linux_dsm_epyc7002/crypto/vmac.c
Shane Wang 304a204ec9 crypto: vmac - Fix big-endian support
This patch is to fix the vmac algorithm, add more test cases for vmac,
and fix the test failure on some big endian system like s390.

Signed-off-by: Shane Wang <shane.wang@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2010-03-18 20:22:55 +08:00

676 lines
18 KiB
C

/*
* Modified to interface to the Linux kernel
* Copyright (c) 2009, Intel Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc., 59 Temple
* Place - Suite 330, Boston, MA 02111-1307 USA.
*/
/* --------------------------------------------------------------------------
* VMAC and VHASH Implementation by Ted Krovetz (tdk@acm.org) and Wei Dai.
* This implementation is herby placed in the public domain.
* The authors offers no warranty. Use at your own risk.
* Please send bug reports to the authors.
* Last modified: 17 APR 08, 1700 PDT
* ----------------------------------------------------------------------- */
#include <linux/init.h>
#include <linux/types.h>
#include <linux/crypto.h>
#include <linux/scatterlist.h>
#include <asm/byteorder.h>
#include <crypto/scatterwalk.h>
#include <crypto/vmac.h>
#include <crypto/internal/hash.h>
/*
* Constants and masks
*/
#define UINT64_C(x) x##ULL
const u64 p64 = UINT64_C(0xfffffffffffffeff); /* 2^64 - 257 prime */
const u64 m62 = UINT64_C(0x3fffffffffffffff); /* 62-bit mask */
const u64 m63 = UINT64_C(0x7fffffffffffffff); /* 63-bit mask */
const u64 m64 = UINT64_C(0xffffffffffffffff); /* 64-bit mask */
const u64 mpoly = UINT64_C(0x1fffffff1fffffff); /* Poly key mask */
#define pe64_to_cpup le64_to_cpup /* Prefer little endian */
#ifdef __LITTLE_ENDIAN
#define INDEX_HIGH 1
#define INDEX_LOW 0
#else
#define INDEX_HIGH 0
#define INDEX_LOW 1
#endif
/*
* The following routines are used in this implementation. They are
* written via macros to simulate zero-overhead call-by-reference.
*
* MUL64: 64x64->128-bit multiplication
* PMUL64: assumes top bits cleared on inputs
* ADD128: 128x128->128-bit addition
*/
#define ADD128(rh, rl, ih, il) \
do { \
u64 _il = (il); \
(rl) += (_il); \
if ((rl) < (_il)) \
(rh)++; \
(rh) += (ih); \
} while (0)
#define MUL32(i1, i2) ((u64)(u32)(i1)*(u32)(i2))
#define PMUL64(rh, rl, i1, i2) /* Assumes m doesn't overflow */ \
do { \
u64 _i1 = (i1), _i2 = (i2); \
u64 m = MUL32(_i1, _i2>>32) + MUL32(_i1>>32, _i2); \
rh = MUL32(_i1>>32, _i2>>32); \
rl = MUL32(_i1, _i2); \
ADD128(rh, rl, (m >> 32), (m << 32)); \
} while (0)
#define MUL64(rh, rl, i1, i2) \
do { \
u64 _i1 = (i1), _i2 = (i2); \
u64 m1 = MUL32(_i1, _i2>>32); \
u64 m2 = MUL32(_i1>>32, _i2); \
rh = MUL32(_i1>>32, _i2>>32); \
rl = MUL32(_i1, _i2); \
ADD128(rh, rl, (m1 >> 32), (m1 << 32)); \
ADD128(rh, rl, (m2 >> 32), (m2 << 32)); \
} while (0)
/*
* For highest performance the L1 NH and L2 polynomial hashes should be
* carefully implemented to take advantage of one's target architechture.
* Here these two hash functions are defined multiple time; once for
* 64-bit architectures, once for 32-bit SSE2 architectures, and once
* for the rest (32-bit) architectures.
* For each, nh_16 *must* be defined (works on multiples of 16 bytes).
* Optionally, nh_vmac_nhbytes can be defined (for multiples of
* VMAC_NHBYTES), and nh_16_2 and nh_vmac_nhbytes_2 (versions that do two
* NH computations at once).
*/
#ifdef CONFIG_64BIT
#define nh_16(mp, kp, nw, rh, rl) \
do { \
int i; u64 th, tl; \
rh = rl = 0; \
for (i = 0; i < nw; i += 2) { \
MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i], \
pe64_to_cpup((mp)+i+1)+(kp)[i+1]); \
ADD128(rh, rl, th, tl); \
} \
} while (0)
#define nh_16_2(mp, kp, nw, rh, rl, rh1, rl1) \
do { \
int i; u64 th, tl; \
rh1 = rl1 = rh = rl = 0; \
for (i = 0; i < nw; i += 2) { \
MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i], \
pe64_to_cpup((mp)+i+1)+(kp)[i+1]); \
ADD128(rh, rl, th, tl); \
MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i+2], \
pe64_to_cpup((mp)+i+1)+(kp)[i+3]); \
ADD128(rh1, rl1, th, tl); \
} \
} while (0)
#if (VMAC_NHBYTES >= 64) /* These versions do 64-bytes of message at a time */
#define nh_vmac_nhbytes(mp, kp, nw, rh, rl) \
do { \
int i; u64 th, tl; \
rh = rl = 0; \
for (i = 0; i < nw; i += 8) { \
MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i], \
pe64_to_cpup((mp)+i+1)+(kp)[i+1]); \
ADD128(rh, rl, th, tl); \
MUL64(th, tl, pe64_to_cpup((mp)+i+2)+(kp)[i+2], \
pe64_to_cpup((mp)+i+3)+(kp)[i+3]); \
ADD128(rh, rl, th, tl); \
MUL64(th, tl, pe64_to_cpup((mp)+i+4)+(kp)[i+4], \
pe64_to_cpup((mp)+i+5)+(kp)[i+5]); \
ADD128(rh, rl, th, tl); \
MUL64(th, tl, pe64_to_cpup((mp)+i+6)+(kp)[i+6], \
pe64_to_cpup((mp)+i+7)+(kp)[i+7]); \
ADD128(rh, rl, th, tl); \
} \
} while (0)
#define nh_vmac_nhbytes_2(mp, kp, nw, rh, rl, rh1, rl1) \
do { \
int i; u64 th, tl; \
rh1 = rl1 = rh = rl = 0; \
for (i = 0; i < nw; i += 8) { \
MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i], \
pe64_to_cpup((mp)+i+1)+(kp)[i+1]); \
ADD128(rh, rl, th, tl); \
MUL64(th, tl, pe64_to_cpup((mp)+i)+(kp)[i+2], \
pe64_to_cpup((mp)+i+1)+(kp)[i+3]); \
ADD128(rh1, rl1, th, tl); \
MUL64(th, tl, pe64_to_cpup((mp)+i+2)+(kp)[i+2], \
pe64_to_cpup((mp)+i+3)+(kp)[i+3]); \
ADD128(rh, rl, th, tl); \
MUL64(th, tl, pe64_to_cpup((mp)+i+2)+(kp)[i+4], \
pe64_to_cpup((mp)+i+3)+(kp)[i+5]); \
ADD128(rh1, rl1, th, tl); \
MUL64(th, tl, pe64_to_cpup((mp)+i+4)+(kp)[i+4], \
pe64_to_cpup((mp)+i+5)+(kp)[i+5]); \
ADD128(rh, rl, th, tl); \
MUL64(th, tl, pe64_to_cpup((mp)+i+4)+(kp)[i+6], \
pe64_to_cpup((mp)+i+5)+(kp)[i+7]); \
ADD128(rh1, rl1, th, tl); \
MUL64(th, tl, pe64_to_cpup((mp)+i+6)+(kp)[i+6], \
pe64_to_cpup((mp)+i+7)+(kp)[i+7]); \
ADD128(rh, rl, th, tl); \
MUL64(th, tl, pe64_to_cpup((mp)+i+6)+(kp)[i+8], \
pe64_to_cpup((mp)+i+7)+(kp)[i+9]); \
ADD128(rh1, rl1, th, tl); \
} \
} while (0)
#endif
#define poly_step(ah, al, kh, kl, mh, ml) \
do { \
u64 t1h, t1l, t2h, t2l, t3h, t3l, z = 0; \
/* compute ab*cd, put bd into result registers */ \
PMUL64(t3h, t3l, al, kh); \
PMUL64(t2h, t2l, ah, kl); \
PMUL64(t1h, t1l, ah, 2*kh); \
PMUL64(ah, al, al, kl); \
/* add 2 * ac to result */ \
ADD128(ah, al, t1h, t1l); \
/* add together ad + bc */ \
ADD128(t2h, t2l, t3h, t3l); \
/* now (ah,al), (t2l,2*t2h) need summing */ \
/* first add the high registers, carrying into t2h */ \
ADD128(t2h, ah, z, t2l); \
/* double t2h and add top bit of ah */ \
t2h = 2 * t2h + (ah >> 63); \
ah &= m63; \
/* now add the low registers */ \
ADD128(ah, al, mh, ml); \
ADD128(ah, al, z, t2h); \
} while (0)
#else /* ! CONFIG_64BIT */
#ifndef nh_16
#define nh_16(mp, kp, nw, rh, rl) \
do { \
u64 t1, t2, m1, m2, t; \
int i; \
rh = rl = t = 0; \
for (i = 0; i < nw; i += 2) { \
t1 = pe64_to_cpup(mp+i) + kp[i]; \
t2 = pe64_to_cpup(mp+i+1) + kp[i+1]; \
m2 = MUL32(t1 >> 32, t2); \
m1 = MUL32(t1, t2 >> 32); \
ADD128(rh, rl, MUL32(t1 >> 32, t2 >> 32), \
MUL32(t1, t2)); \
rh += (u64)(u32)(m1 >> 32) \
+ (u32)(m2 >> 32); \
t += (u64)(u32)m1 + (u32)m2; \
} \
ADD128(rh, rl, (t >> 32), (t << 32)); \
} while (0)
#endif
static void poly_step_func(u64 *ahi, u64 *alo,
const u64 *kh, const u64 *kl,
const u64 *mh, const u64 *ml)
{
#define a0 (*(((u32 *)alo)+INDEX_LOW))
#define a1 (*(((u32 *)alo)+INDEX_HIGH))
#define a2 (*(((u32 *)ahi)+INDEX_LOW))
#define a3 (*(((u32 *)ahi)+INDEX_HIGH))
#define k0 (*(((u32 *)kl)+INDEX_LOW))
#define k1 (*(((u32 *)kl)+INDEX_HIGH))
#define k2 (*(((u32 *)kh)+INDEX_LOW))
#define k3 (*(((u32 *)kh)+INDEX_HIGH))
u64 p, q, t;
u32 t2;
p = MUL32(a3, k3);
p += p;
p += *(u64 *)mh;
p += MUL32(a0, k2);
p += MUL32(a1, k1);
p += MUL32(a2, k0);
t = (u32)(p);
p >>= 32;
p += MUL32(a0, k3);
p += MUL32(a1, k2);
p += MUL32(a2, k1);
p += MUL32(a3, k0);
t |= ((u64)((u32)p & 0x7fffffff)) << 32;
p >>= 31;
p += (u64)(((u32 *)ml)[INDEX_LOW]);
p += MUL32(a0, k0);
q = MUL32(a1, k3);
q += MUL32(a2, k2);
q += MUL32(a3, k1);
q += q;
p += q;
t2 = (u32)(p);
p >>= 32;
p += (u64)(((u32 *)ml)[INDEX_HIGH]);
p += MUL32(a0, k1);
p += MUL32(a1, k0);
q = MUL32(a2, k3);
q += MUL32(a3, k2);
q += q;
p += q;
*(u64 *)(alo) = (p << 32) | t2;
p >>= 32;
*(u64 *)(ahi) = p + t;
#undef a0
#undef a1
#undef a2
#undef a3
#undef k0
#undef k1
#undef k2
#undef k3
}
#define poly_step(ah, al, kh, kl, mh, ml) \
poly_step_func(&(ah), &(al), &(kh), &(kl), &(mh), &(ml))
#endif /* end of specialized NH and poly definitions */
/* At least nh_16 is defined. Defined others as needed here */
#ifndef nh_16_2
#define nh_16_2(mp, kp, nw, rh, rl, rh2, rl2) \
do { \
nh_16(mp, kp, nw, rh, rl); \
nh_16(mp, ((kp)+2), nw, rh2, rl2); \
} while (0)
#endif
#ifndef nh_vmac_nhbytes
#define nh_vmac_nhbytes(mp, kp, nw, rh, rl) \
nh_16(mp, kp, nw, rh, rl)
#endif
#ifndef nh_vmac_nhbytes_2
#define nh_vmac_nhbytes_2(mp, kp, nw, rh, rl, rh2, rl2) \
do { \
nh_vmac_nhbytes(mp, kp, nw, rh, rl); \
nh_vmac_nhbytes(mp, ((kp)+2), nw, rh2, rl2); \
} while (0)
#endif
static void vhash_abort(struct vmac_ctx *ctx)
{
ctx->polytmp[0] = ctx->polykey[0] ;
ctx->polytmp[1] = ctx->polykey[1] ;
ctx->first_block_processed = 0;
}
static u64 l3hash(u64 p1, u64 p2, u64 k1, u64 k2, u64 len)
{
u64 rh, rl, t, z = 0;
/* fully reduce (p1,p2)+(len,0) mod p127 */
t = p1 >> 63;
p1 &= m63;
ADD128(p1, p2, len, t);
/* At this point, (p1,p2) is at most 2^127+(len<<64) */
t = (p1 > m63) + ((p1 == m63) && (p2 == m64));
ADD128(p1, p2, z, t);
p1 &= m63;
/* compute (p1,p2)/(2^64-2^32) and (p1,p2)%(2^64-2^32) */
t = p1 + (p2 >> 32);
t += (t >> 32);
t += (u32)t > 0xfffffffeu;
p1 += (t >> 32);
p2 += (p1 << 32);
/* compute (p1+k1)%p64 and (p2+k2)%p64 */
p1 += k1;
p1 += (0 - (p1 < k1)) & 257;
p2 += k2;
p2 += (0 - (p2 < k2)) & 257;
/* compute (p1+k1)*(p2+k2)%p64 */
MUL64(rh, rl, p1, p2);
t = rh >> 56;
ADD128(t, rl, z, rh);
rh <<= 8;
ADD128(t, rl, z, rh);
t += t << 8;
rl += t;
rl += (0 - (rl < t)) & 257;
rl += (0 - (rl > p64-1)) & 257;
return rl;
}
static void vhash_update(const unsigned char *m,
unsigned int mbytes, /* Pos multiple of VMAC_NHBYTES */
struct vmac_ctx *ctx)
{
u64 rh, rl, *mptr;
const u64 *kptr = (u64 *)ctx->nhkey;
int i;
u64 ch, cl;
u64 pkh = ctx->polykey[0];
u64 pkl = ctx->polykey[1];
mptr = (u64 *)m;
i = mbytes / VMAC_NHBYTES; /* Must be non-zero */
ch = ctx->polytmp[0];
cl = ctx->polytmp[1];
if (!ctx->first_block_processed) {
ctx->first_block_processed = 1;
nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl);
rh &= m62;
ADD128(ch, cl, rh, rl);
mptr += (VMAC_NHBYTES/sizeof(u64));
i--;
}
while (i--) {
nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl);
rh &= m62;
poly_step(ch, cl, pkh, pkl, rh, rl);
mptr += (VMAC_NHBYTES/sizeof(u64));
}
ctx->polytmp[0] = ch;
ctx->polytmp[1] = cl;
}
static u64 vhash(unsigned char m[], unsigned int mbytes,
u64 *tagl, struct vmac_ctx *ctx)
{
u64 rh, rl, *mptr;
const u64 *kptr = (u64 *)ctx->nhkey;
int i, remaining;
u64 ch, cl;
u64 pkh = ctx->polykey[0];
u64 pkl = ctx->polykey[1];
mptr = (u64 *)m;
i = mbytes / VMAC_NHBYTES;
remaining = mbytes % VMAC_NHBYTES;
if (ctx->first_block_processed) {
ch = ctx->polytmp[0];
cl = ctx->polytmp[1];
} else if (i) {
nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, ch, cl);
ch &= m62;
ADD128(ch, cl, pkh, pkl);
mptr += (VMAC_NHBYTES/sizeof(u64));
i--;
} else if (remaining) {
nh_16(mptr, kptr, 2*((remaining+15)/16), ch, cl);
ch &= m62;
ADD128(ch, cl, pkh, pkl);
mptr += (VMAC_NHBYTES/sizeof(u64));
goto do_l3;
} else {/* Empty String */
ch = pkh; cl = pkl;
goto do_l3;
}
while (i--) {
nh_vmac_nhbytes(mptr, kptr, VMAC_NHBYTES/8, rh, rl);
rh &= m62;
poly_step(ch, cl, pkh, pkl, rh, rl);
mptr += (VMAC_NHBYTES/sizeof(u64));
}
if (remaining) {
nh_16(mptr, kptr, 2*((remaining+15)/16), rh, rl);
rh &= m62;
poly_step(ch, cl, pkh, pkl, rh, rl);
}
do_l3:
vhash_abort(ctx);
remaining *= 8;
return l3hash(ch, cl, ctx->l3key[0], ctx->l3key[1], remaining);
}
static u64 vmac(unsigned char m[], unsigned int mbytes,
unsigned char n[16], u64 *tagl,
struct vmac_ctx_t *ctx)
{
u64 *in_n, *out_p;
u64 p, h;
int i;
in_n = ctx->__vmac_ctx.cached_nonce;
out_p = ctx->__vmac_ctx.cached_aes;
i = n[15] & 1;
if ((*(u64 *)(n+8) != in_n[1]) || (*(u64 *)(n) != in_n[0])) {
in_n[0] = *(u64 *)(n);
in_n[1] = *(u64 *)(n+8);
((unsigned char *)in_n)[15] &= 0xFE;
crypto_cipher_encrypt_one(ctx->child,
(unsigned char *)out_p, (unsigned char *)in_n);
((unsigned char *)in_n)[15] |= (unsigned char)(1-i);
}
p = be64_to_cpup(out_p + i);
h = vhash(m, mbytes, (u64 *)0, &ctx->__vmac_ctx);
return le64_to_cpu(p + h);
}
static int vmac_set_key(unsigned char user_key[], struct vmac_ctx_t *ctx)
{
u64 in[2] = {0}, out[2];
unsigned i;
int err = 0;
err = crypto_cipher_setkey(ctx->child, user_key, VMAC_KEY_LEN);
if (err)
return err;
/* Fill nh key */
((unsigned char *)in)[0] = 0x80;
for (i = 0; i < sizeof(ctx->__vmac_ctx.nhkey)/8; i += 2) {
crypto_cipher_encrypt_one(ctx->child,
(unsigned char *)out, (unsigned char *)in);
ctx->__vmac_ctx.nhkey[i] = be64_to_cpup(out);
ctx->__vmac_ctx.nhkey[i+1] = be64_to_cpup(out+1);
((unsigned char *)in)[15] += 1;
}
/* Fill poly key */
((unsigned char *)in)[0] = 0xC0;
in[1] = 0;
for (i = 0; i < sizeof(ctx->__vmac_ctx.polykey)/8; i += 2) {
crypto_cipher_encrypt_one(ctx->child,
(unsigned char *)out, (unsigned char *)in);
ctx->__vmac_ctx.polytmp[i] =
ctx->__vmac_ctx.polykey[i] =
be64_to_cpup(out) & mpoly;
ctx->__vmac_ctx.polytmp[i+1] =
ctx->__vmac_ctx.polykey[i+1] =
be64_to_cpup(out+1) & mpoly;
((unsigned char *)in)[15] += 1;
}
/* Fill ip key */
((unsigned char *)in)[0] = 0xE0;
in[1] = 0;
for (i = 0; i < sizeof(ctx->__vmac_ctx.l3key)/8; i += 2) {
do {
crypto_cipher_encrypt_one(ctx->child,
(unsigned char *)out, (unsigned char *)in);
ctx->__vmac_ctx.l3key[i] = be64_to_cpup(out);
ctx->__vmac_ctx.l3key[i+1] = be64_to_cpup(out+1);
((unsigned char *)in)[15] += 1;
} while (ctx->__vmac_ctx.l3key[i] >= p64
|| ctx->__vmac_ctx.l3key[i+1] >= p64);
}
/* Invalidate nonce/aes cache and reset other elements */
ctx->__vmac_ctx.cached_nonce[0] = (u64)-1; /* Ensure illegal nonce */
ctx->__vmac_ctx.cached_nonce[1] = (u64)0; /* Ensure illegal nonce */
ctx->__vmac_ctx.first_block_processed = 0;
return err;
}
static int vmac_setkey(struct crypto_shash *parent,
const u8 *key, unsigned int keylen)
{
struct vmac_ctx_t *ctx = crypto_shash_ctx(parent);
if (keylen != VMAC_KEY_LEN) {
crypto_shash_set_flags(parent, CRYPTO_TFM_RES_BAD_KEY_LEN);
return -EINVAL;
}
return vmac_set_key((u8 *)key, ctx);
}
static int vmac_init(struct shash_desc *pdesc)
{
return 0;
}
static int vmac_update(struct shash_desc *pdesc, const u8 *p,
unsigned int len)
{
struct crypto_shash *parent = pdesc->tfm;
struct vmac_ctx_t *ctx = crypto_shash_ctx(parent);
vhash_update(p, len, &ctx->__vmac_ctx);
return 0;
}
static int vmac_final(struct shash_desc *pdesc, u8 *out)
{
struct crypto_shash *parent = pdesc->tfm;
struct vmac_ctx_t *ctx = crypto_shash_ctx(parent);
vmac_t mac;
u8 nonce[16] = {};
mac = vmac(NULL, 0, nonce, NULL, ctx);
memcpy(out, &mac, sizeof(vmac_t));
memset(&mac, 0, sizeof(vmac_t));
memset(&ctx->__vmac_ctx, 0, sizeof(struct vmac_ctx));
return 0;
}
static int vmac_init_tfm(struct crypto_tfm *tfm)
{
struct crypto_cipher *cipher;
struct crypto_instance *inst = (void *)tfm->__crt_alg;
struct crypto_spawn *spawn = crypto_instance_ctx(inst);
struct vmac_ctx_t *ctx = crypto_tfm_ctx(tfm);
cipher = crypto_spawn_cipher(spawn);
if (IS_ERR(cipher))
return PTR_ERR(cipher);
ctx->child = cipher;
return 0;
}
static void vmac_exit_tfm(struct crypto_tfm *tfm)
{
struct vmac_ctx_t *ctx = crypto_tfm_ctx(tfm);
crypto_free_cipher(ctx->child);
}
static int vmac_create(struct crypto_template *tmpl, struct rtattr **tb)
{
struct shash_instance *inst;
struct crypto_alg *alg;
int err;
err = crypto_check_attr_type(tb, CRYPTO_ALG_TYPE_SHASH);
if (err)
return err;
alg = crypto_get_attr_alg(tb, CRYPTO_ALG_TYPE_CIPHER,
CRYPTO_ALG_TYPE_MASK);
if (IS_ERR(alg))
return PTR_ERR(alg);
inst = shash_alloc_instance("vmac", alg);
err = PTR_ERR(inst);
if (IS_ERR(inst))
goto out_put_alg;
err = crypto_init_spawn(shash_instance_ctx(inst), alg,
shash_crypto_instance(inst),
CRYPTO_ALG_TYPE_MASK);
if (err)
goto out_free_inst;
inst->alg.base.cra_priority = alg->cra_priority;
inst->alg.base.cra_blocksize = alg->cra_blocksize;
inst->alg.base.cra_alignmask = alg->cra_alignmask;
inst->alg.digestsize = sizeof(vmac_t);
inst->alg.base.cra_ctxsize = sizeof(struct vmac_ctx_t);
inst->alg.base.cra_init = vmac_init_tfm;
inst->alg.base.cra_exit = vmac_exit_tfm;
inst->alg.init = vmac_init;
inst->alg.update = vmac_update;
inst->alg.final = vmac_final;
inst->alg.setkey = vmac_setkey;
err = shash_register_instance(tmpl, inst);
if (err) {
out_free_inst:
shash_free_instance(shash_crypto_instance(inst));
}
out_put_alg:
crypto_mod_put(alg);
return err;
}
static struct crypto_template vmac_tmpl = {
.name = "vmac",
.create = vmac_create,
.free = shash_free_instance,
.module = THIS_MODULE,
};
static int __init vmac_module_init(void)
{
return crypto_register_template(&vmac_tmpl);
}
static void __exit vmac_module_exit(void)
{
crypto_unregister_template(&vmac_tmpl);
}
module_init(vmac_module_init);
module_exit(vmac_module_exit);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("VMAC hash algorithm");