mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-14 09:36:09 +07:00
51f644b40b
Only when vblanks are supported ofc. Some drivers do this already, but most unfortunately missed it. This opens up bugs after driver load, before the crtc is enabled for the first time. syzbot spotted this when loading vkms as a secondary output. Given how many drivers are buggy it's best to solve this once and for all in shared helper code. Aside from moving the few existing calls to drm_crtc_vblank_reset into helpers (i915 doesn't use helpers, so keeps its own) I think the regression risk is minimal: atomic helpers already rely on drivers calling drm_crtc_vblank_on/off correctly in their hooks when they support vblanks. And driver that's failing to handle vblanks after this is missing those calls already, and vblanks could only work by accident when enabling a CRTC for the first time right after boot. Big thanks to Tetsuo for helping track down what's going wrong here. There's only a few drivers which already had the necessary call and needed some updating: - komeda, atmel and tidss also needed to be changed to call __drm_atomic_helper_crtc_reset() intead of open coding it - tegra and msm even had it in the same place already, just code motion, and malidp already uses __drm_atomic_helper_crtc_reset(). - Laurent noticed that rcar-du and omap open-code their crtc reset and hence would actually be broken by this patch now. So fix them up by reusing the helpers, which brings the drm_crtc_vblank_reset() back. Only call left is in i915, which doesn't use drm_mode_config_reset, but has its own fastboot infrastructure. So that's the only case where we actually want this in the driver still. I've also reviewed all other drivers which set up vblank support with drm_vblank_init. After the previous patch fixing mxsfb all atomic drivers do call drm_crtc_vblank_on/off as they should, the remaining drivers are either legacy kms or legacy dri1 drivers, so not affected by this change to atomic helpers. v2: Use the drm_dev_has_vblank() helper. v3: Laurent pointed out that omap and rcar-du used drm_crtc_vblank_off instead of drm_crtc_vblank_reset. Adjust them too. v4: Laurent noticed that rcar-du and omap open-code their crtc reset and hence would actually be broken by this patch now. So fix them up by reusing the helpers, which brings the drm_crtc_vblank_reset() back. v5: also mention rcar-du and ompadrm in the proper commit message above (Laurent). Reviewed-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com> Acked-by: Maxime Ripard <mripard@kernel.org> Cc: Laurent Pinchart <laurent.pinchart@ideasonboard.com> Reviewed-by: Boris Brezillon <boris.brezillon@collabora.com> Acked-by: Liviu Dudau <liviu.dudau@arm.com> Acked-by: Thierry Reding <treding@nvidia.com> Link: https://syzkaller.appspot.com/bug?id=0ba17d70d062b2595e1f061231474800f076c7cb Reported-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Reported-by: syzbot+0871b14ca2e2fb64f6e3@syzkaller.appspotmail.com Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: "James (Qian) Wang" <james.qian.wang@arm.com> Cc: Liviu Dudau <liviu.dudau@arm.com> Cc: Mihail Atanassov <mihail.atanassov@arm.com> Cc: Brian Starkey <brian.starkey@arm.com> Cc: Sam Ravnborg <sam@ravnborg.org> Cc: Boris Brezillon <bbrezillon@kernel.org> Cc: Nicolas Ferre <nicolas.ferre@microchip.com> Cc: Alexandre Belloni <alexandre.belloni@bootlin.com> Cc: Ludovic Desroches <ludovic.desroches@microchip.com> Cc: Maarten Lankhorst <maarten.lankhorst@linux.intel.com> Cc: Maxime Ripard <mripard@kernel.org> Cc: Thomas Zimmermann <tzimmermann@suse.de> Cc: David Airlie <airlied@linux.ie> Cc: Daniel Vetter <daniel@ffwll.ch> Cc: Thierry Reding <thierry.reding@gmail.com> Cc: Jonathan Hunter <jonathanh@nvidia.com> Cc: Jyri Sarha <jsarha@ti.com> Cc: Tomi Valkeinen <tomi.valkeinen@ti.com> Cc: Rob Clark <robdclark@gmail.com> Cc: Sean Paul <seanpaul@chromium.org> Cc: Brian Masney <masneyb@onstation.org> Cc: Emil Velikov <emil.velikov@collabora.com> Cc: zhengbin <zhengbin13@huawei.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-tegra@vger.kernel.org Cc: Kieran Bingham <kieran.bingham+renesas@ideasonboard.com> Cc: linux-arm-kernel@lists.infradead.org Cc: linux-renesas-soc@vger.kernel.org Signed-off-by: Daniel Vetter <daniel.vetter@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20200612160056.2082681-1-daniel.vetter@ffwll.ch
1300 lines
34 KiB
C
1300 lines
34 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/*
|
|
* rcar_du_crtc.c -- R-Car Display Unit CRTCs
|
|
*
|
|
* Copyright (C) 2013-2015 Renesas Electronics Corporation
|
|
*
|
|
* Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
|
|
*/
|
|
|
|
#include <linux/clk.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/sys_soc.h>
|
|
|
|
#include <drm/drm_atomic.h>
|
|
#include <drm/drm_atomic_helper.h>
|
|
#include <drm/drm_bridge.h>
|
|
#include <drm/drm_crtc.h>
|
|
#include <drm/drm_device.h>
|
|
#include <drm/drm_fb_cma_helper.h>
|
|
#include <drm/drm_gem_cma_helper.h>
|
|
#include <drm/drm_plane_helper.h>
|
|
#include <drm/drm_vblank.h>
|
|
|
|
#include "rcar_cmm.h"
|
|
#include "rcar_du_crtc.h"
|
|
#include "rcar_du_drv.h"
|
|
#include "rcar_du_encoder.h"
|
|
#include "rcar_du_kms.h"
|
|
#include "rcar_du_plane.h"
|
|
#include "rcar_du_regs.h"
|
|
#include "rcar_du_vsp.h"
|
|
#include "rcar_lvds.h"
|
|
|
|
static u32 rcar_du_crtc_read(struct rcar_du_crtc *rcrtc, u32 reg)
|
|
{
|
|
struct rcar_du_device *rcdu = rcrtc->dev;
|
|
|
|
return rcar_du_read(rcdu, rcrtc->mmio_offset + reg);
|
|
}
|
|
|
|
static void rcar_du_crtc_write(struct rcar_du_crtc *rcrtc, u32 reg, u32 data)
|
|
{
|
|
struct rcar_du_device *rcdu = rcrtc->dev;
|
|
|
|
rcar_du_write(rcdu, rcrtc->mmio_offset + reg, data);
|
|
}
|
|
|
|
static void rcar_du_crtc_clr(struct rcar_du_crtc *rcrtc, u32 reg, u32 clr)
|
|
{
|
|
struct rcar_du_device *rcdu = rcrtc->dev;
|
|
|
|
rcar_du_write(rcdu, rcrtc->mmio_offset + reg,
|
|
rcar_du_read(rcdu, rcrtc->mmio_offset + reg) & ~clr);
|
|
}
|
|
|
|
static void rcar_du_crtc_set(struct rcar_du_crtc *rcrtc, u32 reg, u32 set)
|
|
{
|
|
struct rcar_du_device *rcdu = rcrtc->dev;
|
|
|
|
rcar_du_write(rcdu, rcrtc->mmio_offset + reg,
|
|
rcar_du_read(rcdu, rcrtc->mmio_offset + reg) | set);
|
|
}
|
|
|
|
void rcar_du_crtc_dsysr_clr_set(struct rcar_du_crtc *rcrtc, u32 clr, u32 set)
|
|
{
|
|
struct rcar_du_device *rcdu = rcrtc->dev;
|
|
|
|
rcrtc->dsysr = (rcrtc->dsysr & ~clr) | set;
|
|
rcar_du_write(rcdu, rcrtc->mmio_offset + DSYSR, rcrtc->dsysr);
|
|
}
|
|
|
|
/* -----------------------------------------------------------------------------
|
|
* Hardware Setup
|
|
*/
|
|
|
|
struct dpll_info {
|
|
unsigned int output;
|
|
unsigned int fdpll;
|
|
unsigned int n;
|
|
unsigned int m;
|
|
};
|
|
|
|
static void rcar_du_dpll_divider(struct rcar_du_crtc *rcrtc,
|
|
struct dpll_info *dpll,
|
|
unsigned long input,
|
|
unsigned long target)
|
|
{
|
|
unsigned long best_diff = (unsigned long)-1;
|
|
unsigned long diff;
|
|
unsigned int fdpll;
|
|
unsigned int m;
|
|
unsigned int n;
|
|
|
|
/*
|
|
* fin fvco fout fclkout
|
|
* in --> [1/M] --> |PD| -> [LPF] -> [VCO] -> [1/P] -+-> [1/FDPLL] -> out
|
|
* +-> | | |
|
|
* | |
|
|
* +---------------- [1/N] <------------+
|
|
*
|
|
* fclkout = fvco / P / FDPLL -- (1)
|
|
*
|
|
* fin/M = fvco/P/N
|
|
*
|
|
* fvco = fin * P * N / M -- (2)
|
|
*
|
|
* (1) + (2) indicates
|
|
*
|
|
* fclkout = fin * N / M / FDPLL
|
|
*
|
|
* NOTES
|
|
* N : (n + 1)
|
|
* M : (m + 1)
|
|
* FDPLL : (fdpll + 1)
|
|
* P : 2
|
|
* 2kHz < fvco < 4096MHz
|
|
*
|
|
* To minimize the jitter,
|
|
* N : as large as possible
|
|
* M : as small as possible
|
|
*/
|
|
for (m = 0; m < 4; m++) {
|
|
for (n = 119; n > 38; n--) {
|
|
/*
|
|
* This code only runs on 64-bit architectures, the
|
|
* unsigned long type can thus be used for 64-bit
|
|
* computation. It will still compile without any
|
|
* warning on 32-bit architectures.
|
|
*
|
|
* To optimize calculations, use fout instead of fvco
|
|
* to verify the VCO frequency constraint.
|
|
*/
|
|
unsigned long fout = input * (n + 1) / (m + 1);
|
|
|
|
if (fout < 1000 || fout > 2048 * 1000 * 1000U)
|
|
continue;
|
|
|
|
for (fdpll = 1; fdpll < 32; fdpll++) {
|
|
unsigned long output;
|
|
|
|
output = fout / (fdpll + 1);
|
|
if (output >= 400 * 1000 * 1000)
|
|
continue;
|
|
|
|
diff = abs((long)output - (long)target);
|
|
if (best_diff > diff) {
|
|
best_diff = diff;
|
|
dpll->n = n;
|
|
dpll->m = m;
|
|
dpll->fdpll = fdpll;
|
|
dpll->output = output;
|
|
}
|
|
|
|
if (diff == 0)
|
|
goto done;
|
|
}
|
|
}
|
|
}
|
|
|
|
done:
|
|
dev_dbg(rcrtc->dev->dev,
|
|
"output:%u, fdpll:%u, n:%u, m:%u, diff:%lu\n",
|
|
dpll->output, dpll->fdpll, dpll->n, dpll->m, best_diff);
|
|
}
|
|
|
|
struct du_clk_params {
|
|
struct clk *clk;
|
|
unsigned long rate;
|
|
unsigned long diff;
|
|
u32 escr;
|
|
};
|
|
|
|
static void rcar_du_escr_divider(struct clk *clk, unsigned long target,
|
|
u32 escr, struct du_clk_params *params)
|
|
{
|
|
unsigned long rate;
|
|
unsigned long diff;
|
|
u32 div;
|
|
|
|
/*
|
|
* If the target rate has already been achieved perfectly we can't do
|
|
* better.
|
|
*/
|
|
if (params->diff == 0)
|
|
return;
|
|
|
|
/*
|
|
* Compute the input clock rate and internal divisor values to obtain
|
|
* the clock rate closest to the target frequency.
|
|
*/
|
|
rate = clk_round_rate(clk, target);
|
|
div = clamp(DIV_ROUND_CLOSEST(rate, target), 1UL, 64UL) - 1;
|
|
diff = abs(rate / (div + 1) - target);
|
|
|
|
/*
|
|
* Store the parameters if the resulting frequency is better than any
|
|
* previously calculated value.
|
|
*/
|
|
if (diff < params->diff) {
|
|
params->clk = clk;
|
|
params->rate = rate;
|
|
params->diff = diff;
|
|
params->escr = escr | div;
|
|
}
|
|
}
|
|
|
|
static const struct soc_device_attribute rcar_du_r8a7795_es1[] = {
|
|
{ .soc_id = "r8a7795", .revision = "ES1.*" },
|
|
{ /* sentinel */ }
|
|
};
|
|
|
|
static void rcar_du_crtc_set_display_timing(struct rcar_du_crtc *rcrtc)
|
|
{
|
|
const struct drm_display_mode *mode = &rcrtc->crtc.state->adjusted_mode;
|
|
struct rcar_du_device *rcdu = rcrtc->dev;
|
|
unsigned long mode_clock = mode->clock * 1000;
|
|
u32 dsmr;
|
|
u32 escr;
|
|
|
|
if (rcdu->info->dpll_mask & (1 << rcrtc->index)) {
|
|
unsigned long target = mode_clock;
|
|
struct dpll_info dpll = { 0 };
|
|
unsigned long extclk;
|
|
u32 dpllcr;
|
|
u32 div = 0;
|
|
|
|
/*
|
|
* DU channels that have a display PLL can't use the internal
|
|
* system clock, and have no internal clock divider.
|
|
*/
|
|
|
|
/*
|
|
* The H3 ES1.x exhibits dot clock duty cycle stability issues.
|
|
* We can work around them by configuring the DPLL to twice the
|
|
* desired frequency, coupled with a /2 post-divider. Restrict
|
|
* the workaround to H3 ES1.x as ES2.0 and all other SoCs have
|
|
* no post-divider when a display PLL is present (as shown by
|
|
* the workaround breaking HDMI output on M3-W during testing).
|
|
*/
|
|
if (soc_device_match(rcar_du_r8a7795_es1)) {
|
|
target *= 2;
|
|
div = 1;
|
|
}
|
|
|
|
extclk = clk_get_rate(rcrtc->extclock);
|
|
rcar_du_dpll_divider(rcrtc, &dpll, extclk, target);
|
|
|
|
dpllcr = DPLLCR_CODE | DPLLCR_CLKE
|
|
| DPLLCR_FDPLL(dpll.fdpll)
|
|
| DPLLCR_N(dpll.n) | DPLLCR_M(dpll.m)
|
|
| DPLLCR_STBY;
|
|
|
|
if (rcrtc->index == 1)
|
|
dpllcr |= DPLLCR_PLCS1
|
|
| DPLLCR_INCS_DOTCLKIN1;
|
|
else
|
|
dpllcr |= DPLLCR_PLCS0
|
|
| DPLLCR_INCS_DOTCLKIN0;
|
|
|
|
rcar_du_group_write(rcrtc->group, DPLLCR, dpllcr);
|
|
|
|
escr = ESCR_DCLKSEL_DCLKIN | div;
|
|
} else if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index)) {
|
|
/*
|
|
* Use the LVDS PLL output as the dot clock when outputting to
|
|
* the LVDS encoder on an SoC that supports this clock routing
|
|
* option. We use the clock directly in that case, without any
|
|
* additional divider.
|
|
*/
|
|
escr = ESCR_DCLKSEL_DCLKIN;
|
|
} else {
|
|
struct du_clk_params params = { .diff = (unsigned long)-1 };
|
|
|
|
rcar_du_escr_divider(rcrtc->clock, mode_clock,
|
|
ESCR_DCLKSEL_CLKS, ¶ms);
|
|
if (rcrtc->extclock)
|
|
rcar_du_escr_divider(rcrtc->extclock, mode_clock,
|
|
ESCR_DCLKSEL_DCLKIN, ¶ms);
|
|
|
|
dev_dbg(rcrtc->dev->dev, "mode clock %lu %s rate %lu\n",
|
|
mode_clock, params.clk == rcrtc->clock ? "cpg" : "ext",
|
|
params.rate);
|
|
|
|
clk_set_rate(params.clk, params.rate);
|
|
escr = params.escr;
|
|
}
|
|
|
|
dev_dbg(rcrtc->dev->dev, "%s: ESCR 0x%08x\n", __func__, escr);
|
|
|
|
rcar_du_crtc_write(rcrtc, rcrtc->index % 2 ? ESCR13 : ESCR02, escr);
|
|
rcar_du_crtc_write(rcrtc, rcrtc->index % 2 ? OTAR13 : OTAR02, 0);
|
|
|
|
/* Signal polarities */
|
|
dsmr = ((mode->flags & DRM_MODE_FLAG_PVSYNC) ? DSMR_VSL : 0)
|
|
| ((mode->flags & DRM_MODE_FLAG_PHSYNC) ? DSMR_HSL : 0)
|
|
| ((mode->flags & DRM_MODE_FLAG_INTERLACE) ? DSMR_ODEV : 0)
|
|
| DSMR_DIPM_DISP | DSMR_CSPM;
|
|
rcar_du_crtc_write(rcrtc, DSMR, dsmr);
|
|
|
|
/* Display timings */
|
|
rcar_du_crtc_write(rcrtc, HDSR, mode->htotal - mode->hsync_start - 19);
|
|
rcar_du_crtc_write(rcrtc, HDER, mode->htotal - mode->hsync_start +
|
|
mode->hdisplay - 19);
|
|
rcar_du_crtc_write(rcrtc, HSWR, mode->hsync_end -
|
|
mode->hsync_start - 1);
|
|
rcar_du_crtc_write(rcrtc, HCR, mode->htotal - 1);
|
|
|
|
rcar_du_crtc_write(rcrtc, VDSR, mode->crtc_vtotal -
|
|
mode->crtc_vsync_end - 2);
|
|
rcar_du_crtc_write(rcrtc, VDER, mode->crtc_vtotal -
|
|
mode->crtc_vsync_end +
|
|
mode->crtc_vdisplay - 2);
|
|
rcar_du_crtc_write(rcrtc, VSPR, mode->crtc_vtotal -
|
|
mode->crtc_vsync_end +
|
|
mode->crtc_vsync_start - 1);
|
|
rcar_du_crtc_write(rcrtc, VCR, mode->crtc_vtotal - 1);
|
|
|
|
rcar_du_crtc_write(rcrtc, DESR, mode->htotal - mode->hsync_start - 1);
|
|
rcar_du_crtc_write(rcrtc, DEWR, mode->hdisplay);
|
|
}
|
|
|
|
static unsigned int plane_zpos(struct rcar_du_plane *plane)
|
|
{
|
|
return plane->plane.state->normalized_zpos;
|
|
}
|
|
|
|
static const struct rcar_du_format_info *
|
|
plane_format(struct rcar_du_plane *plane)
|
|
{
|
|
return to_rcar_plane_state(plane->plane.state)->format;
|
|
}
|
|
|
|
static void rcar_du_crtc_update_planes(struct rcar_du_crtc *rcrtc)
|
|
{
|
|
struct rcar_du_plane *planes[RCAR_DU_NUM_HW_PLANES];
|
|
struct rcar_du_device *rcdu = rcrtc->dev;
|
|
unsigned int num_planes = 0;
|
|
unsigned int dptsr_planes;
|
|
unsigned int hwplanes = 0;
|
|
unsigned int prio = 0;
|
|
unsigned int i;
|
|
u32 dspr = 0;
|
|
|
|
for (i = 0; i < rcrtc->group->num_planes; ++i) {
|
|
struct rcar_du_plane *plane = &rcrtc->group->planes[i];
|
|
unsigned int j;
|
|
|
|
if (plane->plane.state->crtc != &rcrtc->crtc ||
|
|
!plane->plane.state->visible)
|
|
continue;
|
|
|
|
/* Insert the plane in the sorted planes array. */
|
|
for (j = num_planes++; j > 0; --j) {
|
|
if (plane_zpos(planes[j-1]) <= plane_zpos(plane))
|
|
break;
|
|
planes[j] = planes[j-1];
|
|
}
|
|
|
|
planes[j] = plane;
|
|
prio += plane_format(plane)->planes * 4;
|
|
}
|
|
|
|
for (i = 0; i < num_planes; ++i) {
|
|
struct rcar_du_plane *plane = planes[i];
|
|
struct drm_plane_state *state = plane->plane.state;
|
|
unsigned int index = to_rcar_plane_state(state)->hwindex;
|
|
|
|
prio -= 4;
|
|
dspr |= (index + 1) << prio;
|
|
hwplanes |= 1 << index;
|
|
|
|
if (plane_format(plane)->planes == 2) {
|
|
index = (index + 1) % 8;
|
|
|
|
prio -= 4;
|
|
dspr |= (index + 1) << prio;
|
|
hwplanes |= 1 << index;
|
|
}
|
|
}
|
|
|
|
/* If VSP+DU integration is enabled the plane assignment is fixed. */
|
|
if (rcar_du_has(rcdu, RCAR_DU_FEATURE_VSP1_SOURCE)) {
|
|
if (rcdu->info->gen < 3) {
|
|
dspr = (rcrtc->index % 2) + 1;
|
|
hwplanes = 1 << (rcrtc->index % 2);
|
|
} else {
|
|
dspr = (rcrtc->index % 2) ? 3 : 1;
|
|
hwplanes = 1 << ((rcrtc->index % 2) ? 2 : 0);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Update the planes to display timing and dot clock generator
|
|
* associations.
|
|
*
|
|
* Updating the DPTSR register requires restarting the CRTC group,
|
|
* resulting in visible flicker. To mitigate the issue only update the
|
|
* association if needed by enabled planes. Planes being disabled will
|
|
* keep their current association.
|
|
*/
|
|
mutex_lock(&rcrtc->group->lock);
|
|
|
|
dptsr_planes = rcrtc->index % 2 ? rcrtc->group->dptsr_planes | hwplanes
|
|
: rcrtc->group->dptsr_planes & ~hwplanes;
|
|
|
|
if (dptsr_planes != rcrtc->group->dptsr_planes) {
|
|
rcar_du_group_write(rcrtc->group, DPTSR,
|
|
(dptsr_planes << 16) | dptsr_planes);
|
|
rcrtc->group->dptsr_planes = dptsr_planes;
|
|
|
|
if (rcrtc->group->used_crtcs)
|
|
rcar_du_group_restart(rcrtc->group);
|
|
}
|
|
|
|
/* Restart the group if plane sources have changed. */
|
|
if (rcrtc->group->need_restart)
|
|
rcar_du_group_restart(rcrtc->group);
|
|
|
|
mutex_unlock(&rcrtc->group->lock);
|
|
|
|
rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR,
|
|
dspr);
|
|
}
|
|
|
|
/* -----------------------------------------------------------------------------
|
|
* Page Flip
|
|
*/
|
|
|
|
void rcar_du_crtc_finish_page_flip(struct rcar_du_crtc *rcrtc)
|
|
{
|
|
struct drm_pending_vblank_event *event;
|
|
struct drm_device *dev = rcrtc->crtc.dev;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&dev->event_lock, flags);
|
|
event = rcrtc->event;
|
|
rcrtc->event = NULL;
|
|
spin_unlock_irqrestore(&dev->event_lock, flags);
|
|
|
|
if (event == NULL)
|
|
return;
|
|
|
|
spin_lock_irqsave(&dev->event_lock, flags);
|
|
drm_crtc_send_vblank_event(&rcrtc->crtc, event);
|
|
wake_up(&rcrtc->flip_wait);
|
|
spin_unlock_irqrestore(&dev->event_lock, flags);
|
|
|
|
drm_crtc_vblank_put(&rcrtc->crtc);
|
|
}
|
|
|
|
static bool rcar_du_crtc_page_flip_pending(struct rcar_du_crtc *rcrtc)
|
|
{
|
|
struct drm_device *dev = rcrtc->crtc.dev;
|
|
unsigned long flags;
|
|
bool pending;
|
|
|
|
spin_lock_irqsave(&dev->event_lock, flags);
|
|
pending = rcrtc->event != NULL;
|
|
spin_unlock_irqrestore(&dev->event_lock, flags);
|
|
|
|
return pending;
|
|
}
|
|
|
|
static void rcar_du_crtc_wait_page_flip(struct rcar_du_crtc *rcrtc)
|
|
{
|
|
struct rcar_du_device *rcdu = rcrtc->dev;
|
|
|
|
if (wait_event_timeout(rcrtc->flip_wait,
|
|
!rcar_du_crtc_page_flip_pending(rcrtc),
|
|
msecs_to_jiffies(50)))
|
|
return;
|
|
|
|
dev_warn(rcdu->dev, "page flip timeout\n");
|
|
|
|
rcar_du_crtc_finish_page_flip(rcrtc);
|
|
}
|
|
|
|
/* -----------------------------------------------------------------------------
|
|
* Color Management Module (CMM)
|
|
*/
|
|
|
|
static int rcar_du_cmm_check(struct drm_crtc *crtc,
|
|
struct drm_crtc_state *state)
|
|
{
|
|
struct drm_property_blob *drm_lut = state->gamma_lut;
|
|
struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
|
|
struct device *dev = rcrtc->dev->dev;
|
|
|
|
if (!drm_lut)
|
|
return 0;
|
|
|
|
/* We only accept fully populated LUT tables. */
|
|
if (drm_color_lut_size(drm_lut) != CM2_LUT_SIZE) {
|
|
dev_err(dev, "invalid gamma lut size: %zu bytes\n",
|
|
drm_lut->length);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void rcar_du_cmm_setup(struct drm_crtc *crtc)
|
|
{
|
|
struct drm_property_blob *drm_lut = crtc->state->gamma_lut;
|
|
struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
|
|
struct rcar_cmm_config cmm_config = {};
|
|
|
|
if (!rcrtc->cmm)
|
|
return;
|
|
|
|
if (drm_lut)
|
|
cmm_config.lut.table = (struct drm_color_lut *)drm_lut->data;
|
|
|
|
rcar_cmm_setup(rcrtc->cmm, &cmm_config);
|
|
}
|
|
|
|
/* -----------------------------------------------------------------------------
|
|
* Start/Stop and Suspend/Resume
|
|
*/
|
|
|
|
static void rcar_du_crtc_setup(struct rcar_du_crtc *rcrtc)
|
|
{
|
|
/* Set display off and background to black */
|
|
rcar_du_crtc_write(rcrtc, DOOR, DOOR_RGB(0, 0, 0));
|
|
rcar_du_crtc_write(rcrtc, BPOR, BPOR_RGB(0, 0, 0));
|
|
|
|
/* Configure display timings and output routing */
|
|
rcar_du_crtc_set_display_timing(rcrtc);
|
|
rcar_du_group_set_routing(rcrtc->group);
|
|
|
|
/* Start with all planes disabled. */
|
|
rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR, 0);
|
|
|
|
/* Enable the VSP compositor. */
|
|
if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
|
|
rcar_du_vsp_enable(rcrtc);
|
|
|
|
/* Turn vertical blanking interrupt reporting on. */
|
|
drm_crtc_vblank_on(&rcrtc->crtc);
|
|
}
|
|
|
|
static int rcar_du_crtc_get(struct rcar_du_crtc *rcrtc)
|
|
{
|
|
int ret;
|
|
|
|
/*
|
|
* Guard against double-get, as the function is called from both the
|
|
* .atomic_enable() and .atomic_begin() handlers.
|
|
*/
|
|
if (rcrtc->initialized)
|
|
return 0;
|
|
|
|
ret = clk_prepare_enable(rcrtc->clock);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = clk_prepare_enable(rcrtc->extclock);
|
|
if (ret < 0)
|
|
goto error_clock;
|
|
|
|
ret = rcar_du_group_get(rcrtc->group);
|
|
if (ret < 0)
|
|
goto error_group;
|
|
|
|
rcar_du_crtc_setup(rcrtc);
|
|
rcrtc->initialized = true;
|
|
|
|
return 0;
|
|
|
|
error_group:
|
|
clk_disable_unprepare(rcrtc->extclock);
|
|
error_clock:
|
|
clk_disable_unprepare(rcrtc->clock);
|
|
return ret;
|
|
}
|
|
|
|
static void rcar_du_crtc_put(struct rcar_du_crtc *rcrtc)
|
|
{
|
|
rcar_du_group_put(rcrtc->group);
|
|
|
|
clk_disable_unprepare(rcrtc->extclock);
|
|
clk_disable_unprepare(rcrtc->clock);
|
|
|
|
rcrtc->initialized = false;
|
|
}
|
|
|
|
static void rcar_du_crtc_start(struct rcar_du_crtc *rcrtc)
|
|
{
|
|
bool interlaced;
|
|
|
|
/*
|
|
* Select master sync mode. This enables display operation in master
|
|
* sync mode (with the HSYNC and VSYNC signals configured as outputs and
|
|
* actively driven).
|
|
*/
|
|
interlaced = rcrtc->crtc.mode.flags & DRM_MODE_FLAG_INTERLACE;
|
|
rcar_du_crtc_dsysr_clr_set(rcrtc, DSYSR_TVM_MASK | DSYSR_SCM_MASK,
|
|
(interlaced ? DSYSR_SCM_INT_VIDEO : 0) |
|
|
DSYSR_TVM_MASTER);
|
|
|
|
rcar_du_group_start_stop(rcrtc->group, true);
|
|
}
|
|
|
|
static void rcar_du_crtc_disable_planes(struct rcar_du_crtc *rcrtc)
|
|
{
|
|
struct rcar_du_device *rcdu = rcrtc->dev;
|
|
struct drm_crtc *crtc = &rcrtc->crtc;
|
|
u32 status;
|
|
|
|
/* Make sure vblank interrupts are enabled. */
|
|
drm_crtc_vblank_get(crtc);
|
|
|
|
/*
|
|
* Disable planes and calculate how many vertical blanking interrupts we
|
|
* have to wait for. If a vertical blanking interrupt has been triggered
|
|
* but not processed yet, we don't know whether it occurred before or
|
|
* after the planes got disabled. We thus have to wait for two vblank
|
|
* interrupts in that case.
|
|
*/
|
|
spin_lock_irq(&rcrtc->vblank_lock);
|
|
rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR, 0);
|
|
status = rcar_du_crtc_read(rcrtc, DSSR);
|
|
rcrtc->vblank_count = status & DSSR_VBK ? 2 : 1;
|
|
spin_unlock_irq(&rcrtc->vblank_lock);
|
|
|
|
if (!wait_event_timeout(rcrtc->vblank_wait, rcrtc->vblank_count == 0,
|
|
msecs_to_jiffies(100)))
|
|
dev_warn(rcdu->dev, "vertical blanking timeout\n");
|
|
|
|
drm_crtc_vblank_put(crtc);
|
|
}
|
|
|
|
static void rcar_du_crtc_stop(struct rcar_du_crtc *rcrtc)
|
|
{
|
|
struct drm_crtc *crtc = &rcrtc->crtc;
|
|
|
|
/*
|
|
* Disable all planes and wait for the change to take effect. This is
|
|
* required as the plane enable registers are updated on vblank, and no
|
|
* vblank will occur once the CRTC is stopped. Disabling planes when
|
|
* starting the CRTC thus wouldn't be enough as it would start scanning
|
|
* out immediately from old frame buffers until the next vblank.
|
|
*
|
|
* This increases the CRTC stop delay, especially when multiple CRTCs
|
|
* are stopped in one operation as we now wait for one vblank per CRTC.
|
|
* Whether this can be improved needs to be researched.
|
|
*/
|
|
rcar_du_crtc_disable_planes(rcrtc);
|
|
|
|
/*
|
|
* Disable vertical blanking interrupt reporting. We first need to wait
|
|
* for page flip completion before stopping the CRTC as userspace
|
|
* expects page flips to eventually complete.
|
|
*/
|
|
rcar_du_crtc_wait_page_flip(rcrtc);
|
|
drm_crtc_vblank_off(crtc);
|
|
|
|
/* Disable the VSP compositor. */
|
|
if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
|
|
rcar_du_vsp_disable(rcrtc);
|
|
|
|
if (rcrtc->cmm)
|
|
rcar_cmm_disable(rcrtc->cmm);
|
|
|
|
/*
|
|
* Select switch sync mode. This stops display operation and configures
|
|
* the HSYNC and VSYNC signals as inputs.
|
|
*
|
|
* TODO: Find another way to stop the display for DUs that don't support
|
|
* TVM sync.
|
|
*/
|
|
if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_TVM_SYNC))
|
|
rcar_du_crtc_dsysr_clr_set(rcrtc, DSYSR_TVM_MASK,
|
|
DSYSR_TVM_SWITCH);
|
|
|
|
rcar_du_group_start_stop(rcrtc->group, false);
|
|
}
|
|
|
|
/* -----------------------------------------------------------------------------
|
|
* CRTC Functions
|
|
*/
|
|
|
|
static int rcar_du_crtc_atomic_check(struct drm_crtc *crtc,
|
|
struct drm_crtc_state *state)
|
|
{
|
|
struct rcar_du_crtc_state *rstate = to_rcar_crtc_state(state);
|
|
struct drm_encoder *encoder;
|
|
int ret;
|
|
|
|
ret = rcar_du_cmm_check(crtc, state);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Store the routes from the CRTC output to the DU outputs. */
|
|
rstate->outputs = 0;
|
|
|
|
drm_for_each_encoder_mask(encoder, crtc->dev, state->encoder_mask) {
|
|
struct rcar_du_encoder *renc;
|
|
|
|
/* Skip the writeback encoder. */
|
|
if (encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL)
|
|
continue;
|
|
|
|
renc = to_rcar_encoder(encoder);
|
|
rstate->outputs |= BIT(renc->output);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void rcar_du_crtc_atomic_enable(struct drm_crtc *crtc,
|
|
struct drm_crtc_state *old_state)
|
|
{
|
|
struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
|
|
struct rcar_du_crtc_state *rstate = to_rcar_crtc_state(crtc->state);
|
|
struct rcar_du_device *rcdu = rcrtc->dev;
|
|
|
|
if (rcrtc->cmm)
|
|
rcar_cmm_enable(rcrtc->cmm);
|
|
rcar_du_crtc_get(rcrtc);
|
|
|
|
/*
|
|
* On D3/E3 the dot clock is provided by the LVDS encoder attached to
|
|
* the DU channel. We need to enable its clock output explicitly if
|
|
* the LVDS output is disabled.
|
|
*/
|
|
if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index) &&
|
|
rstate->outputs == BIT(RCAR_DU_OUTPUT_DPAD0)) {
|
|
struct rcar_du_encoder *encoder =
|
|
rcdu->encoders[RCAR_DU_OUTPUT_LVDS0 + rcrtc->index];
|
|
const struct drm_display_mode *mode =
|
|
&crtc->state->adjusted_mode;
|
|
struct drm_bridge *bridge;
|
|
|
|
bridge = drm_bridge_chain_get_first_bridge(&encoder->base);
|
|
rcar_lvds_clk_enable(bridge, mode->clock * 1000);
|
|
}
|
|
|
|
rcar_du_crtc_start(rcrtc);
|
|
|
|
/*
|
|
* TODO: The chip manual indicates that CMM tables should be written
|
|
* after the DU channel has been activated. Investigate the impact
|
|
* of this restriction on the first displayed frame.
|
|
*/
|
|
rcar_du_cmm_setup(crtc);
|
|
}
|
|
|
|
static void rcar_du_crtc_atomic_disable(struct drm_crtc *crtc,
|
|
struct drm_crtc_state *old_state)
|
|
{
|
|
struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
|
|
struct rcar_du_crtc_state *rstate = to_rcar_crtc_state(old_state);
|
|
struct rcar_du_device *rcdu = rcrtc->dev;
|
|
|
|
rcar_du_crtc_stop(rcrtc);
|
|
rcar_du_crtc_put(rcrtc);
|
|
|
|
if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index) &&
|
|
rstate->outputs == BIT(RCAR_DU_OUTPUT_DPAD0)) {
|
|
struct rcar_du_encoder *encoder =
|
|
rcdu->encoders[RCAR_DU_OUTPUT_LVDS0 + rcrtc->index];
|
|
struct drm_bridge *bridge;
|
|
|
|
/*
|
|
* Disable the LVDS clock output, see
|
|
* rcar_du_crtc_atomic_enable().
|
|
*/
|
|
bridge = drm_bridge_chain_get_first_bridge(&encoder->base);
|
|
rcar_lvds_clk_disable(bridge);
|
|
}
|
|
|
|
spin_lock_irq(&crtc->dev->event_lock);
|
|
if (crtc->state->event) {
|
|
drm_crtc_send_vblank_event(crtc, crtc->state->event);
|
|
crtc->state->event = NULL;
|
|
}
|
|
spin_unlock_irq(&crtc->dev->event_lock);
|
|
}
|
|
|
|
static void rcar_du_crtc_atomic_begin(struct drm_crtc *crtc,
|
|
struct drm_crtc_state *old_crtc_state)
|
|
{
|
|
struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
|
|
|
|
WARN_ON(!crtc->state->enable);
|
|
|
|
/*
|
|
* If a mode set is in progress we can be called with the CRTC disabled.
|
|
* We thus need to first get and setup the CRTC in order to configure
|
|
* planes. We must *not* put the CRTC in .atomic_flush(), as it must be
|
|
* kept awake until the .atomic_enable() call that will follow. The get
|
|
* operation in .atomic_enable() will in that case be a no-op, and the
|
|
* CRTC will be put later in .atomic_disable().
|
|
*
|
|
* If a mode set is not in progress the CRTC is enabled, and the
|
|
* following get call will be a no-op. There is thus no need to balance
|
|
* it in .atomic_flush() either.
|
|
*/
|
|
rcar_du_crtc_get(rcrtc);
|
|
|
|
/* If the active state changed, we let .atomic_enable handle CMM. */
|
|
if (crtc->state->color_mgmt_changed && !crtc->state->active_changed)
|
|
rcar_du_cmm_setup(crtc);
|
|
|
|
if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
|
|
rcar_du_vsp_atomic_begin(rcrtc);
|
|
}
|
|
|
|
static void rcar_du_crtc_atomic_flush(struct drm_crtc *crtc,
|
|
struct drm_crtc_state *old_crtc_state)
|
|
{
|
|
struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
|
|
struct drm_device *dev = rcrtc->crtc.dev;
|
|
unsigned long flags;
|
|
|
|
rcar_du_crtc_update_planes(rcrtc);
|
|
|
|
if (crtc->state->event) {
|
|
WARN_ON(drm_crtc_vblank_get(crtc) != 0);
|
|
|
|
spin_lock_irqsave(&dev->event_lock, flags);
|
|
rcrtc->event = crtc->state->event;
|
|
crtc->state->event = NULL;
|
|
spin_unlock_irqrestore(&dev->event_lock, flags);
|
|
}
|
|
|
|
if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
|
|
rcar_du_vsp_atomic_flush(rcrtc);
|
|
}
|
|
|
|
static enum drm_mode_status
|
|
rcar_du_crtc_mode_valid(struct drm_crtc *crtc,
|
|
const struct drm_display_mode *mode)
|
|
{
|
|
struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
|
|
struct rcar_du_device *rcdu = rcrtc->dev;
|
|
bool interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
|
|
unsigned int vbp;
|
|
|
|
if (interlaced && !rcar_du_has(rcdu, RCAR_DU_FEATURE_INTERLACED))
|
|
return MODE_NO_INTERLACE;
|
|
|
|
/*
|
|
* The hardware requires a minimum combined horizontal sync and back
|
|
* porch of 20 pixels and a minimum vertical back porch of 3 lines.
|
|
*/
|
|
if (mode->htotal - mode->hsync_start < 20)
|
|
return MODE_HBLANK_NARROW;
|
|
|
|
vbp = (mode->vtotal - mode->vsync_end) / (interlaced ? 2 : 1);
|
|
if (vbp < 3)
|
|
return MODE_VBLANK_NARROW;
|
|
|
|
return MODE_OK;
|
|
}
|
|
|
|
static const struct drm_crtc_helper_funcs crtc_helper_funcs = {
|
|
.atomic_check = rcar_du_crtc_atomic_check,
|
|
.atomic_begin = rcar_du_crtc_atomic_begin,
|
|
.atomic_flush = rcar_du_crtc_atomic_flush,
|
|
.atomic_enable = rcar_du_crtc_atomic_enable,
|
|
.atomic_disable = rcar_du_crtc_atomic_disable,
|
|
.mode_valid = rcar_du_crtc_mode_valid,
|
|
};
|
|
|
|
static void rcar_du_crtc_crc_init(struct rcar_du_crtc *rcrtc)
|
|
{
|
|
struct rcar_du_device *rcdu = rcrtc->dev;
|
|
const char **sources;
|
|
unsigned int count;
|
|
int i = -1;
|
|
|
|
/* CRC available only on Gen3 HW. */
|
|
if (rcdu->info->gen < 3)
|
|
return;
|
|
|
|
/* Reserve 1 for "auto" source. */
|
|
count = rcrtc->vsp->num_planes + 1;
|
|
|
|
sources = kmalloc_array(count, sizeof(*sources), GFP_KERNEL);
|
|
if (!sources)
|
|
return;
|
|
|
|
sources[0] = kstrdup("auto", GFP_KERNEL);
|
|
if (!sources[0])
|
|
goto error;
|
|
|
|
for (i = 0; i < rcrtc->vsp->num_planes; ++i) {
|
|
struct drm_plane *plane = &rcrtc->vsp->planes[i].plane;
|
|
char name[16];
|
|
|
|
sprintf(name, "plane%u", plane->base.id);
|
|
sources[i + 1] = kstrdup(name, GFP_KERNEL);
|
|
if (!sources[i + 1])
|
|
goto error;
|
|
}
|
|
|
|
rcrtc->sources = sources;
|
|
rcrtc->sources_count = count;
|
|
return;
|
|
|
|
error:
|
|
while (i >= 0) {
|
|
kfree(sources[i]);
|
|
i--;
|
|
}
|
|
kfree(sources);
|
|
}
|
|
|
|
static void rcar_du_crtc_crc_cleanup(struct rcar_du_crtc *rcrtc)
|
|
{
|
|
unsigned int i;
|
|
|
|
if (!rcrtc->sources)
|
|
return;
|
|
|
|
for (i = 0; i < rcrtc->sources_count; i++)
|
|
kfree(rcrtc->sources[i]);
|
|
kfree(rcrtc->sources);
|
|
|
|
rcrtc->sources = NULL;
|
|
rcrtc->sources_count = 0;
|
|
}
|
|
|
|
static struct drm_crtc_state *
|
|
rcar_du_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
|
|
{
|
|
struct rcar_du_crtc_state *state;
|
|
struct rcar_du_crtc_state *copy;
|
|
|
|
if (WARN_ON(!crtc->state))
|
|
return NULL;
|
|
|
|
state = to_rcar_crtc_state(crtc->state);
|
|
copy = kmemdup(state, sizeof(*state), GFP_KERNEL);
|
|
if (copy == NULL)
|
|
return NULL;
|
|
|
|
__drm_atomic_helper_crtc_duplicate_state(crtc, ©->state);
|
|
|
|
return ©->state;
|
|
}
|
|
|
|
static void rcar_du_crtc_atomic_destroy_state(struct drm_crtc *crtc,
|
|
struct drm_crtc_state *state)
|
|
{
|
|
__drm_atomic_helper_crtc_destroy_state(state);
|
|
kfree(to_rcar_crtc_state(state));
|
|
}
|
|
|
|
static void rcar_du_crtc_cleanup(struct drm_crtc *crtc)
|
|
{
|
|
struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
|
|
|
|
rcar_du_crtc_crc_cleanup(rcrtc);
|
|
|
|
return drm_crtc_cleanup(crtc);
|
|
}
|
|
|
|
static void rcar_du_crtc_reset(struct drm_crtc *crtc)
|
|
{
|
|
struct rcar_du_crtc_state *state;
|
|
|
|
if (crtc->state) {
|
|
rcar_du_crtc_atomic_destroy_state(crtc, crtc->state);
|
|
crtc->state = NULL;
|
|
}
|
|
|
|
state = kzalloc(sizeof(*state), GFP_KERNEL);
|
|
if (state == NULL)
|
|
return;
|
|
|
|
state->crc.source = VSP1_DU_CRC_NONE;
|
|
state->crc.index = 0;
|
|
|
|
__drm_atomic_helper_crtc_reset(crtc, &state->state);
|
|
}
|
|
|
|
static int rcar_du_crtc_enable_vblank(struct drm_crtc *crtc)
|
|
{
|
|
struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
|
|
|
|
rcar_du_crtc_write(rcrtc, DSRCR, DSRCR_VBCL);
|
|
rcar_du_crtc_set(rcrtc, DIER, DIER_VBE);
|
|
rcrtc->vblank_enable = true;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void rcar_du_crtc_disable_vblank(struct drm_crtc *crtc)
|
|
{
|
|
struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
|
|
|
|
rcar_du_crtc_clr(rcrtc, DIER, DIER_VBE);
|
|
rcrtc->vblank_enable = false;
|
|
}
|
|
|
|
static int rcar_du_crtc_parse_crc_source(struct rcar_du_crtc *rcrtc,
|
|
const char *source_name,
|
|
enum vsp1_du_crc_source *source)
|
|
{
|
|
unsigned int index;
|
|
int ret;
|
|
|
|
/*
|
|
* Parse the source name. Supported values are "plane%u" to compute the
|
|
* CRC on an input plane (%u is the plane ID), and "auto" to compute the
|
|
* CRC on the composer (VSP) output.
|
|
*/
|
|
|
|
if (!source_name) {
|
|
*source = VSP1_DU_CRC_NONE;
|
|
return 0;
|
|
} else if (!strcmp(source_name, "auto")) {
|
|
*source = VSP1_DU_CRC_OUTPUT;
|
|
return 0;
|
|
} else if (strstarts(source_name, "plane")) {
|
|
unsigned int i;
|
|
|
|
*source = VSP1_DU_CRC_PLANE;
|
|
|
|
ret = kstrtouint(source_name + strlen("plane"), 10, &index);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
for (i = 0; i < rcrtc->vsp->num_planes; ++i) {
|
|
if (index == rcrtc->vsp->planes[i].plane.base.id)
|
|
return i;
|
|
}
|
|
}
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int rcar_du_crtc_verify_crc_source(struct drm_crtc *crtc,
|
|
const char *source_name,
|
|
size_t *values_cnt)
|
|
{
|
|
struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
|
|
enum vsp1_du_crc_source source;
|
|
|
|
if (rcar_du_crtc_parse_crc_source(rcrtc, source_name, &source) < 0) {
|
|
DRM_DEBUG_DRIVER("unknown source %s\n", source_name);
|
|
return -EINVAL;
|
|
}
|
|
|
|
*values_cnt = 1;
|
|
return 0;
|
|
}
|
|
|
|
static const char *const *
|
|
rcar_du_crtc_get_crc_sources(struct drm_crtc *crtc, size_t *count)
|
|
{
|
|
struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
|
|
|
|
*count = rcrtc->sources_count;
|
|
return rcrtc->sources;
|
|
}
|
|
|
|
static int rcar_du_crtc_set_crc_source(struct drm_crtc *crtc,
|
|
const char *source_name)
|
|
{
|
|
struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
|
|
struct drm_modeset_acquire_ctx ctx;
|
|
struct drm_crtc_state *crtc_state;
|
|
struct drm_atomic_state *state;
|
|
enum vsp1_du_crc_source source;
|
|
unsigned int index;
|
|
int ret;
|
|
|
|
ret = rcar_du_crtc_parse_crc_source(rcrtc, source_name, &source);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
index = ret;
|
|
|
|
/* Perform an atomic commit to set the CRC source. */
|
|
drm_modeset_acquire_init(&ctx, 0);
|
|
|
|
state = drm_atomic_state_alloc(crtc->dev);
|
|
if (!state) {
|
|
ret = -ENOMEM;
|
|
goto unlock;
|
|
}
|
|
|
|
state->acquire_ctx = &ctx;
|
|
|
|
retry:
|
|
crtc_state = drm_atomic_get_crtc_state(state, crtc);
|
|
if (!IS_ERR(crtc_state)) {
|
|
struct rcar_du_crtc_state *rcrtc_state;
|
|
|
|
rcrtc_state = to_rcar_crtc_state(crtc_state);
|
|
rcrtc_state->crc.source = source;
|
|
rcrtc_state->crc.index = index;
|
|
|
|
ret = drm_atomic_commit(state);
|
|
} else {
|
|
ret = PTR_ERR(crtc_state);
|
|
}
|
|
|
|
if (ret == -EDEADLK) {
|
|
drm_atomic_state_clear(state);
|
|
drm_modeset_backoff(&ctx);
|
|
goto retry;
|
|
}
|
|
|
|
drm_atomic_state_put(state);
|
|
|
|
unlock:
|
|
drm_modeset_drop_locks(&ctx);
|
|
drm_modeset_acquire_fini(&ctx);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static const struct drm_crtc_funcs crtc_funcs_gen2 = {
|
|
.reset = rcar_du_crtc_reset,
|
|
.destroy = drm_crtc_cleanup,
|
|
.set_config = drm_atomic_helper_set_config,
|
|
.page_flip = drm_atomic_helper_page_flip,
|
|
.atomic_duplicate_state = rcar_du_crtc_atomic_duplicate_state,
|
|
.atomic_destroy_state = rcar_du_crtc_atomic_destroy_state,
|
|
.enable_vblank = rcar_du_crtc_enable_vblank,
|
|
.disable_vblank = rcar_du_crtc_disable_vblank,
|
|
};
|
|
|
|
static const struct drm_crtc_funcs crtc_funcs_gen3 = {
|
|
.reset = rcar_du_crtc_reset,
|
|
.destroy = rcar_du_crtc_cleanup,
|
|
.set_config = drm_atomic_helper_set_config,
|
|
.page_flip = drm_atomic_helper_page_flip,
|
|
.atomic_duplicate_state = rcar_du_crtc_atomic_duplicate_state,
|
|
.atomic_destroy_state = rcar_du_crtc_atomic_destroy_state,
|
|
.enable_vblank = rcar_du_crtc_enable_vblank,
|
|
.disable_vblank = rcar_du_crtc_disable_vblank,
|
|
.set_crc_source = rcar_du_crtc_set_crc_source,
|
|
.verify_crc_source = rcar_du_crtc_verify_crc_source,
|
|
.get_crc_sources = rcar_du_crtc_get_crc_sources,
|
|
.gamma_set = drm_atomic_helper_legacy_gamma_set,
|
|
};
|
|
|
|
/* -----------------------------------------------------------------------------
|
|
* Interrupt Handling
|
|
*/
|
|
|
|
static irqreturn_t rcar_du_crtc_irq(int irq, void *arg)
|
|
{
|
|
struct rcar_du_crtc *rcrtc = arg;
|
|
struct rcar_du_device *rcdu = rcrtc->dev;
|
|
irqreturn_t ret = IRQ_NONE;
|
|
u32 status;
|
|
|
|
spin_lock(&rcrtc->vblank_lock);
|
|
|
|
status = rcar_du_crtc_read(rcrtc, DSSR);
|
|
rcar_du_crtc_write(rcrtc, DSRCR, status & DSRCR_MASK);
|
|
|
|
if (status & DSSR_VBK) {
|
|
/*
|
|
* Wake up the vblank wait if the counter reaches 0. This must
|
|
* be protected by the vblank_lock to avoid races in
|
|
* rcar_du_crtc_disable_planes().
|
|
*/
|
|
if (rcrtc->vblank_count) {
|
|
if (--rcrtc->vblank_count == 0)
|
|
wake_up(&rcrtc->vblank_wait);
|
|
}
|
|
}
|
|
|
|
spin_unlock(&rcrtc->vblank_lock);
|
|
|
|
if (status & DSSR_VBK) {
|
|
if (rcdu->info->gen < 3) {
|
|
drm_crtc_handle_vblank(&rcrtc->crtc);
|
|
rcar_du_crtc_finish_page_flip(rcrtc);
|
|
}
|
|
|
|
ret = IRQ_HANDLED;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* -----------------------------------------------------------------------------
|
|
* Initialization
|
|
*/
|
|
|
|
int rcar_du_crtc_create(struct rcar_du_group *rgrp, unsigned int swindex,
|
|
unsigned int hwindex)
|
|
{
|
|
static const unsigned int mmio_offsets[] = {
|
|
DU0_REG_OFFSET, DU1_REG_OFFSET, DU2_REG_OFFSET, DU3_REG_OFFSET
|
|
};
|
|
|
|
struct rcar_du_device *rcdu = rgrp->dev;
|
|
struct platform_device *pdev = to_platform_device(rcdu->dev);
|
|
struct rcar_du_crtc *rcrtc = &rcdu->crtcs[swindex];
|
|
struct drm_crtc *crtc = &rcrtc->crtc;
|
|
struct drm_plane *primary;
|
|
unsigned int irqflags;
|
|
struct clk *clk;
|
|
char clk_name[9];
|
|
char *name;
|
|
int irq;
|
|
int ret;
|
|
|
|
/* Get the CRTC clock and the optional external clock. */
|
|
if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_IRQ_CLOCK)) {
|
|
sprintf(clk_name, "du.%u", hwindex);
|
|
name = clk_name;
|
|
} else {
|
|
name = NULL;
|
|
}
|
|
|
|
rcrtc->clock = devm_clk_get(rcdu->dev, name);
|
|
if (IS_ERR(rcrtc->clock)) {
|
|
dev_err(rcdu->dev, "no clock for DU channel %u\n", hwindex);
|
|
return PTR_ERR(rcrtc->clock);
|
|
}
|
|
|
|
sprintf(clk_name, "dclkin.%u", hwindex);
|
|
clk = devm_clk_get(rcdu->dev, clk_name);
|
|
if (!IS_ERR(clk)) {
|
|
rcrtc->extclock = clk;
|
|
} else if (PTR_ERR(clk) == -EPROBE_DEFER) {
|
|
return -EPROBE_DEFER;
|
|
} else if (rcdu->info->dpll_mask & BIT(hwindex)) {
|
|
/*
|
|
* DU channels that have a display PLL can't use the internal
|
|
* system clock and thus require an external clock.
|
|
*/
|
|
ret = PTR_ERR(clk);
|
|
dev_err(rcdu->dev, "can't get dclkin.%u: %d\n", hwindex, ret);
|
|
return ret;
|
|
}
|
|
|
|
init_waitqueue_head(&rcrtc->flip_wait);
|
|
init_waitqueue_head(&rcrtc->vblank_wait);
|
|
spin_lock_init(&rcrtc->vblank_lock);
|
|
|
|
rcrtc->dev = rcdu;
|
|
rcrtc->group = rgrp;
|
|
rcrtc->mmio_offset = mmio_offsets[hwindex];
|
|
rcrtc->index = hwindex;
|
|
rcrtc->dsysr = (rcrtc->index % 2 ? 0 : DSYSR_DRES) | DSYSR_TVM_TVSYNC;
|
|
|
|
if (rcar_du_has(rcdu, RCAR_DU_FEATURE_VSP1_SOURCE))
|
|
primary = &rcrtc->vsp->planes[rcrtc->vsp_pipe].plane;
|
|
else
|
|
primary = &rgrp->planes[swindex % 2].plane;
|
|
|
|
ret = drm_crtc_init_with_planes(rcdu->ddev, crtc, primary, NULL,
|
|
rcdu->info->gen <= 2 ?
|
|
&crtc_funcs_gen2 : &crtc_funcs_gen3,
|
|
NULL);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
/* CMM might be disabled for this CRTC. */
|
|
if (rcdu->cmms[swindex]) {
|
|
rcrtc->cmm = rcdu->cmms[swindex];
|
|
rgrp->cmms_mask |= BIT(hwindex % 2);
|
|
|
|
drm_mode_crtc_set_gamma_size(crtc, CM2_LUT_SIZE);
|
|
drm_crtc_enable_color_mgmt(crtc, 0, false, CM2_LUT_SIZE);
|
|
}
|
|
|
|
drm_crtc_helper_add(crtc, &crtc_helper_funcs);
|
|
|
|
/* Register the interrupt handler. */
|
|
if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_IRQ_CLOCK)) {
|
|
/* The IRQ's are associated with the CRTC (sw)index. */
|
|
irq = platform_get_irq(pdev, swindex);
|
|
irqflags = 0;
|
|
} else {
|
|
irq = platform_get_irq(pdev, 0);
|
|
irqflags = IRQF_SHARED;
|
|
}
|
|
|
|
if (irq < 0) {
|
|
dev_err(rcdu->dev, "no IRQ for CRTC %u\n", swindex);
|
|
return irq;
|
|
}
|
|
|
|
ret = devm_request_irq(rcdu->dev, irq, rcar_du_crtc_irq, irqflags,
|
|
dev_name(rcdu->dev), rcrtc);
|
|
if (ret < 0) {
|
|
dev_err(rcdu->dev,
|
|
"failed to register IRQ for CRTC %u\n", swindex);
|
|
return ret;
|
|
}
|
|
|
|
rcar_du_crtc_crc_init(rcrtc);
|
|
|
|
return 0;
|
|
}
|