mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
27fb5a72f5
I noticed that fsfreeze can take a very long time to freeze an XFS if there happens to be a GETFSMAP caller running in the background. I also happened to notice the following in dmesg: ------------[ cut here ]------------ WARNING: CPU: 2 PID: 43492 at fs/xfs/xfs_super.c:853 xfs_quiesce_attr+0x83/0x90 [xfs] Modules linked in: xfs libcrc32c ip6t_REJECT nf_reject_ipv6 ipt_REJECT nf_reject_ipv4 ip_set_hash_ip ip_set_hash_net xt_tcpudp xt_set ip_set_hash_mac ip_set nfnetlink ip6table_filter ip6_tables bfq iptable_filter sch_fq_codel ip_tables x_tables nfsv4 af_packet [last unloaded: xfs] CPU: 2 PID: 43492 Comm: xfs_io Not tainted 5.6.0-rc4-djw #rc4 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.10.2-1ubuntu1 04/01/2014 RIP: 0010:xfs_quiesce_attr+0x83/0x90 [xfs] Code: 7c 07 00 00 85 c0 75 22 48 89 df 5b e9 96 c1 00 00 48 c7 c6 b0 2d 38 a0 48 89 df e8 57 64 ff ff 8b 83 7c 07 00 00 85 c0 74 de <0f> 0b 48 89 df 5b e9 72 c1 00 00 66 90 0f 1f 44 00 00 41 55 41 54 RSP: 0018:ffffc900030f3e28 EFLAGS: 00010202 RAX: 0000000000000001 RBX: ffff88802ac54000 RCX: 0000000000000000 RDX: 0000000000000000 RSI: ffffffff81e4a6f0 RDI: 00000000ffffffff RBP: ffff88807859f070 R08: 0000000000000001 R09: 0000000000000000 R10: 0000000000000000 R11: 0000000000000010 R12: 0000000000000000 R13: ffff88807859f388 R14: ffff88807859f4b8 R15: ffff88807859f5e8 FS: 00007fad1c6c0fc0(0000) GS:ffff88807e000000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f0c7d237000 CR3: 0000000077f01003 CR4: 00000000001606a0 Call Trace: xfs_fs_freeze+0x25/0x40 [xfs] freeze_super+0xc8/0x180 do_vfs_ioctl+0x70b/0x750 ? __fget_files+0x135/0x210 ksys_ioctl+0x3a/0xb0 __x64_sys_ioctl+0x16/0x20 do_syscall_64+0x50/0x1a0 entry_SYSCALL_64_after_hwframe+0x49/0xbe These two things appear to be related. The assertion trips when another thread initiates a fsmap request (which uses an empty transaction) after the freezer waited for m_active_trans to hit zero but before the the freezer executes the WARN_ON just prior to calling xfs_log_quiesce. The lengthy delays in freezing happen because the freezer calls xfs_wait_buftarg to clean out the buffer lru list. Meanwhile, the GETFSMAP caller is continuing to grab and release buffers, which means that it can take a very long time for the buffer lru list to empty out. We fix both of these races by calling sb_start_write to obtain freeze protection while using empty transactions for GETFSMAP and for metadata scrubbing. The other two users occur during mount, during which time we cannot fs freeze. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com>
950 lines
25 KiB
C
950 lines
25 KiB
C
// SPDX-License-Identifier: GPL-2.0+
|
|
/*
|
|
* Copyright (C) 2017 Oracle. All Rights Reserved.
|
|
* Author: Darrick J. Wong <darrick.wong@oracle.com>
|
|
*/
|
|
#include "xfs.h"
|
|
#include "xfs_fs.h"
|
|
#include "xfs_shared.h"
|
|
#include "xfs_format.h"
|
|
#include "xfs_log_format.h"
|
|
#include "xfs_trans_resv.h"
|
|
#include "xfs_mount.h"
|
|
#include "xfs_inode.h"
|
|
#include "xfs_trans.h"
|
|
#include "xfs_btree.h"
|
|
#include "xfs_rmap_btree.h"
|
|
#include "xfs_trace.h"
|
|
#include "xfs_rmap.h"
|
|
#include "xfs_alloc.h"
|
|
#include "xfs_bit.h"
|
|
#include <linux/fsmap.h>
|
|
#include "xfs_fsmap.h"
|
|
#include "xfs_refcount.h"
|
|
#include "xfs_refcount_btree.h"
|
|
#include "xfs_alloc_btree.h"
|
|
#include "xfs_rtalloc.h"
|
|
|
|
/* Convert an xfs_fsmap to an fsmap. */
|
|
void
|
|
xfs_fsmap_from_internal(
|
|
struct fsmap *dest,
|
|
struct xfs_fsmap *src)
|
|
{
|
|
dest->fmr_device = src->fmr_device;
|
|
dest->fmr_flags = src->fmr_flags;
|
|
dest->fmr_physical = BBTOB(src->fmr_physical);
|
|
dest->fmr_owner = src->fmr_owner;
|
|
dest->fmr_offset = BBTOB(src->fmr_offset);
|
|
dest->fmr_length = BBTOB(src->fmr_length);
|
|
dest->fmr_reserved[0] = 0;
|
|
dest->fmr_reserved[1] = 0;
|
|
dest->fmr_reserved[2] = 0;
|
|
}
|
|
|
|
/* Convert an fsmap to an xfs_fsmap. */
|
|
void
|
|
xfs_fsmap_to_internal(
|
|
struct xfs_fsmap *dest,
|
|
struct fsmap *src)
|
|
{
|
|
dest->fmr_device = src->fmr_device;
|
|
dest->fmr_flags = src->fmr_flags;
|
|
dest->fmr_physical = BTOBBT(src->fmr_physical);
|
|
dest->fmr_owner = src->fmr_owner;
|
|
dest->fmr_offset = BTOBBT(src->fmr_offset);
|
|
dest->fmr_length = BTOBBT(src->fmr_length);
|
|
}
|
|
|
|
/* Convert an fsmap owner into an rmapbt owner. */
|
|
static int
|
|
xfs_fsmap_owner_to_rmap(
|
|
struct xfs_rmap_irec *dest,
|
|
struct xfs_fsmap *src)
|
|
{
|
|
if (!(src->fmr_flags & FMR_OF_SPECIAL_OWNER)) {
|
|
dest->rm_owner = src->fmr_owner;
|
|
return 0;
|
|
}
|
|
|
|
switch (src->fmr_owner) {
|
|
case 0: /* "lowest owner id possible" */
|
|
case -1ULL: /* "highest owner id possible" */
|
|
dest->rm_owner = 0;
|
|
break;
|
|
case XFS_FMR_OWN_FREE:
|
|
dest->rm_owner = XFS_RMAP_OWN_NULL;
|
|
break;
|
|
case XFS_FMR_OWN_UNKNOWN:
|
|
dest->rm_owner = XFS_RMAP_OWN_UNKNOWN;
|
|
break;
|
|
case XFS_FMR_OWN_FS:
|
|
dest->rm_owner = XFS_RMAP_OWN_FS;
|
|
break;
|
|
case XFS_FMR_OWN_LOG:
|
|
dest->rm_owner = XFS_RMAP_OWN_LOG;
|
|
break;
|
|
case XFS_FMR_OWN_AG:
|
|
dest->rm_owner = XFS_RMAP_OWN_AG;
|
|
break;
|
|
case XFS_FMR_OWN_INOBT:
|
|
dest->rm_owner = XFS_RMAP_OWN_INOBT;
|
|
break;
|
|
case XFS_FMR_OWN_INODES:
|
|
dest->rm_owner = XFS_RMAP_OWN_INODES;
|
|
break;
|
|
case XFS_FMR_OWN_REFC:
|
|
dest->rm_owner = XFS_RMAP_OWN_REFC;
|
|
break;
|
|
case XFS_FMR_OWN_COW:
|
|
dest->rm_owner = XFS_RMAP_OWN_COW;
|
|
break;
|
|
case XFS_FMR_OWN_DEFECTIVE: /* not implemented */
|
|
/* fall through */
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Convert an rmapbt owner into an fsmap owner. */
|
|
static int
|
|
xfs_fsmap_owner_from_rmap(
|
|
struct xfs_fsmap *dest,
|
|
struct xfs_rmap_irec *src)
|
|
{
|
|
dest->fmr_flags = 0;
|
|
if (!XFS_RMAP_NON_INODE_OWNER(src->rm_owner)) {
|
|
dest->fmr_owner = src->rm_owner;
|
|
return 0;
|
|
}
|
|
dest->fmr_flags |= FMR_OF_SPECIAL_OWNER;
|
|
|
|
switch (src->rm_owner) {
|
|
case XFS_RMAP_OWN_FS:
|
|
dest->fmr_owner = XFS_FMR_OWN_FS;
|
|
break;
|
|
case XFS_RMAP_OWN_LOG:
|
|
dest->fmr_owner = XFS_FMR_OWN_LOG;
|
|
break;
|
|
case XFS_RMAP_OWN_AG:
|
|
dest->fmr_owner = XFS_FMR_OWN_AG;
|
|
break;
|
|
case XFS_RMAP_OWN_INOBT:
|
|
dest->fmr_owner = XFS_FMR_OWN_INOBT;
|
|
break;
|
|
case XFS_RMAP_OWN_INODES:
|
|
dest->fmr_owner = XFS_FMR_OWN_INODES;
|
|
break;
|
|
case XFS_RMAP_OWN_REFC:
|
|
dest->fmr_owner = XFS_FMR_OWN_REFC;
|
|
break;
|
|
case XFS_RMAP_OWN_COW:
|
|
dest->fmr_owner = XFS_FMR_OWN_COW;
|
|
break;
|
|
case XFS_RMAP_OWN_NULL: /* "free" */
|
|
dest->fmr_owner = XFS_FMR_OWN_FREE;
|
|
break;
|
|
default:
|
|
ASSERT(0);
|
|
return -EFSCORRUPTED;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* getfsmap query state */
|
|
struct xfs_getfsmap_info {
|
|
struct xfs_fsmap_head *head;
|
|
xfs_fsmap_format_t formatter; /* formatting fn */
|
|
void *format_arg; /* format buffer */
|
|
struct xfs_buf *agf_bp; /* AGF, for refcount queries */
|
|
xfs_daddr_t next_daddr; /* next daddr we expect */
|
|
u64 missing_owner; /* owner of holes */
|
|
u32 dev; /* device id */
|
|
xfs_agnumber_t agno; /* AG number, if applicable */
|
|
struct xfs_rmap_irec low; /* low rmap key */
|
|
struct xfs_rmap_irec high; /* high rmap key */
|
|
bool last; /* last extent? */
|
|
};
|
|
|
|
/* Associate a device with a getfsmap handler. */
|
|
struct xfs_getfsmap_dev {
|
|
u32 dev;
|
|
int (*fn)(struct xfs_trans *tp,
|
|
struct xfs_fsmap *keys,
|
|
struct xfs_getfsmap_info *info);
|
|
};
|
|
|
|
/* Compare two getfsmap device handlers. */
|
|
static int
|
|
xfs_getfsmap_dev_compare(
|
|
const void *p1,
|
|
const void *p2)
|
|
{
|
|
const struct xfs_getfsmap_dev *d1 = p1;
|
|
const struct xfs_getfsmap_dev *d2 = p2;
|
|
|
|
return d1->dev - d2->dev;
|
|
}
|
|
|
|
/* Decide if this mapping is shared. */
|
|
STATIC int
|
|
xfs_getfsmap_is_shared(
|
|
struct xfs_trans *tp,
|
|
struct xfs_getfsmap_info *info,
|
|
struct xfs_rmap_irec *rec,
|
|
bool *stat)
|
|
{
|
|
struct xfs_mount *mp = tp->t_mountp;
|
|
struct xfs_btree_cur *cur;
|
|
xfs_agblock_t fbno;
|
|
xfs_extlen_t flen;
|
|
int error;
|
|
|
|
*stat = false;
|
|
if (!xfs_sb_version_hasreflink(&mp->m_sb))
|
|
return 0;
|
|
/* rt files will have agno set to NULLAGNUMBER */
|
|
if (info->agno == NULLAGNUMBER)
|
|
return 0;
|
|
|
|
/* Are there any shared blocks here? */
|
|
flen = 0;
|
|
cur = xfs_refcountbt_init_cursor(mp, tp, info->agf_bp,
|
|
info->agno);
|
|
|
|
error = xfs_refcount_find_shared(cur, rec->rm_startblock,
|
|
rec->rm_blockcount, &fbno, &flen, false);
|
|
|
|
xfs_btree_del_cursor(cur, error);
|
|
if (error)
|
|
return error;
|
|
|
|
*stat = flen > 0;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Format a reverse mapping for getfsmap, having translated rm_startblock
|
|
* into the appropriate daddr units.
|
|
*/
|
|
STATIC int
|
|
xfs_getfsmap_helper(
|
|
struct xfs_trans *tp,
|
|
struct xfs_getfsmap_info *info,
|
|
struct xfs_rmap_irec *rec,
|
|
xfs_daddr_t rec_daddr)
|
|
{
|
|
struct xfs_fsmap fmr;
|
|
struct xfs_mount *mp = tp->t_mountp;
|
|
bool shared;
|
|
int error;
|
|
|
|
if (fatal_signal_pending(current))
|
|
return -EINTR;
|
|
|
|
/*
|
|
* Filter out records that start before our startpoint, if the
|
|
* caller requested that.
|
|
*/
|
|
if (xfs_rmap_compare(rec, &info->low) < 0) {
|
|
rec_daddr += XFS_FSB_TO_BB(mp, rec->rm_blockcount);
|
|
if (info->next_daddr < rec_daddr)
|
|
info->next_daddr = rec_daddr;
|
|
return 0;
|
|
}
|
|
|
|
/* Are we just counting mappings? */
|
|
if (info->head->fmh_count == 0) {
|
|
if (rec_daddr > info->next_daddr)
|
|
info->head->fmh_entries++;
|
|
|
|
if (info->last)
|
|
return 0;
|
|
|
|
info->head->fmh_entries++;
|
|
|
|
rec_daddr += XFS_FSB_TO_BB(mp, rec->rm_blockcount);
|
|
if (info->next_daddr < rec_daddr)
|
|
info->next_daddr = rec_daddr;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* If the record starts past the last physical block we saw,
|
|
* then we've found a gap. Report the gap as being owned by
|
|
* whatever the caller specified is the missing owner.
|
|
*/
|
|
if (rec_daddr > info->next_daddr) {
|
|
if (info->head->fmh_entries >= info->head->fmh_count)
|
|
return -ECANCELED;
|
|
|
|
fmr.fmr_device = info->dev;
|
|
fmr.fmr_physical = info->next_daddr;
|
|
fmr.fmr_owner = info->missing_owner;
|
|
fmr.fmr_offset = 0;
|
|
fmr.fmr_length = rec_daddr - info->next_daddr;
|
|
fmr.fmr_flags = FMR_OF_SPECIAL_OWNER;
|
|
error = info->formatter(&fmr, info->format_arg);
|
|
if (error)
|
|
return error;
|
|
info->head->fmh_entries++;
|
|
}
|
|
|
|
if (info->last)
|
|
goto out;
|
|
|
|
/* Fill out the extent we found */
|
|
if (info->head->fmh_entries >= info->head->fmh_count)
|
|
return -ECANCELED;
|
|
|
|
trace_xfs_fsmap_mapping(mp, info->dev, info->agno, rec);
|
|
|
|
fmr.fmr_device = info->dev;
|
|
fmr.fmr_physical = rec_daddr;
|
|
error = xfs_fsmap_owner_from_rmap(&fmr, rec);
|
|
if (error)
|
|
return error;
|
|
fmr.fmr_offset = XFS_FSB_TO_BB(mp, rec->rm_offset);
|
|
fmr.fmr_length = XFS_FSB_TO_BB(mp, rec->rm_blockcount);
|
|
if (rec->rm_flags & XFS_RMAP_UNWRITTEN)
|
|
fmr.fmr_flags |= FMR_OF_PREALLOC;
|
|
if (rec->rm_flags & XFS_RMAP_ATTR_FORK)
|
|
fmr.fmr_flags |= FMR_OF_ATTR_FORK;
|
|
if (rec->rm_flags & XFS_RMAP_BMBT_BLOCK)
|
|
fmr.fmr_flags |= FMR_OF_EXTENT_MAP;
|
|
if (fmr.fmr_flags == 0) {
|
|
error = xfs_getfsmap_is_shared(tp, info, rec, &shared);
|
|
if (error)
|
|
return error;
|
|
if (shared)
|
|
fmr.fmr_flags |= FMR_OF_SHARED;
|
|
}
|
|
error = info->formatter(&fmr, info->format_arg);
|
|
if (error)
|
|
return error;
|
|
info->head->fmh_entries++;
|
|
|
|
out:
|
|
rec_daddr += XFS_FSB_TO_BB(mp, rec->rm_blockcount);
|
|
if (info->next_daddr < rec_daddr)
|
|
info->next_daddr = rec_daddr;
|
|
return 0;
|
|
}
|
|
|
|
/* Transform a rmapbt irec into a fsmap */
|
|
STATIC int
|
|
xfs_getfsmap_datadev_helper(
|
|
struct xfs_btree_cur *cur,
|
|
struct xfs_rmap_irec *rec,
|
|
void *priv)
|
|
{
|
|
struct xfs_mount *mp = cur->bc_mp;
|
|
struct xfs_getfsmap_info *info = priv;
|
|
xfs_fsblock_t fsb;
|
|
xfs_daddr_t rec_daddr;
|
|
|
|
fsb = XFS_AGB_TO_FSB(mp, cur->bc_ag.agno, rec->rm_startblock);
|
|
rec_daddr = XFS_FSB_TO_DADDR(mp, fsb);
|
|
|
|
return xfs_getfsmap_helper(cur->bc_tp, info, rec, rec_daddr);
|
|
}
|
|
|
|
/* Transform a bnobt irec into a fsmap */
|
|
STATIC int
|
|
xfs_getfsmap_datadev_bnobt_helper(
|
|
struct xfs_btree_cur *cur,
|
|
struct xfs_alloc_rec_incore *rec,
|
|
void *priv)
|
|
{
|
|
struct xfs_mount *mp = cur->bc_mp;
|
|
struct xfs_getfsmap_info *info = priv;
|
|
struct xfs_rmap_irec irec;
|
|
xfs_daddr_t rec_daddr;
|
|
|
|
rec_daddr = XFS_AGB_TO_DADDR(mp, cur->bc_ag.agno,
|
|
rec->ar_startblock);
|
|
|
|
irec.rm_startblock = rec->ar_startblock;
|
|
irec.rm_blockcount = rec->ar_blockcount;
|
|
irec.rm_owner = XFS_RMAP_OWN_NULL; /* "free" */
|
|
irec.rm_offset = 0;
|
|
irec.rm_flags = 0;
|
|
|
|
return xfs_getfsmap_helper(cur->bc_tp, info, &irec, rec_daddr);
|
|
}
|
|
|
|
/* Set rmap flags based on the getfsmap flags */
|
|
static void
|
|
xfs_getfsmap_set_irec_flags(
|
|
struct xfs_rmap_irec *irec,
|
|
struct xfs_fsmap *fmr)
|
|
{
|
|
irec->rm_flags = 0;
|
|
if (fmr->fmr_flags & FMR_OF_ATTR_FORK)
|
|
irec->rm_flags |= XFS_RMAP_ATTR_FORK;
|
|
if (fmr->fmr_flags & FMR_OF_EXTENT_MAP)
|
|
irec->rm_flags |= XFS_RMAP_BMBT_BLOCK;
|
|
if (fmr->fmr_flags & FMR_OF_PREALLOC)
|
|
irec->rm_flags |= XFS_RMAP_UNWRITTEN;
|
|
}
|
|
|
|
/* Execute a getfsmap query against the log device. */
|
|
STATIC int
|
|
xfs_getfsmap_logdev(
|
|
struct xfs_trans *tp,
|
|
struct xfs_fsmap *keys,
|
|
struct xfs_getfsmap_info *info)
|
|
{
|
|
struct xfs_mount *mp = tp->t_mountp;
|
|
struct xfs_rmap_irec rmap;
|
|
int error;
|
|
|
|
/* Set up search keys */
|
|
info->low.rm_startblock = XFS_BB_TO_FSBT(mp, keys[0].fmr_physical);
|
|
info->low.rm_offset = XFS_BB_TO_FSBT(mp, keys[0].fmr_offset);
|
|
error = xfs_fsmap_owner_to_rmap(&info->low, keys);
|
|
if (error)
|
|
return error;
|
|
info->low.rm_blockcount = 0;
|
|
xfs_getfsmap_set_irec_flags(&info->low, &keys[0]);
|
|
|
|
error = xfs_fsmap_owner_to_rmap(&info->high, keys + 1);
|
|
if (error)
|
|
return error;
|
|
info->high.rm_startblock = -1U;
|
|
info->high.rm_owner = ULLONG_MAX;
|
|
info->high.rm_offset = ULLONG_MAX;
|
|
info->high.rm_blockcount = 0;
|
|
info->high.rm_flags = XFS_RMAP_KEY_FLAGS | XFS_RMAP_REC_FLAGS;
|
|
info->missing_owner = XFS_FMR_OWN_FREE;
|
|
|
|
trace_xfs_fsmap_low_key(mp, info->dev, info->agno, &info->low);
|
|
trace_xfs_fsmap_high_key(mp, info->dev, info->agno, &info->high);
|
|
|
|
if (keys[0].fmr_physical > 0)
|
|
return 0;
|
|
|
|
/* Fabricate an rmap entry for the external log device. */
|
|
rmap.rm_startblock = 0;
|
|
rmap.rm_blockcount = mp->m_sb.sb_logblocks;
|
|
rmap.rm_owner = XFS_RMAP_OWN_LOG;
|
|
rmap.rm_offset = 0;
|
|
rmap.rm_flags = 0;
|
|
|
|
return xfs_getfsmap_helper(tp, info, &rmap, 0);
|
|
}
|
|
|
|
#ifdef CONFIG_XFS_RT
|
|
/* Transform a rtbitmap "record" into a fsmap */
|
|
STATIC int
|
|
xfs_getfsmap_rtdev_rtbitmap_helper(
|
|
struct xfs_trans *tp,
|
|
struct xfs_rtalloc_rec *rec,
|
|
void *priv)
|
|
{
|
|
struct xfs_mount *mp = tp->t_mountp;
|
|
struct xfs_getfsmap_info *info = priv;
|
|
struct xfs_rmap_irec irec;
|
|
xfs_daddr_t rec_daddr;
|
|
|
|
irec.rm_startblock = rec->ar_startext * mp->m_sb.sb_rextsize;
|
|
rec_daddr = XFS_FSB_TO_BB(mp, irec.rm_startblock);
|
|
irec.rm_blockcount = rec->ar_extcount * mp->m_sb.sb_rextsize;
|
|
irec.rm_owner = XFS_RMAP_OWN_NULL; /* "free" */
|
|
irec.rm_offset = 0;
|
|
irec.rm_flags = 0;
|
|
|
|
return xfs_getfsmap_helper(tp, info, &irec, rec_daddr);
|
|
}
|
|
|
|
/* Execute a getfsmap query against the realtime device. */
|
|
STATIC int
|
|
__xfs_getfsmap_rtdev(
|
|
struct xfs_trans *tp,
|
|
struct xfs_fsmap *keys,
|
|
int (*query_fn)(struct xfs_trans *,
|
|
struct xfs_getfsmap_info *),
|
|
struct xfs_getfsmap_info *info)
|
|
{
|
|
struct xfs_mount *mp = tp->t_mountp;
|
|
xfs_fsblock_t start_fsb;
|
|
xfs_fsblock_t end_fsb;
|
|
xfs_daddr_t eofs;
|
|
int error = 0;
|
|
|
|
eofs = XFS_FSB_TO_BB(mp, mp->m_sb.sb_rblocks);
|
|
if (keys[0].fmr_physical >= eofs)
|
|
return 0;
|
|
if (keys[1].fmr_physical >= eofs)
|
|
keys[1].fmr_physical = eofs - 1;
|
|
start_fsb = XFS_BB_TO_FSBT(mp, keys[0].fmr_physical);
|
|
end_fsb = XFS_BB_TO_FSB(mp, keys[1].fmr_physical);
|
|
|
|
/* Set up search keys */
|
|
info->low.rm_startblock = start_fsb;
|
|
error = xfs_fsmap_owner_to_rmap(&info->low, &keys[0]);
|
|
if (error)
|
|
return error;
|
|
info->low.rm_offset = XFS_BB_TO_FSBT(mp, keys[0].fmr_offset);
|
|
info->low.rm_blockcount = 0;
|
|
xfs_getfsmap_set_irec_flags(&info->low, &keys[0]);
|
|
|
|
info->high.rm_startblock = end_fsb;
|
|
error = xfs_fsmap_owner_to_rmap(&info->high, &keys[1]);
|
|
if (error)
|
|
return error;
|
|
info->high.rm_offset = XFS_BB_TO_FSBT(mp, keys[1].fmr_offset);
|
|
info->high.rm_blockcount = 0;
|
|
xfs_getfsmap_set_irec_flags(&info->high, &keys[1]);
|
|
|
|
trace_xfs_fsmap_low_key(mp, info->dev, info->agno, &info->low);
|
|
trace_xfs_fsmap_high_key(mp, info->dev, info->agno, &info->high);
|
|
|
|
return query_fn(tp, info);
|
|
}
|
|
|
|
/* Actually query the realtime bitmap. */
|
|
STATIC int
|
|
xfs_getfsmap_rtdev_rtbitmap_query(
|
|
struct xfs_trans *tp,
|
|
struct xfs_getfsmap_info *info)
|
|
{
|
|
struct xfs_rtalloc_rec alow = { 0 };
|
|
struct xfs_rtalloc_rec ahigh = { 0 };
|
|
int error;
|
|
|
|
xfs_ilock(tp->t_mountp->m_rbmip, XFS_ILOCK_SHARED);
|
|
|
|
alow.ar_startext = info->low.rm_startblock;
|
|
ahigh.ar_startext = info->high.rm_startblock;
|
|
do_div(alow.ar_startext, tp->t_mountp->m_sb.sb_rextsize);
|
|
if (do_div(ahigh.ar_startext, tp->t_mountp->m_sb.sb_rextsize))
|
|
ahigh.ar_startext++;
|
|
error = xfs_rtalloc_query_range(tp, &alow, &ahigh,
|
|
xfs_getfsmap_rtdev_rtbitmap_helper, info);
|
|
if (error)
|
|
goto err;
|
|
|
|
/* Report any gaps at the end of the rtbitmap */
|
|
info->last = true;
|
|
error = xfs_getfsmap_rtdev_rtbitmap_helper(tp, &ahigh, info);
|
|
if (error)
|
|
goto err;
|
|
err:
|
|
xfs_iunlock(tp->t_mountp->m_rbmip, XFS_ILOCK_SHARED);
|
|
return error;
|
|
}
|
|
|
|
/* Execute a getfsmap query against the realtime device rtbitmap. */
|
|
STATIC int
|
|
xfs_getfsmap_rtdev_rtbitmap(
|
|
struct xfs_trans *tp,
|
|
struct xfs_fsmap *keys,
|
|
struct xfs_getfsmap_info *info)
|
|
{
|
|
info->missing_owner = XFS_FMR_OWN_UNKNOWN;
|
|
return __xfs_getfsmap_rtdev(tp, keys, xfs_getfsmap_rtdev_rtbitmap_query,
|
|
info);
|
|
}
|
|
#endif /* CONFIG_XFS_RT */
|
|
|
|
/* Execute a getfsmap query against the regular data device. */
|
|
STATIC int
|
|
__xfs_getfsmap_datadev(
|
|
struct xfs_trans *tp,
|
|
struct xfs_fsmap *keys,
|
|
struct xfs_getfsmap_info *info,
|
|
int (*query_fn)(struct xfs_trans *,
|
|
struct xfs_getfsmap_info *,
|
|
struct xfs_btree_cur **,
|
|
void *),
|
|
void *priv)
|
|
{
|
|
struct xfs_mount *mp = tp->t_mountp;
|
|
struct xfs_btree_cur *bt_cur = NULL;
|
|
xfs_fsblock_t start_fsb;
|
|
xfs_fsblock_t end_fsb;
|
|
xfs_agnumber_t start_ag;
|
|
xfs_agnumber_t end_ag;
|
|
xfs_daddr_t eofs;
|
|
int error = 0;
|
|
|
|
eofs = XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
|
|
if (keys[0].fmr_physical >= eofs)
|
|
return 0;
|
|
if (keys[1].fmr_physical >= eofs)
|
|
keys[1].fmr_physical = eofs - 1;
|
|
start_fsb = XFS_DADDR_TO_FSB(mp, keys[0].fmr_physical);
|
|
end_fsb = XFS_DADDR_TO_FSB(mp, keys[1].fmr_physical);
|
|
|
|
/*
|
|
* Convert the fsmap low/high keys to AG based keys. Initialize
|
|
* low to the fsmap low key and max out the high key to the end
|
|
* of the AG.
|
|
*/
|
|
info->low.rm_startblock = XFS_FSB_TO_AGBNO(mp, start_fsb);
|
|
info->low.rm_offset = XFS_BB_TO_FSBT(mp, keys[0].fmr_offset);
|
|
error = xfs_fsmap_owner_to_rmap(&info->low, &keys[0]);
|
|
if (error)
|
|
return error;
|
|
info->low.rm_blockcount = 0;
|
|
xfs_getfsmap_set_irec_flags(&info->low, &keys[0]);
|
|
|
|
info->high.rm_startblock = -1U;
|
|
info->high.rm_owner = ULLONG_MAX;
|
|
info->high.rm_offset = ULLONG_MAX;
|
|
info->high.rm_blockcount = 0;
|
|
info->high.rm_flags = XFS_RMAP_KEY_FLAGS | XFS_RMAP_REC_FLAGS;
|
|
|
|
start_ag = XFS_FSB_TO_AGNO(mp, start_fsb);
|
|
end_ag = XFS_FSB_TO_AGNO(mp, end_fsb);
|
|
|
|
/* Query each AG */
|
|
for (info->agno = start_ag; info->agno <= end_ag; info->agno++) {
|
|
/*
|
|
* Set the AG high key from the fsmap high key if this
|
|
* is the last AG that we're querying.
|
|
*/
|
|
if (info->agno == end_ag) {
|
|
info->high.rm_startblock = XFS_FSB_TO_AGBNO(mp,
|
|
end_fsb);
|
|
info->high.rm_offset = XFS_BB_TO_FSBT(mp,
|
|
keys[1].fmr_offset);
|
|
error = xfs_fsmap_owner_to_rmap(&info->high, &keys[1]);
|
|
if (error)
|
|
goto err;
|
|
xfs_getfsmap_set_irec_flags(&info->high, &keys[1]);
|
|
}
|
|
|
|
if (bt_cur) {
|
|
xfs_btree_del_cursor(bt_cur, XFS_BTREE_NOERROR);
|
|
bt_cur = NULL;
|
|
xfs_trans_brelse(tp, info->agf_bp);
|
|
info->agf_bp = NULL;
|
|
}
|
|
|
|
error = xfs_alloc_read_agf(mp, tp, info->agno, 0,
|
|
&info->agf_bp);
|
|
if (error)
|
|
goto err;
|
|
|
|
trace_xfs_fsmap_low_key(mp, info->dev, info->agno, &info->low);
|
|
trace_xfs_fsmap_high_key(mp, info->dev, info->agno,
|
|
&info->high);
|
|
|
|
error = query_fn(tp, info, &bt_cur, priv);
|
|
if (error)
|
|
goto err;
|
|
|
|
/*
|
|
* Set the AG low key to the start of the AG prior to
|
|
* moving on to the next AG.
|
|
*/
|
|
if (info->agno == start_ag) {
|
|
info->low.rm_startblock = 0;
|
|
info->low.rm_owner = 0;
|
|
info->low.rm_offset = 0;
|
|
info->low.rm_flags = 0;
|
|
}
|
|
}
|
|
|
|
/* Report any gap at the end of the AG */
|
|
info->last = true;
|
|
error = query_fn(tp, info, &bt_cur, priv);
|
|
if (error)
|
|
goto err;
|
|
|
|
err:
|
|
if (bt_cur)
|
|
xfs_btree_del_cursor(bt_cur, error < 0 ? XFS_BTREE_ERROR :
|
|
XFS_BTREE_NOERROR);
|
|
if (info->agf_bp) {
|
|
xfs_trans_brelse(tp, info->agf_bp);
|
|
info->agf_bp = NULL;
|
|
}
|
|
|
|
return error;
|
|
}
|
|
|
|
/* Actually query the rmap btree. */
|
|
STATIC int
|
|
xfs_getfsmap_datadev_rmapbt_query(
|
|
struct xfs_trans *tp,
|
|
struct xfs_getfsmap_info *info,
|
|
struct xfs_btree_cur **curpp,
|
|
void *priv)
|
|
{
|
|
/* Report any gap at the end of the last AG. */
|
|
if (info->last)
|
|
return xfs_getfsmap_datadev_helper(*curpp, &info->high, info);
|
|
|
|
/* Allocate cursor for this AG and query_range it. */
|
|
*curpp = xfs_rmapbt_init_cursor(tp->t_mountp, tp, info->agf_bp,
|
|
info->agno);
|
|
return xfs_rmap_query_range(*curpp, &info->low, &info->high,
|
|
xfs_getfsmap_datadev_helper, info);
|
|
}
|
|
|
|
/* Execute a getfsmap query against the regular data device rmapbt. */
|
|
STATIC int
|
|
xfs_getfsmap_datadev_rmapbt(
|
|
struct xfs_trans *tp,
|
|
struct xfs_fsmap *keys,
|
|
struct xfs_getfsmap_info *info)
|
|
{
|
|
info->missing_owner = XFS_FMR_OWN_FREE;
|
|
return __xfs_getfsmap_datadev(tp, keys, info,
|
|
xfs_getfsmap_datadev_rmapbt_query, NULL);
|
|
}
|
|
|
|
/* Actually query the bno btree. */
|
|
STATIC int
|
|
xfs_getfsmap_datadev_bnobt_query(
|
|
struct xfs_trans *tp,
|
|
struct xfs_getfsmap_info *info,
|
|
struct xfs_btree_cur **curpp,
|
|
void *priv)
|
|
{
|
|
struct xfs_alloc_rec_incore *key = priv;
|
|
|
|
/* Report any gap at the end of the last AG. */
|
|
if (info->last)
|
|
return xfs_getfsmap_datadev_bnobt_helper(*curpp, &key[1], info);
|
|
|
|
/* Allocate cursor for this AG and query_range it. */
|
|
*curpp = xfs_allocbt_init_cursor(tp->t_mountp, tp, info->agf_bp,
|
|
info->agno, XFS_BTNUM_BNO);
|
|
key->ar_startblock = info->low.rm_startblock;
|
|
key[1].ar_startblock = info->high.rm_startblock;
|
|
return xfs_alloc_query_range(*curpp, key, &key[1],
|
|
xfs_getfsmap_datadev_bnobt_helper, info);
|
|
}
|
|
|
|
/* Execute a getfsmap query against the regular data device's bnobt. */
|
|
STATIC int
|
|
xfs_getfsmap_datadev_bnobt(
|
|
struct xfs_trans *tp,
|
|
struct xfs_fsmap *keys,
|
|
struct xfs_getfsmap_info *info)
|
|
{
|
|
struct xfs_alloc_rec_incore akeys[2];
|
|
|
|
info->missing_owner = XFS_FMR_OWN_UNKNOWN;
|
|
return __xfs_getfsmap_datadev(tp, keys, info,
|
|
xfs_getfsmap_datadev_bnobt_query, &akeys[0]);
|
|
}
|
|
|
|
/* Do we recognize the device? */
|
|
STATIC bool
|
|
xfs_getfsmap_is_valid_device(
|
|
struct xfs_mount *mp,
|
|
struct xfs_fsmap *fm)
|
|
{
|
|
if (fm->fmr_device == 0 || fm->fmr_device == UINT_MAX ||
|
|
fm->fmr_device == new_encode_dev(mp->m_ddev_targp->bt_dev))
|
|
return true;
|
|
if (mp->m_logdev_targp &&
|
|
fm->fmr_device == new_encode_dev(mp->m_logdev_targp->bt_dev))
|
|
return true;
|
|
if (mp->m_rtdev_targp &&
|
|
fm->fmr_device == new_encode_dev(mp->m_rtdev_targp->bt_dev))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/* Ensure that the low key is less than the high key. */
|
|
STATIC bool
|
|
xfs_getfsmap_check_keys(
|
|
struct xfs_fsmap *low_key,
|
|
struct xfs_fsmap *high_key)
|
|
{
|
|
if (low_key->fmr_device > high_key->fmr_device)
|
|
return false;
|
|
if (low_key->fmr_device < high_key->fmr_device)
|
|
return true;
|
|
|
|
if (low_key->fmr_physical > high_key->fmr_physical)
|
|
return false;
|
|
if (low_key->fmr_physical < high_key->fmr_physical)
|
|
return true;
|
|
|
|
if (low_key->fmr_owner > high_key->fmr_owner)
|
|
return false;
|
|
if (low_key->fmr_owner < high_key->fmr_owner)
|
|
return true;
|
|
|
|
if (low_key->fmr_offset > high_key->fmr_offset)
|
|
return false;
|
|
if (low_key->fmr_offset < high_key->fmr_offset)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* There are only two devices if we didn't configure RT devices at build time.
|
|
*/
|
|
#ifdef CONFIG_XFS_RT
|
|
#define XFS_GETFSMAP_DEVS 3
|
|
#else
|
|
#define XFS_GETFSMAP_DEVS 2
|
|
#endif /* CONFIG_XFS_RT */
|
|
|
|
/*
|
|
* Get filesystem's extents as described in head, and format for
|
|
* output. Calls formatter to fill the user's buffer until all
|
|
* extents are mapped, until the passed-in head->fmh_count slots have
|
|
* been filled, or until the formatter short-circuits the loop, if it
|
|
* is tracking filled-in extents on its own.
|
|
*
|
|
* Key to Confusion
|
|
* ----------------
|
|
* There are multiple levels of keys and counters at work here:
|
|
* xfs_fsmap_head.fmh_keys -- low and high fsmap keys passed in;
|
|
* these reflect fs-wide sector addrs.
|
|
* dkeys -- fmh_keys used to query each device;
|
|
* these are fmh_keys but w/ the low key
|
|
* bumped up by fmr_length.
|
|
* xfs_getfsmap_info.next_daddr -- next disk addr we expect to see; this
|
|
* is how we detect gaps in the fsmap
|
|
records and report them.
|
|
* xfs_getfsmap_info.low/high -- per-AG low/high keys computed from
|
|
* dkeys; used to query the metadata.
|
|
*/
|
|
int
|
|
xfs_getfsmap(
|
|
struct xfs_mount *mp,
|
|
struct xfs_fsmap_head *head,
|
|
xfs_fsmap_format_t formatter,
|
|
void *arg)
|
|
{
|
|
struct xfs_trans *tp = NULL;
|
|
struct xfs_fsmap dkeys[2]; /* per-dev keys */
|
|
struct xfs_getfsmap_dev handlers[XFS_GETFSMAP_DEVS];
|
|
struct xfs_getfsmap_info info = { NULL };
|
|
bool use_rmap;
|
|
int i;
|
|
int error = 0;
|
|
|
|
if (head->fmh_iflags & ~FMH_IF_VALID)
|
|
return -EINVAL;
|
|
if (!xfs_getfsmap_is_valid_device(mp, &head->fmh_keys[0]) ||
|
|
!xfs_getfsmap_is_valid_device(mp, &head->fmh_keys[1]))
|
|
return -EINVAL;
|
|
|
|
use_rmap = capable(CAP_SYS_ADMIN) &&
|
|
xfs_sb_version_hasrmapbt(&mp->m_sb);
|
|
head->fmh_entries = 0;
|
|
|
|
/* Set up our device handlers. */
|
|
memset(handlers, 0, sizeof(handlers));
|
|
handlers[0].dev = new_encode_dev(mp->m_ddev_targp->bt_dev);
|
|
if (use_rmap)
|
|
handlers[0].fn = xfs_getfsmap_datadev_rmapbt;
|
|
else
|
|
handlers[0].fn = xfs_getfsmap_datadev_bnobt;
|
|
if (mp->m_logdev_targp != mp->m_ddev_targp) {
|
|
handlers[1].dev = new_encode_dev(mp->m_logdev_targp->bt_dev);
|
|
handlers[1].fn = xfs_getfsmap_logdev;
|
|
}
|
|
#ifdef CONFIG_XFS_RT
|
|
if (mp->m_rtdev_targp) {
|
|
handlers[2].dev = new_encode_dev(mp->m_rtdev_targp->bt_dev);
|
|
handlers[2].fn = xfs_getfsmap_rtdev_rtbitmap;
|
|
}
|
|
#endif /* CONFIG_XFS_RT */
|
|
|
|
xfs_sort(handlers, XFS_GETFSMAP_DEVS, sizeof(struct xfs_getfsmap_dev),
|
|
xfs_getfsmap_dev_compare);
|
|
|
|
/*
|
|
* To continue where we left off, we allow userspace to use the
|
|
* last mapping from a previous call as the low key of the next.
|
|
* This is identified by a non-zero length in the low key. We
|
|
* have to increment the low key in this scenario to ensure we
|
|
* don't return the same mapping again, and instead return the
|
|
* very next mapping.
|
|
*
|
|
* If the low key mapping refers to file data, the same physical
|
|
* blocks could be mapped to several other files/offsets.
|
|
* According to rmapbt record ordering, the minimal next
|
|
* possible record for the block range is the next starting
|
|
* offset in the same inode. Therefore, bump the file offset to
|
|
* continue the search appropriately. For all other low key
|
|
* mapping types (attr blocks, metadata), bump the physical
|
|
* offset as there can be no other mapping for the same physical
|
|
* block range.
|
|
*/
|
|
dkeys[0] = head->fmh_keys[0];
|
|
if (dkeys[0].fmr_flags & (FMR_OF_SPECIAL_OWNER | FMR_OF_EXTENT_MAP)) {
|
|
dkeys[0].fmr_physical += dkeys[0].fmr_length;
|
|
dkeys[0].fmr_owner = 0;
|
|
if (dkeys[0].fmr_offset)
|
|
return -EINVAL;
|
|
} else
|
|
dkeys[0].fmr_offset += dkeys[0].fmr_length;
|
|
dkeys[0].fmr_length = 0;
|
|
memset(&dkeys[1], 0xFF, sizeof(struct xfs_fsmap));
|
|
|
|
if (!xfs_getfsmap_check_keys(dkeys, &head->fmh_keys[1]))
|
|
return -EINVAL;
|
|
|
|
info.next_daddr = head->fmh_keys[0].fmr_physical +
|
|
head->fmh_keys[0].fmr_length;
|
|
info.formatter = formatter;
|
|
info.format_arg = arg;
|
|
info.head = head;
|
|
|
|
/*
|
|
* If fsmap runs concurrently with a scrub, the freeze can be delayed
|
|
* indefinitely as we walk the rmapbt and iterate over metadata
|
|
* buffers. Freeze quiesces the log (which waits for the buffer LRU to
|
|
* be emptied) and that won't happen while we're reading buffers.
|
|
*/
|
|
sb_start_write(mp->m_super);
|
|
|
|
/* For each device we support... */
|
|
for (i = 0; i < XFS_GETFSMAP_DEVS; i++) {
|
|
/* Is this device within the range the user asked for? */
|
|
if (!handlers[i].fn)
|
|
continue;
|
|
if (head->fmh_keys[0].fmr_device > handlers[i].dev)
|
|
continue;
|
|
if (head->fmh_keys[1].fmr_device < handlers[i].dev)
|
|
break;
|
|
|
|
/*
|
|
* If this device number matches the high key, we have
|
|
* to pass the high key to the handler to limit the
|
|
* query results. If the device number exceeds the
|
|
* low key, zero out the low key so that we get
|
|
* everything from the beginning.
|
|
*/
|
|
if (handlers[i].dev == head->fmh_keys[1].fmr_device)
|
|
dkeys[1] = head->fmh_keys[1];
|
|
if (handlers[i].dev > head->fmh_keys[0].fmr_device)
|
|
memset(&dkeys[0], 0, sizeof(struct xfs_fsmap));
|
|
|
|
error = xfs_trans_alloc_empty(mp, &tp);
|
|
if (error)
|
|
break;
|
|
|
|
info.dev = handlers[i].dev;
|
|
info.last = false;
|
|
info.agno = NULLAGNUMBER;
|
|
error = handlers[i].fn(tp, dkeys, &info);
|
|
if (error)
|
|
break;
|
|
xfs_trans_cancel(tp);
|
|
tp = NULL;
|
|
info.next_daddr = 0;
|
|
}
|
|
|
|
if (tp)
|
|
xfs_trans_cancel(tp);
|
|
sb_end_write(mp->m_super);
|
|
head->fmh_oflags = FMH_OF_DEV_T;
|
|
return error;
|
|
}
|