linux_dsm_epyc7002/drivers/net/ethernet/chelsio/cxgb4vf/t4vf_hw.c
Ganesh Goudar 9d5fd927d2 cxgb4/cxgb4vf: add support for ndo_set_vf_vlan
implement ndo_set_vf_vlan for mgmt netdevice to configure
the PCIe VF.

Original work by: Casey Leedom <leedom@chelsio.com>
Signed-off-by: Ganesh Goudar <ganeshgr@chelsio.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2018-01-24 10:48:25 -05:00

2178 lines
66 KiB
C

/*
* This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
* driver for Linux.
*
* Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <linux/pci.h>
#include "t4vf_common.h"
#include "t4vf_defs.h"
#include "../cxgb4/t4_regs.h"
#include "../cxgb4/t4_values.h"
#include "../cxgb4/t4fw_api.h"
/*
* Wait for the device to become ready (signified by our "who am I" register
* returning a value other than all 1's). Return an error if it doesn't
* become ready ...
*/
int t4vf_wait_dev_ready(struct adapter *adapter)
{
const u32 whoami = T4VF_PL_BASE_ADDR + PL_VF_WHOAMI;
const u32 notready1 = 0xffffffff;
const u32 notready2 = 0xeeeeeeee;
u32 val;
val = t4_read_reg(adapter, whoami);
if (val != notready1 && val != notready2)
return 0;
msleep(500);
val = t4_read_reg(adapter, whoami);
if (val != notready1 && val != notready2)
return 0;
else
return -EIO;
}
/*
* Get the reply to a mailbox command and store it in @rpl in big-endian order
* (since the firmware data structures are specified in a big-endian layout).
*/
static void get_mbox_rpl(struct adapter *adapter, __be64 *rpl, int size,
u32 mbox_data)
{
for ( ; size; size -= 8, mbox_data += 8)
*rpl++ = cpu_to_be64(t4_read_reg64(adapter, mbox_data));
}
/**
* t4vf_record_mbox - record a Firmware Mailbox Command/Reply in the log
* @adapter: the adapter
* @cmd: the Firmware Mailbox Command or Reply
* @size: command length in bytes
* @access: the time (ms) needed to access the Firmware Mailbox
* @execute: the time (ms) the command spent being executed
*/
static void t4vf_record_mbox(struct adapter *adapter, const __be64 *cmd,
int size, int access, int execute)
{
struct mbox_cmd_log *log = adapter->mbox_log;
struct mbox_cmd *entry;
int i;
entry = mbox_cmd_log_entry(log, log->cursor++);
if (log->cursor == log->size)
log->cursor = 0;
for (i = 0; i < size / 8; i++)
entry->cmd[i] = be64_to_cpu(cmd[i]);
while (i < MBOX_LEN / 8)
entry->cmd[i++] = 0;
entry->timestamp = jiffies;
entry->seqno = log->seqno++;
entry->access = access;
entry->execute = execute;
}
/**
* t4vf_wr_mbox_core - send a command to FW through the mailbox
* @adapter: the adapter
* @cmd: the command to write
* @size: command length in bytes
* @rpl: where to optionally store the reply
* @sleep_ok: if true we may sleep while awaiting command completion
*
* Sends the given command to FW through the mailbox and waits for the
* FW to execute the command. If @rpl is not %NULL it is used to store
* the FW's reply to the command. The command and its optional reply
* are of the same length. FW can take up to 500 ms to respond.
* @sleep_ok determines whether we may sleep while awaiting the response.
* If sleeping is allowed we use progressive backoff otherwise we spin.
*
* The return value is 0 on success or a negative errno on failure. A
* failure can happen either because we are not able to execute the
* command or FW executes it but signals an error. In the latter case
* the return value is the error code indicated by FW (negated).
*/
int t4vf_wr_mbox_core(struct adapter *adapter, const void *cmd, int size,
void *rpl, bool sleep_ok)
{
static const int delay[] = {
1, 1, 3, 5, 10, 10, 20, 50, 100
};
u16 access = 0, execute = 0;
u32 v, mbox_data;
int i, ms, delay_idx, ret;
const __be64 *p;
u32 mbox_ctl = T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL;
u32 cmd_op = FW_CMD_OP_G(be32_to_cpu(((struct fw_cmd_hdr *)cmd)->hi));
__be64 cmd_rpl[MBOX_LEN / 8];
struct mbox_list entry;
/* In T6, mailbox size is changed to 128 bytes to avoid
* invalidating the entire prefetch buffer.
*/
if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
mbox_data = T4VF_MBDATA_BASE_ADDR;
else
mbox_data = T6VF_MBDATA_BASE_ADDR;
/*
* Commands must be multiples of 16 bytes in length and may not be
* larger than the size of the Mailbox Data register array.
*/
if ((size % 16) != 0 ||
size > NUM_CIM_VF_MAILBOX_DATA_INSTANCES * 4)
return -EINVAL;
/* Queue ourselves onto the mailbox access list. When our entry is at
* the front of the list, we have rights to access the mailbox. So we
* wait [for a while] till we're at the front [or bail out with an
* EBUSY] ...
*/
spin_lock(&adapter->mbox_lock);
list_add_tail(&entry.list, &adapter->mlist.list);
spin_unlock(&adapter->mbox_lock);
delay_idx = 0;
ms = delay[0];
for (i = 0; ; i += ms) {
/* If we've waited too long, return a busy indication. This
* really ought to be based on our initial position in the
* mailbox access list but this is a start. We very rearely
* contend on access to the mailbox ...
*/
if (i > FW_CMD_MAX_TIMEOUT) {
spin_lock(&adapter->mbox_lock);
list_del(&entry.list);
spin_unlock(&adapter->mbox_lock);
ret = -EBUSY;
t4vf_record_mbox(adapter, cmd, size, access, ret);
return ret;
}
/* If we're at the head, break out and start the mailbox
* protocol.
*/
if (list_first_entry(&adapter->mlist.list, struct mbox_list,
list) == &entry)
break;
/* Delay for a bit before checking again ... */
if (sleep_ok) {
ms = delay[delay_idx]; /* last element may repeat */
if (delay_idx < ARRAY_SIZE(delay) - 1)
delay_idx++;
msleep(ms);
} else {
mdelay(ms);
}
}
/*
* Loop trying to get ownership of the mailbox. Return an error
* if we can't gain ownership.
*/
v = MBOWNER_G(t4_read_reg(adapter, mbox_ctl));
for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
v = MBOWNER_G(t4_read_reg(adapter, mbox_ctl));
if (v != MBOX_OWNER_DRV) {
spin_lock(&adapter->mbox_lock);
list_del(&entry.list);
spin_unlock(&adapter->mbox_lock);
ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT;
t4vf_record_mbox(adapter, cmd, size, access, ret);
return ret;
}
/*
* Write the command array into the Mailbox Data register array and
* transfer ownership of the mailbox to the firmware.
*
* For the VFs, the Mailbox Data "registers" are actually backed by
* T4's "MA" interface rather than PL Registers (as is the case for
* the PFs). Because these are in different coherency domains, the
* write to the VF's PL-register-backed Mailbox Control can race in
* front of the writes to the MA-backed VF Mailbox Data "registers".
* So we need to do a read-back on at least one byte of the VF Mailbox
* Data registers before doing the write to the VF Mailbox Control
* register.
*/
if (cmd_op != FW_VI_STATS_CMD)
t4vf_record_mbox(adapter, cmd, size, access, 0);
for (i = 0, p = cmd; i < size; i += 8)
t4_write_reg64(adapter, mbox_data + i, be64_to_cpu(*p++));
t4_read_reg(adapter, mbox_data); /* flush write */
t4_write_reg(adapter, mbox_ctl,
MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
t4_read_reg(adapter, mbox_ctl); /* flush write */
/*
* Spin waiting for firmware to acknowledge processing our command.
*/
delay_idx = 0;
ms = delay[0];
for (i = 0; i < FW_CMD_MAX_TIMEOUT; i += ms) {
if (sleep_ok) {
ms = delay[delay_idx];
if (delay_idx < ARRAY_SIZE(delay) - 1)
delay_idx++;
msleep(ms);
} else
mdelay(ms);
/*
* If we're the owner, see if this is the reply we wanted.
*/
v = t4_read_reg(adapter, mbox_ctl);
if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
/*
* If the Message Valid bit isn't on, revoke ownership
* of the mailbox and continue waiting for our reply.
*/
if ((v & MBMSGVALID_F) == 0) {
t4_write_reg(adapter, mbox_ctl,
MBOWNER_V(MBOX_OWNER_NONE));
continue;
}
/*
* We now have our reply. Extract the command return
* value, copy the reply back to our caller's buffer
* (if specified) and revoke ownership of the mailbox.
* We return the (negated) firmware command return
* code (this depends on FW_SUCCESS == 0).
*/
get_mbox_rpl(adapter, cmd_rpl, size, mbox_data);
/* return value in low-order little-endian word */
v = be64_to_cpu(cmd_rpl[0]);
if (rpl) {
/* request bit in high-order BE word */
WARN_ON((be32_to_cpu(*(const __be32 *)cmd)
& FW_CMD_REQUEST_F) == 0);
memcpy(rpl, cmd_rpl, size);
WARN_ON((be32_to_cpu(*(__be32 *)rpl)
& FW_CMD_REQUEST_F) != 0);
}
t4_write_reg(adapter, mbox_ctl,
MBOWNER_V(MBOX_OWNER_NONE));
execute = i + ms;
if (cmd_op != FW_VI_STATS_CMD)
t4vf_record_mbox(adapter, cmd_rpl, size, access,
execute);
spin_lock(&adapter->mbox_lock);
list_del(&entry.list);
spin_unlock(&adapter->mbox_lock);
return -FW_CMD_RETVAL_G(v);
}
}
/* We timed out. Return the error ... */
ret = -ETIMEDOUT;
t4vf_record_mbox(adapter, cmd, size, access, ret);
spin_lock(&adapter->mbox_lock);
list_del(&entry.list);
spin_unlock(&adapter->mbox_lock);
return ret;
}
#define ADVERT_MASK (FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_M) | \
FW_PORT_CAP32_ANEG)
/**
* fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
* @caps16: a 16-bit Port Capabilities value
*
* Returns the equivalent 32-bit Port Capabilities value.
*/
static fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16)
{
fw_port_cap32_t caps32 = 0;
#define CAP16_TO_CAP32(__cap) \
do { \
if (caps16 & FW_PORT_CAP_##__cap) \
caps32 |= FW_PORT_CAP32_##__cap; \
} while (0)
CAP16_TO_CAP32(SPEED_100M);
CAP16_TO_CAP32(SPEED_1G);
CAP16_TO_CAP32(SPEED_25G);
CAP16_TO_CAP32(SPEED_10G);
CAP16_TO_CAP32(SPEED_40G);
CAP16_TO_CAP32(SPEED_100G);
CAP16_TO_CAP32(FC_RX);
CAP16_TO_CAP32(FC_TX);
CAP16_TO_CAP32(ANEG);
CAP16_TO_CAP32(MDIX);
CAP16_TO_CAP32(MDIAUTO);
CAP16_TO_CAP32(FEC_RS);
CAP16_TO_CAP32(FEC_BASER_RS);
CAP16_TO_CAP32(802_3_PAUSE);
CAP16_TO_CAP32(802_3_ASM_DIR);
#undef CAP16_TO_CAP32
return caps32;
}
/* Translate Firmware Pause specification to Common Code */
static inline enum cc_pause fwcap_to_cc_pause(fw_port_cap32_t fw_pause)
{
enum cc_pause cc_pause = 0;
if (fw_pause & FW_PORT_CAP32_FC_RX)
cc_pause |= PAUSE_RX;
if (fw_pause & FW_PORT_CAP32_FC_TX)
cc_pause |= PAUSE_TX;
return cc_pause;
}
/* Translate Firmware Forward Error Correction specification to Common Code */
static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec)
{
enum cc_fec cc_fec = 0;
if (fw_fec & FW_PORT_CAP32_FEC_RS)
cc_fec |= FEC_RS;
if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS)
cc_fec |= FEC_BASER_RS;
return cc_fec;
}
/**
* Return the highest speed set in the port capabilities, in Mb/s.
*/
static unsigned int fwcap_to_speed(fw_port_cap32_t caps)
{
#define TEST_SPEED_RETURN(__caps_speed, __speed) \
do { \
if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \
return __speed; \
} while (0)
TEST_SPEED_RETURN(400G, 400000);
TEST_SPEED_RETURN(200G, 200000);
TEST_SPEED_RETURN(100G, 100000);
TEST_SPEED_RETURN(50G, 50000);
TEST_SPEED_RETURN(40G, 40000);
TEST_SPEED_RETURN(25G, 25000);
TEST_SPEED_RETURN(10G, 10000);
TEST_SPEED_RETURN(1G, 1000);
TEST_SPEED_RETURN(100M, 100);
#undef TEST_SPEED_RETURN
return 0;
}
/*
* init_link_config - initialize a link's SW state
* @lc: structure holding the link state
* @pcaps: link Port Capabilities
* @acaps: link current Advertised Port Capabilities
*
* Initializes the SW state maintained for each link, including the link's
* capabilities and default speed/flow-control/autonegotiation settings.
*/
static void init_link_config(struct link_config *lc,
fw_port_cap32_t pcaps,
fw_port_cap32_t acaps)
{
lc->pcaps = pcaps;
lc->lpacaps = 0;
lc->speed_caps = 0;
lc->speed = 0;
lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
/* For Forward Error Control, we default to whatever the Firmware
* tells us the Link is currently advertising.
*/
lc->auto_fec = fwcap_to_cc_fec(acaps);
lc->requested_fec = FEC_AUTO;
lc->fec = lc->auto_fec;
if (lc->pcaps & FW_PORT_CAP32_ANEG) {
lc->acaps = acaps & ADVERT_MASK;
lc->autoneg = AUTONEG_ENABLE;
lc->requested_fc |= PAUSE_AUTONEG;
} else {
lc->acaps = 0;
lc->autoneg = AUTONEG_DISABLE;
}
}
/**
* t4vf_port_init - initialize port hardware/software state
* @adapter: the adapter
* @pidx: the adapter port index
*/
int t4vf_port_init(struct adapter *adapter, int pidx)
{
struct port_info *pi = adap2pinfo(adapter, pidx);
unsigned int fw_caps = adapter->params.fw_caps_support;
struct fw_vi_cmd vi_cmd, vi_rpl;
struct fw_port_cmd port_cmd, port_rpl;
enum fw_port_type port_type;
int mdio_addr;
fw_port_cap32_t pcaps, acaps;
int ret;
/* If we haven't yet determined whether we're talking to Firmware
* which knows the new 32-bit Port Capabilities, it's time to find
* out now. This will also tell new Firmware to send us Port Status
* Updates using the new 32-bit Port Capabilities version of the
* Port Information message.
*/
if (fw_caps == FW_CAPS_UNKNOWN) {
u32 param, val;
param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32));
val = 1;
ret = t4vf_set_params(adapter, 1, &param, &val);
fw_caps = (ret == 0 ? FW_CAPS32 : FW_CAPS16);
adapter->params.fw_caps_support = fw_caps;
}
/*
* Execute a VI Read command to get our Virtual Interface information
* like MAC address, etc.
*/
memset(&vi_cmd, 0, sizeof(vi_cmd));
vi_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
FW_CMD_REQUEST_F |
FW_CMD_READ_F);
vi_cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(vi_cmd));
vi_cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(pi->viid));
ret = t4vf_wr_mbox(adapter, &vi_cmd, sizeof(vi_cmd), &vi_rpl);
if (ret != FW_SUCCESS)
return ret;
BUG_ON(pi->port_id != FW_VI_CMD_PORTID_G(vi_rpl.portid_pkd));
pi->rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(vi_rpl.rsssize_pkd));
t4_os_set_hw_addr(adapter, pidx, vi_rpl.mac);
/*
* If we don't have read access to our port information, we're done
* now. Otherwise, execute a PORT Read command to get it ...
*/
if (!(adapter->params.vfres.r_caps & FW_CMD_CAP_PORT))
return 0;
memset(&port_cmd, 0, sizeof(port_cmd));
port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
FW_CMD_REQUEST_F |
FW_CMD_READ_F |
FW_PORT_CMD_PORTID_V(pi->port_id));
port_cmd.action_to_len16 = cpu_to_be32(
FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
? FW_PORT_ACTION_GET_PORT_INFO
: FW_PORT_ACTION_GET_PORT_INFO32) |
FW_LEN16(port_cmd));
ret = t4vf_wr_mbox(adapter, &port_cmd, sizeof(port_cmd), &port_rpl);
if (ret != FW_SUCCESS)
return ret;
/* Extract the various fields from the Port Information message. */
if (fw_caps == FW_CAPS16) {
u32 lstatus = be32_to_cpu(port_rpl.u.info.lstatus_to_modtype);
port_type = FW_PORT_CMD_PTYPE_G(lstatus);
mdio_addr = ((lstatus & FW_PORT_CMD_MDIOCAP_F)
? FW_PORT_CMD_MDIOADDR_G(lstatus)
: -1);
pcaps = fwcaps16_to_caps32(be16_to_cpu(port_rpl.u.info.pcap));
acaps = fwcaps16_to_caps32(be16_to_cpu(port_rpl.u.info.acap));
} else {
u32 lstatus32 =
be32_to_cpu(port_rpl.u.info32.lstatus32_to_cbllen32);
port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
mdio_addr = ((lstatus32 & FW_PORT_CMD_MDIOCAP32_F)
? FW_PORT_CMD_MDIOADDR32_G(lstatus32)
: -1);
pcaps = be32_to_cpu(port_rpl.u.info32.pcaps32);
acaps = be32_to_cpu(port_rpl.u.info32.acaps32);
}
pi->port_type = port_type;
pi->mdio_addr = mdio_addr;
pi->mod_type = FW_PORT_MOD_TYPE_NA;
init_link_config(&pi->link_cfg, pcaps, acaps);
return 0;
}
/**
* t4vf_fw_reset - issue a reset to FW
* @adapter: the adapter
*
* Issues a reset command to FW. For a Physical Function this would
* result in the Firmware resetting all of its state. For a Virtual
* Function this just resets the state associated with the VF.
*/
int t4vf_fw_reset(struct adapter *adapter)
{
struct fw_reset_cmd cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RESET_CMD) |
FW_CMD_WRITE_F);
cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
}
/**
* t4vf_query_params - query FW or device parameters
* @adapter: the adapter
* @nparams: the number of parameters
* @params: the parameter names
* @vals: the parameter values
*
* Reads the values of firmware or device parameters. Up to 7 parameters
* can be queried at once.
*/
static int t4vf_query_params(struct adapter *adapter, unsigned int nparams,
const u32 *params, u32 *vals)
{
int i, ret;
struct fw_params_cmd cmd, rpl;
struct fw_params_param *p;
size_t len16;
if (nparams > 7)
return -EINVAL;
memset(&cmd, 0, sizeof(cmd));
cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
FW_CMD_REQUEST_F |
FW_CMD_READ_F);
len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd,
param[nparams].mnem), 16);
cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++)
p->mnem = htonl(*params++);
ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
if (ret == 0)
for (i = 0, p = &rpl.param[0]; i < nparams; i++, p++)
*vals++ = be32_to_cpu(p->val);
return ret;
}
/**
* t4vf_set_params - sets FW or device parameters
* @adapter: the adapter
* @nparams: the number of parameters
* @params: the parameter names
* @vals: the parameter values
*
* Sets the values of firmware or device parameters. Up to 7 parameters
* can be specified at once.
*/
int t4vf_set_params(struct adapter *adapter, unsigned int nparams,
const u32 *params, const u32 *vals)
{
int i;
struct fw_params_cmd cmd;
struct fw_params_param *p;
size_t len16;
if (nparams > 7)
return -EINVAL;
memset(&cmd, 0, sizeof(cmd));
cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
FW_CMD_REQUEST_F |
FW_CMD_WRITE_F);
len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd,
param[nparams]), 16);
cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++) {
p->mnem = cpu_to_be32(*params++);
p->val = cpu_to_be32(*vals++);
}
return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
}
/**
* t4vf_fl_pkt_align - return the fl packet alignment
* @adapter: the adapter
*
* T4 has a single field to specify the packing and padding boundary.
* T5 onwards has separate fields for this and hence the alignment for
* next packet offset is maximum of these two. And T6 changes the
* Ingress Padding Boundary Shift, so it's all a mess and it's best
* if we put this in low-level Common Code ...
*
*/
int t4vf_fl_pkt_align(struct adapter *adapter)
{
u32 sge_control, sge_control2;
unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift;
sge_control = adapter->params.sge.sge_control;
/* T4 uses a single control field to specify both the PCIe Padding and
* Packing Boundary. T5 introduced the ability to specify these
* separately. The actual Ingress Packet Data alignment boundary
* within Packed Buffer Mode is the maximum of these two
* specifications. (Note that it makes no real practical sense to
* have the Pading Boudary be larger than the Packing Boundary but you
* could set the chip up that way and, in fact, legacy T4 code would
* end doing this because it would initialize the Padding Boundary and
* leave the Packing Boundary initialized to 0 (16 bytes).)
* Padding Boundary values in T6 starts from 8B,
* where as it is 32B for T4 and T5.
*/
if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
ingpad_shift = INGPADBOUNDARY_SHIFT_X;
else
ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X;
ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift);
fl_align = ingpadboundary;
if (!is_t4(adapter->params.chip)) {
/* T5 has a different interpretation of one of the PCIe Packing
* Boundary values.
*/
sge_control2 = adapter->params.sge.sge_control2;
ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
if (ingpackboundary == INGPACKBOUNDARY_16B_X)
ingpackboundary = 16;
else
ingpackboundary = 1 << (ingpackboundary +
INGPACKBOUNDARY_SHIFT_X);
fl_align = max(ingpadboundary, ingpackboundary);
}
return fl_align;
}
/**
* t4vf_bar2_sge_qregs - return BAR2 SGE Queue register information
* @adapter: the adapter
* @qid: the Queue ID
* @qtype: the Ingress or Egress type for @qid
* @pbar2_qoffset: BAR2 Queue Offset
* @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
*
* Returns the BAR2 SGE Queue Registers information associated with the
* indicated Absolute Queue ID. These are passed back in return value
* pointers. @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
* and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
*
* This may return an error which indicates that BAR2 SGE Queue
* registers aren't available. If an error is not returned, then the
* following values are returned:
*
* *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
* *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
*
* If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
* require the "Inferred Queue ID" ability may be used. E.g. the
* Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
* then these "Inferred Queue ID" register may not be used.
*/
int t4vf_bar2_sge_qregs(struct adapter *adapter,
unsigned int qid,
enum t4_bar2_qtype qtype,
u64 *pbar2_qoffset,
unsigned int *pbar2_qid)
{
unsigned int page_shift, page_size, qpp_shift, qpp_mask;
u64 bar2_page_offset, bar2_qoffset;
unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
/* T4 doesn't support BAR2 SGE Queue registers.
*/
if (is_t4(adapter->params.chip))
return -EINVAL;
/* Get our SGE Page Size parameters.
*/
page_shift = adapter->params.sge.sge_vf_hps + 10;
page_size = 1 << page_shift;
/* Get the right Queues per Page parameters for our Queue.
*/
qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
? adapter->params.sge.sge_vf_eq_qpp
: adapter->params.sge.sge_vf_iq_qpp);
qpp_mask = (1 << qpp_shift) - 1;
/* Calculate the basics of the BAR2 SGE Queue register area:
* o The BAR2 page the Queue registers will be in.
* o The BAR2 Queue ID.
* o The BAR2 Queue ID Offset into the BAR2 page.
*/
bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
bar2_qid = qid & qpp_mask;
bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
/* If the BAR2 Queue ID Offset is less than the Page Size, then the
* hardware will infer the Absolute Queue ID simply from the writes to
* the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
* BAR2 Queue ID of 0 for those writes). Otherwise, we'll simply
* write to the first BAR2 SGE Queue Area within the BAR2 Page with
* the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
* from the BAR2 Page and BAR2 Queue ID.
*
* One important censequence of this is that some BAR2 SGE registers
* have a "Queue ID" field and we can write the BAR2 SGE Queue ID
* there. But other registers synthesize the SGE Queue ID purely
* from the writes to the registers -- the Write Combined Doorbell
* Buffer is a good example. These BAR2 SGE Registers are only
* available for those BAR2 SGE Register areas where the SGE Absolute
* Queue ID can be inferred from simple writes.
*/
bar2_qoffset = bar2_page_offset;
bar2_qinferred = (bar2_qid_offset < page_size);
if (bar2_qinferred) {
bar2_qoffset += bar2_qid_offset;
bar2_qid = 0;
}
*pbar2_qoffset = bar2_qoffset;
*pbar2_qid = bar2_qid;
return 0;
}
unsigned int t4vf_get_pf_from_vf(struct adapter *adapter)
{
u32 whoami;
whoami = t4_read_reg(adapter, T4VF_PL_BASE_ADDR + PL_VF_WHOAMI_A);
return (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami));
}
/**
* t4vf_get_sge_params - retrieve adapter Scatter gather Engine parameters
* @adapter: the adapter
*
* Retrieves various core SGE parameters in the form of hardware SGE
* register values. The caller is responsible for decoding these as
* needed. The SGE parameters are stored in @adapter->params.sge.
*/
int t4vf_get_sge_params(struct adapter *adapter)
{
struct sge_params *sge_params = &adapter->params.sge;
u32 params[7], vals[7];
int v;
params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
FW_PARAMS_PARAM_XYZ_V(SGE_CONTROL_A));
params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
FW_PARAMS_PARAM_XYZ_V(SGE_HOST_PAGE_SIZE_A));
params[2] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
FW_PARAMS_PARAM_XYZ_V(SGE_FL_BUFFER_SIZE0_A));
params[3] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
FW_PARAMS_PARAM_XYZ_V(SGE_FL_BUFFER_SIZE1_A));
params[4] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_0_AND_1_A));
params[5] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_2_AND_3_A));
params[6] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_4_AND_5_A));
v = t4vf_query_params(adapter, 7, params, vals);
if (v)
return v;
sge_params->sge_control = vals[0];
sge_params->sge_host_page_size = vals[1];
sge_params->sge_fl_buffer_size[0] = vals[2];
sge_params->sge_fl_buffer_size[1] = vals[3];
sge_params->sge_timer_value_0_and_1 = vals[4];
sge_params->sge_timer_value_2_and_3 = vals[5];
sge_params->sge_timer_value_4_and_5 = vals[6];
/* T4 uses a single control field to specify both the PCIe Padding and
* Packing Boundary. T5 introduced the ability to specify these
* separately with the Padding Boundary in SGE_CONTROL and and Packing
* Boundary in SGE_CONTROL2. So for T5 and later we need to grab
* SGE_CONTROL in order to determine how ingress packet data will be
* laid out in Packed Buffer Mode. Unfortunately, older versions of
* the firmware won't let us retrieve SGE_CONTROL2 so if we get a
* failure grabbing it we throw an error since we can't figure out the
* right value.
*/
if (!is_t4(adapter->params.chip)) {
params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
FW_PARAMS_PARAM_XYZ_V(SGE_CONTROL2_A));
v = t4vf_query_params(adapter, 1, params, vals);
if (v != FW_SUCCESS) {
dev_err(adapter->pdev_dev,
"Unable to get SGE Control2; "
"probably old firmware.\n");
return v;
}
sge_params->sge_control2 = vals[0];
}
params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
FW_PARAMS_PARAM_XYZ_V(SGE_INGRESS_RX_THRESHOLD_A));
params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
FW_PARAMS_PARAM_XYZ_V(SGE_CONM_CTRL_A));
v = t4vf_query_params(adapter, 2, params, vals);
if (v)
return v;
sge_params->sge_ingress_rx_threshold = vals[0];
sge_params->sge_congestion_control = vals[1];
/* For T5 and later we want to use the new BAR2 Doorbells.
* Unfortunately, older firmware didn't allow the this register to be
* read.
*/
if (!is_t4(adapter->params.chip)) {
unsigned int pf, s_hps, s_qpp;
params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
FW_PARAMS_PARAM_XYZ_V(
SGE_EGRESS_QUEUES_PER_PAGE_VF_A));
params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) |
FW_PARAMS_PARAM_XYZ_V(
SGE_INGRESS_QUEUES_PER_PAGE_VF_A));
v = t4vf_query_params(adapter, 2, params, vals);
if (v != FW_SUCCESS) {
dev_warn(adapter->pdev_dev,
"Unable to get VF SGE Queues/Page; "
"probably old firmware.\n");
return v;
}
sge_params->sge_egress_queues_per_page = vals[0];
sge_params->sge_ingress_queues_per_page = vals[1];
/* We need the Queues/Page for our VF. This is based on the
* PF from which we're instantiated and is indexed in the
* register we just read. Do it once here so other code in
* the driver can just use it.
*/
pf = t4vf_get_pf_from_vf(adapter);
s_hps = (HOSTPAGESIZEPF0_S +
(HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * pf);
sge_params->sge_vf_hps =
((sge_params->sge_host_page_size >> s_hps)
& HOSTPAGESIZEPF0_M);
s_qpp = (QUEUESPERPAGEPF0_S +
(QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * pf);
sge_params->sge_vf_eq_qpp =
((sge_params->sge_egress_queues_per_page >> s_qpp)
& QUEUESPERPAGEPF0_M);
sge_params->sge_vf_iq_qpp =
((sge_params->sge_ingress_queues_per_page >> s_qpp)
& QUEUESPERPAGEPF0_M);
}
return 0;
}
/**
* t4vf_get_vpd_params - retrieve device VPD paremeters
* @adapter: the adapter
*
* Retrives various device Vital Product Data parameters. The parameters
* are stored in @adapter->params.vpd.
*/
int t4vf_get_vpd_params(struct adapter *adapter)
{
struct vpd_params *vpd_params = &adapter->params.vpd;
u32 params[7], vals[7];
int v;
params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
v = t4vf_query_params(adapter, 1, params, vals);
if (v)
return v;
vpd_params->cclk = vals[0];
return 0;
}
/**
* t4vf_get_dev_params - retrieve device paremeters
* @adapter: the adapter
*
* Retrives various device parameters. The parameters are stored in
* @adapter->params.dev.
*/
int t4vf_get_dev_params(struct adapter *adapter)
{
struct dev_params *dev_params = &adapter->params.dev;
u32 params[7], vals[7];
int v;
params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWREV));
params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_TPREV));
v = t4vf_query_params(adapter, 2, params, vals);
if (v)
return v;
dev_params->fwrev = vals[0];
dev_params->tprev = vals[1];
return 0;
}
/**
* t4vf_get_rss_glb_config - retrieve adapter RSS Global Configuration
* @adapter: the adapter
*
* Retrieves global RSS mode and parameters with which we have to live
* and stores them in the @adapter's RSS parameters.
*/
int t4vf_get_rss_glb_config(struct adapter *adapter)
{
struct rss_params *rss = &adapter->params.rss;
struct fw_rss_glb_config_cmd cmd, rpl;
int v;
/*
* Execute an RSS Global Configuration read command to retrieve
* our RSS configuration.
*/
memset(&cmd, 0, sizeof(cmd));
cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
FW_CMD_REQUEST_F |
FW_CMD_READ_F);
cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
if (v)
return v;
/*
* Transate the big-endian RSS Global Configuration into our
* cpu-endian format based on the RSS mode. We also do first level
* filtering at this point to weed out modes which don't support
* VF Drivers ...
*/
rss->mode = FW_RSS_GLB_CONFIG_CMD_MODE_G(
be32_to_cpu(rpl.u.manual.mode_pkd));
switch (rss->mode) {
case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
u32 word = be32_to_cpu(
rpl.u.basicvirtual.synmapen_to_hashtoeplitz);
rss->u.basicvirtual.synmapen =
((word & FW_RSS_GLB_CONFIG_CMD_SYNMAPEN_F) != 0);
rss->u.basicvirtual.syn4tupenipv6 =
((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV6_F) != 0);
rss->u.basicvirtual.syn2tupenipv6 =
((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV6_F) != 0);
rss->u.basicvirtual.syn4tupenipv4 =
((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV4_F) != 0);
rss->u.basicvirtual.syn2tupenipv4 =
((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV4_F) != 0);
rss->u.basicvirtual.ofdmapen =
((word & FW_RSS_GLB_CONFIG_CMD_OFDMAPEN_F) != 0);
rss->u.basicvirtual.tnlmapen =
((word & FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F) != 0);
rss->u.basicvirtual.tnlalllookup =
((word & FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F) != 0);
rss->u.basicvirtual.hashtoeplitz =
((word & FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ_F) != 0);
/* we need at least Tunnel Map Enable to be set */
if (!rss->u.basicvirtual.tnlmapen)
return -EINVAL;
break;
}
default:
/* all unknown/unsupported RSS modes result in an error */
return -EINVAL;
}
return 0;
}
/**
* t4vf_get_vfres - retrieve VF resource limits
* @adapter: the adapter
*
* Retrieves configured resource limits and capabilities for a virtual
* function. The results are stored in @adapter->vfres.
*/
int t4vf_get_vfres(struct adapter *adapter)
{
struct vf_resources *vfres = &adapter->params.vfres;
struct fw_pfvf_cmd cmd, rpl;
int v;
u32 word;
/*
* Execute PFVF Read command to get VF resource limits; bail out early
* with error on command failure.
*/
memset(&cmd, 0, sizeof(cmd));
cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) |
FW_CMD_REQUEST_F |
FW_CMD_READ_F);
cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
if (v)
return v;
/*
* Extract VF resource limits and return success.
*/
word = be32_to_cpu(rpl.niqflint_niq);
vfres->niqflint = FW_PFVF_CMD_NIQFLINT_G(word);
vfres->niq = FW_PFVF_CMD_NIQ_G(word);
word = be32_to_cpu(rpl.type_to_neq);
vfres->neq = FW_PFVF_CMD_NEQ_G(word);
vfres->pmask = FW_PFVF_CMD_PMASK_G(word);
word = be32_to_cpu(rpl.tc_to_nexactf);
vfres->tc = FW_PFVF_CMD_TC_G(word);
vfres->nvi = FW_PFVF_CMD_NVI_G(word);
vfres->nexactf = FW_PFVF_CMD_NEXACTF_G(word);
word = be32_to_cpu(rpl.r_caps_to_nethctrl);
vfres->r_caps = FW_PFVF_CMD_R_CAPS_G(word);
vfres->wx_caps = FW_PFVF_CMD_WX_CAPS_G(word);
vfres->nethctrl = FW_PFVF_CMD_NETHCTRL_G(word);
return 0;
}
/**
* t4vf_read_rss_vi_config - read a VI's RSS configuration
* @adapter: the adapter
* @viid: Virtual Interface ID
* @config: pointer to host-native VI RSS Configuration buffer
*
* Reads the Virtual Interface's RSS configuration information and
* translates it into CPU-native format.
*/
int t4vf_read_rss_vi_config(struct adapter *adapter, unsigned int viid,
union rss_vi_config *config)
{
struct fw_rss_vi_config_cmd cmd, rpl;
int v;
memset(&cmd, 0, sizeof(cmd));
cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
FW_CMD_REQUEST_F |
FW_CMD_READ_F |
FW_RSS_VI_CONFIG_CMD_VIID(viid));
cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
if (v)
return v;
switch (adapter->params.rss.mode) {
case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
u32 word = be32_to_cpu(rpl.u.basicvirtual.defaultq_to_udpen);
config->basicvirtual.ip6fourtupen =
((word & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F) != 0);
config->basicvirtual.ip6twotupen =
((word & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F) != 0);
config->basicvirtual.ip4fourtupen =
((word & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F) != 0);
config->basicvirtual.ip4twotupen =
((word & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F) != 0);
config->basicvirtual.udpen =
((word & FW_RSS_VI_CONFIG_CMD_UDPEN_F) != 0);
config->basicvirtual.defaultq =
FW_RSS_VI_CONFIG_CMD_DEFAULTQ_G(word);
break;
}
default:
return -EINVAL;
}
return 0;
}
/**
* t4vf_write_rss_vi_config - write a VI's RSS configuration
* @adapter: the adapter
* @viid: Virtual Interface ID
* @config: pointer to host-native VI RSS Configuration buffer
*
* Write the Virtual Interface's RSS configuration information
* (translating it into firmware-native format before writing).
*/
int t4vf_write_rss_vi_config(struct adapter *adapter, unsigned int viid,
union rss_vi_config *config)
{
struct fw_rss_vi_config_cmd cmd, rpl;
memset(&cmd, 0, sizeof(cmd));
cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
FW_CMD_REQUEST_F |
FW_CMD_WRITE_F |
FW_RSS_VI_CONFIG_CMD_VIID(viid));
cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
switch (adapter->params.rss.mode) {
case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: {
u32 word = 0;
if (config->basicvirtual.ip6fourtupen)
word |= FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F;
if (config->basicvirtual.ip6twotupen)
word |= FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F;
if (config->basicvirtual.ip4fourtupen)
word |= FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F;
if (config->basicvirtual.ip4twotupen)
word |= FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F;
if (config->basicvirtual.udpen)
word |= FW_RSS_VI_CONFIG_CMD_UDPEN_F;
word |= FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(
config->basicvirtual.defaultq);
cmd.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(word);
break;
}
default:
return -EINVAL;
}
return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
}
/**
* t4vf_config_rss_range - configure a portion of the RSS mapping table
* @adapter: the adapter
* @viid: Virtual Interface of RSS Table Slice
* @start: starting entry in the table to write
* @n: how many table entries to write
* @rspq: values for the "Response Queue" (Ingress Queue) lookup table
* @nrspq: number of values in @rspq
*
* Programs the selected part of the VI's RSS mapping table with the
* provided values. If @nrspq < @n the supplied values are used repeatedly
* until the full table range is populated.
*
* The caller must ensure the values in @rspq are in the range 0..1023.
*/
int t4vf_config_rss_range(struct adapter *adapter, unsigned int viid,
int start, int n, const u16 *rspq, int nrspq)
{
const u16 *rsp = rspq;
const u16 *rsp_end = rspq+nrspq;
struct fw_rss_ind_tbl_cmd cmd;
/*
* Initialize firmware command template to write the RSS table.
*/
memset(&cmd, 0, sizeof(cmd));
cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
FW_CMD_REQUEST_F |
FW_CMD_WRITE_F |
FW_RSS_IND_TBL_CMD_VIID_V(viid));
cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
/*
* Each firmware RSS command can accommodate up to 32 RSS Ingress
* Queue Identifiers. These Ingress Queue IDs are packed three to
* a 32-bit word as 10-bit values with the upper remaining 2 bits
* reserved.
*/
while (n > 0) {
__be32 *qp = &cmd.iq0_to_iq2;
int nq = min(n, 32);
int ret;
/*
* Set up the firmware RSS command header to send the next
* "nq" Ingress Queue IDs to the firmware.
*/
cmd.niqid = cpu_to_be16(nq);
cmd.startidx = cpu_to_be16(start);
/*
* "nq" more done for the start of the next loop.
*/
start += nq;
n -= nq;
/*
* While there are still Ingress Queue IDs to stuff into the
* current firmware RSS command, retrieve them from the
* Ingress Queue ID array and insert them into the command.
*/
while (nq > 0) {
/*
* Grab up to the next 3 Ingress Queue IDs (wrapping
* around the Ingress Queue ID array if necessary) and
* insert them into the firmware RSS command at the
* current 3-tuple position within the commad.
*/
u16 qbuf[3];
u16 *qbp = qbuf;
int nqbuf = min(3, nq);
nq -= nqbuf;
qbuf[0] = qbuf[1] = qbuf[2] = 0;
while (nqbuf) {
nqbuf--;
*qbp++ = *rsp++;
if (rsp >= rsp_end)
rsp = rspq;
}
*qp++ = cpu_to_be32(FW_RSS_IND_TBL_CMD_IQ0_V(qbuf[0]) |
FW_RSS_IND_TBL_CMD_IQ1_V(qbuf[1]) |
FW_RSS_IND_TBL_CMD_IQ2_V(qbuf[2]));
}
/*
* Send this portion of the RRS table update to the firmware;
* bail out on any errors.
*/
ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
if (ret)
return ret;
}
return 0;
}
/**
* t4vf_alloc_vi - allocate a virtual interface on a port
* @adapter: the adapter
* @port_id: physical port associated with the VI
*
* Allocate a new Virtual Interface and bind it to the indicated
* physical port. Return the new Virtual Interface Identifier on
* success, or a [negative] error number on failure.
*/
int t4vf_alloc_vi(struct adapter *adapter, int port_id)
{
struct fw_vi_cmd cmd, rpl;
int v;
/*
* Execute a VI command to allocate Virtual Interface and return its
* VIID.
*/
memset(&cmd, 0, sizeof(cmd));
cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
FW_CMD_REQUEST_F |
FW_CMD_WRITE_F |
FW_CMD_EXEC_F);
cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) |
FW_VI_CMD_ALLOC_F);
cmd.portid_pkd = FW_VI_CMD_PORTID_V(port_id);
v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
if (v)
return v;
return FW_VI_CMD_VIID_G(be16_to_cpu(rpl.type_viid));
}
/**
* t4vf_free_vi -- free a virtual interface
* @adapter: the adapter
* @viid: the virtual interface identifier
*
* Free a previously allocated Virtual Interface. Return an error on
* failure.
*/
int t4vf_free_vi(struct adapter *adapter, int viid)
{
struct fw_vi_cmd cmd;
/*
* Execute a VI command to free the Virtual Interface.
*/
memset(&cmd, 0, sizeof(cmd));
cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
FW_CMD_REQUEST_F |
FW_CMD_EXEC_F);
cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) |
FW_VI_CMD_FREE_F);
cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
}
/**
* t4vf_enable_vi - enable/disable a virtual interface
* @adapter: the adapter
* @viid: the Virtual Interface ID
* @rx_en: 1=enable Rx, 0=disable Rx
* @tx_en: 1=enable Tx, 0=disable Tx
*
* Enables/disables a virtual interface.
*/
int t4vf_enable_vi(struct adapter *adapter, unsigned int viid,
bool rx_en, bool tx_en)
{
struct fw_vi_enable_cmd cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
FW_CMD_REQUEST_F |
FW_CMD_EXEC_F |
FW_VI_ENABLE_CMD_VIID_V(viid));
cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
FW_VI_ENABLE_CMD_EEN_V(tx_en) |
FW_LEN16(cmd));
return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
}
/**
* t4vf_identify_port - identify a VI's port by blinking its LED
* @adapter: the adapter
* @viid: the Virtual Interface ID
* @nblinks: how many times to blink LED at 2.5 Hz
*
* Identifies a VI's port by blinking its LED.
*/
int t4vf_identify_port(struct adapter *adapter, unsigned int viid,
unsigned int nblinks)
{
struct fw_vi_enable_cmd cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
FW_CMD_REQUEST_F |
FW_CMD_EXEC_F |
FW_VI_ENABLE_CMD_VIID_V(viid));
cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F |
FW_LEN16(cmd));
cmd.blinkdur = cpu_to_be16(nblinks);
return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
}
/**
* t4vf_set_rxmode - set Rx properties of a virtual interface
* @adapter: the adapter
* @viid: the VI id
* @mtu: the new MTU or -1 for no change
* @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
* @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
* @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
* @vlanex: 1 to enable hardware VLAN Tag extraction, 0 to disable it,
* -1 no change
*
* Sets Rx properties of a virtual interface.
*/
int t4vf_set_rxmode(struct adapter *adapter, unsigned int viid,
int mtu, int promisc, int all_multi, int bcast, int vlanex,
bool sleep_ok)
{
struct fw_vi_rxmode_cmd cmd;
/* convert to FW values */
if (mtu < 0)
mtu = FW_VI_RXMODE_CMD_MTU_M;
if (promisc < 0)
promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
if (all_multi < 0)
all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
if (bcast < 0)
bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
if (vlanex < 0)
vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
memset(&cmd, 0, sizeof(cmd));
cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
FW_CMD_REQUEST_F |
FW_CMD_WRITE_F |
FW_VI_RXMODE_CMD_VIID_V(viid));
cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
cmd.mtu_to_vlanexen =
cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok);
}
/**
* t4vf_alloc_mac_filt - allocates exact-match filters for MAC addresses
* @adapter: the adapter
* @viid: the Virtual Interface Identifier
* @free: if true any existing filters for this VI id are first removed
* @naddr: the number of MAC addresses to allocate filters for (up to 7)
* @addr: the MAC address(es)
* @idx: where to store the index of each allocated filter
* @hash: pointer to hash address filter bitmap
* @sleep_ok: call is allowed to sleep
*
* Allocates an exact-match filter for each of the supplied addresses and
* sets it to the corresponding address. If @idx is not %NULL it should
* have at least @naddr entries, each of which will be set to the index of
* the filter allocated for the corresponding MAC address. If a filter
* could not be allocated for an address its index is set to 0xffff.
* If @hash is not %NULL addresses that fail to allocate an exact filter
* are hashed and update the hash filter bitmap pointed at by @hash.
*
* Returns a negative error number or the number of filters allocated.
*/
int t4vf_alloc_mac_filt(struct adapter *adapter, unsigned int viid, bool free,
unsigned int naddr, const u8 **addr, u16 *idx,
u64 *hash, bool sleep_ok)
{
int offset, ret = 0;
unsigned nfilters = 0;
unsigned int rem = naddr;
struct fw_vi_mac_cmd cmd, rpl;
unsigned int max_naddr = adapter->params.arch.mps_tcam_size;
if (naddr > max_naddr)
return -EINVAL;
for (offset = 0; offset < naddr; /**/) {
unsigned int fw_naddr = (rem < ARRAY_SIZE(cmd.u.exact)
? rem
: ARRAY_SIZE(cmd.u.exact));
size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
u.exact[fw_naddr]), 16);
struct fw_vi_mac_exact *p;
int i;
memset(&cmd, 0, sizeof(cmd));
cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
FW_CMD_REQUEST_F |
FW_CMD_WRITE_F |
(free ? FW_CMD_EXEC_F : 0) |
FW_VI_MAC_CMD_VIID_V(viid));
cmd.freemacs_to_len16 =
cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
FW_CMD_LEN16_V(len16));
for (i = 0, p = cmd.u.exact; i < fw_naddr; i++, p++) {
p->valid_to_idx = cpu_to_be16(
FW_VI_MAC_CMD_VALID_F |
FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC));
memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
}
ret = t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), &rpl,
sleep_ok);
if (ret && ret != -ENOMEM)
break;
for (i = 0, p = rpl.u.exact; i < fw_naddr; i++, p++) {
u16 index = FW_VI_MAC_CMD_IDX_G(
be16_to_cpu(p->valid_to_idx));
if (idx)
idx[offset+i] =
(index >= max_naddr
? 0xffff
: index);
if (index < max_naddr)
nfilters++;
else if (hash)
*hash |= (1ULL << hash_mac_addr(addr[offset+i]));
}
free = false;
offset += fw_naddr;
rem -= fw_naddr;
}
/*
* If there were no errors or we merely ran out of room in our MAC
* address arena, return the number of filters actually written.
*/
if (ret == 0 || ret == -ENOMEM)
ret = nfilters;
return ret;
}
/**
* t4vf_free_mac_filt - frees exact-match filters of given MAC addresses
* @adapter: the adapter
* @viid: the VI id
* @naddr: the number of MAC addresses to allocate filters for (up to 7)
* @addr: the MAC address(es)
* @sleep_ok: call is allowed to sleep
*
* Frees the exact-match filter for each of the supplied addresses
*
* Returns a negative error number or the number of filters freed.
*/
int t4vf_free_mac_filt(struct adapter *adapter, unsigned int viid,
unsigned int naddr, const u8 **addr, bool sleep_ok)
{
int offset, ret = 0;
struct fw_vi_mac_cmd cmd;
unsigned int nfilters = 0;
unsigned int max_naddr = adapter->params.arch.mps_tcam_size;
unsigned int rem = naddr;
if (naddr > max_naddr)
return -EINVAL;
for (offset = 0; offset < (int)naddr ; /**/) {
unsigned int fw_naddr = (rem < ARRAY_SIZE(cmd.u.exact) ?
rem : ARRAY_SIZE(cmd.u.exact));
size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
u.exact[fw_naddr]), 16);
struct fw_vi_mac_exact *p;
int i;
memset(&cmd, 0, sizeof(cmd));
cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
FW_CMD_REQUEST_F |
FW_CMD_WRITE_F |
FW_CMD_EXEC_V(0) |
FW_VI_MAC_CMD_VIID_V(viid));
cmd.freemacs_to_len16 =
cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
FW_CMD_LEN16_V(len16));
for (i = 0, p = cmd.u.exact; i < (int)fw_naddr; i++, p++) {
p->valid_to_idx = cpu_to_be16(
FW_VI_MAC_CMD_VALID_F |
FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE));
memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
}
ret = t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), &cmd,
sleep_ok);
if (ret)
break;
for (i = 0, p = cmd.u.exact; i < fw_naddr; i++, p++) {
u16 index = FW_VI_MAC_CMD_IDX_G(
be16_to_cpu(p->valid_to_idx));
if (index < max_naddr)
nfilters++;
}
offset += fw_naddr;
rem -= fw_naddr;
}
if (ret == 0)
ret = nfilters;
return ret;
}
/**
* t4vf_change_mac - modifies the exact-match filter for a MAC address
* @adapter: the adapter
* @viid: the Virtual Interface ID
* @idx: index of existing filter for old value of MAC address, or -1
* @addr: the new MAC address value
* @persist: if idx < 0, the new MAC allocation should be persistent
*
* Modifies an exact-match filter and sets it to the new MAC address.
* Note that in general it is not possible to modify the value of a given
* filter so the generic way to modify an address filter is to free the
* one being used by the old address value and allocate a new filter for
* the new address value. @idx can be -1 if the address is a new
* addition.
*
* Returns a negative error number or the index of the filter with the new
* MAC value.
*/
int t4vf_change_mac(struct adapter *adapter, unsigned int viid,
int idx, const u8 *addr, bool persist)
{
int ret;
struct fw_vi_mac_cmd cmd, rpl;
struct fw_vi_mac_exact *p = &cmd.u.exact[0];
size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
u.exact[1]), 16);
unsigned int max_mac_addr = adapter->params.arch.mps_tcam_size;
/*
* If this is a new allocation, determine whether it should be
* persistent (across a "freemacs" operation) or not.
*/
if (idx < 0)
idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
memset(&cmd, 0, sizeof(cmd));
cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
FW_CMD_REQUEST_F |
FW_CMD_WRITE_F |
FW_VI_MAC_CMD_VIID_V(viid));
cmd.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
FW_VI_MAC_CMD_IDX_V(idx));
memcpy(p->macaddr, addr, sizeof(p->macaddr));
ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl);
if (ret == 0) {
p = &rpl.u.exact[0];
ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
if (ret >= max_mac_addr)
ret = -ENOMEM;
}
return ret;
}
/**
* t4vf_set_addr_hash - program the MAC inexact-match hash filter
* @adapter: the adapter
* @viid: the Virtual Interface Identifier
* @ucast: whether the hash filter should also match unicast addresses
* @vec: the value to be written to the hash filter
* @sleep_ok: call is allowed to sleep
*
* Sets the 64-bit inexact-match hash filter for a virtual interface.
*/
int t4vf_set_addr_hash(struct adapter *adapter, unsigned int viid,
bool ucast, u64 vec, bool sleep_ok)
{
struct fw_vi_mac_cmd cmd;
size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
u.exact[0]), 16);
memset(&cmd, 0, sizeof(cmd));
cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
FW_CMD_REQUEST_F |
FW_CMD_WRITE_F |
FW_VI_ENABLE_CMD_VIID_V(viid));
cmd.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
FW_CMD_LEN16_V(len16));
cmd.u.hash.hashvec = cpu_to_be64(vec);
return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok);
}
/**
* t4vf_get_port_stats - collect "port" statistics
* @adapter: the adapter
* @pidx: the port index
* @s: the stats structure to fill
*
* Collect statistics for the "port"'s Virtual Interface.
*/
int t4vf_get_port_stats(struct adapter *adapter, int pidx,
struct t4vf_port_stats *s)
{
struct port_info *pi = adap2pinfo(adapter, pidx);
struct fw_vi_stats_vf fwstats;
unsigned int rem = VI_VF_NUM_STATS;
__be64 *fwsp = (__be64 *)&fwstats;
/*
* Grab the Virtual Interface statistics a chunk at a time via mailbox
* commands. We could use a Work Request and get all of them at once
* but that's an asynchronous interface which is awkward to use.
*/
while (rem) {
unsigned int ix = VI_VF_NUM_STATS - rem;
unsigned int nstats = min(6U, rem);
struct fw_vi_stats_cmd cmd, rpl;
size_t len = (offsetof(struct fw_vi_stats_cmd, u) +
sizeof(struct fw_vi_stats_ctl));
size_t len16 = DIV_ROUND_UP(len, 16);
int ret;
memset(&cmd, 0, sizeof(cmd));
cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_STATS_CMD) |
FW_VI_STATS_CMD_VIID_V(pi->viid) |
FW_CMD_REQUEST_F |
FW_CMD_READ_F);
cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16));
cmd.u.ctl.nstats_ix =
cpu_to_be16(FW_VI_STATS_CMD_IX_V(ix) |
FW_VI_STATS_CMD_NSTATS_V(nstats));
ret = t4vf_wr_mbox_ns(adapter, &cmd, len, &rpl);
if (ret)
return ret;
memcpy(fwsp, &rpl.u.ctl.stat0, sizeof(__be64) * nstats);
rem -= nstats;
fwsp += nstats;
}
/*
* Translate firmware statistics into host native statistics.
*/
s->tx_bcast_bytes = be64_to_cpu(fwstats.tx_bcast_bytes);
s->tx_bcast_frames = be64_to_cpu(fwstats.tx_bcast_frames);
s->tx_mcast_bytes = be64_to_cpu(fwstats.tx_mcast_bytes);
s->tx_mcast_frames = be64_to_cpu(fwstats.tx_mcast_frames);
s->tx_ucast_bytes = be64_to_cpu(fwstats.tx_ucast_bytes);
s->tx_ucast_frames = be64_to_cpu(fwstats.tx_ucast_frames);
s->tx_drop_frames = be64_to_cpu(fwstats.tx_drop_frames);
s->tx_offload_bytes = be64_to_cpu(fwstats.tx_offload_bytes);
s->tx_offload_frames = be64_to_cpu(fwstats.tx_offload_frames);
s->rx_bcast_bytes = be64_to_cpu(fwstats.rx_bcast_bytes);
s->rx_bcast_frames = be64_to_cpu(fwstats.rx_bcast_frames);
s->rx_mcast_bytes = be64_to_cpu(fwstats.rx_mcast_bytes);
s->rx_mcast_frames = be64_to_cpu(fwstats.rx_mcast_frames);
s->rx_ucast_bytes = be64_to_cpu(fwstats.rx_ucast_bytes);
s->rx_ucast_frames = be64_to_cpu(fwstats.rx_ucast_frames);
s->rx_err_frames = be64_to_cpu(fwstats.rx_err_frames);
return 0;
}
/**
* t4vf_iq_free - free an ingress queue and its free lists
* @adapter: the adapter
* @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
* @iqid: ingress queue ID
* @fl0id: FL0 queue ID or 0xffff if no attached FL0
* @fl1id: FL1 queue ID or 0xffff if no attached FL1
*
* Frees an ingress queue and its associated free lists, if any.
*/
int t4vf_iq_free(struct adapter *adapter, unsigned int iqtype,
unsigned int iqid, unsigned int fl0id, unsigned int fl1id)
{
struct fw_iq_cmd cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) |
FW_CMD_REQUEST_F |
FW_CMD_EXEC_F);
cmd.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F |
FW_LEN16(cmd));
cmd.type_to_iqandstindex =
cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
cmd.iqid = cpu_to_be16(iqid);
cmd.fl0id = cpu_to_be16(fl0id);
cmd.fl1id = cpu_to_be16(fl1id);
return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
}
/**
* t4vf_eth_eq_free - free an Ethernet egress queue
* @adapter: the adapter
* @eqid: egress queue ID
*
* Frees an Ethernet egress queue.
*/
int t4vf_eth_eq_free(struct adapter *adapter, unsigned int eqid)
{
struct fw_eq_eth_cmd cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
FW_CMD_REQUEST_F |
FW_CMD_EXEC_F);
cmd.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F |
FW_LEN16(cmd));
cmd.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL);
}
/**
* t4vf_link_down_rc_str - return a string for a Link Down Reason Code
* @link_down_rc: Link Down Reason Code
*
* Returns a string representation of the Link Down Reason Code.
*/
static const char *t4vf_link_down_rc_str(unsigned char link_down_rc)
{
static const char * const reason[] = {
"Link Down",
"Remote Fault",
"Auto-negotiation Failure",
"Reserved",
"Insufficient Airflow",
"Unable To Determine Reason",
"No RX Signal Detected",
"Reserved",
};
if (link_down_rc >= ARRAY_SIZE(reason))
return "Bad Reason Code";
return reason[link_down_rc];
}
/**
* t4vf_handle_get_port_info - process a FW reply message
* @pi: the port info
* @rpl: start of the FW message
*
* Processes a GET_PORT_INFO FW reply message.
*/
static void t4vf_handle_get_port_info(struct port_info *pi,
const struct fw_port_cmd *cmd)
{
int action = FW_PORT_CMD_ACTION_G(be32_to_cpu(cmd->action_to_len16));
struct adapter *adapter = pi->adapter;
struct link_config *lc = &pi->link_cfg;
int link_ok, linkdnrc;
enum fw_port_type port_type;
enum fw_port_module_type mod_type;
unsigned int speed, fc, fec;
fw_port_cap32_t pcaps, acaps, lpacaps, linkattr;
/* Extract the various fields from the Port Information message. */
switch (action) {
case FW_PORT_ACTION_GET_PORT_INFO: {
u32 lstatus = be32_to_cpu(cmd->u.info.lstatus_to_modtype);
link_ok = (lstatus & FW_PORT_CMD_LSTATUS_F) != 0;
linkdnrc = FW_PORT_CMD_LINKDNRC_G(lstatus);
port_type = FW_PORT_CMD_PTYPE_G(lstatus);
mod_type = FW_PORT_CMD_MODTYPE_G(lstatus);
pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.pcap));
acaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.acap));
lpacaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.lpacap));
/* Unfortunately the format of the Link Status in the old
* 16-bit Port Information message isn't the same as the
* 16-bit Port Capabilities bitfield used everywhere else ...
*/
linkattr = 0;
if (lstatus & FW_PORT_CMD_RXPAUSE_F)
linkattr |= FW_PORT_CAP32_FC_RX;
if (lstatus & FW_PORT_CMD_TXPAUSE_F)
linkattr |= FW_PORT_CAP32_FC_TX;
if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
linkattr |= FW_PORT_CAP32_SPEED_100M;
if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
linkattr |= FW_PORT_CAP32_SPEED_1G;
if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
linkattr |= FW_PORT_CAP32_SPEED_10G;
if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G))
linkattr |= FW_PORT_CAP32_SPEED_25G;
if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
linkattr |= FW_PORT_CAP32_SPEED_40G;
if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G))
linkattr |= FW_PORT_CAP32_SPEED_100G;
break;
}
case FW_PORT_ACTION_GET_PORT_INFO32: {
u32 lstatus32;
lstatus32 = be32_to_cpu(cmd->u.info32.lstatus32_to_cbllen32);
link_ok = (lstatus32 & FW_PORT_CMD_LSTATUS32_F) != 0;
linkdnrc = FW_PORT_CMD_LINKDNRC32_G(lstatus32);
port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32);
mod_type = FW_PORT_CMD_MODTYPE32_G(lstatus32);
pcaps = be32_to_cpu(cmd->u.info32.pcaps32);
acaps = be32_to_cpu(cmd->u.info32.acaps32);
lpacaps = be32_to_cpu(cmd->u.info32.lpacaps32);
linkattr = be32_to_cpu(cmd->u.info32.linkattr32);
break;
}
default:
dev_err(adapter->pdev_dev, "Handle Port Information: Bad Command/Action %#x\n",
be32_to_cpu(cmd->action_to_len16));
return;
}
fec = fwcap_to_cc_fec(acaps);
fc = fwcap_to_cc_pause(linkattr);
speed = fwcap_to_speed(linkattr);
if (mod_type != pi->mod_type) {
/* When a new Transceiver Module is inserted, the Firmware
* will examine any Forward Error Correction parameters
* present in the Transceiver Module i2c EPROM and determine
* the supported and recommended FEC settings from those
* based on IEEE 802.3 standards. We always record the
* IEEE 802.3 recommended "automatic" settings.
*/
lc->auto_fec = fec;
/* Some versions of the early T6 Firmware "cheated" when
* handling different Transceiver Modules by changing the
* underlaying Port Type reported to the Host Drivers. As
* such we need to capture whatever Port Type the Firmware
* sends us and record it in case it's different from what we
* were told earlier. Unfortunately, since Firmware is
* forever, we'll need to keep this code here forever, but in
* later T6 Firmware it should just be an assignment of the
* same value already recorded.
*/
pi->port_type = port_type;
pi->mod_type = mod_type;
t4vf_os_portmod_changed(adapter, pi->pidx);
}
if (link_ok != lc->link_ok || speed != lc->speed ||
fc != lc->fc || fec != lc->fec) { /* something changed */
if (!link_ok && lc->link_ok) {
lc->link_down_rc = linkdnrc;
dev_warn(adapter->pdev_dev, "Port %d link down, reason: %s\n",
pi->port_id, t4vf_link_down_rc_str(linkdnrc));
}
lc->link_ok = link_ok;
lc->speed = speed;
lc->fc = fc;
lc->fec = fec;
lc->pcaps = pcaps;
lc->lpacaps = lpacaps;
lc->acaps = acaps & ADVERT_MASK;
if (lc->acaps & FW_PORT_CAP32_ANEG) {
lc->autoneg = AUTONEG_ENABLE;
} else {
/* When Autoneg is disabled, user needs to set
* single speed.
* Similar to cxgb4_ethtool.c: set_link_ksettings
*/
lc->acaps = 0;
lc->speed_caps = fwcap_to_speed(acaps);
lc->autoneg = AUTONEG_DISABLE;
}
t4vf_os_link_changed(adapter, pi->pidx, link_ok);
}
}
/**
* t4vf_update_port_info - retrieve and update port information if changed
* @pi: the port_info
*
* We issue a Get Port Information Command to the Firmware and, if
* successful, we check to see if anything is different from what we
* last recorded and update things accordingly.
*/
int t4vf_update_port_info(struct port_info *pi)
{
unsigned int fw_caps = pi->adapter->params.fw_caps_support;
struct fw_port_cmd port_cmd;
int ret;
memset(&port_cmd, 0, sizeof(port_cmd));
port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
FW_CMD_REQUEST_F | FW_CMD_READ_F |
FW_PORT_CMD_PORTID_V(pi->port_id));
port_cmd.action_to_len16 = cpu_to_be32(
FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16
? FW_PORT_ACTION_GET_PORT_INFO
: FW_PORT_ACTION_GET_PORT_INFO32) |
FW_LEN16(port_cmd));
ret = t4vf_wr_mbox(pi->adapter, &port_cmd, sizeof(port_cmd),
&port_cmd);
if (ret)
return ret;
t4vf_handle_get_port_info(pi, &port_cmd);
return 0;
}
/**
* t4vf_handle_fw_rpl - process a firmware reply message
* @adapter: the adapter
* @rpl: start of the firmware message
*
* Processes a firmware message, such as link state change messages.
*/
int t4vf_handle_fw_rpl(struct adapter *adapter, const __be64 *rpl)
{
const struct fw_cmd_hdr *cmd_hdr = (const struct fw_cmd_hdr *)rpl;
u8 opcode = FW_CMD_OP_G(be32_to_cpu(cmd_hdr->hi));
switch (opcode) {
case FW_PORT_CMD: {
/*
* Link/module state change message.
*/
const struct fw_port_cmd *port_cmd =
(const struct fw_port_cmd *)rpl;
int action = FW_PORT_CMD_ACTION_G(
be32_to_cpu(port_cmd->action_to_len16));
int port_id, pidx;
if (action != FW_PORT_ACTION_GET_PORT_INFO &&
action != FW_PORT_ACTION_GET_PORT_INFO32) {
dev_err(adapter->pdev_dev,
"Unknown firmware PORT reply action %x\n",
action);
break;
}
port_id = FW_PORT_CMD_PORTID_G(
be32_to_cpu(port_cmd->op_to_portid));
for_each_port(adapter, pidx) {
struct port_info *pi = adap2pinfo(adapter, pidx);
if (pi->port_id != port_id)
continue;
t4vf_handle_get_port_info(pi, port_cmd);
}
break;
}
default:
dev_err(adapter->pdev_dev, "Unknown firmware reply %X\n",
opcode);
}
return 0;
}
/**
*/
int t4vf_prep_adapter(struct adapter *adapter)
{
int err;
unsigned int chipid;
/* Wait for the device to become ready before proceeding ...
*/
err = t4vf_wait_dev_ready(adapter);
if (err)
return err;
/* Default port and clock for debugging in case we can't reach
* firmware.
*/
adapter->params.nports = 1;
adapter->params.vfres.pmask = 1;
adapter->params.vpd.cclk = 50000;
adapter->params.chip = 0;
switch (CHELSIO_PCI_ID_VER(adapter->pdev->device)) {
case CHELSIO_T4:
adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, 0);
adapter->params.arch.sge_fl_db = DBPRIO_F;
adapter->params.arch.mps_tcam_size =
NUM_MPS_CLS_SRAM_L_INSTANCES;
break;
case CHELSIO_T5:
chipid = REV_G(t4_read_reg(adapter, PL_VF_REV_A));
adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, chipid);
adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
adapter->params.arch.mps_tcam_size =
NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
break;
case CHELSIO_T6:
chipid = REV_G(t4_read_reg(adapter, PL_VF_REV_A));
adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, chipid);
adapter->params.arch.sge_fl_db = 0;
adapter->params.arch.mps_tcam_size =
NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
break;
}
return 0;
}
/**
* t4vf_get_vf_mac_acl - Get the MAC address to be set to
* the VI of this VF.
* @adapter: The adapter
* @pf: The pf associated with vf
* @naddr: the number of ACL MAC addresses returned in addr
* @addr: Placeholder for MAC addresses
*
* Find the MAC address to be set to the VF's VI. The requested MAC address
* is from the host OS via callback in the PF driver.
*/
int t4vf_get_vf_mac_acl(struct adapter *adapter, unsigned int pf,
unsigned int *naddr, u8 *addr)
{
struct fw_acl_mac_cmd cmd;
int ret;
memset(&cmd, 0, sizeof(cmd));
cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD) |
FW_CMD_REQUEST_F |
FW_CMD_READ_F);
cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &cmd);
if (ret)
return ret;
if (cmd.nmac < *naddr)
*naddr = cmd.nmac;
switch (pf) {
case 3:
memcpy(addr, cmd.macaddr3, sizeof(cmd.macaddr3));
break;
case 2:
memcpy(addr, cmd.macaddr2, sizeof(cmd.macaddr2));
break;
case 1:
memcpy(addr, cmd.macaddr1, sizeof(cmd.macaddr1));
break;
case 0:
memcpy(addr, cmd.macaddr0, sizeof(cmd.macaddr0));
break;
}
return ret;
}
/**
* t4vf_get_vf_vlan_acl - Get the VLAN ID to be set to
* the VI of this VF.
* @adapter: The adapter
*
* Find the VLAN ID to be set to the VF's VI. The requested VLAN ID
* is from the host OS via callback in the PF driver.
*/
int t4vf_get_vf_vlan_acl(struct adapter *adapter)
{
struct fw_acl_vlan_cmd cmd;
int vlan = 0;
int ret = 0;
cmd.op_to_vfn = htonl(FW_CMD_OP_V(FW_ACL_VLAN_CMD) |
FW_CMD_REQUEST_F | FW_CMD_READ_F);
/* Note: Do not enable the ACL */
cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd));
ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &cmd);
if (!ret)
vlan = be16_to_cpu(cmd.vlanid[0]);
return vlan;
}