linux_dsm_epyc7002/drivers/hwmon/adm9240.c
Axel Lin f0967eea80 hwmon: convert drivers/hwmon/* to use module_i2c_driver()
This patch converts the drivers in drivers/hwmon/* to use the
module_i2c_driver() macro which makes the code smaller and a bit simpler.

Signed-off-by: Axel Lin <axel.lin@gmail.com>
Cc: Corentin Labbe <corentin.labbe@geomatys.fr>
Cc: Dirk Eibach <eibach@gdsys.de>
Cc: "Mark M. Hoffman" <mhoffman@lightlink.com>
Cc: Steve Glendinning <steve.glendinning@smsc.com>
Cc: Riku Voipio <riku.voipio@iki.fi>
Cc: Guillaume Ligneul <guillaume.ligneul@gmail.com>
Cc: David George <david.george@ska.ac.za>
Cc: "Hans J. Koch" <hjk@hansjkoch.de>
Cc: Marc Hulsman <m.hulsman@tudelft.nl>
Cc: Rudolf Marek <r.marek@assembler.cz>
Signed-off-by: Guenter Roeck <guenter.roeck@ericsson.com>
2012-03-18 18:26:50 -07:00

804 lines
24 KiB
C

/*
* adm9240.c Part of lm_sensors, Linux kernel modules for hardware
* monitoring
*
* Copyright (C) 1999 Frodo Looijaard <frodol@dds.nl>
* Philip Edelbrock <phil@netroedge.com>
* Copyright (C) 2003 Michiel Rook <michiel@grendelproject.nl>
* Copyright (C) 2005 Grant Coady <gcoady.lk@gmail.com> with valuable
* guidance from Jean Delvare
*
* Driver supports Analog Devices ADM9240
* Dallas Semiconductor DS1780
* National Semiconductor LM81
*
* ADM9240 is the reference, DS1780 and LM81 are register compatibles
*
* Voltage Six inputs are scaled by chip, VID also reported
* Temperature Chip temperature to 0.5'C, maximum and max_hysteris
* Fans 2 fans, low speed alarm, automatic fan clock divider
* Alarms 16-bit map of active alarms
* Analog Out 0..1250 mV output
*
* Chassis Intrusion: clear CI latch with 'echo 0 > intrusion0_alarm'
*
* Test hardware: Intel SE440BX-2 desktop motherboard --Grant
*
* LM81 extended temp reading not implemented
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/i2c.h>
#include <linux/hwmon-sysfs.h>
#include <linux/hwmon.h>
#include <linux/hwmon-vid.h>
#include <linux/err.h>
#include <linux/mutex.h>
/* Addresses to scan */
static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, 0x2f,
I2C_CLIENT_END };
enum chips { adm9240, ds1780, lm81 };
/* ADM9240 registers */
#define ADM9240_REG_MAN_ID 0x3e
#define ADM9240_REG_DIE_REV 0x3f
#define ADM9240_REG_CONFIG 0x40
#define ADM9240_REG_IN(nr) (0x20 + (nr)) /* 0..5 */
#define ADM9240_REG_IN_MAX(nr) (0x2b + (nr) * 2)
#define ADM9240_REG_IN_MIN(nr) (0x2c + (nr) * 2)
#define ADM9240_REG_FAN(nr) (0x28 + (nr)) /* 0..1 */
#define ADM9240_REG_FAN_MIN(nr) (0x3b + (nr))
#define ADM9240_REG_INT(nr) (0x41 + (nr))
#define ADM9240_REG_INT_MASK(nr) (0x43 + (nr))
#define ADM9240_REG_TEMP 0x27
#define ADM9240_REG_TEMP_MAX(nr) (0x39 + (nr)) /* 0, 1 = high, hyst */
#define ADM9240_REG_ANALOG_OUT 0x19
#define ADM9240_REG_CHASSIS_CLEAR 0x46
#define ADM9240_REG_VID_FAN_DIV 0x47
#define ADM9240_REG_I2C_ADDR 0x48
#define ADM9240_REG_VID4 0x49
#define ADM9240_REG_TEMP_CONF 0x4b
/* generalised scaling with integer rounding */
static inline int SCALE(long val, int mul, int div)
{
if (val < 0)
return (val * mul - div / 2) / div;
else
return (val * mul + div / 2) / div;
}
/* adm9240 internally scales voltage measurements */
static const u16 nom_mv[] = { 2500, 2700, 3300, 5000, 12000, 2700 };
static inline unsigned int IN_FROM_REG(u8 reg, int n)
{
return SCALE(reg, nom_mv[n], 192);
}
static inline u8 IN_TO_REG(unsigned long val, int n)
{
return SENSORS_LIMIT(SCALE(val, 192, nom_mv[n]), 0, 255);
}
/* temperature range: -40..125, 127 disables temperature alarm */
static inline s8 TEMP_TO_REG(long val)
{
return SENSORS_LIMIT(SCALE(val, 1, 1000), -40, 127);
}
/* two fans, each with low fan speed limit */
static inline unsigned int FAN_FROM_REG(u8 reg, u8 div)
{
if (!reg) /* error */
return -1;
if (reg == 255)
return 0;
return SCALE(1350000, 1, reg * div);
}
/* analog out 0..1250mV */
static inline u8 AOUT_TO_REG(unsigned long val)
{
return SENSORS_LIMIT(SCALE(val, 255, 1250), 0, 255);
}
static inline unsigned int AOUT_FROM_REG(u8 reg)
{
return SCALE(reg, 1250, 255);
}
static int adm9240_probe(struct i2c_client *client,
const struct i2c_device_id *id);
static int adm9240_detect(struct i2c_client *client,
struct i2c_board_info *info);
static void adm9240_init_client(struct i2c_client *client);
static int adm9240_remove(struct i2c_client *client);
static struct adm9240_data *adm9240_update_device(struct device *dev);
/* driver data */
static const struct i2c_device_id adm9240_id[] = {
{ "adm9240", adm9240 },
{ "ds1780", ds1780 },
{ "lm81", lm81 },
{ }
};
MODULE_DEVICE_TABLE(i2c, adm9240_id);
static struct i2c_driver adm9240_driver = {
.class = I2C_CLASS_HWMON,
.driver = {
.name = "adm9240",
},
.probe = adm9240_probe,
.remove = adm9240_remove,
.id_table = adm9240_id,
.detect = adm9240_detect,
.address_list = normal_i2c,
};
/* per client data */
struct adm9240_data {
struct device *hwmon_dev;
struct mutex update_lock;
char valid;
unsigned long last_updated_measure;
unsigned long last_updated_config;
u8 in[6]; /* ro in0_input */
u8 in_max[6]; /* rw in0_max */
u8 in_min[6]; /* rw in0_min */
u8 fan[2]; /* ro fan1_input */
u8 fan_min[2]; /* rw fan1_min */
u8 fan_div[2]; /* rw fan1_div, read-only accessor */
s16 temp; /* ro temp1_input, 9-bit sign-extended */
s8 temp_max[2]; /* rw 0 -> temp_max, 1 -> temp_max_hyst */
u16 alarms; /* ro alarms */
u8 aout; /* rw aout_output */
u8 vid; /* ro vid */
u8 vrm; /* -- vrm set on startup, no accessor */
};
/*** sysfs accessors ***/
/* temperature */
static ssize_t show_temp(struct device *dev, struct device_attribute *dummy,
char *buf)
{
struct adm9240_data *data = adm9240_update_device(dev);
return sprintf(buf, "%d\n", data->temp * 500); /* 9-bit value */
}
static ssize_t show_max(struct device *dev, struct device_attribute *devattr,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adm9240_data *data = adm9240_update_device(dev);
return sprintf(buf, "%d\n", data->temp_max[attr->index] * 1000);
}
static ssize_t set_max(struct device *dev, struct device_attribute *devattr,
const char *buf, size_t count)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct i2c_client *client = to_i2c_client(dev);
struct adm9240_data *data = i2c_get_clientdata(client);
long val = simple_strtol(buf, NULL, 10);
mutex_lock(&data->update_lock);
data->temp_max[attr->index] = TEMP_TO_REG(val);
i2c_smbus_write_byte_data(client, ADM9240_REG_TEMP_MAX(attr->index),
data->temp_max[attr->index]);
mutex_unlock(&data->update_lock);
return count;
}
static DEVICE_ATTR(temp1_input, S_IRUGO, show_temp, NULL);
static SENSOR_DEVICE_ATTR(temp1_max, S_IWUSR | S_IRUGO,
show_max, set_max, 0);
static SENSOR_DEVICE_ATTR(temp1_max_hyst, S_IWUSR | S_IRUGO,
show_max, set_max, 1);
/* voltage */
static ssize_t show_in(struct device *dev, struct device_attribute *devattr,
char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adm9240_data *data = adm9240_update_device(dev);
return sprintf(buf, "%d\n", IN_FROM_REG(data->in[attr->index],
attr->index));
}
static ssize_t show_in_min(struct device *dev,
struct device_attribute *devattr, char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adm9240_data *data = adm9240_update_device(dev);
return sprintf(buf, "%d\n", IN_FROM_REG(data->in_min[attr->index],
attr->index));
}
static ssize_t show_in_max(struct device *dev,
struct device_attribute *devattr, char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adm9240_data *data = adm9240_update_device(dev);
return sprintf(buf, "%d\n", IN_FROM_REG(data->in_max[attr->index],
attr->index));
}
static ssize_t set_in_min(struct device *dev,
struct device_attribute *devattr,
const char *buf, size_t count)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct i2c_client *client = to_i2c_client(dev);
struct adm9240_data *data = i2c_get_clientdata(client);
unsigned long val = simple_strtoul(buf, NULL, 10);
mutex_lock(&data->update_lock);
data->in_min[attr->index] = IN_TO_REG(val, attr->index);
i2c_smbus_write_byte_data(client, ADM9240_REG_IN_MIN(attr->index),
data->in_min[attr->index]);
mutex_unlock(&data->update_lock);
return count;
}
static ssize_t set_in_max(struct device *dev,
struct device_attribute *devattr,
const char *buf, size_t count)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct i2c_client *client = to_i2c_client(dev);
struct adm9240_data *data = i2c_get_clientdata(client);
unsigned long val = simple_strtoul(buf, NULL, 10);
mutex_lock(&data->update_lock);
data->in_max[attr->index] = IN_TO_REG(val, attr->index);
i2c_smbus_write_byte_data(client, ADM9240_REG_IN_MAX(attr->index),
data->in_max[attr->index]);
mutex_unlock(&data->update_lock);
return count;
}
#define vin(nr) \
static SENSOR_DEVICE_ATTR(in##nr##_input, S_IRUGO, \
show_in, NULL, nr); \
static SENSOR_DEVICE_ATTR(in##nr##_min, S_IRUGO | S_IWUSR, \
show_in_min, set_in_min, nr); \
static SENSOR_DEVICE_ATTR(in##nr##_max, S_IRUGO | S_IWUSR, \
show_in_max, set_in_max, nr);
vin(0);
vin(1);
vin(2);
vin(3);
vin(4);
vin(5);
/* fans */
static ssize_t show_fan(struct device *dev,
struct device_attribute *devattr, char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adm9240_data *data = adm9240_update_device(dev);
return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan[attr->index],
1 << data->fan_div[attr->index]));
}
static ssize_t show_fan_min(struct device *dev,
struct device_attribute *devattr, char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adm9240_data *data = adm9240_update_device(dev);
return sprintf(buf, "%d\n", FAN_FROM_REG(data->fan_min[attr->index],
1 << data->fan_div[attr->index]));
}
static ssize_t show_fan_div(struct device *dev,
struct device_attribute *devattr, char *buf)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct adm9240_data *data = adm9240_update_device(dev);
return sprintf(buf, "%d\n", 1 << data->fan_div[attr->index]);
}
/* write new fan div, callers must hold data->update_lock */
static void adm9240_write_fan_div(struct i2c_client *client, int nr,
u8 fan_div)
{
u8 reg, old, shift = (nr + 2) * 2;
reg = i2c_smbus_read_byte_data(client, ADM9240_REG_VID_FAN_DIV);
old = (reg >> shift) & 3;
reg &= ~(3 << shift);
reg |= (fan_div << shift);
i2c_smbus_write_byte_data(client, ADM9240_REG_VID_FAN_DIV, reg);
dev_dbg(&client->dev, "fan%d clock divider changed from %u "
"to %u\n", nr + 1, 1 << old, 1 << fan_div);
}
/*
* set fan speed low limit:
*
* - value is zero: disable fan speed low limit alarm
*
* - value is below fan speed measurement range: enable fan speed low
* limit alarm to be asserted while fan speed too slow to measure
*
* - otherwise: select fan clock divider to suit fan speed low limit,
* measurement code may adjust registers to ensure fan speed reading
*/
static ssize_t set_fan_min(struct device *dev,
struct device_attribute *devattr,
const char *buf, size_t count)
{
struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
struct i2c_client *client = to_i2c_client(dev);
struct adm9240_data *data = i2c_get_clientdata(client);
unsigned long val = simple_strtoul(buf, NULL, 10);
int nr = attr->index;
u8 new_div;
mutex_lock(&data->update_lock);
if (!val) {
data->fan_min[nr] = 255;
new_div = data->fan_div[nr];
dev_dbg(&client->dev, "fan%u low limit set disabled\n",
nr + 1);
} else if (val < 1350000 / (8 * 254)) {
new_div = 3;
data->fan_min[nr] = 254;
dev_dbg(&client->dev, "fan%u low limit set minimum %u\n",
nr + 1, FAN_FROM_REG(254, 1 << new_div));
} else {
unsigned int new_min = 1350000 / val;
new_div = 0;
while (new_min > 192 && new_div < 3) {
new_div++;
new_min /= 2;
}
if (!new_min) /* keep > 0 */
new_min++;
data->fan_min[nr] = new_min;
dev_dbg(&client->dev, "fan%u low limit set fan speed %u\n",
nr + 1, FAN_FROM_REG(new_min, 1 << new_div));
}
if (new_div != data->fan_div[nr]) {
data->fan_div[nr] = new_div;
adm9240_write_fan_div(client, nr, new_div);
}
i2c_smbus_write_byte_data(client, ADM9240_REG_FAN_MIN(nr),
data->fan_min[nr]);
mutex_unlock(&data->update_lock);
return count;
}
#define fan(nr) \
static SENSOR_DEVICE_ATTR(fan##nr##_input, S_IRUGO, \
show_fan, NULL, nr - 1); \
static SENSOR_DEVICE_ATTR(fan##nr##_div, S_IRUGO, \
show_fan_div, NULL, nr - 1); \
static SENSOR_DEVICE_ATTR(fan##nr##_min, S_IRUGO | S_IWUSR, \
show_fan_min, set_fan_min, nr - 1);
fan(1);
fan(2);
/* alarms */
static ssize_t show_alarms(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct adm9240_data *data = adm9240_update_device(dev);
return sprintf(buf, "%u\n", data->alarms);
}
static DEVICE_ATTR(alarms, S_IRUGO, show_alarms, NULL);
static ssize_t show_alarm(struct device *dev,
struct device_attribute *attr, char *buf)
{
int bitnr = to_sensor_dev_attr(attr)->index;
struct adm9240_data *data = adm9240_update_device(dev);
return sprintf(buf, "%u\n", (data->alarms >> bitnr) & 1);
}
static SENSOR_DEVICE_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0);
static SENSOR_DEVICE_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1);
static SENSOR_DEVICE_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2);
static SENSOR_DEVICE_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3);
static SENSOR_DEVICE_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8);
static SENSOR_DEVICE_ATTR(in5_alarm, S_IRUGO, show_alarm, NULL, 9);
static SENSOR_DEVICE_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4);
static SENSOR_DEVICE_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 6);
static SENSOR_DEVICE_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 7);
/* vid */
static ssize_t show_vid(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct adm9240_data *data = adm9240_update_device(dev);
return sprintf(buf, "%d\n", vid_from_reg(data->vid, data->vrm));
}
static DEVICE_ATTR(cpu0_vid, S_IRUGO, show_vid, NULL);
/* analog output */
static ssize_t show_aout(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct adm9240_data *data = adm9240_update_device(dev);
return sprintf(buf, "%d\n", AOUT_FROM_REG(data->aout));
}
static ssize_t set_aout(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct i2c_client *client = to_i2c_client(dev);
struct adm9240_data *data = i2c_get_clientdata(client);
unsigned long val = simple_strtol(buf, NULL, 10);
mutex_lock(&data->update_lock);
data->aout = AOUT_TO_REG(val);
i2c_smbus_write_byte_data(client, ADM9240_REG_ANALOG_OUT, data->aout);
mutex_unlock(&data->update_lock);
return count;
}
static DEVICE_ATTR(aout_output, S_IRUGO | S_IWUSR, show_aout, set_aout);
/* chassis_clear */
static ssize_t chassis_clear_legacy(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct i2c_client *client = to_i2c_client(dev);
unsigned long val = simple_strtol(buf, NULL, 10);
dev_warn(dev, "Attribute chassis_clear is deprecated, "
"use intrusion0_alarm instead\n");
if (val == 1) {
i2c_smbus_write_byte_data(client,
ADM9240_REG_CHASSIS_CLEAR, 0x80);
dev_dbg(&client->dev, "chassis intrusion latch cleared\n");
}
return count;
}
static DEVICE_ATTR(chassis_clear, S_IWUSR, NULL, chassis_clear_legacy);
static ssize_t chassis_clear(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct i2c_client *client = to_i2c_client(dev);
struct adm9240_data *data = i2c_get_clientdata(client);
unsigned long val;
if (kstrtoul(buf, 10, &val) || val != 0)
return -EINVAL;
mutex_lock(&data->update_lock);
i2c_smbus_write_byte_data(client, ADM9240_REG_CHASSIS_CLEAR, 0x80);
data->valid = 0; /* Force cache refresh */
mutex_unlock(&data->update_lock);
dev_dbg(&client->dev, "chassis intrusion latch cleared\n");
return count;
}
static SENSOR_DEVICE_ATTR(intrusion0_alarm, S_IRUGO | S_IWUSR, show_alarm,
chassis_clear, 12);
static struct attribute *adm9240_attributes[] = {
&sensor_dev_attr_in0_input.dev_attr.attr,
&sensor_dev_attr_in0_min.dev_attr.attr,
&sensor_dev_attr_in0_max.dev_attr.attr,
&sensor_dev_attr_in0_alarm.dev_attr.attr,
&sensor_dev_attr_in1_input.dev_attr.attr,
&sensor_dev_attr_in1_min.dev_attr.attr,
&sensor_dev_attr_in1_max.dev_attr.attr,
&sensor_dev_attr_in1_alarm.dev_attr.attr,
&sensor_dev_attr_in2_input.dev_attr.attr,
&sensor_dev_attr_in2_min.dev_attr.attr,
&sensor_dev_attr_in2_max.dev_attr.attr,
&sensor_dev_attr_in2_alarm.dev_attr.attr,
&sensor_dev_attr_in3_input.dev_attr.attr,
&sensor_dev_attr_in3_min.dev_attr.attr,
&sensor_dev_attr_in3_max.dev_attr.attr,
&sensor_dev_attr_in3_alarm.dev_attr.attr,
&sensor_dev_attr_in4_input.dev_attr.attr,
&sensor_dev_attr_in4_min.dev_attr.attr,
&sensor_dev_attr_in4_max.dev_attr.attr,
&sensor_dev_attr_in4_alarm.dev_attr.attr,
&sensor_dev_attr_in5_input.dev_attr.attr,
&sensor_dev_attr_in5_min.dev_attr.attr,
&sensor_dev_attr_in5_max.dev_attr.attr,
&sensor_dev_attr_in5_alarm.dev_attr.attr,
&dev_attr_temp1_input.attr,
&sensor_dev_attr_temp1_max.dev_attr.attr,
&sensor_dev_attr_temp1_max_hyst.dev_attr.attr,
&sensor_dev_attr_temp1_alarm.dev_attr.attr,
&sensor_dev_attr_fan1_input.dev_attr.attr,
&sensor_dev_attr_fan1_div.dev_attr.attr,
&sensor_dev_attr_fan1_min.dev_attr.attr,
&sensor_dev_attr_fan1_alarm.dev_attr.attr,
&sensor_dev_attr_fan2_input.dev_attr.attr,
&sensor_dev_attr_fan2_div.dev_attr.attr,
&sensor_dev_attr_fan2_min.dev_attr.attr,
&sensor_dev_attr_fan2_alarm.dev_attr.attr,
&dev_attr_alarms.attr,
&dev_attr_aout_output.attr,
&dev_attr_chassis_clear.attr,
&sensor_dev_attr_intrusion0_alarm.dev_attr.attr,
&dev_attr_cpu0_vid.attr,
NULL
};
static const struct attribute_group adm9240_group = {
.attrs = adm9240_attributes,
};
/*** sensor chip detect and driver install ***/
/* Return 0 if detection is successful, -ENODEV otherwise */
static int adm9240_detect(struct i2c_client *new_client,
struct i2c_board_info *info)
{
struct i2c_adapter *adapter = new_client->adapter;
const char *name = "";
int address = new_client->addr;
u8 man_id, die_rev;
if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
return -ENODEV;
/* verify chip: reg address should match i2c address */
if (i2c_smbus_read_byte_data(new_client, ADM9240_REG_I2C_ADDR)
!= address) {
dev_err(&adapter->dev, "detect fail: address match, 0x%02x\n",
address);
return -ENODEV;
}
/* check known chip manufacturer */
man_id = i2c_smbus_read_byte_data(new_client, ADM9240_REG_MAN_ID);
if (man_id == 0x23) {
name = "adm9240";
} else if (man_id == 0xda) {
name = "ds1780";
} else if (man_id == 0x01) {
name = "lm81";
} else {
dev_err(&adapter->dev, "detect fail: unknown manuf, 0x%02x\n",
man_id);
return -ENODEV;
}
/* successful detect, print chip info */
die_rev = i2c_smbus_read_byte_data(new_client, ADM9240_REG_DIE_REV);
dev_info(&adapter->dev, "found %s revision %u\n",
man_id == 0x23 ? "ADM9240" :
man_id == 0xda ? "DS1780" : "LM81", die_rev);
strlcpy(info->type, name, I2C_NAME_SIZE);
return 0;
}
static int adm9240_probe(struct i2c_client *new_client,
const struct i2c_device_id *id)
{
struct adm9240_data *data;
int err;
data = kzalloc(sizeof(*data), GFP_KERNEL);
if (!data) {
err = -ENOMEM;
goto exit;
}
i2c_set_clientdata(new_client, data);
mutex_init(&data->update_lock);
adm9240_init_client(new_client);
/* populate sysfs filesystem */
if ((err = sysfs_create_group(&new_client->dev.kobj, &adm9240_group)))
goto exit_free;
data->hwmon_dev = hwmon_device_register(&new_client->dev);
if (IS_ERR(data->hwmon_dev)) {
err = PTR_ERR(data->hwmon_dev);
goto exit_remove;
}
return 0;
exit_remove:
sysfs_remove_group(&new_client->dev.kobj, &adm9240_group);
exit_free:
kfree(data);
exit:
return err;
}
static int adm9240_remove(struct i2c_client *client)
{
struct adm9240_data *data = i2c_get_clientdata(client);
hwmon_device_unregister(data->hwmon_dev);
sysfs_remove_group(&client->dev.kobj, &adm9240_group);
kfree(data);
return 0;
}
static void adm9240_init_client(struct i2c_client *client)
{
struct adm9240_data *data = i2c_get_clientdata(client);
u8 conf = i2c_smbus_read_byte_data(client, ADM9240_REG_CONFIG);
u8 mode = i2c_smbus_read_byte_data(client, ADM9240_REG_TEMP_CONF) & 3;
data->vrm = vid_which_vrm(); /* need this to report vid as mV */
dev_info(&client->dev, "Using VRM: %d.%d\n", data->vrm / 10,
data->vrm % 10);
if (conf & 1) { /* measurement cycle running: report state */
dev_info(&client->dev, "status: config 0x%02x mode %u\n",
conf, mode);
} else { /* cold start: open limits before starting chip */
int i;
for (i = 0; i < 6; i++)
{
i2c_smbus_write_byte_data(client,
ADM9240_REG_IN_MIN(i), 0);
i2c_smbus_write_byte_data(client,
ADM9240_REG_IN_MAX(i), 255);
}
i2c_smbus_write_byte_data(client,
ADM9240_REG_FAN_MIN(0), 255);
i2c_smbus_write_byte_data(client,
ADM9240_REG_FAN_MIN(1), 255);
i2c_smbus_write_byte_data(client,
ADM9240_REG_TEMP_MAX(0), 127);
i2c_smbus_write_byte_data(client,
ADM9240_REG_TEMP_MAX(1), 127);
/* start measurement cycle */
i2c_smbus_write_byte_data(client, ADM9240_REG_CONFIG, 1);
dev_info(&client->dev, "cold start: config was 0x%02x "
"mode %u\n", conf, mode);
}
}
static struct adm9240_data *adm9240_update_device(struct device *dev)
{
struct i2c_client *client = to_i2c_client(dev);
struct adm9240_data *data = i2c_get_clientdata(client);
int i;
mutex_lock(&data->update_lock);
/* minimum measurement cycle: 1.75 seconds */
if (time_after(jiffies, data->last_updated_measure + (HZ * 7 / 4))
|| !data->valid) {
for (i = 0; i < 6; i++) /* read voltages */
{
data->in[i] = i2c_smbus_read_byte_data(client,
ADM9240_REG_IN(i));
}
data->alarms = i2c_smbus_read_byte_data(client,
ADM9240_REG_INT(0)) |
i2c_smbus_read_byte_data(client,
ADM9240_REG_INT(1)) << 8;
/* read temperature: assume temperature changes less than
* 0.5'C per two measurement cycles thus ignore possible
* but unlikely aliasing error on lsb reading. --Grant */
data->temp = ((i2c_smbus_read_byte_data(client,
ADM9240_REG_TEMP) << 8) |
i2c_smbus_read_byte_data(client,
ADM9240_REG_TEMP_CONF)) / 128;
for (i = 0; i < 2; i++) /* read fans */
{
data->fan[i] = i2c_smbus_read_byte_data(client,
ADM9240_REG_FAN(i));
/* adjust fan clock divider on overflow */
if (data->valid && data->fan[i] == 255 &&
data->fan_div[i] < 3) {
adm9240_write_fan_div(client, i,
++data->fan_div[i]);
/* adjust fan_min if active, but not to 0 */
if (data->fan_min[i] < 255 &&
data->fan_min[i] >= 2)
data->fan_min[i] /= 2;
}
}
data->last_updated_measure = jiffies;
}
/* minimum config reading cycle: 300 seconds */
if (time_after(jiffies, data->last_updated_config + (HZ * 300))
|| !data->valid) {
for (i = 0; i < 6; i++)
{
data->in_min[i] = i2c_smbus_read_byte_data(client,
ADM9240_REG_IN_MIN(i));
data->in_max[i] = i2c_smbus_read_byte_data(client,
ADM9240_REG_IN_MAX(i));
}
for (i = 0; i < 2; i++)
{
data->fan_min[i] = i2c_smbus_read_byte_data(client,
ADM9240_REG_FAN_MIN(i));
}
data->temp_max[0] = i2c_smbus_read_byte_data(client,
ADM9240_REG_TEMP_MAX(0));
data->temp_max[1] = i2c_smbus_read_byte_data(client,
ADM9240_REG_TEMP_MAX(1));
/* read fan divs and 5-bit VID */
i = i2c_smbus_read_byte_data(client, ADM9240_REG_VID_FAN_DIV);
data->fan_div[0] = (i >> 4) & 3;
data->fan_div[1] = (i >> 6) & 3;
data->vid = i & 0x0f;
data->vid |= (i2c_smbus_read_byte_data(client,
ADM9240_REG_VID4) & 1) << 4;
/* read analog out */
data->aout = i2c_smbus_read_byte_data(client,
ADM9240_REG_ANALOG_OUT);
data->last_updated_config = jiffies;
data->valid = 1;
}
mutex_unlock(&data->update_lock);
return data;
}
module_i2c_driver(adm9240_driver);
MODULE_AUTHOR("Michiel Rook <michiel@grendelproject.nl>, "
"Grant Coady <gcoady.lk@gmail.com> and others");
MODULE_DESCRIPTION("ADM9240/DS1780/LM81 driver");
MODULE_LICENSE("GPL");