mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-12 18:16:35 +07:00
64566b5e76
drm_fixp_from_fraction allows us to create a fixed point directly from a fraction, rather than creating fixed point values and dividing later. This avoids overflow of our 64 bit value for large numbers. drm_fixp2int_ceil allows us to return the ceiling of our fixed point value. [airlied: squash Jordan's fix] 32-bit-build-fix: Jordan Lazare <Jordan.Lazare@amd.com> Signed-off-by: Harry Wentland <harry.wentland@amd.com> Cc: stable@vger.kernel.org Reviewed-by: Alex Deucher <alexander.deucher@amd.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
212 lines
4.7 KiB
C
212 lines
4.7 KiB
C
/*
|
|
* Copyright 2009 Red Hat Inc.
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
|
|
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
|
|
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
|
|
* OTHER DEALINGS IN THE SOFTWARE.
|
|
*
|
|
* Authors: Dave Airlie
|
|
* Christian König
|
|
*/
|
|
#ifndef DRM_FIXED_H
|
|
#define DRM_FIXED_H
|
|
|
|
#include <linux/math64.h>
|
|
|
|
typedef union dfixed {
|
|
u32 full;
|
|
} fixed20_12;
|
|
|
|
|
|
#define dfixed_const(A) (u32)(((A) << 12))/* + ((B + 0.000122)*4096)) */
|
|
#define dfixed_const_half(A) (u32)(((A) << 12) + 2048)
|
|
#define dfixed_const_666(A) (u32)(((A) << 12) + 2731)
|
|
#define dfixed_const_8(A) (u32)(((A) << 12) + 3277)
|
|
#define dfixed_mul(A, B) ((u64)((u64)(A).full * (B).full + 2048) >> 12)
|
|
#define dfixed_init(A) { .full = dfixed_const((A)) }
|
|
#define dfixed_init_half(A) { .full = dfixed_const_half((A)) }
|
|
#define dfixed_trunc(A) ((A).full >> 12)
|
|
#define dfixed_frac(A) ((A).full & ((1 << 12) - 1))
|
|
|
|
static inline u32 dfixed_floor(fixed20_12 A)
|
|
{
|
|
u32 non_frac = dfixed_trunc(A);
|
|
|
|
return dfixed_const(non_frac);
|
|
}
|
|
|
|
static inline u32 dfixed_ceil(fixed20_12 A)
|
|
{
|
|
u32 non_frac = dfixed_trunc(A);
|
|
|
|
if (A.full > dfixed_const(non_frac))
|
|
return dfixed_const(non_frac + 1);
|
|
else
|
|
return dfixed_const(non_frac);
|
|
}
|
|
|
|
static inline u32 dfixed_div(fixed20_12 A, fixed20_12 B)
|
|
{
|
|
u64 tmp = ((u64)A.full << 13);
|
|
|
|
do_div(tmp, B.full);
|
|
tmp += 1;
|
|
tmp /= 2;
|
|
return lower_32_bits(tmp);
|
|
}
|
|
|
|
#define DRM_FIXED_POINT 32
|
|
#define DRM_FIXED_ONE (1ULL << DRM_FIXED_POINT)
|
|
#define DRM_FIXED_DECIMAL_MASK (DRM_FIXED_ONE - 1)
|
|
#define DRM_FIXED_DIGITS_MASK (~DRM_FIXED_DECIMAL_MASK)
|
|
#define DRM_FIXED_EPSILON 1LL
|
|
#define DRM_FIXED_ALMOST_ONE (DRM_FIXED_ONE - DRM_FIXED_EPSILON)
|
|
|
|
static inline s64 drm_int2fixp(int a)
|
|
{
|
|
return ((s64)a) << DRM_FIXED_POINT;
|
|
}
|
|
|
|
static inline int drm_fixp2int(s64 a)
|
|
{
|
|
return ((s64)a) >> DRM_FIXED_POINT;
|
|
}
|
|
|
|
static inline int drm_fixp2int_ceil(s64 a)
|
|
{
|
|
if (a > 0)
|
|
return drm_fixp2int(a + DRM_FIXED_ALMOST_ONE);
|
|
else
|
|
return drm_fixp2int(a - DRM_FIXED_ALMOST_ONE);
|
|
}
|
|
|
|
static inline unsigned drm_fixp_msbset(s64 a)
|
|
{
|
|
unsigned shift, sign = (a >> 63) & 1;
|
|
|
|
for (shift = 62; shift > 0; --shift)
|
|
if (((a >> shift) & 1) != sign)
|
|
return shift;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline s64 drm_fixp_mul(s64 a, s64 b)
|
|
{
|
|
unsigned shift = drm_fixp_msbset(a) + drm_fixp_msbset(b);
|
|
s64 result;
|
|
|
|
if (shift > 61) {
|
|
shift = shift - 61;
|
|
a >>= (shift >> 1) + (shift & 1);
|
|
b >>= shift >> 1;
|
|
} else
|
|
shift = 0;
|
|
|
|
result = a * b;
|
|
|
|
if (shift > DRM_FIXED_POINT)
|
|
return result << (shift - DRM_FIXED_POINT);
|
|
|
|
if (shift < DRM_FIXED_POINT)
|
|
return result >> (DRM_FIXED_POINT - shift);
|
|
|
|
return result;
|
|
}
|
|
|
|
static inline s64 drm_fixp_div(s64 a, s64 b)
|
|
{
|
|
unsigned shift = 62 - drm_fixp_msbset(a);
|
|
s64 result;
|
|
|
|
a <<= shift;
|
|
|
|
if (shift < DRM_FIXED_POINT)
|
|
b >>= (DRM_FIXED_POINT - shift);
|
|
|
|
result = div64_s64(a, b);
|
|
|
|
if (shift > DRM_FIXED_POINT)
|
|
return result >> (shift - DRM_FIXED_POINT);
|
|
|
|
return result;
|
|
}
|
|
|
|
static inline s64 drm_fixp_from_fraction(s64 a, s64 b)
|
|
{
|
|
s64 res;
|
|
bool a_neg = a < 0;
|
|
bool b_neg = b < 0;
|
|
u64 a_abs = a_neg ? -a : a;
|
|
u64 b_abs = b_neg ? -b : b;
|
|
u64 rem;
|
|
|
|
/* determine integer part */
|
|
u64 res_abs = div64_u64_rem(a_abs, b_abs, &rem);
|
|
|
|
/* determine fractional part */
|
|
{
|
|
u32 i = DRM_FIXED_POINT;
|
|
|
|
do {
|
|
rem <<= 1;
|
|
res_abs <<= 1;
|
|
if (rem >= b_abs) {
|
|
res_abs |= 1;
|
|
rem -= b_abs;
|
|
}
|
|
} while (--i != 0);
|
|
}
|
|
|
|
/* round up LSB */
|
|
{
|
|
u64 summand = (rem << 1) >= b_abs;
|
|
|
|
res_abs += summand;
|
|
}
|
|
|
|
res = (s64) res_abs;
|
|
if (a_neg ^ b_neg)
|
|
res = -res;
|
|
return res;
|
|
}
|
|
|
|
static inline s64 drm_fixp_exp(s64 x)
|
|
{
|
|
s64 tolerance = div64_s64(DRM_FIXED_ONE, 1000000);
|
|
s64 sum = DRM_FIXED_ONE, term, y = x;
|
|
u64 count = 1;
|
|
|
|
if (x < 0)
|
|
y = -1 * x;
|
|
|
|
term = y;
|
|
|
|
while (term >= tolerance) {
|
|
sum = sum + term;
|
|
count = count + 1;
|
|
term = drm_fixp_mul(term, div64_s64(y, count));
|
|
}
|
|
|
|
if (x < 0)
|
|
sum = drm_fixp_div(DRM_FIXED_ONE, sum);
|
|
|
|
return sum;
|
|
}
|
|
|
|
#endif
|