linux_dsm_epyc7002/drivers/mtd/nand/raw/fsl_ifc_nand.c
Boris Brezillon f1d46942e8 mtd: rawnand: Pass a nand_chip object to chip->waitfunc()
Let's make the raw NAND API consistent by patching all helpers and
hooks to take a nand_chip object instead of an mtd_info one or
remove the mtd_info object when both are passed.

Let's tackle the chip->waitfunc() hook.

Signed-off-by: Boris Brezillon <boris.brezillon@bootlin.com>
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
2018-10-03 11:12:25 +02:00

1146 lines
31 KiB
C

/*
* Freescale Integrated Flash Controller NAND driver
*
* Copyright 2011-2012 Freescale Semiconductor, Inc
*
* Author: Dipen Dudhat <Dipen.Dudhat@freescale.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/module.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/of_address.h>
#include <linux/slab.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/rawnand.h>
#include <linux/mtd/partitions.h>
#include <linux/mtd/nand_ecc.h>
#include <linux/fsl_ifc.h>
#include <linux/iopoll.h>
#define ERR_BYTE 0xFF /* Value returned for read
bytes when read failed */
#define IFC_TIMEOUT_MSECS 500 /* Maximum number of mSecs to wait
for IFC NAND Machine */
struct fsl_ifc_ctrl;
/* mtd information per set */
struct fsl_ifc_mtd {
struct nand_chip chip;
struct fsl_ifc_ctrl *ctrl;
struct device *dev;
int bank; /* Chip select bank number */
unsigned int bufnum_mask; /* bufnum = page & bufnum_mask */
u8 __iomem *vbase; /* Chip select base virtual address */
};
/* overview of the fsl ifc controller */
struct fsl_ifc_nand_ctrl {
struct nand_controller controller;
struct fsl_ifc_mtd *chips[FSL_IFC_BANK_COUNT];
void __iomem *addr; /* Address of assigned IFC buffer */
unsigned int page; /* Last page written to / read from */
unsigned int read_bytes;/* Number of bytes read during command */
unsigned int column; /* Saved column from SEQIN */
unsigned int index; /* Pointer to next byte to 'read' */
unsigned int oob; /* Non zero if operating on OOB data */
unsigned int eccread; /* Non zero for a full-page ECC read */
unsigned int counter; /* counter for the initializations */
unsigned int max_bitflips; /* Saved during READ0 cmd */
};
static struct fsl_ifc_nand_ctrl *ifc_nand_ctrl;
/*
* Generic flash bbt descriptors
*/
static u8 bbt_pattern[] = {'B', 'b', 't', '0' };
static u8 mirror_pattern[] = {'1', 't', 'b', 'B' };
static struct nand_bbt_descr bbt_main_descr = {
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
NAND_BBT_2BIT | NAND_BBT_VERSION,
.offs = 2, /* 0 on 8-bit small page */
.len = 4,
.veroffs = 6,
.maxblocks = 4,
.pattern = bbt_pattern,
};
static struct nand_bbt_descr bbt_mirror_descr = {
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
NAND_BBT_2BIT | NAND_BBT_VERSION,
.offs = 2, /* 0 on 8-bit small page */
.len = 4,
.veroffs = 6,
.maxblocks = 4,
.pattern = mirror_pattern,
};
static int fsl_ifc_ooblayout_ecc(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
struct nand_chip *chip = mtd_to_nand(mtd);
if (section)
return -ERANGE;
oobregion->offset = 8;
oobregion->length = chip->ecc.total;
return 0;
}
static int fsl_ifc_ooblayout_free(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
struct nand_chip *chip = mtd_to_nand(mtd);
if (section > 1)
return -ERANGE;
if (mtd->writesize == 512 &&
!(chip->options & NAND_BUSWIDTH_16)) {
if (!section) {
oobregion->offset = 0;
oobregion->length = 5;
} else {
oobregion->offset = 6;
oobregion->length = 2;
}
return 0;
}
if (!section) {
oobregion->offset = 2;
oobregion->length = 6;
} else {
oobregion->offset = chip->ecc.total + 8;
oobregion->length = mtd->oobsize - oobregion->offset;
}
return 0;
}
static const struct mtd_ooblayout_ops fsl_ifc_ooblayout_ops = {
.ecc = fsl_ifc_ooblayout_ecc,
.free = fsl_ifc_ooblayout_free,
};
/*
* Set up the IFC hardware block and page address fields, and the ifc nand
* structure addr field to point to the correct IFC buffer in memory
*/
static void set_addr(struct mtd_info *mtd, int column, int page_addr, int oob)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
struct fsl_ifc_ctrl *ctrl = priv->ctrl;
struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs;
int buf_num;
ifc_nand_ctrl->page = page_addr;
/* Program ROW0/COL0 */
ifc_out32(page_addr, &ifc->ifc_nand.row0);
ifc_out32((oob ? IFC_NAND_COL_MS : 0) | column, &ifc->ifc_nand.col0);
buf_num = page_addr & priv->bufnum_mask;
ifc_nand_ctrl->addr = priv->vbase + buf_num * (mtd->writesize * 2);
ifc_nand_ctrl->index = column;
/* for OOB data point to the second half of the buffer */
if (oob)
ifc_nand_ctrl->index += mtd->writesize;
}
/* returns nonzero if entire page is blank */
static int check_read_ecc(struct mtd_info *mtd, struct fsl_ifc_ctrl *ctrl,
u32 eccstat, unsigned int bufnum)
{
return (eccstat >> ((3 - bufnum % 4) * 8)) & 15;
}
/*
* execute IFC NAND command and wait for it to complete
*/
static void fsl_ifc_run_command(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
struct fsl_ifc_ctrl *ctrl = priv->ctrl;
struct fsl_ifc_nand_ctrl *nctrl = ifc_nand_ctrl;
struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs;
u32 eccstat;
int i;
/* set the chip select for NAND Transaction */
ifc_out32(priv->bank << IFC_NAND_CSEL_SHIFT,
&ifc->ifc_nand.nand_csel);
dev_vdbg(priv->dev,
"%s: fir0=%08x fcr0=%08x\n",
__func__,
ifc_in32(&ifc->ifc_nand.nand_fir0),
ifc_in32(&ifc->ifc_nand.nand_fcr0));
ctrl->nand_stat = 0;
/* start read/write seq */
ifc_out32(IFC_NAND_SEQ_STRT_FIR_STRT, &ifc->ifc_nand.nandseq_strt);
/* wait for command complete flag or timeout */
wait_event_timeout(ctrl->nand_wait, ctrl->nand_stat,
msecs_to_jiffies(IFC_TIMEOUT_MSECS));
/* ctrl->nand_stat will be updated from IRQ context */
if (!ctrl->nand_stat)
dev_err(priv->dev, "Controller is not responding\n");
if (ctrl->nand_stat & IFC_NAND_EVTER_STAT_FTOER)
dev_err(priv->dev, "NAND Flash Timeout Error\n");
if (ctrl->nand_stat & IFC_NAND_EVTER_STAT_WPER)
dev_err(priv->dev, "NAND Flash Write Protect Error\n");
nctrl->max_bitflips = 0;
if (nctrl->eccread) {
int errors;
int bufnum = nctrl->page & priv->bufnum_mask;
int sector_start = bufnum * chip->ecc.steps;
int sector_end = sector_start + chip->ecc.steps - 1;
__be32 __iomem *eccstat_regs;
eccstat_regs = ifc->ifc_nand.nand_eccstat;
eccstat = ifc_in32(&eccstat_regs[sector_start / 4]);
for (i = sector_start; i <= sector_end; i++) {
if (i != sector_start && !(i % 4))
eccstat = ifc_in32(&eccstat_regs[i / 4]);
errors = check_read_ecc(mtd, ctrl, eccstat, i);
if (errors == 15) {
/*
* Uncorrectable error.
* We'll check for blank pages later.
*
* We disable ECCER reporting due to...
* erratum IFC-A002770 -- so report it now if we
* see an uncorrectable error in ECCSTAT.
*/
ctrl->nand_stat |= IFC_NAND_EVTER_STAT_ECCER;
continue;
}
mtd->ecc_stats.corrected += errors;
nctrl->max_bitflips = max_t(unsigned int,
nctrl->max_bitflips,
errors);
}
nctrl->eccread = 0;
}
}
static void fsl_ifc_do_read(struct nand_chip *chip,
int oob,
struct mtd_info *mtd)
{
struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
struct fsl_ifc_ctrl *ctrl = priv->ctrl;
struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs;
/* Program FIR/IFC_NAND_FCR0 for Small/Large page */
if (mtd->writesize > 512) {
ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
(IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
(IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) |
(IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP3_SHIFT) |
(IFC_FIR_OP_RBCD << IFC_NAND_FIR0_OP4_SHIFT),
&ifc->ifc_nand.nand_fir0);
ifc_out32(0x0, &ifc->ifc_nand.nand_fir1);
ifc_out32((NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT) |
(NAND_CMD_READSTART << IFC_NAND_FCR0_CMD1_SHIFT),
&ifc->ifc_nand.nand_fcr0);
} else {
ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
(IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
(IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) |
(IFC_FIR_OP_RBCD << IFC_NAND_FIR0_OP3_SHIFT),
&ifc->ifc_nand.nand_fir0);
ifc_out32(0x0, &ifc->ifc_nand.nand_fir1);
if (oob)
ifc_out32(NAND_CMD_READOOB <<
IFC_NAND_FCR0_CMD0_SHIFT,
&ifc->ifc_nand.nand_fcr0);
else
ifc_out32(NAND_CMD_READ0 <<
IFC_NAND_FCR0_CMD0_SHIFT,
&ifc->ifc_nand.nand_fcr0);
}
}
/* cmdfunc send commands to the IFC NAND Machine */
static void fsl_ifc_cmdfunc(struct nand_chip *chip, unsigned int command,
int column, int page_addr) {
struct mtd_info *mtd = nand_to_mtd(chip);
struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
struct fsl_ifc_ctrl *ctrl = priv->ctrl;
struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs;
/* clear the read buffer */
ifc_nand_ctrl->read_bytes = 0;
if (command != NAND_CMD_PAGEPROG)
ifc_nand_ctrl->index = 0;
switch (command) {
/* READ0 read the entire buffer to use hardware ECC. */
case NAND_CMD_READ0:
ifc_out32(0, &ifc->ifc_nand.nand_fbcr);
set_addr(mtd, 0, page_addr, 0);
ifc_nand_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
ifc_nand_ctrl->index += column;
if (chip->ecc.mode == NAND_ECC_HW)
ifc_nand_ctrl->eccread = 1;
fsl_ifc_do_read(chip, 0, mtd);
fsl_ifc_run_command(mtd);
return;
/* READOOB reads only the OOB because no ECC is performed. */
case NAND_CMD_READOOB:
ifc_out32(mtd->oobsize - column, &ifc->ifc_nand.nand_fbcr);
set_addr(mtd, column, page_addr, 1);
ifc_nand_ctrl->read_bytes = mtd->writesize + mtd->oobsize;
fsl_ifc_do_read(chip, 1, mtd);
fsl_ifc_run_command(mtd);
return;
case NAND_CMD_READID:
case NAND_CMD_PARAM: {
/*
* For READID, read 8 bytes that are currently used.
* For PARAM, read all 3 copies of 256-bytes pages.
*/
int len = 8;
int timing = IFC_FIR_OP_RB;
if (command == NAND_CMD_PARAM) {
timing = IFC_FIR_OP_RBCD;
len = 256 * 3;
}
ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
(IFC_FIR_OP_UA << IFC_NAND_FIR0_OP1_SHIFT) |
(timing << IFC_NAND_FIR0_OP2_SHIFT),
&ifc->ifc_nand.nand_fir0);
ifc_out32(command << IFC_NAND_FCR0_CMD0_SHIFT,
&ifc->ifc_nand.nand_fcr0);
ifc_out32(column, &ifc->ifc_nand.row3);
ifc_out32(len, &ifc->ifc_nand.nand_fbcr);
ifc_nand_ctrl->read_bytes = len;
set_addr(mtd, 0, 0, 0);
fsl_ifc_run_command(mtd);
return;
}
/* ERASE1 stores the block and page address */
case NAND_CMD_ERASE1:
set_addr(mtd, 0, page_addr, 0);
return;
/* ERASE2 uses the block and page address from ERASE1 */
case NAND_CMD_ERASE2:
ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
(IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP1_SHIFT) |
(IFC_FIR_OP_CMD1 << IFC_NAND_FIR0_OP2_SHIFT),
&ifc->ifc_nand.nand_fir0);
ifc_out32((NAND_CMD_ERASE1 << IFC_NAND_FCR0_CMD0_SHIFT) |
(NAND_CMD_ERASE2 << IFC_NAND_FCR0_CMD1_SHIFT),
&ifc->ifc_nand.nand_fcr0);
ifc_out32(0, &ifc->ifc_nand.nand_fbcr);
ifc_nand_ctrl->read_bytes = 0;
fsl_ifc_run_command(mtd);
return;
/* SEQIN sets up the addr buffer and all registers except the length */
case NAND_CMD_SEQIN: {
u32 nand_fcr0;
ifc_nand_ctrl->column = column;
ifc_nand_ctrl->oob = 0;
if (mtd->writesize > 512) {
nand_fcr0 =
(NAND_CMD_SEQIN << IFC_NAND_FCR0_CMD0_SHIFT) |
(NAND_CMD_STATUS << IFC_NAND_FCR0_CMD1_SHIFT) |
(NAND_CMD_PAGEPROG << IFC_NAND_FCR0_CMD2_SHIFT);
ifc_out32(
(IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
(IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP1_SHIFT) |
(IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP2_SHIFT) |
(IFC_FIR_OP_WBCD << IFC_NAND_FIR0_OP3_SHIFT) |
(IFC_FIR_OP_CMD2 << IFC_NAND_FIR0_OP4_SHIFT),
&ifc->ifc_nand.nand_fir0);
ifc_out32(
(IFC_FIR_OP_CW1 << IFC_NAND_FIR1_OP5_SHIFT) |
(IFC_FIR_OP_RDSTAT << IFC_NAND_FIR1_OP6_SHIFT) |
(IFC_FIR_OP_NOP << IFC_NAND_FIR1_OP7_SHIFT),
&ifc->ifc_nand.nand_fir1);
} else {
nand_fcr0 = ((NAND_CMD_PAGEPROG <<
IFC_NAND_FCR0_CMD1_SHIFT) |
(NAND_CMD_SEQIN <<
IFC_NAND_FCR0_CMD2_SHIFT) |
(NAND_CMD_STATUS <<
IFC_NAND_FCR0_CMD3_SHIFT));
ifc_out32(
(IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
(IFC_FIR_OP_CMD2 << IFC_NAND_FIR0_OP1_SHIFT) |
(IFC_FIR_OP_CA0 << IFC_NAND_FIR0_OP2_SHIFT) |
(IFC_FIR_OP_RA0 << IFC_NAND_FIR0_OP3_SHIFT) |
(IFC_FIR_OP_WBCD << IFC_NAND_FIR0_OP4_SHIFT),
&ifc->ifc_nand.nand_fir0);
ifc_out32(
(IFC_FIR_OP_CMD1 << IFC_NAND_FIR1_OP5_SHIFT) |
(IFC_FIR_OP_CW3 << IFC_NAND_FIR1_OP6_SHIFT) |
(IFC_FIR_OP_RDSTAT << IFC_NAND_FIR1_OP7_SHIFT) |
(IFC_FIR_OP_NOP << IFC_NAND_FIR1_OP8_SHIFT),
&ifc->ifc_nand.nand_fir1);
if (column >= mtd->writesize)
nand_fcr0 |=
NAND_CMD_READOOB << IFC_NAND_FCR0_CMD0_SHIFT;
else
nand_fcr0 |=
NAND_CMD_READ0 << IFC_NAND_FCR0_CMD0_SHIFT;
}
if (column >= mtd->writesize) {
/* OOB area --> READOOB */
column -= mtd->writesize;
ifc_nand_ctrl->oob = 1;
}
ifc_out32(nand_fcr0, &ifc->ifc_nand.nand_fcr0);
set_addr(mtd, column, page_addr, ifc_nand_ctrl->oob);
return;
}
/* PAGEPROG reuses all of the setup from SEQIN and adds the length */
case NAND_CMD_PAGEPROG: {
if (ifc_nand_ctrl->oob) {
ifc_out32(ifc_nand_ctrl->index -
ifc_nand_ctrl->column,
&ifc->ifc_nand.nand_fbcr);
} else {
ifc_out32(0, &ifc->ifc_nand.nand_fbcr);
}
fsl_ifc_run_command(mtd);
return;
}
case NAND_CMD_STATUS: {
void __iomem *addr;
ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
(IFC_FIR_OP_RB << IFC_NAND_FIR0_OP1_SHIFT),
&ifc->ifc_nand.nand_fir0);
ifc_out32(NAND_CMD_STATUS << IFC_NAND_FCR0_CMD0_SHIFT,
&ifc->ifc_nand.nand_fcr0);
ifc_out32(1, &ifc->ifc_nand.nand_fbcr);
set_addr(mtd, 0, 0, 0);
ifc_nand_ctrl->read_bytes = 1;
fsl_ifc_run_command(mtd);
/*
* The chip always seems to report that it is
* write-protected, even when it is not.
*/
addr = ifc_nand_ctrl->addr;
if (chip->options & NAND_BUSWIDTH_16)
ifc_out16(ifc_in16(addr) | (NAND_STATUS_WP), addr);
else
ifc_out8(ifc_in8(addr) | (NAND_STATUS_WP), addr);
return;
}
case NAND_CMD_RESET:
ifc_out32(IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT,
&ifc->ifc_nand.nand_fir0);
ifc_out32(NAND_CMD_RESET << IFC_NAND_FCR0_CMD0_SHIFT,
&ifc->ifc_nand.nand_fcr0);
fsl_ifc_run_command(mtd);
return;
default:
dev_err(priv->dev, "%s: error, unsupported command 0x%x.\n",
__func__, command);
}
}
static void fsl_ifc_select_chip(struct nand_chip *chip, int cs)
{
/* The hardware does not seem to support multiple
* chips per bank.
*/
}
/*
* Write buf to the IFC NAND Controller Data Buffer
*/
static void fsl_ifc_write_buf(struct nand_chip *chip, const u8 *buf, int len)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
unsigned int bufsize = mtd->writesize + mtd->oobsize;
if (len <= 0) {
dev_err(priv->dev, "%s: len %d bytes", __func__, len);
return;
}
if ((unsigned int)len > bufsize - ifc_nand_ctrl->index) {
dev_err(priv->dev,
"%s: beyond end of buffer (%d requested, %u available)\n",
__func__, len, bufsize - ifc_nand_ctrl->index);
len = bufsize - ifc_nand_ctrl->index;
}
memcpy_toio(ifc_nand_ctrl->addr + ifc_nand_ctrl->index, buf, len);
ifc_nand_ctrl->index += len;
}
/*
* Read a byte from either the IFC hardware buffer
* read function for 8-bit buswidth
*/
static uint8_t fsl_ifc_read_byte(struct nand_chip *chip)
{
struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
unsigned int offset;
/*
* If there are still bytes in the IFC buffer, then use the
* next byte.
*/
if (ifc_nand_ctrl->index < ifc_nand_ctrl->read_bytes) {
offset = ifc_nand_ctrl->index++;
return ifc_in8(ifc_nand_ctrl->addr + offset);
}
dev_err(priv->dev, "%s: beyond end of buffer\n", __func__);
return ERR_BYTE;
}
/*
* Read two bytes from the IFC hardware buffer
* read function for 16-bit buswith
*/
static uint8_t fsl_ifc_read_byte16(struct nand_chip *chip)
{
struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
uint16_t data;
/*
* If there are still bytes in the IFC buffer, then use the
* next byte.
*/
if (ifc_nand_ctrl->index < ifc_nand_ctrl->read_bytes) {
data = ifc_in16(ifc_nand_ctrl->addr + ifc_nand_ctrl->index);
ifc_nand_ctrl->index += 2;
return (uint8_t) data;
}
dev_err(priv->dev, "%s: beyond end of buffer\n", __func__);
return ERR_BYTE;
}
/*
* Read from the IFC Controller Data Buffer
*/
static void fsl_ifc_read_buf(struct nand_chip *chip, u8 *buf, int len)
{
struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
int avail;
if (len < 0) {
dev_err(priv->dev, "%s: len %d bytes", __func__, len);
return;
}
avail = min((unsigned int)len,
ifc_nand_ctrl->read_bytes - ifc_nand_ctrl->index);
memcpy_fromio(buf, ifc_nand_ctrl->addr + ifc_nand_ctrl->index, avail);
ifc_nand_ctrl->index += avail;
if (len > avail)
dev_err(priv->dev,
"%s: beyond end of buffer (%d requested, %d available)\n",
__func__, len, avail);
}
/*
* This function is called after Program and Erase Operations to
* check for success or failure.
*/
static int fsl_ifc_wait(struct nand_chip *chip)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
struct fsl_ifc_ctrl *ctrl = priv->ctrl;
struct fsl_ifc_runtime __iomem *ifc = ctrl->rregs;
u32 nand_fsr;
int status;
/* Use READ_STATUS command, but wait for the device to be ready */
ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
(IFC_FIR_OP_RDSTAT << IFC_NAND_FIR0_OP1_SHIFT),
&ifc->ifc_nand.nand_fir0);
ifc_out32(NAND_CMD_STATUS << IFC_NAND_FCR0_CMD0_SHIFT,
&ifc->ifc_nand.nand_fcr0);
ifc_out32(1, &ifc->ifc_nand.nand_fbcr);
set_addr(mtd, 0, 0, 0);
ifc_nand_ctrl->read_bytes = 1;
fsl_ifc_run_command(mtd);
nand_fsr = ifc_in32(&ifc->ifc_nand.nand_fsr);
status = nand_fsr >> 24;
/*
* The chip always seems to report that it is
* write-protected, even when it is not.
*/
return status | NAND_STATUS_WP;
}
/*
* The controller does not check for bitflips in erased pages,
* therefore software must check instead.
*/
static int check_erased_page(struct nand_chip *chip, u8 *buf)
{
struct mtd_info *mtd = nand_to_mtd(chip);
u8 *ecc = chip->oob_poi;
const int ecc_size = chip->ecc.bytes;
const int pkt_size = chip->ecc.size;
int i, res, bitflips = 0;
struct mtd_oob_region oobregion = { };
mtd_ooblayout_ecc(mtd, 0, &oobregion);
ecc += oobregion.offset;
for (i = 0; i < chip->ecc.steps; ++i) {
res = nand_check_erased_ecc_chunk(buf, pkt_size, ecc, ecc_size,
NULL, 0,
chip->ecc.strength);
if (res < 0)
mtd->ecc_stats.failed++;
else
mtd->ecc_stats.corrected += res;
bitflips = max(res, bitflips);
buf += pkt_size;
ecc += ecc_size;
}
return bitflips;
}
static int fsl_ifc_read_page(struct nand_chip *chip, uint8_t *buf,
int oob_required, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
struct fsl_ifc_ctrl *ctrl = priv->ctrl;
struct fsl_ifc_nand_ctrl *nctrl = ifc_nand_ctrl;
nand_read_page_op(chip, page, 0, buf, mtd->writesize);
if (oob_required)
fsl_ifc_read_buf(chip, chip->oob_poi, mtd->oobsize);
if (ctrl->nand_stat & IFC_NAND_EVTER_STAT_ECCER) {
if (!oob_required)
fsl_ifc_read_buf(chip, chip->oob_poi, mtd->oobsize);
return check_erased_page(chip, buf);
}
if (ctrl->nand_stat != IFC_NAND_EVTER_STAT_OPC)
mtd->ecc_stats.failed++;
return nctrl->max_bitflips;
}
/* ECC will be calculated automatically, and errors will be detected in
* waitfunc.
*/
static int fsl_ifc_write_page(struct nand_chip *chip, const uint8_t *buf,
int oob_required, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
fsl_ifc_write_buf(chip, chip->oob_poi, mtd->oobsize);
return nand_prog_page_end_op(chip);
}
static int fsl_ifc_attach_chip(struct nand_chip *chip)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct fsl_ifc_mtd *priv = nand_get_controller_data(chip);
dev_dbg(priv->dev, "%s: nand->numchips = %d\n", __func__,
chip->numchips);
dev_dbg(priv->dev, "%s: nand->chipsize = %lld\n", __func__,
chip->chipsize);
dev_dbg(priv->dev, "%s: nand->pagemask = %8x\n", __func__,
chip->pagemask);
dev_dbg(priv->dev, "%s: nand->chip_delay = %d\n", __func__,
chip->chip_delay);
dev_dbg(priv->dev, "%s: nand->badblockpos = %d\n", __func__,
chip->badblockpos);
dev_dbg(priv->dev, "%s: nand->chip_shift = %d\n", __func__,
chip->chip_shift);
dev_dbg(priv->dev, "%s: nand->page_shift = %d\n", __func__,
chip->page_shift);
dev_dbg(priv->dev, "%s: nand->phys_erase_shift = %d\n", __func__,
chip->phys_erase_shift);
dev_dbg(priv->dev, "%s: nand->ecc.mode = %d\n", __func__,
chip->ecc.mode);
dev_dbg(priv->dev, "%s: nand->ecc.steps = %d\n", __func__,
chip->ecc.steps);
dev_dbg(priv->dev, "%s: nand->ecc.bytes = %d\n", __func__,
chip->ecc.bytes);
dev_dbg(priv->dev, "%s: nand->ecc.total = %d\n", __func__,
chip->ecc.total);
dev_dbg(priv->dev, "%s: mtd->ooblayout = %p\n", __func__,
mtd->ooblayout);
dev_dbg(priv->dev, "%s: mtd->flags = %08x\n", __func__, mtd->flags);
dev_dbg(priv->dev, "%s: mtd->size = %lld\n", __func__, mtd->size);
dev_dbg(priv->dev, "%s: mtd->erasesize = %d\n", __func__,
mtd->erasesize);
dev_dbg(priv->dev, "%s: mtd->writesize = %d\n", __func__,
mtd->writesize);
dev_dbg(priv->dev, "%s: mtd->oobsize = %d\n", __func__,
mtd->oobsize);
return 0;
}
static const struct nand_controller_ops fsl_ifc_controller_ops = {
.attach_chip = fsl_ifc_attach_chip,
};
static int fsl_ifc_sram_init(struct fsl_ifc_mtd *priv)
{
struct fsl_ifc_ctrl *ctrl = priv->ctrl;
struct fsl_ifc_runtime __iomem *ifc_runtime = ctrl->rregs;
struct fsl_ifc_global __iomem *ifc_global = ctrl->gregs;
uint32_t csor = 0, csor_8k = 0, csor_ext = 0;
uint32_t cs = priv->bank;
if (ctrl->version < FSL_IFC_VERSION_1_1_0)
return 0;
if (ctrl->version > FSL_IFC_VERSION_1_1_0) {
u32 ncfgr, status;
int ret;
/* Trigger auto initialization */
ncfgr = ifc_in32(&ifc_runtime->ifc_nand.ncfgr);
ifc_out32(ncfgr | IFC_NAND_NCFGR_SRAM_INIT_EN, &ifc_runtime->ifc_nand.ncfgr);
/* Wait until done */
ret = readx_poll_timeout(ifc_in32, &ifc_runtime->ifc_nand.ncfgr,
status, !(status & IFC_NAND_NCFGR_SRAM_INIT_EN),
10, IFC_TIMEOUT_MSECS * 1000);
if (ret)
dev_err(priv->dev, "Failed to initialize SRAM!\n");
return ret;
}
/* Save CSOR and CSOR_ext */
csor = ifc_in32(&ifc_global->csor_cs[cs].csor);
csor_ext = ifc_in32(&ifc_global->csor_cs[cs].csor_ext);
/* chage PageSize 8K and SpareSize 1K*/
csor_8k = (csor & ~(CSOR_NAND_PGS_MASK)) | 0x0018C000;
ifc_out32(csor_8k, &ifc_global->csor_cs[cs].csor);
ifc_out32(0x0000400, &ifc_global->csor_cs[cs].csor_ext);
/* READID */
ifc_out32((IFC_FIR_OP_CW0 << IFC_NAND_FIR0_OP0_SHIFT) |
(IFC_FIR_OP_UA << IFC_NAND_FIR0_OP1_SHIFT) |
(IFC_FIR_OP_RB << IFC_NAND_FIR0_OP2_SHIFT),
&ifc_runtime->ifc_nand.nand_fir0);
ifc_out32(NAND_CMD_READID << IFC_NAND_FCR0_CMD0_SHIFT,
&ifc_runtime->ifc_nand.nand_fcr0);
ifc_out32(0x0, &ifc_runtime->ifc_nand.row3);
ifc_out32(0x0, &ifc_runtime->ifc_nand.nand_fbcr);
/* Program ROW0/COL0 */
ifc_out32(0x0, &ifc_runtime->ifc_nand.row0);
ifc_out32(0x0, &ifc_runtime->ifc_nand.col0);
/* set the chip select for NAND Transaction */
ifc_out32(cs << IFC_NAND_CSEL_SHIFT,
&ifc_runtime->ifc_nand.nand_csel);
/* start read seq */
ifc_out32(IFC_NAND_SEQ_STRT_FIR_STRT,
&ifc_runtime->ifc_nand.nandseq_strt);
/* wait for command complete flag or timeout */
wait_event_timeout(ctrl->nand_wait, ctrl->nand_stat,
msecs_to_jiffies(IFC_TIMEOUT_MSECS));
if (ctrl->nand_stat != IFC_NAND_EVTER_STAT_OPC) {
pr_err("fsl-ifc: Failed to Initialise SRAM\n");
return -ETIMEDOUT;
}
/* Restore CSOR and CSOR_ext */
ifc_out32(csor, &ifc_global->csor_cs[cs].csor);
ifc_out32(csor_ext, &ifc_global->csor_cs[cs].csor_ext);
return 0;
}
static int fsl_ifc_chip_init(struct fsl_ifc_mtd *priv)
{
struct fsl_ifc_ctrl *ctrl = priv->ctrl;
struct fsl_ifc_global __iomem *ifc_global = ctrl->gregs;
struct fsl_ifc_runtime __iomem *ifc_runtime = ctrl->rregs;
struct nand_chip *chip = &priv->chip;
struct mtd_info *mtd = nand_to_mtd(&priv->chip);
u32 csor;
int ret;
/* Fill in fsl_ifc_mtd structure */
mtd->dev.parent = priv->dev;
nand_set_flash_node(chip, priv->dev->of_node);
/* fill in nand_chip structure */
/* set up function call table */
if ((ifc_in32(&ifc_global->cspr_cs[priv->bank].cspr))
& CSPR_PORT_SIZE_16)
chip->read_byte = fsl_ifc_read_byte16;
else
chip->read_byte = fsl_ifc_read_byte;
chip->write_buf = fsl_ifc_write_buf;
chip->read_buf = fsl_ifc_read_buf;
chip->select_chip = fsl_ifc_select_chip;
chip->cmdfunc = fsl_ifc_cmdfunc;
chip->waitfunc = fsl_ifc_wait;
chip->set_features = nand_get_set_features_notsupp;
chip->get_features = nand_get_set_features_notsupp;
chip->bbt_td = &bbt_main_descr;
chip->bbt_md = &bbt_mirror_descr;
ifc_out32(0x0, &ifc_runtime->ifc_nand.ncfgr);
/* set up nand options */
chip->bbt_options = NAND_BBT_USE_FLASH;
chip->options = NAND_NO_SUBPAGE_WRITE;
if (ifc_in32(&ifc_global->cspr_cs[priv->bank].cspr)
& CSPR_PORT_SIZE_16) {
chip->read_byte = fsl_ifc_read_byte16;
chip->options |= NAND_BUSWIDTH_16;
} else {
chip->read_byte = fsl_ifc_read_byte;
}
chip->controller = &ifc_nand_ctrl->controller;
nand_set_controller_data(chip, priv);
chip->ecc.read_page = fsl_ifc_read_page;
chip->ecc.write_page = fsl_ifc_write_page;
csor = ifc_in32(&ifc_global->csor_cs[priv->bank].csor);
switch (csor & CSOR_NAND_PGS_MASK) {
case CSOR_NAND_PGS_512:
if (!(chip->options & NAND_BUSWIDTH_16)) {
/* Avoid conflict with bad block marker */
bbt_main_descr.offs = 0;
bbt_mirror_descr.offs = 0;
}
priv->bufnum_mask = 15;
break;
case CSOR_NAND_PGS_2K:
priv->bufnum_mask = 3;
break;
case CSOR_NAND_PGS_4K:
priv->bufnum_mask = 1;
break;
case CSOR_NAND_PGS_8K:
priv->bufnum_mask = 0;
break;
default:
dev_err(priv->dev, "bad csor %#x: bad page size\n", csor);
return -ENODEV;
}
/* Must also set CSOR_NAND_ECC_ENC_EN if DEC_EN set */
if (csor & CSOR_NAND_ECC_DEC_EN) {
chip->ecc.mode = NAND_ECC_HW;
mtd_set_ooblayout(mtd, &fsl_ifc_ooblayout_ops);
/* Hardware generates ECC per 512 Bytes */
chip->ecc.size = 512;
if ((csor & CSOR_NAND_ECC_MODE_MASK) == CSOR_NAND_ECC_MODE_4) {
chip->ecc.bytes = 8;
chip->ecc.strength = 4;
} else {
chip->ecc.bytes = 16;
chip->ecc.strength = 8;
}
} else {
chip->ecc.mode = NAND_ECC_SOFT;
chip->ecc.algo = NAND_ECC_HAMMING;
}
ret = fsl_ifc_sram_init(priv);
if (ret)
return ret;
/*
* As IFC version 2.0.0 has 16KB of internal SRAM as compared to older
* versions which had 8KB. Hence bufnum mask needs to be updated.
*/
if (ctrl->version >= FSL_IFC_VERSION_2_0_0)
priv->bufnum_mask = (priv->bufnum_mask * 2) + 1;
return 0;
}
static int fsl_ifc_chip_remove(struct fsl_ifc_mtd *priv)
{
struct mtd_info *mtd = nand_to_mtd(&priv->chip);
kfree(mtd->name);
if (priv->vbase)
iounmap(priv->vbase);
ifc_nand_ctrl->chips[priv->bank] = NULL;
return 0;
}
static int match_bank(struct fsl_ifc_global __iomem *ifc_global, int bank,
phys_addr_t addr)
{
u32 cspr = ifc_in32(&ifc_global->cspr_cs[bank].cspr);
if (!(cspr & CSPR_V))
return 0;
if ((cspr & CSPR_MSEL) != CSPR_MSEL_NAND)
return 0;
return (cspr & CSPR_BA) == convert_ifc_address(addr);
}
static DEFINE_MUTEX(fsl_ifc_nand_mutex);
static int fsl_ifc_nand_probe(struct platform_device *dev)
{
struct fsl_ifc_runtime __iomem *ifc;
struct fsl_ifc_mtd *priv;
struct resource res;
static const char *part_probe_types[]
= { "cmdlinepart", "RedBoot", "ofpart", NULL };
int ret;
int bank;
struct device_node *node = dev->dev.of_node;
struct mtd_info *mtd;
if (!fsl_ifc_ctrl_dev || !fsl_ifc_ctrl_dev->rregs)
return -ENODEV;
ifc = fsl_ifc_ctrl_dev->rregs;
/* get, allocate and map the memory resource */
ret = of_address_to_resource(node, 0, &res);
if (ret) {
dev_err(&dev->dev, "%s: failed to get resource\n", __func__);
return ret;
}
/* find which chip select it is connected to */
for (bank = 0; bank < fsl_ifc_ctrl_dev->banks; bank++) {
if (match_bank(fsl_ifc_ctrl_dev->gregs, bank, res.start))
break;
}
if (bank >= fsl_ifc_ctrl_dev->banks) {
dev_err(&dev->dev, "%s: address did not match any chip selects\n",
__func__);
return -ENODEV;
}
priv = devm_kzalloc(&dev->dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
mutex_lock(&fsl_ifc_nand_mutex);
if (!fsl_ifc_ctrl_dev->nand) {
ifc_nand_ctrl = kzalloc(sizeof(*ifc_nand_ctrl), GFP_KERNEL);
if (!ifc_nand_ctrl) {
mutex_unlock(&fsl_ifc_nand_mutex);
return -ENOMEM;
}
ifc_nand_ctrl->read_bytes = 0;
ifc_nand_ctrl->index = 0;
ifc_nand_ctrl->addr = NULL;
fsl_ifc_ctrl_dev->nand = ifc_nand_ctrl;
nand_controller_init(&ifc_nand_ctrl->controller);
} else {
ifc_nand_ctrl = fsl_ifc_ctrl_dev->nand;
}
mutex_unlock(&fsl_ifc_nand_mutex);
ifc_nand_ctrl->chips[bank] = priv;
priv->bank = bank;
priv->ctrl = fsl_ifc_ctrl_dev;
priv->dev = &dev->dev;
priv->vbase = ioremap(res.start, resource_size(&res));
if (!priv->vbase) {
dev_err(priv->dev, "%s: failed to map chip region\n", __func__);
ret = -ENOMEM;
goto err;
}
dev_set_drvdata(priv->dev, priv);
ifc_out32(IFC_NAND_EVTER_EN_OPC_EN |
IFC_NAND_EVTER_EN_FTOER_EN |
IFC_NAND_EVTER_EN_WPER_EN,
&ifc->ifc_nand.nand_evter_en);
/* enable NAND Machine Interrupts */
ifc_out32(IFC_NAND_EVTER_INTR_OPCIR_EN |
IFC_NAND_EVTER_INTR_FTOERIR_EN |
IFC_NAND_EVTER_INTR_WPERIR_EN,
&ifc->ifc_nand.nand_evter_intr_en);
mtd = nand_to_mtd(&priv->chip);
mtd->name = kasprintf(GFP_KERNEL, "%llx.flash", (u64)res.start);
if (!mtd->name) {
ret = -ENOMEM;
goto err;
}
ret = fsl_ifc_chip_init(priv);
if (ret)
goto err;
priv->chip.controller->ops = &fsl_ifc_controller_ops;
ret = nand_scan(&priv->chip, 1);
if (ret)
goto err;
/* First look for RedBoot table or partitions on the command
* line, these take precedence over device tree information */
ret = mtd_device_parse_register(mtd, part_probe_types, NULL, NULL, 0);
if (ret)
goto cleanup_nand;
dev_info(priv->dev, "IFC NAND device at 0x%llx, bank %d\n",
(unsigned long long)res.start, priv->bank);
return 0;
cleanup_nand:
nand_cleanup(&priv->chip);
err:
fsl_ifc_chip_remove(priv);
return ret;
}
static int fsl_ifc_nand_remove(struct platform_device *dev)
{
struct fsl_ifc_mtd *priv = dev_get_drvdata(&dev->dev);
nand_release(&priv->chip);
fsl_ifc_chip_remove(priv);
mutex_lock(&fsl_ifc_nand_mutex);
ifc_nand_ctrl->counter--;
if (!ifc_nand_ctrl->counter) {
fsl_ifc_ctrl_dev->nand = NULL;
kfree(ifc_nand_ctrl);
}
mutex_unlock(&fsl_ifc_nand_mutex);
return 0;
}
static const struct of_device_id fsl_ifc_nand_match[] = {
{
.compatible = "fsl,ifc-nand",
},
{}
};
MODULE_DEVICE_TABLE(of, fsl_ifc_nand_match);
static struct platform_driver fsl_ifc_nand_driver = {
.driver = {
.name = "fsl,ifc-nand",
.of_match_table = fsl_ifc_nand_match,
},
.probe = fsl_ifc_nand_probe,
.remove = fsl_ifc_nand_remove,
};
module_platform_driver(fsl_ifc_nand_driver);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Freescale");
MODULE_DESCRIPTION("Freescale Integrated Flash Controller MTD NAND driver");