mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-22 19:59:30 +07:00
c27f339af9
Patrick McHardy <kaber@trash.net> noticed that it would be nice to handle NET_XMIT_BYPASS by NET_XMIT_SUCCESS with an internal qdisc flag __NET_XMIT_BYPASS and to remove the mapping from dev_queue_xmit(). David Miller <davem@davemloft.net> spotted a serious bug in the first version of this patch. Signed-off-by: Jarek Poplawski <jarkao2@gmail.com> Signed-off-by: David S. Miller <davem@davemloft.net>
648 lines
15 KiB
C
648 lines
15 KiB
C
/*
|
|
* net/sched/sch_sfq.c Stochastic Fairness Queueing discipline.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version
|
|
* 2 of the License, or (at your option) any later version.
|
|
*
|
|
* Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/types.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/jiffies.h>
|
|
#include <linux/string.h>
|
|
#include <linux/in.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/init.h>
|
|
#include <linux/ipv6.h>
|
|
#include <linux/skbuff.h>
|
|
#include <linux/jhash.h>
|
|
#include <net/ip.h>
|
|
#include <net/netlink.h>
|
|
#include <net/pkt_sched.h>
|
|
|
|
|
|
/* Stochastic Fairness Queuing algorithm.
|
|
=======================================
|
|
|
|
Source:
|
|
Paul E. McKenney "Stochastic Fairness Queuing",
|
|
IEEE INFOCOMM'90 Proceedings, San Francisco, 1990.
|
|
|
|
Paul E. McKenney "Stochastic Fairness Queuing",
|
|
"Interworking: Research and Experience", v.2, 1991, p.113-131.
|
|
|
|
|
|
See also:
|
|
M. Shreedhar and George Varghese "Efficient Fair
|
|
Queuing using Deficit Round Robin", Proc. SIGCOMM 95.
|
|
|
|
|
|
This is not the thing that is usually called (W)FQ nowadays.
|
|
It does not use any timestamp mechanism, but instead
|
|
processes queues in round-robin order.
|
|
|
|
ADVANTAGE:
|
|
|
|
- It is very cheap. Both CPU and memory requirements are minimal.
|
|
|
|
DRAWBACKS:
|
|
|
|
- "Stochastic" -> It is not 100% fair.
|
|
When hash collisions occur, several flows are considered as one.
|
|
|
|
- "Round-robin" -> It introduces larger delays than virtual clock
|
|
based schemes, and should not be used for isolating interactive
|
|
traffic from non-interactive. It means, that this scheduler
|
|
should be used as leaf of CBQ or P3, which put interactive traffic
|
|
to higher priority band.
|
|
|
|
We still need true WFQ for top level CSZ, but using WFQ
|
|
for the best effort traffic is absolutely pointless:
|
|
SFQ is superior for this purpose.
|
|
|
|
IMPLEMENTATION:
|
|
This implementation limits maximal queue length to 128;
|
|
maximal mtu to 2^15-1; number of hash buckets to 1024.
|
|
The only goal of this restrictions was that all data
|
|
fit into one 4K page :-). Struct sfq_sched_data is
|
|
organized in anti-cache manner: all the data for a bucket
|
|
are scattered over different locations. This is not good,
|
|
but it allowed me to put it into 4K.
|
|
|
|
It is easy to increase these values, but not in flight. */
|
|
|
|
#define SFQ_DEPTH 128
|
|
#define SFQ_HASH_DIVISOR 1024
|
|
|
|
/* This type should contain at least SFQ_DEPTH*2 values */
|
|
typedef unsigned char sfq_index;
|
|
|
|
struct sfq_head
|
|
{
|
|
sfq_index next;
|
|
sfq_index prev;
|
|
};
|
|
|
|
struct sfq_sched_data
|
|
{
|
|
/* Parameters */
|
|
int perturb_period;
|
|
unsigned quantum; /* Allotment per round: MUST BE >= MTU */
|
|
int limit;
|
|
|
|
/* Variables */
|
|
struct tcf_proto *filter_list;
|
|
struct timer_list perturb_timer;
|
|
u32 perturbation;
|
|
sfq_index tail; /* Index of current slot in round */
|
|
sfq_index max_depth; /* Maximal depth */
|
|
|
|
sfq_index ht[SFQ_HASH_DIVISOR]; /* Hash table */
|
|
sfq_index next[SFQ_DEPTH]; /* Active slots link */
|
|
short allot[SFQ_DEPTH]; /* Current allotment per slot */
|
|
unsigned short hash[SFQ_DEPTH]; /* Hash value indexed by slots */
|
|
struct sk_buff_head qs[SFQ_DEPTH]; /* Slot queue */
|
|
struct sfq_head dep[SFQ_DEPTH*2]; /* Linked list of slots, indexed by depth */
|
|
};
|
|
|
|
static __inline__ unsigned sfq_fold_hash(struct sfq_sched_data *q, u32 h, u32 h1)
|
|
{
|
|
return jhash_2words(h, h1, q->perturbation) & (SFQ_HASH_DIVISOR - 1);
|
|
}
|
|
|
|
static unsigned sfq_hash(struct sfq_sched_data *q, struct sk_buff *skb)
|
|
{
|
|
u32 h, h2;
|
|
|
|
switch (skb->protocol) {
|
|
case __constant_htons(ETH_P_IP):
|
|
{
|
|
const struct iphdr *iph = ip_hdr(skb);
|
|
h = iph->daddr;
|
|
h2 = iph->saddr ^ iph->protocol;
|
|
if (!(iph->frag_off&htons(IP_MF|IP_OFFSET)) &&
|
|
(iph->protocol == IPPROTO_TCP ||
|
|
iph->protocol == IPPROTO_UDP ||
|
|
iph->protocol == IPPROTO_UDPLITE ||
|
|
iph->protocol == IPPROTO_SCTP ||
|
|
iph->protocol == IPPROTO_DCCP ||
|
|
iph->protocol == IPPROTO_ESP))
|
|
h2 ^= *(((u32*)iph) + iph->ihl);
|
|
break;
|
|
}
|
|
case __constant_htons(ETH_P_IPV6):
|
|
{
|
|
struct ipv6hdr *iph = ipv6_hdr(skb);
|
|
h = iph->daddr.s6_addr32[3];
|
|
h2 = iph->saddr.s6_addr32[3] ^ iph->nexthdr;
|
|
if (iph->nexthdr == IPPROTO_TCP ||
|
|
iph->nexthdr == IPPROTO_UDP ||
|
|
iph->nexthdr == IPPROTO_UDPLITE ||
|
|
iph->nexthdr == IPPROTO_SCTP ||
|
|
iph->nexthdr == IPPROTO_DCCP ||
|
|
iph->nexthdr == IPPROTO_ESP)
|
|
h2 ^= *(u32*)&iph[1];
|
|
break;
|
|
}
|
|
default:
|
|
h = (unsigned long)skb->dst ^ skb->protocol;
|
|
h2 = (unsigned long)skb->sk;
|
|
}
|
|
|
|
return sfq_fold_hash(q, h, h2);
|
|
}
|
|
|
|
static unsigned int sfq_classify(struct sk_buff *skb, struct Qdisc *sch,
|
|
int *qerr)
|
|
{
|
|
struct sfq_sched_data *q = qdisc_priv(sch);
|
|
struct tcf_result res;
|
|
int result;
|
|
|
|
if (TC_H_MAJ(skb->priority) == sch->handle &&
|
|
TC_H_MIN(skb->priority) > 0 &&
|
|
TC_H_MIN(skb->priority) <= SFQ_HASH_DIVISOR)
|
|
return TC_H_MIN(skb->priority);
|
|
|
|
if (!q->filter_list)
|
|
return sfq_hash(q, skb) + 1;
|
|
|
|
*qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
|
|
result = tc_classify(skb, q->filter_list, &res);
|
|
if (result >= 0) {
|
|
#ifdef CONFIG_NET_CLS_ACT
|
|
switch (result) {
|
|
case TC_ACT_STOLEN:
|
|
case TC_ACT_QUEUED:
|
|
*qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
|
|
case TC_ACT_SHOT:
|
|
return 0;
|
|
}
|
|
#endif
|
|
if (TC_H_MIN(res.classid) <= SFQ_HASH_DIVISOR)
|
|
return TC_H_MIN(res.classid);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static inline void sfq_link(struct sfq_sched_data *q, sfq_index x)
|
|
{
|
|
sfq_index p, n;
|
|
int d = q->qs[x].qlen + SFQ_DEPTH;
|
|
|
|
p = d;
|
|
n = q->dep[d].next;
|
|
q->dep[x].next = n;
|
|
q->dep[x].prev = p;
|
|
q->dep[p].next = q->dep[n].prev = x;
|
|
}
|
|
|
|
static inline void sfq_dec(struct sfq_sched_data *q, sfq_index x)
|
|
{
|
|
sfq_index p, n;
|
|
|
|
n = q->dep[x].next;
|
|
p = q->dep[x].prev;
|
|
q->dep[p].next = n;
|
|
q->dep[n].prev = p;
|
|
|
|
if (n == p && q->max_depth == q->qs[x].qlen + 1)
|
|
q->max_depth--;
|
|
|
|
sfq_link(q, x);
|
|
}
|
|
|
|
static inline void sfq_inc(struct sfq_sched_data *q, sfq_index x)
|
|
{
|
|
sfq_index p, n;
|
|
int d;
|
|
|
|
n = q->dep[x].next;
|
|
p = q->dep[x].prev;
|
|
q->dep[p].next = n;
|
|
q->dep[n].prev = p;
|
|
d = q->qs[x].qlen;
|
|
if (q->max_depth < d)
|
|
q->max_depth = d;
|
|
|
|
sfq_link(q, x);
|
|
}
|
|
|
|
static unsigned int sfq_drop(struct Qdisc *sch)
|
|
{
|
|
struct sfq_sched_data *q = qdisc_priv(sch);
|
|
sfq_index d = q->max_depth;
|
|
struct sk_buff *skb;
|
|
unsigned int len;
|
|
|
|
/* Queue is full! Find the longest slot and
|
|
drop a packet from it */
|
|
|
|
if (d > 1) {
|
|
sfq_index x = q->dep[d + SFQ_DEPTH].next;
|
|
skb = q->qs[x].prev;
|
|
len = qdisc_pkt_len(skb);
|
|
__skb_unlink(skb, &q->qs[x]);
|
|
kfree_skb(skb);
|
|
sfq_dec(q, x);
|
|
sch->q.qlen--;
|
|
sch->qstats.drops++;
|
|
sch->qstats.backlog -= len;
|
|
return len;
|
|
}
|
|
|
|
if (d == 1) {
|
|
/* It is difficult to believe, but ALL THE SLOTS HAVE LENGTH 1. */
|
|
d = q->next[q->tail];
|
|
q->next[q->tail] = q->next[d];
|
|
q->allot[q->next[d]] += q->quantum;
|
|
skb = q->qs[d].prev;
|
|
len = qdisc_pkt_len(skb);
|
|
__skb_unlink(skb, &q->qs[d]);
|
|
kfree_skb(skb);
|
|
sfq_dec(q, d);
|
|
sch->q.qlen--;
|
|
q->ht[q->hash[d]] = SFQ_DEPTH;
|
|
sch->qstats.drops++;
|
|
sch->qstats.backlog -= len;
|
|
return len;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
sfq_enqueue(struct sk_buff *skb, struct Qdisc *sch)
|
|
{
|
|
struct sfq_sched_data *q = qdisc_priv(sch);
|
|
unsigned int hash;
|
|
sfq_index x;
|
|
int ret;
|
|
|
|
hash = sfq_classify(skb, sch, &ret);
|
|
if (hash == 0) {
|
|
if (ret & __NET_XMIT_BYPASS)
|
|
sch->qstats.drops++;
|
|
kfree_skb(skb);
|
|
return ret;
|
|
}
|
|
hash--;
|
|
|
|
x = q->ht[hash];
|
|
if (x == SFQ_DEPTH) {
|
|
q->ht[hash] = x = q->dep[SFQ_DEPTH].next;
|
|
q->hash[x] = hash;
|
|
}
|
|
|
|
/* If selected queue has length q->limit, this means that
|
|
* all another queues are empty and that we do simple tail drop,
|
|
* i.e. drop _this_ packet.
|
|
*/
|
|
if (q->qs[x].qlen >= q->limit)
|
|
return qdisc_drop(skb, sch);
|
|
|
|
sch->qstats.backlog += qdisc_pkt_len(skb);
|
|
__skb_queue_tail(&q->qs[x], skb);
|
|
sfq_inc(q, x);
|
|
if (q->qs[x].qlen == 1) { /* The flow is new */
|
|
if (q->tail == SFQ_DEPTH) { /* It is the first flow */
|
|
q->tail = x;
|
|
q->next[x] = x;
|
|
q->allot[x] = q->quantum;
|
|
} else {
|
|
q->next[x] = q->next[q->tail];
|
|
q->next[q->tail] = x;
|
|
q->tail = x;
|
|
}
|
|
}
|
|
if (++sch->q.qlen <= q->limit) {
|
|
sch->bstats.bytes += qdisc_pkt_len(skb);
|
|
sch->bstats.packets++;
|
|
return 0;
|
|
}
|
|
|
|
sfq_drop(sch);
|
|
return NET_XMIT_CN;
|
|
}
|
|
|
|
static int
|
|
sfq_requeue(struct sk_buff *skb, struct Qdisc *sch)
|
|
{
|
|
struct sfq_sched_data *q = qdisc_priv(sch);
|
|
unsigned int hash;
|
|
sfq_index x;
|
|
int ret;
|
|
|
|
hash = sfq_classify(skb, sch, &ret);
|
|
if (hash == 0) {
|
|
if (ret & __NET_XMIT_BYPASS)
|
|
sch->qstats.drops++;
|
|
kfree_skb(skb);
|
|
return ret;
|
|
}
|
|
hash--;
|
|
|
|
x = q->ht[hash];
|
|
if (x == SFQ_DEPTH) {
|
|
q->ht[hash] = x = q->dep[SFQ_DEPTH].next;
|
|
q->hash[x] = hash;
|
|
}
|
|
|
|
sch->qstats.backlog += qdisc_pkt_len(skb);
|
|
__skb_queue_head(&q->qs[x], skb);
|
|
/* If selected queue has length q->limit+1, this means that
|
|
* all another queues are empty and we do simple tail drop.
|
|
* This packet is still requeued at head of queue, tail packet
|
|
* is dropped.
|
|
*/
|
|
if (q->qs[x].qlen > q->limit) {
|
|
skb = q->qs[x].prev;
|
|
__skb_unlink(skb, &q->qs[x]);
|
|
sch->qstats.drops++;
|
|
sch->qstats.backlog -= qdisc_pkt_len(skb);
|
|
kfree_skb(skb);
|
|
return NET_XMIT_CN;
|
|
}
|
|
|
|
sfq_inc(q, x);
|
|
if (q->qs[x].qlen == 1) { /* The flow is new */
|
|
if (q->tail == SFQ_DEPTH) { /* It is the first flow */
|
|
q->tail = x;
|
|
q->next[x] = x;
|
|
q->allot[x] = q->quantum;
|
|
} else {
|
|
q->next[x] = q->next[q->tail];
|
|
q->next[q->tail] = x;
|
|
q->tail = x;
|
|
}
|
|
}
|
|
|
|
if (++sch->q.qlen <= q->limit) {
|
|
sch->qstats.requeues++;
|
|
return 0;
|
|
}
|
|
|
|
sch->qstats.drops++;
|
|
sfq_drop(sch);
|
|
return NET_XMIT_CN;
|
|
}
|
|
|
|
|
|
|
|
|
|
static struct sk_buff *
|
|
sfq_dequeue(struct Qdisc *sch)
|
|
{
|
|
struct sfq_sched_data *q = qdisc_priv(sch);
|
|
struct sk_buff *skb;
|
|
sfq_index a, old_a;
|
|
|
|
/* No active slots */
|
|
if (q->tail == SFQ_DEPTH)
|
|
return NULL;
|
|
|
|
a = old_a = q->next[q->tail];
|
|
|
|
/* Grab packet */
|
|
skb = __skb_dequeue(&q->qs[a]);
|
|
sfq_dec(q, a);
|
|
sch->q.qlen--;
|
|
sch->qstats.backlog -= qdisc_pkt_len(skb);
|
|
|
|
/* Is the slot empty? */
|
|
if (q->qs[a].qlen == 0) {
|
|
q->ht[q->hash[a]] = SFQ_DEPTH;
|
|
a = q->next[a];
|
|
if (a == old_a) {
|
|
q->tail = SFQ_DEPTH;
|
|
return skb;
|
|
}
|
|
q->next[q->tail] = a;
|
|
q->allot[a] += q->quantum;
|
|
} else if ((q->allot[a] -= qdisc_pkt_len(skb)) <= 0) {
|
|
q->tail = a;
|
|
a = q->next[a];
|
|
q->allot[a] += q->quantum;
|
|
}
|
|
return skb;
|
|
}
|
|
|
|
static void
|
|
sfq_reset(struct Qdisc *sch)
|
|
{
|
|
struct sk_buff *skb;
|
|
|
|
while ((skb = sfq_dequeue(sch)) != NULL)
|
|
kfree_skb(skb);
|
|
}
|
|
|
|
static void sfq_perturbation(unsigned long arg)
|
|
{
|
|
struct Qdisc *sch = (struct Qdisc *)arg;
|
|
struct sfq_sched_data *q = qdisc_priv(sch);
|
|
|
|
q->perturbation = net_random();
|
|
|
|
if (q->perturb_period)
|
|
mod_timer(&q->perturb_timer, jiffies + q->perturb_period);
|
|
}
|
|
|
|
static int sfq_change(struct Qdisc *sch, struct nlattr *opt)
|
|
{
|
|
struct sfq_sched_data *q = qdisc_priv(sch);
|
|
struct tc_sfq_qopt *ctl = nla_data(opt);
|
|
unsigned int qlen;
|
|
|
|
if (opt->nla_len < nla_attr_size(sizeof(*ctl)))
|
|
return -EINVAL;
|
|
|
|
sch_tree_lock(sch);
|
|
q->quantum = ctl->quantum ? : psched_mtu(qdisc_dev(sch));
|
|
q->perturb_period = ctl->perturb_period * HZ;
|
|
if (ctl->limit)
|
|
q->limit = min_t(u32, ctl->limit, SFQ_DEPTH - 1);
|
|
|
|
qlen = sch->q.qlen;
|
|
while (sch->q.qlen > q->limit)
|
|
sfq_drop(sch);
|
|
qdisc_tree_decrease_qlen(sch, qlen - sch->q.qlen);
|
|
|
|
del_timer(&q->perturb_timer);
|
|
if (q->perturb_period) {
|
|
mod_timer(&q->perturb_timer, jiffies + q->perturb_period);
|
|
q->perturbation = net_random();
|
|
}
|
|
sch_tree_unlock(sch);
|
|
return 0;
|
|
}
|
|
|
|
static int sfq_init(struct Qdisc *sch, struct nlattr *opt)
|
|
{
|
|
struct sfq_sched_data *q = qdisc_priv(sch);
|
|
int i;
|
|
|
|
q->perturb_timer.function = sfq_perturbation;
|
|
q->perturb_timer.data = (unsigned long)sch;;
|
|
init_timer_deferrable(&q->perturb_timer);
|
|
|
|
for (i = 0; i < SFQ_HASH_DIVISOR; i++)
|
|
q->ht[i] = SFQ_DEPTH;
|
|
|
|
for (i = 0; i < SFQ_DEPTH; i++) {
|
|
skb_queue_head_init(&q->qs[i]);
|
|
q->dep[i + SFQ_DEPTH].next = i + SFQ_DEPTH;
|
|
q->dep[i + SFQ_DEPTH].prev = i + SFQ_DEPTH;
|
|
}
|
|
|
|
q->limit = SFQ_DEPTH - 1;
|
|
q->max_depth = 0;
|
|
q->tail = SFQ_DEPTH;
|
|
if (opt == NULL) {
|
|
q->quantum = psched_mtu(qdisc_dev(sch));
|
|
q->perturb_period = 0;
|
|
q->perturbation = net_random();
|
|
} else {
|
|
int err = sfq_change(sch, opt);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
for (i = 0; i < SFQ_DEPTH; i++)
|
|
sfq_link(q, i);
|
|
return 0;
|
|
}
|
|
|
|
static void sfq_destroy(struct Qdisc *sch)
|
|
{
|
|
struct sfq_sched_data *q = qdisc_priv(sch);
|
|
|
|
tcf_destroy_chain(&q->filter_list);
|
|
q->perturb_period = 0;
|
|
del_timer_sync(&q->perturb_timer);
|
|
}
|
|
|
|
static int sfq_dump(struct Qdisc *sch, struct sk_buff *skb)
|
|
{
|
|
struct sfq_sched_data *q = qdisc_priv(sch);
|
|
unsigned char *b = skb_tail_pointer(skb);
|
|
struct tc_sfq_qopt opt;
|
|
|
|
opt.quantum = q->quantum;
|
|
opt.perturb_period = q->perturb_period / HZ;
|
|
|
|
opt.limit = q->limit;
|
|
opt.divisor = SFQ_HASH_DIVISOR;
|
|
opt.flows = q->limit;
|
|
|
|
NLA_PUT(skb, TCA_OPTIONS, sizeof(opt), &opt);
|
|
|
|
return skb->len;
|
|
|
|
nla_put_failure:
|
|
nlmsg_trim(skb, b);
|
|
return -1;
|
|
}
|
|
|
|
static int sfq_change_class(struct Qdisc *sch, u32 classid, u32 parentid,
|
|
struct nlattr **tca, unsigned long *arg)
|
|
{
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
static unsigned long sfq_get(struct Qdisc *sch, u32 classid)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static struct tcf_proto **sfq_find_tcf(struct Qdisc *sch, unsigned long cl)
|
|
{
|
|
struct sfq_sched_data *q = qdisc_priv(sch);
|
|
|
|
if (cl)
|
|
return NULL;
|
|
return &q->filter_list;
|
|
}
|
|
|
|
static int sfq_dump_class(struct Qdisc *sch, unsigned long cl,
|
|
struct sk_buff *skb, struct tcmsg *tcm)
|
|
{
|
|
tcm->tcm_handle |= TC_H_MIN(cl);
|
|
return 0;
|
|
}
|
|
|
|
static int sfq_dump_class_stats(struct Qdisc *sch, unsigned long cl,
|
|
struct gnet_dump *d)
|
|
{
|
|
struct sfq_sched_data *q = qdisc_priv(sch);
|
|
sfq_index idx = q->ht[cl-1];
|
|
struct gnet_stats_queue qs = { .qlen = q->qs[idx].qlen };
|
|
struct tc_sfq_xstats xstats = { .allot = q->allot[idx] };
|
|
|
|
if (gnet_stats_copy_queue(d, &qs) < 0)
|
|
return -1;
|
|
return gnet_stats_copy_app(d, &xstats, sizeof(xstats));
|
|
}
|
|
|
|
static void sfq_walk(struct Qdisc *sch, struct qdisc_walker *arg)
|
|
{
|
|
struct sfq_sched_data *q = qdisc_priv(sch);
|
|
unsigned int i;
|
|
|
|
if (arg->stop)
|
|
return;
|
|
|
|
for (i = 0; i < SFQ_HASH_DIVISOR; i++) {
|
|
if (q->ht[i] == SFQ_DEPTH ||
|
|
arg->count < arg->skip) {
|
|
arg->count++;
|
|
continue;
|
|
}
|
|
if (arg->fn(sch, i + 1, arg) < 0) {
|
|
arg->stop = 1;
|
|
break;
|
|
}
|
|
arg->count++;
|
|
}
|
|
}
|
|
|
|
static const struct Qdisc_class_ops sfq_class_ops = {
|
|
.get = sfq_get,
|
|
.change = sfq_change_class,
|
|
.tcf_chain = sfq_find_tcf,
|
|
.dump = sfq_dump_class,
|
|
.dump_stats = sfq_dump_class_stats,
|
|
.walk = sfq_walk,
|
|
};
|
|
|
|
static struct Qdisc_ops sfq_qdisc_ops __read_mostly = {
|
|
.cl_ops = &sfq_class_ops,
|
|
.id = "sfq",
|
|
.priv_size = sizeof(struct sfq_sched_data),
|
|
.enqueue = sfq_enqueue,
|
|
.dequeue = sfq_dequeue,
|
|
.requeue = sfq_requeue,
|
|
.drop = sfq_drop,
|
|
.init = sfq_init,
|
|
.reset = sfq_reset,
|
|
.destroy = sfq_destroy,
|
|
.change = NULL,
|
|
.dump = sfq_dump,
|
|
.owner = THIS_MODULE,
|
|
};
|
|
|
|
static int __init sfq_module_init(void)
|
|
{
|
|
return register_qdisc(&sfq_qdisc_ops);
|
|
}
|
|
static void __exit sfq_module_exit(void)
|
|
{
|
|
unregister_qdisc(&sfq_qdisc_ops);
|
|
}
|
|
module_init(sfq_module_init)
|
|
module_exit(sfq_module_exit)
|
|
MODULE_LICENSE("GPL");
|