mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-21 11:47:02 +07:00
86f03989d9
Signed-off-by: Ingo Molnar <mingo@elte.hu> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
561 lines
13 KiB
C
561 lines
13 KiB
C
/*
|
|
* Copyright 2002 Andi Kleen, SuSE Labs.
|
|
* Thanks to Ben LaHaise for precious feedback.
|
|
*/
|
|
#include <linux/highmem.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/module.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/mm.h>
|
|
|
|
#include <asm/e820.h>
|
|
#include <asm/processor.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/sections.h>
|
|
#include <asm/uaccess.h>
|
|
#include <asm/pgalloc.h>
|
|
|
|
static inline int
|
|
within(unsigned long addr, unsigned long start, unsigned long end)
|
|
{
|
|
return addr >= start && addr < end;
|
|
}
|
|
|
|
/*
|
|
* Flushing functions
|
|
*/
|
|
|
|
/**
|
|
* clflush_cache_range - flush a cache range with clflush
|
|
* @addr: virtual start address
|
|
* @size: number of bytes to flush
|
|
*
|
|
* clflush is an unordered instruction which needs fencing with mfence
|
|
* to avoid ordering issues.
|
|
*/
|
|
void clflush_cache_range(void *vaddr, unsigned int size)
|
|
{
|
|
void *vend = vaddr + size - 1;
|
|
|
|
mb();
|
|
|
|
for (; vaddr < vend; vaddr += boot_cpu_data.x86_clflush_size)
|
|
clflush(vaddr);
|
|
/*
|
|
* Flush any possible final partial cacheline:
|
|
*/
|
|
clflush(vend);
|
|
|
|
mb();
|
|
}
|
|
|
|
static void __cpa_flush_all(void *arg)
|
|
{
|
|
/*
|
|
* Flush all to work around Errata in early athlons regarding
|
|
* large page flushing.
|
|
*/
|
|
__flush_tlb_all();
|
|
|
|
if (boot_cpu_data.x86_model >= 4)
|
|
wbinvd();
|
|
}
|
|
|
|
static void cpa_flush_all(void)
|
|
{
|
|
BUG_ON(irqs_disabled());
|
|
|
|
on_each_cpu(__cpa_flush_all, NULL, 1, 1);
|
|
}
|
|
|
|
static void __cpa_flush_range(void *arg)
|
|
{
|
|
/*
|
|
* We could optimize that further and do individual per page
|
|
* tlb invalidates for a low number of pages. Caveat: we must
|
|
* flush the high aliases on 64bit as well.
|
|
*/
|
|
__flush_tlb_all();
|
|
}
|
|
|
|
static void cpa_flush_range(unsigned long start, int numpages)
|
|
{
|
|
unsigned int i, level;
|
|
unsigned long addr;
|
|
|
|
BUG_ON(irqs_disabled());
|
|
WARN_ON(PAGE_ALIGN(start) != start);
|
|
|
|
on_each_cpu(__cpa_flush_range, NULL, 1, 1);
|
|
|
|
/*
|
|
* We only need to flush on one CPU,
|
|
* clflush is a MESI-coherent instruction that
|
|
* will cause all other CPUs to flush the same
|
|
* cachelines:
|
|
*/
|
|
for (i = 0, addr = start; i < numpages; i++, addr += PAGE_SIZE) {
|
|
pte_t *pte = lookup_address(addr, &level);
|
|
|
|
/*
|
|
* Only flush present addresses:
|
|
*/
|
|
if (pte && pte_present(*pte))
|
|
clflush_cache_range((void *) addr, PAGE_SIZE);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Certain areas of memory on x86 require very specific protection flags,
|
|
* for example the BIOS area or kernel text. Callers don't always get this
|
|
* right (again, ioremap() on BIOS memory is not uncommon) so this function
|
|
* checks and fixes these known static required protection bits.
|
|
*/
|
|
static inline pgprot_t static_protections(pgprot_t prot, unsigned long address)
|
|
{
|
|
pgprot_t forbidden = __pgprot(0);
|
|
|
|
/*
|
|
* The BIOS area between 640k and 1Mb needs to be executable for
|
|
* PCI BIOS based config access (CONFIG_PCI_GOBIOS) support.
|
|
*/
|
|
if (within(__pa(address), BIOS_BEGIN, BIOS_END))
|
|
pgprot_val(forbidden) |= _PAGE_NX;
|
|
|
|
/*
|
|
* The kernel text needs to be executable for obvious reasons
|
|
* Does not cover __inittext since that is gone later on
|
|
*/
|
|
if (within(address, (unsigned long)_text, (unsigned long)_etext))
|
|
pgprot_val(forbidden) |= _PAGE_NX;
|
|
|
|
#ifdef CONFIG_DEBUG_RODATA
|
|
/* The .rodata section needs to be read-only */
|
|
if (within(address, (unsigned long)__start_rodata,
|
|
(unsigned long)__end_rodata))
|
|
pgprot_val(forbidden) |= _PAGE_RW;
|
|
#endif
|
|
|
|
prot = __pgprot(pgprot_val(prot) & ~pgprot_val(forbidden));
|
|
|
|
return prot;
|
|
}
|
|
|
|
pte_t *lookup_address(unsigned long address, int *level)
|
|
{
|
|
pgd_t *pgd = pgd_offset_k(address);
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
|
|
*level = PG_LEVEL_NONE;
|
|
|
|
if (pgd_none(*pgd))
|
|
return NULL;
|
|
pud = pud_offset(pgd, address);
|
|
if (pud_none(*pud))
|
|
return NULL;
|
|
pmd = pmd_offset(pud, address);
|
|
if (pmd_none(*pmd))
|
|
return NULL;
|
|
|
|
*level = PG_LEVEL_2M;
|
|
if (pmd_large(*pmd))
|
|
return (pte_t *)pmd;
|
|
|
|
*level = PG_LEVEL_4K;
|
|
return pte_offset_kernel(pmd, address);
|
|
}
|
|
|
|
static void __set_pmd_pte(pte_t *kpte, unsigned long address, pte_t pte)
|
|
{
|
|
/* change init_mm */
|
|
set_pte_atomic(kpte, pte);
|
|
#ifdef CONFIG_X86_32
|
|
if (!SHARED_KERNEL_PMD) {
|
|
struct page *page;
|
|
|
|
for (page = pgd_list; page; page = (struct page *)page->index) {
|
|
pgd_t *pgd;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
|
|
pgd = (pgd_t *)page_address(page) + pgd_index(address);
|
|
pud = pud_offset(pgd, address);
|
|
pmd = pmd_offset(pud, address);
|
|
set_pte_atomic((pte_t *)pmd, pte);
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static int split_large_page(pte_t *kpte, unsigned long address)
|
|
{
|
|
pgprot_t ref_prot = pte_pgprot(pte_clrhuge(*kpte));
|
|
gfp_t gfp_flags = GFP_KERNEL;
|
|
unsigned long flags;
|
|
unsigned long addr;
|
|
pte_t *pbase, *tmp;
|
|
struct page *base;
|
|
unsigned int i, level;
|
|
|
|
#ifdef CONFIG_DEBUG_PAGEALLOC
|
|
gfp_flags = __GFP_HIGH | __GFP_NOFAIL | __GFP_NOWARN;
|
|
gfp_flags = GFP_ATOMIC | __GFP_NOWARN;
|
|
#endif
|
|
base = alloc_pages(gfp_flags, 0);
|
|
if (!base)
|
|
return -ENOMEM;
|
|
|
|
spin_lock_irqsave(&pgd_lock, flags);
|
|
/*
|
|
* Check for races, another CPU might have split this page
|
|
* up for us already:
|
|
*/
|
|
tmp = lookup_address(address, &level);
|
|
if (tmp != kpte) {
|
|
WARN_ON_ONCE(1);
|
|
goto out_unlock;
|
|
}
|
|
|
|
address = __pa(address);
|
|
addr = address & LARGE_PAGE_MASK;
|
|
pbase = (pte_t *)page_address(base);
|
|
#ifdef CONFIG_X86_32
|
|
paravirt_alloc_pt(&init_mm, page_to_pfn(base));
|
|
#endif
|
|
|
|
pgprot_val(ref_prot) &= ~_PAGE_NX;
|
|
for (i = 0; i < PTRS_PER_PTE; i++, addr += PAGE_SIZE)
|
|
set_pte(&pbase[i], pfn_pte(addr >> PAGE_SHIFT, ref_prot));
|
|
|
|
/*
|
|
* Install the new, split up pagetable. Important detail here:
|
|
*
|
|
* On Intel the NX bit of all levels must be cleared to make a
|
|
* page executable. See section 4.13.2 of Intel 64 and IA-32
|
|
* Architectures Software Developer's Manual).
|
|
*/
|
|
ref_prot = pte_pgprot(pte_mkexec(pte_clrhuge(*kpte)));
|
|
__set_pmd_pte(kpte, address, mk_pte(base, ref_prot));
|
|
base = NULL;
|
|
|
|
out_unlock:
|
|
spin_unlock_irqrestore(&pgd_lock, flags);
|
|
|
|
if (base)
|
|
__free_pages(base, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
__change_page_attr(unsigned long address, unsigned long pfn,
|
|
pgprot_t mask_set, pgprot_t mask_clr)
|
|
{
|
|
struct page *kpte_page;
|
|
int level, err = 0;
|
|
pte_t *kpte;
|
|
|
|
#ifdef CONFIG_X86_32
|
|
BUG_ON(pfn > max_low_pfn);
|
|
#endif
|
|
|
|
repeat:
|
|
kpte = lookup_address(address, &level);
|
|
if (!kpte)
|
|
return -EINVAL;
|
|
|
|
kpte_page = virt_to_page(kpte);
|
|
BUG_ON(PageLRU(kpte_page));
|
|
BUG_ON(PageCompound(kpte_page));
|
|
|
|
if (level == PG_LEVEL_4K) {
|
|
pgprot_t new_prot = pte_pgprot(*kpte);
|
|
pte_t new_pte, old_pte = *kpte;
|
|
|
|
pgprot_val(new_prot) &= ~pgprot_val(mask_clr);
|
|
pgprot_val(new_prot) |= pgprot_val(mask_set);
|
|
|
|
new_prot = static_protections(new_prot, address);
|
|
|
|
new_pte = pfn_pte(pfn, canon_pgprot(new_prot));
|
|
BUG_ON(pte_pfn(new_pte) != pte_pfn(old_pte));
|
|
|
|
set_pte_atomic(kpte, new_pte);
|
|
} else {
|
|
err = split_large_page(kpte, address);
|
|
if (!err)
|
|
goto repeat;
|
|
}
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* change_page_attr_addr - Change page table attributes in linear mapping
|
|
* @address: Virtual address in linear mapping.
|
|
* @prot: New page table attribute (PAGE_*)
|
|
*
|
|
* Change page attributes of a page in the direct mapping. This is a variant
|
|
* of change_page_attr() that also works on memory holes that do not have
|
|
* mem_map entry (pfn_valid() is false).
|
|
*
|
|
* See change_page_attr() documentation for more details.
|
|
*
|
|
* Modules and drivers should use the set_memory_* APIs instead.
|
|
*/
|
|
|
|
static int
|
|
change_page_attr_addr(unsigned long address, pgprot_t mask_set,
|
|
pgprot_t mask_clr)
|
|
{
|
|
int err = 0, kernel_map = 0;
|
|
unsigned long pfn;
|
|
|
|
#ifdef CONFIG_X86_64
|
|
if (address >= __START_KERNEL_map &&
|
|
address < __START_KERNEL_map + KERNEL_TEXT_SIZE) {
|
|
|
|
address = (unsigned long)__va(__pa((void *)address));
|
|
kernel_map = 1;
|
|
}
|
|
#endif
|
|
|
|
pfn = __pa(address) >> PAGE_SHIFT;
|
|
|
|
if (!kernel_map || 1) {
|
|
err = __change_page_attr(address, pfn, mask_set, mask_clr);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
#ifdef CONFIG_X86_64
|
|
/*
|
|
* Handle kernel mapping too which aliases part of
|
|
* lowmem:
|
|
*/
|
|
if (__pa(address) < KERNEL_TEXT_SIZE) {
|
|
unsigned long addr2;
|
|
|
|
addr2 = __pa(address) + __START_KERNEL_map - phys_base;
|
|
/* Make sure the kernel mappings stay executable */
|
|
pgprot_val(mask_clr) |= _PAGE_NX;
|
|
/*
|
|
* Our high aliases are imprecise, so do not propagate
|
|
* failures back to users:
|
|
*/
|
|
__change_page_attr(addr2, pfn, mask_set, mask_clr);
|
|
}
|
|
#endif
|
|
|
|
return err;
|
|
}
|
|
|
|
static int __change_page_attr_set_clr(unsigned long addr, int numpages,
|
|
pgprot_t mask_set, pgprot_t mask_clr)
|
|
{
|
|
unsigned int i;
|
|
int ret;
|
|
|
|
for (i = 0; i < numpages ; i++, addr += PAGE_SIZE) {
|
|
ret = change_page_attr_addr(addr, mask_set, mask_clr);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int change_page_attr_set_clr(unsigned long addr, int numpages,
|
|
pgprot_t mask_set, pgprot_t mask_clr)
|
|
{
|
|
int ret = __change_page_attr_set_clr(addr, numpages, mask_set,
|
|
mask_clr);
|
|
|
|
/*
|
|
* On success we use clflush, when the CPU supports it to
|
|
* avoid the wbindv. If the CPU does not support it and in the
|
|
* error case we fall back to cpa_flush_all (which uses
|
|
* wbindv):
|
|
*/
|
|
if (!ret && cpu_has_clflush)
|
|
cpa_flush_range(addr, numpages);
|
|
else
|
|
cpa_flush_all();
|
|
|
|
return ret;
|
|
}
|
|
|
|
static inline int change_page_attr_set(unsigned long addr, int numpages,
|
|
pgprot_t mask)
|
|
{
|
|
return change_page_attr_set_clr(addr, numpages, mask, __pgprot(0));
|
|
}
|
|
|
|
static inline int change_page_attr_clear(unsigned long addr, int numpages,
|
|
pgprot_t mask)
|
|
{
|
|
return __change_page_attr_set_clr(addr, numpages, __pgprot(0), mask);
|
|
|
|
}
|
|
|
|
int set_memory_uc(unsigned long addr, int numpages)
|
|
{
|
|
return change_page_attr_set(addr, numpages,
|
|
__pgprot(_PAGE_PCD | _PAGE_PWT));
|
|
}
|
|
EXPORT_SYMBOL(set_memory_uc);
|
|
|
|
int set_memory_wb(unsigned long addr, int numpages)
|
|
{
|
|
return change_page_attr_clear(addr, numpages,
|
|
__pgprot(_PAGE_PCD | _PAGE_PWT));
|
|
}
|
|
EXPORT_SYMBOL(set_memory_wb);
|
|
|
|
int set_memory_x(unsigned long addr, int numpages)
|
|
{
|
|
return change_page_attr_clear(addr, numpages, __pgprot(_PAGE_NX));
|
|
}
|
|
EXPORT_SYMBOL(set_memory_x);
|
|
|
|
int set_memory_nx(unsigned long addr, int numpages)
|
|
{
|
|
return change_page_attr_set(addr, numpages, __pgprot(_PAGE_NX));
|
|
}
|
|
EXPORT_SYMBOL(set_memory_nx);
|
|
|
|
int set_memory_ro(unsigned long addr, int numpages)
|
|
{
|
|
return change_page_attr_clear(addr, numpages, __pgprot(_PAGE_RW));
|
|
}
|
|
|
|
int set_memory_rw(unsigned long addr, int numpages)
|
|
{
|
|
return change_page_attr_set(addr, numpages, __pgprot(_PAGE_RW));
|
|
}
|
|
|
|
int set_memory_np(unsigned long addr, int numpages)
|
|
{
|
|
return change_page_attr_clear(addr, numpages, __pgprot(_PAGE_PRESENT));
|
|
}
|
|
|
|
int set_pages_uc(struct page *page, int numpages)
|
|
{
|
|
unsigned long addr = (unsigned long)page_address(page);
|
|
|
|
return set_memory_uc(addr, numpages);
|
|
}
|
|
EXPORT_SYMBOL(set_pages_uc);
|
|
|
|
int set_pages_wb(struct page *page, int numpages)
|
|
{
|
|
unsigned long addr = (unsigned long)page_address(page);
|
|
|
|
return set_memory_wb(addr, numpages);
|
|
}
|
|
EXPORT_SYMBOL(set_pages_wb);
|
|
|
|
int set_pages_x(struct page *page, int numpages)
|
|
{
|
|
unsigned long addr = (unsigned long)page_address(page);
|
|
|
|
return set_memory_x(addr, numpages);
|
|
}
|
|
EXPORT_SYMBOL(set_pages_x);
|
|
|
|
int set_pages_nx(struct page *page, int numpages)
|
|
{
|
|
unsigned long addr = (unsigned long)page_address(page);
|
|
|
|
return set_memory_nx(addr, numpages);
|
|
}
|
|
EXPORT_SYMBOL(set_pages_nx);
|
|
|
|
int set_pages_ro(struct page *page, int numpages)
|
|
{
|
|
unsigned long addr = (unsigned long)page_address(page);
|
|
|
|
return set_memory_ro(addr, numpages);
|
|
}
|
|
|
|
int set_pages_rw(struct page *page, int numpages)
|
|
{
|
|
unsigned long addr = (unsigned long)page_address(page);
|
|
|
|
return set_memory_rw(addr, numpages);
|
|
}
|
|
|
|
|
|
#if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_CPA_DEBUG)
|
|
static inline int __change_page_attr_set(unsigned long addr, int numpages,
|
|
pgprot_t mask)
|
|
{
|
|
return __change_page_attr_set_clr(addr, numpages, mask, __pgprot(0));
|
|
}
|
|
|
|
static inline int __change_page_attr_clear(unsigned long addr, int numpages,
|
|
pgprot_t mask)
|
|
{
|
|
return __change_page_attr_set_clr(addr, numpages, __pgprot(0), mask);
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_DEBUG_PAGEALLOC
|
|
|
|
static int __set_pages_p(struct page *page, int numpages)
|
|
{
|
|
unsigned long addr = (unsigned long)page_address(page);
|
|
|
|
return __change_page_attr_set(addr, numpages,
|
|
__pgprot(_PAGE_PRESENT | _PAGE_RW));
|
|
}
|
|
|
|
static int __set_pages_np(struct page *page, int numpages)
|
|
{
|
|
unsigned long addr = (unsigned long)page_address(page);
|
|
|
|
return __change_page_attr_clear(addr, numpages,
|
|
__pgprot(_PAGE_PRESENT));
|
|
}
|
|
|
|
void kernel_map_pages(struct page *page, int numpages, int enable)
|
|
{
|
|
if (PageHighMem(page))
|
|
return;
|
|
if (!enable) {
|
|
debug_check_no_locks_freed(page_address(page),
|
|
numpages * PAGE_SIZE);
|
|
}
|
|
|
|
/*
|
|
* If page allocator is not up yet then do not call c_p_a():
|
|
*/
|
|
if (!debug_pagealloc_enabled)
|
|
return;
|
|
|
|
/*
|
|
* The return value is ignored - the calls cannot fail,
|
|
* large pages are disabled at boot time:
|
|
*/
|
|
if (enable)
|
|
__set_pages_p(page, numpages);
|
|
else
|
|
__set_pages_np(page, numpages);
|
|
|
|
/*
|
|
* We should perform an IPI and flush all tlbs,
|
|
* but that can deadlock->flush only current cpu:
|
|
*/
|
|
__flush_tlb_all();
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* The testcases use internal knowledge of the implementation that shouldn't
|
|
* be exposed to the rest of the kernel. Include these directly here.
|
|
*/
|
|
#ifdef CONFIG_CPA_DEBUG
|
|
#include "pageattr-test.c"
|
|
#endif
|