mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-13 11:36:02 +07:00
87421984b4
This patch introduces a new callback 'resume' in the struct mtk_aes_rec. This callback is run to resume/complete the processing of the crypto request when woken up by AES interrupts when DMA completion. This callback will help implementing the GCM mode support in further patches. Signed-off-by: Ryder Lee <ryder.lee@mediatek.com> Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
788 lines
19 KiB
C
788 lines
19 KiB
C
/*
|
|
* Cryptographic API.
|
|
*
|
|
* Driver for EIP97 AES acceleration.
|
|
*
|
|
* Copyright (c) 2016 Ryder Lee <ryder.lee@mediatek.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* Some ideas are from atmel-aes.c drivers.
|
|
*/
|
|
|
|
#include <crypto/aes.h>
|
|
#include "mtk-platform.h"
|
|
|
|
#define AES_QUEUE_SIZE 512
|
|
#define AES_BUF_ORDER 2
|
|
#define AES_BUF_SIZE ((PAGE_SIZE << AES_BUF_ORDER) \
|
|
& ~(AES_BLOCK_SIZE - 1))
|
|
|
|
/* AES command token size */
|
|
#define AES_CT_SIZE_ECB 2
|
|
#define AES_CT_SIZE_CBC 3
|
|
#define AES_CT_CTRL_HDR cpu_to_le32(0x00220000)
|
|
/* AES-CBC/ECB command token */
|
|
#define AES_CMD0 cpu_to_le32(0x05000000)
|
|
#define AES_CMD1 cpu_to_le32(0x2d060000)
|
|
#define AES_CMD2 cpu_to_le32(0xe4a63806)
|
|
|
|
/* AES transform information word 0 fields */
|
|
#define AES_TFM_BASIC_OUT cpu_to_le32(0x4 << 0)
|
|
#define AES_TFM_BASIC_IN cpu_to_le32(0x5 << 0)
|
|
#define AES_TFM_SIZE(x) cpu_to_le32((x) << 8)
|
|
#define AES_TFM_128BITS cpu_to_le32(0xb << 16)
|
|
#define AES_TFM_192BITS cpu_to_le32(0xd << 16)
|
|
#define AES_TFM_256BITS cpu_to_le32(0xf << 16)
|
|
/* AES transform information word 1 fields */
|
|
#define AES_TFM_ECB cpu_to_le32(0x0 << 0)
|
|
#define AES_TFM_CBC cpu_to_le32(0x1 << 0)
|
|
#define AES_TFM_FULL_IV cpu_to_le32(0xf << 5)
|
|
|
|
/* AES flags */
|
|
#define AES_FLAGS_MODE_MSK 0x7
|
|
#define AES_FLAGS_ECB BIT(0)
|
|
#define AES_FLAGS_CBC BIT(1)
|
|
#define AES_FLAGS_ENCRYPT BIT(2)
|
|
#define AES_FLAGS_BUSY BIT(3)
|
|
|
|
/**
|
|
* Command token(CT) is a set of hardware instructions that
|
|
* are used to control engine's processing flow of AES.
|
|
*
|
|
* Transform information(TFM) is used to define AES state and
|
|
* contains all keys and initial vectors.
|
|
*
|
|
* The engine requires CT and TFM to do:
|
|
* - Commands decoding and control of the engine's data path.
|
|
* - Coordinating hardware data fetch and store operations.
|
|
* - Result token construction and output.
|
|
*/
|
|
struct mtk_aes_ct {
|
|
__le32 cmd[AES_CT_SIZE_CBC];
|
|
};
|
|
|
|
struct mtk_aes_tfm {
|
|
__le32 ctrl[2];
|
|
__le32 state[SIZE_IN_WORDS(AES_KEYSIZE_256 + AES_BLOCK_SIZE)];
|
|
};
|
|
|
|
struct mtk_aes_reqctx {
|
|
u64 mode;
|
|
};
|
|
|
|
struct mtk_aes_base_ctx {
|
|
struct mtk_cryp *cryp;
|
|
u32 keylen;
|
|
mtk_aes_fn start;
|
|
|
|
struct mtk_aes_ct ct;
|
|
dma_addr_t ct_dma;
|
|
struct mtk_aes_tfm tfm;
|
|
dma_addr_t tfm_dma;
|
|
|
|
__le32 ct_hdr;
|
|
u32 ct_size;
|
|
};
|
|
|
|
struct mtk_aes_ctx {
|
|
struct mtk_aes_base_ctx base;
|
|
};
|
|
|
|
struct mtk_aes_drv {
|
|
struct list_head dev_list;
|
|
/* Device list lock */
|
|
spinlock_t lock;
|
|
};
|
|
|
|
static struct mtk_aes_drv mtk_aes = {
|
|
.dev_list = LIST_HEAD_INIT(mtk_aes.dev_list),
|
|
.lock = __SPIN_LOCK_UNLOCKED(mtk_aes.lock),
|
|
};
|
|
|
|
static inline u32 mtk_aes_read(struct mtk_cryp *cryp, u32 offset)
|
|
{
|
|
return readl_relaxed(cryp->base + offset);
|
|
}
|
|
|
|
static inline void mtk_aes_write(struct mtk_cryp *cryp,
|
|
u32 offset, u32 value)
|
|
{
|
|
writel_relaxed(value, cryp->base + offset);
|
|
}
|
|
|
|
static struct mtk_cryp *mtk_aes_find_dev(struct mtk_aes_base_ctx *ctx)
|
|
{
|
|
struct mtk_cryp *cryp = NULL;
|
|
struct mtk_cryp *tmp;
|
|
|
|
spin_lock_bh(&mtk_aes.lock);
|
|
if (!ctx->cryp) {
|
|
list_for_each_entry(tmp, &mtk_aes.dev_list, aes_list) {
|
|
cryp = tmp;
|
|
break;
|
|
}
|
|
ctx->cryp = cryp;
|
|
} else {
|
|
cryp = ctx->cryp;
|
|
}
|
|
spin_unlock_bh(&mtk_aes.lock);
|
|
|
|
return cryp;
|
|
}
|
|
|
|
static inline size_t mtk_aes_padlen(size_t len)
|
|
{
|
|
len &= AES_BLOCK_SIZE - 1;
|
|
return len ? AES_BLOCK_SIZE - len : 0;
|
|
}
|
|
|
|
static bool mtk_aes_check_aligned(struct scatterlist *sg, size_t len,
|
|
struct mtk_aes_dma *dma)
|
|
{
|
|
int nents;
|
|
|
|
if (!IS_ALIGNED(len, AES_BLOCK_SIZE))
|
|
return false;
|
|
|
|
for (nents = 0; sg; sg = sg_next(sg), ++nents) {
|
|
if (!IS_ALIGNED(sg->offset, sizeof(u32)))
|
|
return false;
|
|
|
|
if (len <= sg->length) {
|
|
if (!IS_ALIGNED(len, AES_BLOCK_SIZE))
|
|
return false;
|
|
|
|
dma->nents = nents + 1;
|
|
dma->remainder = sg->length - len;
|
|
sg->length = len;
|
|
return true;
|
|
}
|
|
|
|
if (!IS_ALIGNED(sg->length, AES_BLOCK_SIZE))
|
|
return false;
|
|
|
|
len -= sg->length;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Initialize and map transform information of AES */
|
|
static int mtk_aes_info_map(struct mtk_cryp *cryp,
|
|
struct mtk_aes_rec *aes,
|
|
size_t len)
|
|
{
|
|
struct ablkcipher_request *req = ablkcipher_request_cast(aes->areq);
|
|
struct mtk_aes_base_ctx *ctx = aes->ctx;
|
|
|
|
ctx->ct_hdr = AES_CT_CTRL_HDR | cpu_to_le32(len);
|
|
ctx->ct.cmd[0] = AES_CMD0 | cpu_to_le32(len);
|
|
ctx->ct.cmd[1] = AES_CMD1;
|
|
|
|
if (aes->flags & AES_FLAGS_ENCRYPT)
|
|
ctx->tfm.ctrl[0] = AES_TFM_BASIC_OUT;
|
|
else
|
|
ctx->tfm.ctrl[0] = AES_TFM_BASIC_IN;
|
|
|
|
if (ctx->keylen == SIZE_IN_WORDS(AES_KEYSIZE_128))
|
|
ctx->tfm.ctrl[0] |= AES_TFM_128BITS;
|
|
else if (ctx->keylen == SIZE_IN_WORDS(AES_KEYSIZE_256))
|
|
ctx->tfm.ctrl[0] |= AES_TFM_256BITS;
|
|
else if (ctx->keylen == SIZE_IN_WORDS(AES_KEYSIZE_192))
|
|
ctx->tfm.ctrl[0] |= AES_TFM_192BITS;
|
|
|
|
if (aes->flags & AES_FLAGS_CBC) {
|
|
const u32 *iv = (const u32 *)req->info;
|
|
u32 *iv_state = ctx->tfm.state + ctx->keylen;
|
|
int i;
|
|
|
|
ctx->tfm.ctrl[0] |= AES_TFM_SIZE(ctx->keylen +
|
|
SIZE_IN_WORDS(AES_BLOCK_SIZE));
|
|
ctx->tfm.ctrl[1] = AES_TFM_CBC | AES_TFM_FULL_IV;
|
|
|
|
for (i = 0; i < SIZE_IN_WORDS(AES_BLOCK_SIZE); i++)
|
|
iv_state[i] = cpu_to_le32(iv[i]);
|
|
|
|
ctx->ct.cmd[2] = AES_CMD2;
|
|
ctx->ct_size = AES_CT_SIZE_CBC;
|
|
} else if (aes->flags & AES_FLAGS_ECB) {
|
|
ctx->tfm.ctrl[0] |= AES_TFM_SIZE(ctx->keylen);
|
|
ctx->tfm.ctrl[1] = AES_TFM_ECB;
|
|
|
|
ctx->ct_size = AES_CT_SIZE_ECB;
|
|
}
|
|
|
|
ctx->ct_dma = dma_map_single(cryp->dev, &ctx->ct, sizeof(ctx->ct),
|
|
DMA_TO_DEVICE);
|
|
if (unlikely(dma_mapping_error(cryp->dev, ctx->ct_dma)))
|
|
return -EINVAL;
|
|
|
|
ctx->tfm_dma = dma_map_single(cryp->dev, &ctx->tfm, sizeof(ctx->tfm),
|
|
DMA_TO_DEVICE);
|
|
if (unlikely(dma_mapping_error(cryp->dev, ctx->tfm_dma))) {
|
|
dma_unmap_single(cryp->dev, ctx->tfm_dma, sizeof(ctx->tfm),
|
|
DMA_TO_DEVICE);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Write descriptors for processing. This will configure the engine, load
|
|
* the transform information and then start the packet processing.
|
|
*/
|
|
static int mtk_aes_xmit(struct mtk_cryp *cryp, struct mtk_aes_rec *aes)
|
|
{
|
|
struct mtk_ring *ring = cryp->ring[aes->id];
|
|
struct mtk_desc *cmd = NULL, *res = NULL;
|
|
struct scatterlist *ssg = aes->src.sg, *dsg = aes->dst.sg;
|
|
u32 slen = aes->src.sg_len, dlen = aes->dst.sg_len;
|
|
int nents;
|
|
|
|
/* Write command descriptors */
|
|
for (nents = 0; nents < slen; ++nents, ssg = sg_next(ssg)) {
|
|
cmd = ring->cmd_base + ring->cmd_pos;
|
|
cmd->hdr = MTK_DESC_BUF_LEN(ssg->length);
|
|
cmd->buf = cpu_to_le32(sg_dma_address(ssg));
|
|
|
|
if (nents == 0) {
|
|
cmd->hdr |= MTK_DESC_FIRST |
|
|
MTK_DESC_CT_LEN(aes->ctx->ct_size);
|
|
cmd->ct = cpu_to_le32(aes->ctx->ct_dma);
|
|
cmd->ct_hdr = aes->ctx->ct_hdr;
|
|
cmd->tfm = cpu_to_le32(aes->ctx->tfm_dma);
|
|
}
|
|
|
|
if (++ring->cmd_pos == MTK_DESC_NUM)
|
|
ring->cmd_pos = 0;
|
|
}
|
|
cmd->hdr |= MTK_DESC_LAST;
|
|
|
|
/* Prepare result descriptors */
|
|
for (nents = 0; nents < dlen; ++nents, dsg = sg_next(dsg)) {
|
|
res = ring->res_base + ring->res_pos;
|
|
res->hdr = MTK_DESC_BUF_LEN(dsg->length);
|
|
res->buf = cpu_to_le32(sg_dma_address(dsg));
|
|
|
|
if (nents == 0)
|
|
res->hdr |= MTK_DESC_FIRST;
|
|
|
|
if (++ring->res_pos == MTK_DESC_NUM)
|
|
ring->res_pos = 0;
|
|
}
|
|
res->hdr |= MTK_DESC_LAST;
|
|
|
|
/*
|
|
* Make sure that all changes to the DMA ring are done before we
|
|
* start engine.
|
|
*/
|
|
wmb();
|
|
/* Start DMA transfer */
|
|
mtk_aes_write(cryp, RDR_PREP_COUNT(aes->id), MTK_DESC_CNT(dlen));
|
|
mtk_aes_write(cryp, CDR_PREP_COUNT(aes->id), MTK_DESC_CNT(slen));
|
|
|
|
return -EINPROGRESS;
|
|
}
|
|
|
|
static inline void mtk_aes_restore_sg(const struct mtk_aes_dma *dma)
|
|
{
|
|
struct scatterlist *sg = dma->sg;
|
|
int nents = dma->nents;
|
|
|
|
if (!dma->remainder)
|
|
return;
|
|
|
|
while (--nents > 0 && sg)
|
|
sg = sg_next(sg);
|
|
|
|
if (!sg)
|
|
return;
|
|
|
|
sg->length += dma->remainder;
|
|
}
|
|
|
|
static int mtk_aes_map(struct mtk_cryp *cryp, struct mtk_aes_rec *aes,
|
|
struct scatterlist *src, struct scatterlist *dst,
|
|
size_t len)
|
|
{
|
|
size_t padlen = 0;
|
|
bool src_aligned, dst_aligned;
|
|
|
|
aes->total = len;
|
|
aes->src.sg = src;
|
|
aes->dst.sg = dst;
|
|
aes->real_dst = dst;
|
|
|
|
src_aligned = mtk_aes_check_aligned(src, len, &aes->src);
|
|
if (src == dst)
|
|
dst_aligned = src_aligned;
|
|
else
|
|
dst_aligned = mtk_aes_check_aligned(dst, len, &aes->dst);
|
|
|
|
if (!src_aligned || !dst_aligned) {
|
|
padlen = mtk_aes_padlen(len);
|
|
|
|
if (len + padlen > AES_BUF_SIZE)
|
|
return -ENOMEM;
|
|
|
|
if (!src_aligned) {
|
|
sg_copy_to_buffer(src, sg_nents(src), aes->buf, len);
|
|
aes->src.sg = &aes->aligned_sg;
|
|
aes->src.nents = 1;
|
|
aes->src.remainder = 0;
|
|
}
|
|
|
|
if (!dst_aligned) {
|
|
aes->dst.sg = &aes->aligned_sg;
|
|
aes->dst.nents = 1;
|
|
aes->dst.remainder = 0;
|
|
}
|
|
|
|
sg_init_table(&aes->aligned_sg, 1);
|
|
sg_set_buf(&aes->aligned_sg, aes->buf, len + padlen);
|
|
}
|
|
|
|
if (aes->src.sg == aes->dst.sg) {
|
|
aes->src.sg_len = dma_map_sg(cryp->dev, aes->src.sg,
|
|
aes->src.nents, DMA_BIDIRECTIONAL);
|
|
aes->dst.sg_len = aes->src.sg_len;
|
|
if (unlikely(!aes->src.sg_len))
|
|
return -EFAULT;
|
|
} else {
|
|
aes->src.sg_len = dma_map_sg(cryp->dev, aes->src.sg,
|
|
aes->src.nents, DMA_TO_DEVICE);
|
|
if (unlikely(!aes->src.sg_len))
|
|
return -EFAULT;
|
|
|
|
aes->dst.sg_len = dma_map_sg(cryp->dev, aes->dst.sg,
|
|
aes->dst.nents, DMA_FROM_DEVICE);
|
|
if (unlikely(!aes->dst.sg_len)) {
|
|
dma_unmap_sg(cryp->dev, aes->src.sg,
|
|
aes->src.nents, DMA_TO_DEVICE);
|
|
return -EFAULT;
|
|
}
|
|
}
|
|
|
|
return mtk_aes_info_map(cryp, aes, len + padlen);
|
|
}
|
|
|
|
static int mtk_aes_handle_queue(struct mtk_cryp *cryp, u8 id,
|
|
struct crypto_async_request *new_areq)
|
|
{
|
|
struct mtk_aes_rec *aes = cryp->aes[id];
|
|
struct crypto_async_request *areq, *backlog;
|
|
struct mtk_aes_base_ctx *ctx;
|
|
unsigned long flags;
|
|
int ret = 0;
|
|
|
|
spin_lock_irqsave(&aes->lock, flags);
|
|
if (new_areq)
|
|
ret = crypto_enqueue_request(&aes->queue, new_areq);
|
|
if (aes->flags & AES_FLAGS_BUSY) {
|
|
spin_unlock_irqrestore(&aes->lock, flags);
|
|
return ret;
|
|
}
|
|
backlog = crypto_get_backlog(&aes->queue);
|
|
areq = crypto_dequeue_request(&aes->queue);
|
|
if (areq)
|
|
aes->flags |= AES_FLAGS_BUSY;
|
|
spin_unlock_irqrestore(&aes->lock, flags);
|
|
|
|
if (!areq)
|
|
return ret;
|
|
|
|
if (backlog)
|
|
backlog->complete(backlog, -EINPROGRESS);
|
|
|
|
ctx = crypto_tfm_ctx(areq->tfm);
|
|
|
|
aes->areq = areq;
|
|
aes->ctx = ctx;
|
|
|
|
return ctx->start(cryp, aes);
|
|
}
|
|
|
|
static int mtk_aes_complete(struct mtk_cryp *cryp, struct mtk_aes_rec *aes)
|
|
{
|
|
aes->flags &= ~AES_FLAGS_BUSY;
|
|
aes->areq->complete(aes->areq, 0);
|
|
|
|
/* Handle new request */
|
|
return mtk_aes_handle_queue(cryp, aes->id, NULL);
|
|
}
|
|
|
|
static int mtk_aes_start(struct mtk_cryp *cryp, struct mtk_aes_rec *aes)
|
|
{
|
|
struct ablkcipher_request *req = ablkcipher_request_cast(aes->areq);
|
|
struct mtk_aes_reqctx *rctx = ablkcipher_request_ctx(req);
|
|
int err;
|
|
|
|
rctx = ablkcipher_request_ctx(req);
|
|
rctx->mode &= AES_FLAGS_MODE_MSK;
|
|
aes->flags = (aes->flags & ~AES_FLAGS_MODE_MSK) | rctx->mode;
|
|
|
|
aes->resume = mtk_aes_complete;
|
|
|
|
err = mtk_aes_map(cryp, aes, req->src, req->dst, req->nbytes);
|
|
if (err)
|
|
return err;
|
|
|
|
return mtk_aes_xmit(cryp, aes);
|
|
}
|
|
|
|
static void mtk_aes_unmap(struct mtk_cryp *cryp, struct mtk_aes_rec *aes)
|
|
{
|
|
struct mtk_aes_base_ctx *ctx = aes->ctx;
|
|
|
|
dma_unmap_single(cryp->dev, ctx->ct_dma, sizeof(ctx->ct),
|
|
DMA_TO_DEVICE);
|
|
dma_unmap_single(cryp->dev, ctx->tfm_dma, sizeof(ctx->tfm),
|
|
DMA_TO_DEVICE);
|
|
|
|
if (aes->src.sg == aes->dst.sg) {
|
|
dma_unmap_sg(cryp->dev, aes->src.sg,
|
|
aes->src.nents, DMA_BIDIRECTIONAL);
|
|
|
|
if (aes->src.sg != &aes->aligned_sg)
|
|
mtk_aes_restore_sg(&aes->src);
|
|
} else {
|
|
dma_unmap_sg(cryp->dev, aes->dst.sg,
|
|
aes->dst.nents, DMA_FROM_DEVICE);
|
|
|
|
if (aes->dst.sg != &aes->aligned_sg)
|
|
mtk_aes_restore_sg(&aes->dst);
|
|
|
|
dma_unmap_sg(cryp->dev, aes->src.sg,
|
|
aes->src.nents, DMA_TO_DEVICE);
|
|
|
|
if (aes->src.sg != &aes->aligned_sg)
|
|
mtk_aes_restore_sg(&aes->src);
|
|
}
|
|
|
|
if (aes->dst.sg == &aes->aligned_sg)
|
|
sg_copy_from_buffer(aes->real_dst,
|
|
sg_nents(aes->real_dst),
|
|
aes->buf, aes->total);
|
|
}
|
|
|
|
/* Check and set the AES key to transform state buffer */
|
|
static int mtk_aes_setkey(struct crypto_ablkcipher *tfm,
|
|
const u8 *key, u32 keylen)
|
|
{
|
|
struct mtk_aes_base_ctx *ctx = crypto_ablkcipher_ctx(tfm);
|
|
const u32 *key_tmp = (const u32 *)key;
|
|
u32 *key_state = ctx->tfm.state;
|
|
int i;
|
|
|
|
if (keylen != AES_KEYSIZE_128 &&
|
|
keylen != AES_KEYSIZE_192 &&
|
|
keylen != AES_KEYSIZE_256) {
|
|
crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
|
|
return -EINVAL;
|
|
}
|
|
|
|
ctx->keylen = SIZE_IN_WORDS(keylen);
|
|
|
|
for (i = 0; i < ctx->keylen; i++)
|
|
key_state[i] = cpu_to_le32(key_tmp[i]);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int mtk_aes_crypt(struct ablkcipher_request *req, u64 mode)
|
|
{
|
|
struct mtk_aes_base_ctx *ctx;
|
|
struct mtk_aes_reqctx *rctx;
|
|
|
|
ctx = crypto_ablkcipher_ctx(crypto_ablkcipher_reqtfm(req));
|
|
rctx = ablkcipher_request_ctx(req);
|
|
rctx->mode = mode;
|
|
|
|
return mtk_aes_handle_queue(ctx->cryp,
|
|
!(mode & AES_FLAGS_ENCRYPT), &req->base);
|
|
}
|
|
|
|
static int mtk_ecb_encrypt(struct ablkcipher_request *req)
|
|
{
|
|
return mtk_aes_crypt(req, AES_FLAGS_ENCRYPT | AES_FLAGS_ECB);
|
|
}
|
|
|
|
static int mtk_ecb_decrypt(struct ablkcipher_request *req)
|
|
{
|
|
return mtk_aes_crypt(req, AES_FLAGS_ECB);
|
|
}
|
|
|
|
static int mtk_cbc_encrypt(struct ablkcipher_request *req)
|
|
{
|
|
return mtk_aes_crypt(req, AES_FLAGS_ENCRYPT | AES_FLAGS_CBC);
|
|
}
|
|
|
|
static int mtk_cbc_decrypt(struct ablkcipher_request *req)
|
|
{
|
|
return mtk_aes_crypt(req, AES_FLAGS_CBC);
|
|
}
|
|
|
|
static int mtk_aes_cra_init(struct crypto_tfm *tfm)
|
|
{
|
|
struct mtk_aes_ctx *ctx = crypto_tfm_ctx(tfm);
|
|
struct mtk_cryp *cryp = NULL;
|
|
|
|
cryp = mtk_aes_find_dev(&ctx->base);
|
|
if (!cryp) {
|
|
pr_err("can't find crypto device\n");
|
|
return -ENODEV;
|
|
}
|
|
|
|
tfm->crt_ablkcipher.reqsize = sizeof(struct mtk_aes_reqctx);
|
|
ctx->base.start = mtk_aes_start;
|
|
return 0;
|
|
}
|
|
|
|
static struct crypto_alg aes_algs[] = {
|
|
{
|
|
.cra_name = "cbc(aes)",
|
|
.cra_driver_name = "cbc-aes-mtk",
|
|
.cra_priority = 400,
|
|
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
|
|
CRYPTO_ALG_ASYNC,
|
|
.cra_init = mtk_aes_cra_init,
|
|
.cra_blocksize = AES_BLOCK_SIZE,
|
|
.cra_ctxsize = sizeof(struct mtk_aes_ctx),
|
|
.cra_alignmask = 15,
|
|
.cra_type = &crypto_ablkcipher_type,
|
|
.cra_module = THIS_MODULE,
|
|
.cra_u.ablkcipher = {
|
|
.min_keysize = AES_MIN_KEY_SIZE,
|
|
.max_keysize = AES_MAX_KEY_SIZE,
|
|
.setkey = mtk_aes_setkey,
|
|
.encrypt = mtk_cbc_encrypt,
|
|
.decrypt = mtk_cbc_decrypt,
|
|
.ivsize = AES_BLOCK_SIZE,
|
|
}
|
|
},
|
|
{
|
|
.cra_name = "ecb(aes)",
|
|
.cra_driver_name = "ecb-aes-mtk",
|
|
.cra_priority = 400,
|
|
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
|
|
CRYPTO_ALG_ASYNC,
|
|
.cra_init = mtk_aes_cra_init,
|
|
.cra_blocksize = AES_BLOCK_SIZE,
|
|
.cra_ctxsize = sizeof(struct mtk_aes_ctx),
|
|
.cra_alignmask = 15,
|
|
.cra_type = &crypto_ablkcipher_type,
|
|
.cra_module = THIS_MODULE,
|
|
.cra_u.ablkcipher = {
|
|
.min_keysize = AES_MIN_KEY_SIZE,
|
|
.max_keysize = AES_MAX_KEY_SIZE,
|
|
.setkey = mtk_aes_setkey,
|
|
.encrypt = mtk_ecb_encrypt,
|
|
.decrypt = mtk_ecb_decrypt,
|
|
}
|
|
},
|
|
};
|
|
|
|
static void mtk_aes_enc_task(unsigned long data)
|
|
{
|
|
struct mtk_cryp *cryp = (struct mtk_cryp *)data;
|
|
struct mtk_aes_rec *aes = cryp->aes[0];
|
|
|
|
mtk_aes_unmap(cryp, aes);
|
|
aes->resume(cryp, aes);
|
|
}
|
|
|
|
static void mtk_aes_dec_task(unsigned long data)
|
|
{
|
|
struct mtk_cryp *cryp = (struct mtk_cryp *)data;
|
|
struct mtk_aes_rec *aes = cryp->aes[1];
|
|
|
|
mtk_aes_unmap(cryp, aes);
|
|
aes->resume(cryp, aes);
|
|
}
|
|
|
|
static irqreturn_t mtk_aes_enc_irq(int irq, void *dev_id)
|
|
{
|
|
struct mtk_cryp *cryp = (struct mtk_cryp *)dev_id;
|
|
struct mtk_aes_rec *aes = cryp->aes[0];
|
|
u32 val = mtk_aes_read(cryp, RDR_STAT(RING0));
|
|
|
|
mtk_aes_write(cryp, RDR_STAT(RING0), val);
|
|
|
|
if (likely(AES_FLAGS_BUSY & aes->flags)) {
|
|
mtk_aes_write(cryp, RDR_PROC_COUNT(RING0), MTK_CNT_RST);
|
|
mtk_aes_write(cryp, RDR_THRESH(RING0),
|
|
MTK_RDR_PROC_THRESH | MTK_RDR_PROC_MODE);
|
|
|
|
tasklet_schedule(&aes->task);
|
|
} else {
|
|
dev_warn(cryp->dev, "AES interrupt when no active requests.\n");
|
|
}
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static irqreturn_t mtk_aes_dec_irq(int irq, void *dev_id)
|
|
{
|
|
struct mtk_cryp *cryp = (struct mtk_cryp *)dev_id;
|
|
struct mtk_aes_rec *aes = cryp->aes[1];
|
|
u32 val = mtk_aes_read(cryp, RDR_STAT(RING1));
|
|
|
|
mtk_aes_write(cryp, RDR_STAT(RING1), val);
|
|
|
|
if (likely(AES_FLAGS_BUSY & aes->flags)) {
|
|
mtk_aes_write(cryp, RDR_PROC_COUNT(RING1), MTK_CNT_RST);
|
|
mtk_aes_write(cryp, RDR_THRESH(RING1),
|
|
MTK_RDR_PROC_THRESH | MTK_RDR_PROC_MODE);
|
|
|
|
tasklet_schedule(&aes->task);
|
|
} else {
|
|
dev_warn(cryp->dev, "AES interrupt when no active requests.\n");
|
|
}
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/*
|
|
* The purpose of creating encryption and decryption records is
|
|
* to process outbound/inbound data in parallel, it can improve
|
|
* performance in most use cases, such as IPSec VPN, especially
|
|
* under heavy network traffic.
|
|
*/
|
|
static int mtk_aes_record_init(struct mtk_cryp *cryp)
|
|
{
|
|
struct mtk_aes_rec **aes = cryp->aes;
|
|
int i, err = -ENOMEM;
|
|
|
|
for (i = 0; i < MTK_REC_NUM; i++) {
|
|
aes[i] = kzalloc(sizeof(**aes), GFP_KERNEL);
|
|
if (!aes[i])
|
|
goto err_cleanup;
|
|
|
|
aes[i]->buf = (void *)__get_free_pages(GFP_KERNEL,
|
|
AES_BUF_ORDER);
|
|
if (!aes[i]->buf)
|
|
goto err_cleanup;
|
|
|
|
aes[i]->id = i;
|
|
|
|
spin_lock_init(&aes[i]->lock);
|
|
crypto_init_queue(&aes[i]->queue, AES_QUEUE_SIZE);
|
|
}
|
|
|
|
tasklet_init(&aes[0]->task, mtk_aes_enc_task, (unsigned long)cryp);
|
|
tasklet_init(&aes[1]->task, mtk_aes_dec_task, (unsigned long)cryp);
|
|
|
|
return 0;
|
|
|
|
err_cleanup:
|
|
for (; i--; ) {
|
|
free_page((unsigned long)aes[i]->buf);
|
|
kfree(aes[i]);
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static void mtk_aes_record_free(struct mtk_cryp *cryp)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < MTK_REC_NUM; i++) {
|
|
tasklet_kill(&cryp->aes[i]->task);
|
|
free_page((unsigned long)cryp->aes[i]->buf);
|
|
kfree(cryp->aes[i]);
|
|
}
|
|
}
|
|
|
|
static void mtk_aes_unregister_algs(void)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(aes_algs); i++)
|
|
crypto_unregister_alg(&aes_algs[i]);
|
|
}
|
|
|
|
static int mtk_aes_register_algs(void)
|
|
{
|
|
int err, i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
|
|
err = crypto_register_alg(&aes_algs[i]);
|
|
if (err)
|
|
goto err_aes_algs;
|
|
}
|
|
|
|
return 0;
|
|
|
|
err_aes_algs:
|
|
for (; i--; )
|
|
crypto_unregister_alg(&aes_algs[i]);
|
|
|
|
return err;
|
|
}
|
|
|
|
int mtk_cipher_alg_register(struct mtk_cryp *cryp)
|
|
{
|
|
int ret;
|
|
|
|
INIT_LIST_HEAD(&cryp->aes_list);
|
|
|
|
/* Initialize two cipher records */
|
|
ret = mtk_aes_record_init(cryp);
|
|
if (ret)
|
|
goto err_record;
|
|
|
|
/* Ring0 is use by encryption record */
|
|
ret = devm_request_irq(cryp->dev, cryp->irq[RING0], mtk_aes_enc_irq,
|
|
IRQF_TRIGGER_LOW, "mtk-aes", cryp);
|
|
if (ret) {
|
|
dev_err(cryp->dev, "unable to request AES encryption irq.\n");
|
|
goto err_res;
|
|
}
|
|
|
|
/* Ring1 is use by decryption record */
|
|
ret = devm_request_irq(cryp->dev, cryp->irq[RING1], mtk_aes_dec_irq,
|
|
IRQF_TRIGGER_LOW, "mtk-aes", cryp);
|
|
if (ret) {
|
|
dev_err(cryp->dev, "unable to request AES decryption irq.\n");
|
|
goto err_res;
|
|
}
|
|
|
|
/* Enable ring0 and ring1 interrupt */
|
|
mtk_aes_write(cryp, AIC_ENABLE_SET(RING0), MTK_IRQ_RDR0);
|
|
mtk_aes_write(cryp, AIC_ENABLE_SET(RING1), MTK_IRQ_RDR1);
|
|
|
|
spin_lock(&mtk_aes.lock);
|
|
list_add_tail(&cryp->aes_list, &mtk_aes.dev_list);
|
|
spin_unlock(&mtk_aes.lock);
|
|
|
|
ret = mtk_aes_register_algs();
|
|
if (ret)
|
|
goto err_algs;
|
|
|
|
return 0;
|
|
|
|
err_algs:
|
|
spin_lock(&mtk_aes.lock);
|
|
list_del(&cryp->aes_list);
|
|
spin_unlock(&mtk_aes.lock);
|
|
err_res:
|
|
mtk_aes_record_free(cryp);
|
|
err_record:
|
|
|
|
dev_err(cryp->dev, "mtk-aes initialization failed.\n");
|
|
return ret;
|
|
}
|
|
|
|
void mtk_cipher_alg_release(struct mtk_cryp *cryp)
|
|
{
|
|
spin_lock(&mtk_aes.lock);
|
|
list_del(&cryp->aes_list);
|
|
spin_unlock(&mtk_aes.lock);
|
|
|
|
mtk_aes_unregister_algs();
|
|
mtk_aes_record_free(cryp);
|
|
}
|