *srx = (struct sockaddr_rxrpc *)addr;
struct rxrpc_sock *rx = rxrpc_sk(sock->sk);
int ret;
_enter("%p,%p,%d,%d", rx, addr, addr_len, flags);
ret = rxrpc_validate_address(rx, srx, addr_len);
if (ret < 0) {
_leave(" = %d [bad addr]", ret);
return ret;
}
lock_sock(&rx->sk);
ret = -EISCONN;
if (test_bit(RXRPC_SOCK_CONNECTED, &rx->flags))
goto error;
switch (rx->sk.sk_state) {
case RXRPC_UNBOUND:
rx->sk.sk_state = RXRPC_CLIENT_UNBOUND;
case RXRPC_CLIENT_UNBOUND:
case RXRPC_CLIENT_BOUND:
break;
default:
ret = -EBUSY;
goto error;
}
rx->connect_srx = *srx;
set_bit(RXRPC_SOCK_CONNECTED, &rx->flags);
ret = 0;
error:
release_sock(&rx->sk);
return ret;
}
/*
* send a message through an RxRPC socket
* - in a client this does a number of things:
* - finds/sets up a connection for the security specified (if any)
* - initiates a call (ID in control data)
* - ends the request phase of a call (if MSG_MORE is not set)
* - sends a call data packet
* - may send an abort (abort code in control data)
*/
static int rxrpc_sendmsg(struct socket *sock, struct msghdr *m, size_t len)
{
struct rxrpc_local *local;
struct rxrpc_sock *rx = rxrpc_sk(sock->sk);
int ret;
_enter(",{%d},,%zu", rx->sk.sk_state, len);
if (m->msg_flags & MSG_OOB)
return -EOPNOTSUPP;
if (m->msg_name) {
ret = rxrpc_validate_address(rx, m->msg_name, m->msg_namelen);
if (ret < 0) {
_leave(" = %d [bad addr]", ret);
return ret;
}
}
lock_sock(&rx->sk);
switch (rx->sk.sk_state) {
case RXRPC_UNBOUND:
local = rxrpc_lookup_local(&rx->srx);
if (IS_ERR(local)) {
ret = PTR_ERR(local);
goto error_unlock;
}
rx->local = local;
rx->sk.sk_state = RXRPC_CLIENT_UNBOUND;
/* Fall through */
case RXRPC_CLIENT_UNBOUND:
case RXRPC_CLIENT_BOUND:
if (!m->msg_name &&
test_bit(RXRPC_SOCK_CONNECTED, &rx->flags)) {
m->msg_name = &rx->connect_srx;
m->msg_namelen = sizeof(rx->connect_srx);
}
case RXRPC_SERVER_BOUND:
case RXRPC_SERVER_LISTENING:
ret = rxrpc_do_sendmsg(rx, m, len);
break;
default:
ret = -EINVAL;
break;
}
error_unlock:
release_sock(&rx->sk);
_leave(" = %d", ret);
return ret;
}
/*
* set RxRPC socket options
*/
static int rxrpc_setsockopt(struct socket *sock, int level, int optname,
char __user *optval, unsigned int optlen)
{
struct rxrpc_sock *rx = rxrpc_sk(sock->sk);
unsigned int min_sec_level;
int ret;
_enter(",%d,%d,,%d", level, optname, optlen);
lock_sock(&rx->sk);
ret = -EOPNOTSUPP;
if (level == SOL_RXRPC) {
switch (optname) {
case RXRPC_EXCLUSIVE_CONNECTION:
ret = -EINVAL;
if (optlen != 0)
goto error;
ret = -EISCONN;
if (rx->sk.sk_state != RXRPC_UNBOUND)
goto error;
set_bit(RXRPC_SOCK_EXCLUSIVE_CONN, &rx->flags);
goto success;
case RXRPC_SECURITY_KEY:
ret = -EINVAL;
if (rx->key)
goto error;
ret = -EISCONN;
if (rx->sk.sk_state != RXRPC_UNBOUND)
goto error;
ret = rxrpc_request_key(rx, optval, optlen);
goto error;
case RXRPC_SECURITY_KEYRING:
ret = -EINVAL;
if (rx->key)
goto error;
ret = -EISCONN;
if (rx->sk.sk_state != RXRPC_UNBOUND)
goto error;
ret = rxrpc_server_keyring(rx, optval, optlen);
goto error;
case RXRPC_MIN_SECURITY_LEVEL:
ret = -EINVAL;
if (optlen != sizeof(unsigned int))
goto error;
ret = -EISCONN;
if (rx->sk.sk_state != RXRPC_UNBOUND)
goto error;
ret = get_user(min_sec_level,
(unsigned int __user *) optval);
if (ret < 0)
goto error;
ret = -EINVAL;
if (min_sec_level > RXRPC_SECURITY_MAX)
goto error;
rx->min_sec_level = min_sec_level;
goto success;
default:
break;
}
}
success:
ret = 0;
error:
release_sock(&rx->sk);
return ret;
}
/*
* permit an RxRPC socket to be polled
*/
static unsigned int rxrpc_poll(struct file *file, struct socket *sock,
poll_table *wait)
{
unsigned int mask;
struct sock *sk = sock->sk;
sock_poll_wait(file, sk_sleep(sk), wait);
mask = 0;
/* the socket is readable if there are any messages waiting on the Rx
* queue */
if (!skb_queue_empty(&sk->sk_receive_queue))
mask |= POLLIN | POLLRDNORM;
/* the socket is writable if there is space to add new data to the
* socket; there is no guarantee that any particular call in progress
* on the socket may have space in the Tx ACK window */
if (rxrpc_writable(sk))
mask |= POLLOUT | POLLWRNORM;
return mask;
}
/*
* create an RxRPC socket
*/
static int rxrpc_create(struct net *net, struct socket *sock, int protocol,
int kern)
{
struct rxrpc_sock *rx;
struct sock *sk;
_enter("%p,%d", sock, protocol);
if (!net_eq(net, &init_net))
return -EAFNOSUPPORT;
/* we support transport protocol UDP/UDP6 only */
if (protocol != PF_INET)
return -EPROTONOSUPPORT;
if (sock->type != SOCK_DGRAM)
return -ESOCKTNOSUPPORT;
sock->ops = &rxrpc_rpc_ops;
sock->state = SS_UNCONNECTED;
sk = sk_alloc(net, PF_RXRPC, GFP_KERNEL, &rxrpc_proto, kern);
if (!sk)
return -ENOMEM;
sock_init_data(sock, sk);
sk->sk_state = RXRPC_UNBOUND;
sk->sk_write_space = rxrpc_write_space;
sk->sk_max_ack_backlog = 0;
sk->sk_destruct = rxrpc_sock_destructor;
rx = rxrpc_sk(sk);
rx->proto = protocol;
rx->calls = RB_ROOT;
INIT_LIST_HEAD(&rx->listen_link);
INIT_LIST_HEAD(&rx->secureq);
INIT_LIST_HEAD(&rx->acceptq);
rwlock_init(&rx->call_lock);
memset(&rx->srx, 0, sizeof(rx->srx));
_leave(" = 0 [%p]", rx);
return 0;
}
/*
* RxRPC socket destructor
*/
static void rxrpc_sock_destructor(struct sock *sk)
{
_enter("%p", sk);
rxrpc_purge_queue(&sk->sk_receive_queue);
WARN_ON(atomic_read(&sk->sk_wmem_alloc));
WARN_ON(!sk_unhashed(sk));
WARN_ON(sk->sk_socket);
if (!sock_flag(sk, SOCK_DEAD)) {
printk("Attempt to release alive rxrpc socket: %p\n", sk);
return;
}
}
/*
* release an RxRPC socket
*/
static int rxrpc_release_sock(struct sock *sk)
{
struct rxrpc_sock *rx = rxrpc_sk(sk);
_enter("%p{%d,%d}", sk, sk->sk_state, atomic_read(&sk->sk_refcnt));
/* declare the socket closed for business */
sock_orphan(sk);
sk->sk_shutdown = SHUTDOWN_MASK;
spin_lock_bh(&sk->sk_receive_queue.lock);
sk->sk_state = RXRPC_CLOSE;
spin_unlock_bh(&sk->sk_receive_queue.lock);
ASSERTCMP(rx->listen_link.next, !=, LIST_POISON1);
if (!list_empty(&rx->listen_link)) {
write_lock_bh(&rx->local->services_lock);
list_del(&rx->listen_link);
write_unlock_bh(&rx->local->services_lock);
}
/* try to flush out this socket */
rxrpc_release_calls_on_socket(rx);
flush_workqueue(rxrpc_workqueue);
rxrpc_purge_queue(&sk->sk_receive_queue);
if (rx->conn) {
rxrpc_put_connection(rx->conn);
rx->conn = NULL;
}
if (rx->local) {
rxrpc_put_local(rx->local);
rx->local = NULL;
}
key_put(rx->key);
rx->key = NULL;
key_put(rx->securities);
rx->securities = NULL;
sock_put(sk);
_leave(" = 0");
return 0;
}
/*
* release an RxRPC BSD socket on close() or equivalent
*/
static int rxrpc_release(struct socket *sock)
{
struct sock *sk = sock->sk;
_enter("%p{%p}", sock, sk);
if (!sk)
return 0;
sock->sk = NULL;
return rxrpc_release_sock(sk);
}
/*
* RxRPC network protocol
*/
static const struct proto_ops rxrpc_rpc_ops = {
.family = PF_RXRPC,
.owner = THIS_MODULE,
.release = rxrpc_release,
.bind = rxrpc_bind,
.connect = rxrpc_connect,
.socketpair = sock_no_socketpair,
.accept = sock_no_accept,
.getname = sock_no_getname,
.poll = rxrpc_poll,
.ioctl = sock_no_ioctl,
.listen = rxrpc_listen,
.shutdown = sock_no_shutdown,
.setsockopt = rxrpc_setsockopt,
.getsockopt = sock_no_getsockopt,
.sendmsg = rxrpc_sendmsg,
.recvmsg = rxrpc_recvmsg,
.mmap = sock_no_mmap,
.sendpage = sock_no_sendpage,
};
static struct proto rxrpc_proto = {
.name = "RXRPC",
.owner = THIS_MODULE,
.obj_size = sizeof(struct rxrpc_sock),
.max_header = sizeof(struct rxrpc_wire_header),
};
static const struct net_proto_family rxrpc_family_ops = {
.family = PF_RXRPC,
.create = rxrpc_create,
.owner = THIS_MODULE,
};
/*
* initialise and register the RxRPC protocol
*/
static int __init af_rxrpc_init(void)
{
int ret = -1;
BUILD_BUG_ON(sizeof(struct rxrpc_skb_priv) > FIELD_SIZEOF(struct sk_buff, cb));
rxrpc_epoch = get_seconds();
ret = -ENOMEM;
rxrpc_call_jar = kmem_cache_create(
"rxrpc_call_jar", sizeof(struct rxrpc_call), 0,
SLAB_HWCACHE_ALIGN, NULL);
if (!rxrpc_call_jar) {
pr_notice("Failed to allocate call jar\n");
goto error_call_jar;
}
rxrpc_workqueue = alloc_workqueue("krxrpcd", 0, 1);
if (!rxrpc_workqueue) {
pr_notice("Failed to allocate work queue\n");
goto error_work_queue;
}
ret = rxrpc_init_security();
if (ret < 0) {
pr_crit("Cannot initialise security\n");
goto error_security;
}
ret = proto_register(&rxrpc_proto, 1);
if (ret < 0) {
pr_crit("Cannot register protocol\n");
goto error_proto;
}
ret = sock_register(&rxrpc_family_ops);
if (ret < 0) {
pr_crit("Cannot register socket family\n");
goto error_sock;
}
ret = register_key_type(&key_type_rxrpc);
if (ret < 0) {
pr_crit("Cannot register client key type\n");
goto error_key_type;
}
ret = register_key_type(&key_type_rxrpc_s);
if (ret < 0) {
pr_crit("Cannot register server key type\n");
goto error_key_type_s;
}
ret = rxrpc_sysctl_init();
if (ret < 0) {
pr_crit("Cannot register sysctls\n");
goto error_sysctls;
}
#ifdef CONFIG_PROC_FS
proc_create("rxrpc_calls", 0, init_net.proc_net, &rxrpc_call_seq_fops);
proc_create("rxrpc_conns", 0, init_net.proc_net,
&rxrpc_connection_seq_fops);
#endif
return 0;
error_sysctls:
unregister_key_type(&key_type_rxrpc_s);
error_key_type_s:
unregister_key_type(&key_type_rxrpc);
error_key_type:
sock_unregister(PF_RXRPC);
error_sock:
proto_unregister(&rxrpc_proto);
error_proto:
destroy_workqueue(rxrpc_workqueue);
error_security:
rxrpc_exit_security();
error_work_queue:
kmem_cache_destroy(rxrpc_call_jar);
error_call_jar:
return ret;
}
/*
* unregister the RxRPC protocol
*/
static void __exit af_rxrpc_exit(void)
{
_enter("");
rxrpc_sysctl_exit();
unregister_key_type(&key_type_rxrpc_s);
unregister_key_type(&key_type_rxrpc);
sock_unregister(PF_RXRPC);
proto_unregister(&rxrpc_proto);
rxrpc_destroy_all_calls();
rxrpc_destroy_all_connections();
rxrpc_destroy_all_transports();
rxrpc_destroy_all_locals();
ASSERTCMP(atomic_read(&rxrpc_n_skbs), ==, 0);
_debug("flush scheduled work");
flush_workqueue(rxrpc_workqueue);
remove_proc_entry("rxrpc_conns", init_net.proc_net);
remove_proc_entry("rxrpc_calls", init_net.proc_net);
destroy_workqueue(rxrpc_workqueue);
rxrpc_exit_security();
kmem_cache_destroy(rxrpc_call_jar);
_leave("");
}
module_init(af_rxrpc_init);
module_exit(af_rxrpc_exit);