linux_dsm_epyc7002/drivers/misc/cxl/api.c
Ian Munsie a2f67d5ee8 cxl: Add support for interrupts on the Mellanox CX4
The Mellanox CX4 in cxl mode uses a hybrid interrupt model, where
interrupts are routed from the networking hardware to the XSL using the
MSIX table, and from there will be transformed back into an MSIX
interrupt using the cxl style interrupts (i.e. using IVTE entries and
ranges to map a PE and AFU interrupt number to an MSIX address).

We want to hide the implementation details of cxl interrupts as much as
possible. To this end, we use a special version of the MSI setup &
teardown routines in the PHB while in cxl mode to allocate the cxl
interrupts and configure the IVTE entries in the process element.

This function does not configure the MSIX table - the CX4 card uses a
custom format in that table and it would not be appropriate to fill that
out in generic code. The rest of the functionality is similar to the
"Full MSI-X mode" described in the CAIA, and this could be easily
extended to support other adapters that use that mode in the future.

The interrupts will be associated with the default context. If the
maximum number of interrupts per context has been limited (e.g. by the
mlx5 driver), it will automatically allocate additional kernel contexts
to associate extra interrupts as required. These contexts will be
started using the same WED that was used to start the default context.

Signed-off-by: Ian Munsie <imunsie@au1.ibm.com>
Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2016-07-14 20:27:08 +10:00

563 lines
13 KiB
C

/*
* Copyright 2014 IBM Corp.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/pci.h>
#include <linux/slab.h>
#include <linux/anon_inodes.h>
#include <linux/file.h>
#include <misc/cxl.h>
#include <linux/fs.h>
#include <asm/pnv-pci.h>
#include <linux/msi.h>
#include "cxl.h"
struct cxl_context *cxl_dev_context_init(struct pci_dev *dev)
{
struct address_space *mapping;
struct cxl_afu *afu;
struct cxl_context *ctx;
int rc;
afu = cxl_pci_to_afu(dev);
if (IS_ERR(afu))
return ERR_CAST(afu);
ctx = cxl_context_alloc();
if (IS_ERR(ctx)) {
rc = PTR_ERR(ctx);
goto err_dev;
}
ctx->kernelapi = true;
/*
* Make our own address space since we won't have one from the
* filesystem like the user api has, and even if we do associate a file
* with this context we don't want to use the global anonymous inode's
* address space as that can invalidate unrelated users:
*/
mapping = kmalloc(sizeof(struct address_space), GFP_KERNEL);
if (!mapping) {
rc = -ENOMEM;
goto err_ctx;
}
address_space_init_once(mapping);
/* Make it a slave context. We can promote it later? */
rc = cxl_context_init(ctx, afu, false, mapping);
if (rc)
goto err_mapping;
return ctx;
err_mapping:
kfree(mapping);
err_ctx:
kfree(ctx);
err_dev:
return ERR_PTR(rc);
}
EXPORT_SYMBOL_GPL(cxl_dev_context_init);
struct cxl_context *cxl_get_context(struct pci_dev *dev)
{
return dev->dev.archdata.cxl_ctx;
}
EXPORT_SYMBOL_GPL(cxl_get_context);
int cxl_release_context(struct cxl_context *ctx)
{
if (ctx->status >= STARTED)
return -EBUSY;
cxl_context_free(ctx);
return 0;
}
EXPORT_SYMBOL_GPL(cxl_release_context);
static irq_hw_number_t cxl_find_afu_irq(struct cxl_context *ctx, int num)
{
__u16 range;
int r;
for (r = 0; r < CXL_IRQ_RANGES; r++) {
range = ctx->irqs.range[r];
if (num < range) {
return ctx->irqs.offset[r] + num;
}
num -= range;
}
return 0;
}
int _cxl_next_msi_hwirq(struct pci_dev *pdev, struct cxl_context **ctx, int *afu_irq)
{
if (*ctx == NULL || *afu_irq == 0) {
*afu_irq = 1;
*ctx = cxl_get_context(pdev);
} else {
(*afu_irq)++;
if (*afu_irq > cxl_get_max_irqs_per_process(pdev)) {
*ctx = list_next_entry(*ctx, extra_irq_contexts);
*afu_irq = 1;
}
}
return cxl_find_afu_irq(*ctx, *afu_irq);
}
/* Exported via cxl_base */
int cxl_set_priv(struct cxl_context *ctx, void *priv)
{
if (!ctx)
return -EINVAL;
ctx->priv = priv;
return 0;
}
EXPORT_SYMBOL_GPL(cxl_set_priv);
void *cxl_get_priv(struct cxl_context *ctx)
{
if (!ctx)
return ERR_PTR(-EINVAL);
return ctx->priv;
}
EXPORT_SYMBOL_GPL(cxl_get_priv);
int cxl_allocate_afu_irqs(struct cxl_context *ctx, int num)
{
int res;
irq_hw_number_t hwirq;
if (num == 0)
num = ctx->afu->pp_irqs;
res = afu_allocate_irqs(ctx, num);
if (res)
return res;
if (!cpu_has_feature(CPU_FTR_HVMODE)) {
/* In a guest, the PSL interrupt is not multiplexed. It was
* allocated above, and we need to set its handler
*/
hwirq = cxl_find_afu_irq(ctx, 0);
if (hwirq)
cxl_map_irq(ctx->afu->adapter, hwirq, cxl_ops->psl_interrupt, ctx, "psl");
}
if (ctx->status == STARTED) {
if (cxl_ops->update_ivtes)
cxl_ops->update_ivtes(ctx);
else WARN(1, "BUG: cxl_allocate_afu_irqs must be called prior to starting the context on this platform\n");
}
return res;
}
EXPORT_SYMBOL_GPL(cxl_allocate_afu_irqs);
void cxl_free_afu_irqs(struct cxl_context *ctx)
{
irq_hw_number_t hwirq;
unsigned int virq;
if (!cpu_has_feature(CPU_FTR_HVMODE)) {
hwirq = cxl_find_afu_irq(ctx, 0);
if (hwirq) {
virq = irq_find_mapping(NULL, hwirq);
if (virq)
cxl_unmap_irq(virq, ctx);
}
}
afu_irq_name_free(ctx);
cxl_ops->release_irq_ranges(&ctx->irqs, ctx->afu->adapter);
}
EXPORT_SYMBOL_GPL(cxl_free_afu_irqs);
int cxl_map_afu_irq(struct cxl_context *ctx, int num,
irq_handler_t handler, void *cookie, char *name)
{
irq_hw_number_t hwirq;
/*
* Find interrupt we are to register.
*/
hwirq = cxl_find_afu_irq(ctx, num);
if (!hwirq)
return -ENOENT;
return cxl_map_irq(ctx->afu->adapter, hwirq, handler, cookie, name);
}
EXPORT_SYMBOL_GPL(cxl_map_afu_irq);
void cxl_unmap_afu_irq(struct cxl_context *ctx, int num, void *cookie)
{
irq_hw_number_t hwirq;
unsigned int virq;
hwirq = cxl_find_afu_irq(ctx, num);
if (!hwirq)
return;
virq = irq_find_mapping(NULL, hwirq);
if (virq)
cxl_unmap_irq(virq, cookie);
}
EXPORT_SYMBOL_GPL(cxl_unmap_afu_irq);
/*
* Start a context
* Code here similar to afu_ioctl_start_work().
*/
int cxl_start_context(struct cxl_context *ctx, u64 wed,
struct task_struct *task)
{
int rc = 0;
bool kernel = true;
pr_devel("%s: pe: %i\n", __func__, ctx->pe);
mutex_lock(&ctx->status_mutex);
if (ctx->status == STARTED)
goto out; /* already started */
if (task) {
ctx->pid = get_task_pid(task, PIDTYPE_PID);
ctx->glpid = get_task_pid(task->group_leader, PIDTYPE_PID);
kernel = false;
ctx->real_mode = false;
}
cxl_ctx_get();
if ((rc = cxl_ops->attach_process(ctx, kernel, wed, 0))) {
put_pid(ctx->pid);
cxl_ctx_put();
goto out;
}
ctx->status = STARTED;
out:
mutex_unlock(&ctx->status_mutex);
return rc;
}
EXPORT_SYMBOL_GPL(cxl_start_context);
int cxl_process_element(struct cxl_context *ctx)
{
return ctx->external_pe;
}
EXPORT_SYMBOL_GPL(cxl_process_element);
/* Stop a context. Returns 0 on success, otherwise -Errno */
int cxl_stop_context(struct cxl_context *ctx)
{
return __detach_context(ctx);
}
EXPORT_SYMBOL_GPL(cxl_stop_context);
void cxl_set_master(struct cxl_context *ctx)
{
ctx->master = true;
}
EXPORT_SYMBOL_GPL(cxl_set_master);
int cxl_set_translation_mode(struct cxl_context *ctx, bool real_mode)
{
if (ctx->status == STARTED) {
/*
* We could potentially update the PE and issue an update LLCMD
* to support this, but it doesn't seem to have a good use case
* since it's trivial to just create a second kernel context
* with different translation modes, so until someone convinces
* me otherwise:
*/
return -EBUSY;
}
ctx->real_mode = real_mode;
return 0;
}
EXPORT_SYMBOL_GPL(cxl_set_translation_mode);
/* wrappers around afu_* file ops which are EXPORTED */
int cxl_fd_open(struct inode *inode, struct file *file)
{
return afu_open(inode, file);
}
EXPORT_SYMBOL_GPL(cxl_fd_open);
int cxl_fd_release(struct inode *inode, struct file *file)
{
return afu_release(inode, file);
}
EXPORT_SYMBOL_GPL(cxl_fd_release);
long cxl_fd_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
return afu_ioctl(file, cmd, arg);
}
EXPORT_SYMBOL_GPL(cxl_fd_ioctl);
int cxl_fd_mmap(struct file *file, struct vm_area_struct *vm)
{
return afu_mmap(file, vm);
}
EXPORT_SYMBOL_GPL(cxl_fd_mmap);
unsigned int cxl_fd_poll(struct file *file, struct poll_table_struct *poll)
{
return afu_poll(file, poll);
}
EXPORT_SYMBOL_GPL(cxl_fd_poll);
ssize_t cxl_fd_read(struct file *file, char __user *buf, size_t count,
loff_t *off)
{
return afu_read(file, buf, count, off);
}
EXPORT_SYMBOL_GPL(cxl_fd_read);
#define PATCH_FOPS(NAME) if (!fops->NAME) fops->NAME = afu_fops.NAME
/* Get a struct file and fd for a context and attach the ops */
struct file *cxl_get_fd(struct cxl_context *ctx, struct file_operations *fops,
int *fd)
{
struct file *file;
int rc, flags, fdtmp;
flags = O_RDWR | O_CLOEXEC;
/* This code is similar to anon_inode_getfd() */
rc = get_unused_fd_flags(flags);
if (rc < 0)
return ERR_PTR(rc);
fdtmp = rc;
/*
* Patch the file ops. Needs to be careful that this is rentrant safe.
*/
if (fops) {
PATCH_FOPS(open);
PATCH_FOPS(poll);
PATCH_FOPS(read);
PATCH_FOPS(release);
PATCH_FOPS(unlocked_ioctl);
PATCH_FOPS(compat_ioctl);
PATCH_FOPS(mmap);
} else /* use default ops */
fops = (struct file_operations *)&afu_fops;
file = anon_inode_getfile("cxl", fops, ctx, flags);
if (IS_ERR(file))
goto err_fd;
file->f_mapping = ctx->mapping;
*fd = fdtmp;
return file;
err_fd:
put_unused_fd(fdtmp);
return NULL;
}
EXPORT_SYMBOL_GPL(cxl_get_fd);
struct cxl_context *cxl_fops_get_context(struct file *file)
{
return file->private_data;
}
EXPORT_SYMBOL_GPL(cxl_fops_get_context);
void cxl_set_driver_ops(struct cxl_context *ctx,
struct cxl_afu_driver_ops *ops)
{
WARN_ON(!ops->fetch_event || !ops->event_delivered);
atomic_set(&ctx->afu_driver_events, 0);
ctx->afu_driver_ops = ops;
}
EXPORT_SYMBOL_GPL(cxl_set_driver_ops);
void cxl_context_events_pending(struct cxl_context *ctx,
unsigned int new_events)
{
atomic_add(new_events, &ctx->afu_driver_events);
wake_up_all(&ctx->wq);
}
EXPORT_SYMBOL_GPL(cxl_context_events_pending);
int cxl_start_work(struct cxl_context *ctx,
struct cxl_ioctl_start_work *work)
{
int rc;
/* code taken from afu_ioctl_start_work */
if (!(work->flags & CXL_START_WORK_NUM_IRQS))
work->num_interrupts = ctx->afu->pp_irqs;
else if ((work->num_interrupts < ctx->afu->pp_irqs) ||
(work->num_interrupts > ctx->afu->irqs_max)) {
return -EINVAL;
}
rc = afu_register_irqs(ctx, work->num_interrupts);
if (rc)
return rc;
rc = cxl_start_context(ctx, work->work_element_descriptor, current);
if (rc < 0) {
afu_release_irqs(ctx, ctx);
return rc;
}
return 0;
}
EXPORT_SYMBOL_GPL(cxl_start_work);
void __iomem *cxl_psa_map(struct cxl_context *ctx)
{
if (ctx->status != STARTED)
return NULL;
pr_devel("%s: psn_phys%llx size:%llx\n",
__func__, ctx->psn_phys, ctx->psn_size);
return ioremap(ctx->psn_phys, ctx->psn_size);
}
EXPORT_SYMBOL_GPL(cxl_psa_map);
void cxl_psa_unmap(void __iomem *addr)
{
iounmap(addr);
}
EXPORT_SYMBOL_GPL(cxl_psa_unmap);
int cxl_afu_reset(struct cxl_context *ctx)
{
struct cxl_afu *afu = ctx->afu;
int rc;
rc = cxl_ops->afu_reset(afu);
if (rc)
return rc;
return cxl_ops->afu_check_and_enable(afu);
}
EXPORT_SYMBOL_GPL(cxl_afu_reset);
void cxl_perst_reloads_same_image(struct cxl_afu *afu,
bool perst_reloads_same_image)
{
afu->adapter->perst_same_image = perst_reloads_same_image;
}
EXPORT_SYMBOL_GPL(cxl_perst_reloads_same_image);
ssize_t cxl_read_adapter_vpd(struct pci_dev *dev, void *buf, size_t count)
{
struct cxl_afu *afu = cxl_pci_to_afu(dev);
if (IS_ERR(afu))
return -ENODEV;
return cxl_ops->read_adapter_vpd(afu->adapter, buf, count);
}
EXPORT_SYMBOL_GPL(cxl_read_adapter_vpd);
int cxl_set_max_irqs_per_process(struct pci_dev *dev, int irqs)
{
struct cxl_afu *afu = cxl_pci_to_afu(dev);
if (IS_ERR(afu))
return -ENODEV;
if (irqs > afu->adapter->user_irqs)
return -EINVAL;
/* Limit user_irqs to prevent the user increasing this via sysfs */
afu->adapter->user_irqs = irqs;
afu->irqs_max = irqs;
return 0;
}
EXPORT_SYMBOL_GPL(cxl_set_max_irqs_per_process);
int cxl_get_max_irqs_per_process(struct pci_dev *dev)
{
struct cxl_afu *afu = cxl_pci_to_afu(dev);
if (IS_ERR(afu))
return -ENODEV;
return afu->irqs_max;
}
EXPORT_SYMBOL_GPL(cxl_get_max_irqs_per_process);
/*
* This is a special interrupt allocation routine called from the PHB's MSI
* setup function. When capi interrupts are allocated in this manner they must
* still be associated with a running context, but since the MSI APIs have no
* way to specify this we use the default context associated with the device.
*
* The Mellanox CX4 has a hardware limitation that restricts the maximum AFU
* interrupt number, so in order to overcome this their driver informs us of
* the restriction by setting the maximum interrupts per context, and we
* allocate additional contexts as necessary so that we can keep the AFU
* interrupt number within the supported range.
*/
int _cxl_cx4_setup_msi_irqs(struct pci_dev *pdev, int nvec, int type)
{
struct cxl_context *ctx, *new_ctx, *default_ctx;
int remaining;
int rc;
ctx = default_ctx = cxl_get_context(pdev);
if (WARN_ON(!default_ctx))
return -ENODEV;
remaining = nvec;
while (remaining > 0) {
rc = cxl_allocate_afu_irqs(ctx, min(remaining, ctx->afu->irqs_max));
if (rc) {
pr_warn("%s: Failed to find enough free MSIs\n", pci_name(pdev));
return rc;
}
remaining -= ctx->afu->irqs_max;
if (ctx != default_ctx && default_ctx->status == STARTED) {
WARN_ON(cxl_start_context(ctx,
be64_to_cpu(default_ctx->elem->common.wed),
NULL));
}
if (remaining > 0) {
new_ctx = cxl_dev_context_init(pdev);
if (!new_ctx) {
pr_warn("%s: Failed to allocate enough contexts for MSIs\n", pci_name(pdev));
return -ENOSPC;
}
list_add(&new_ctx->extra_irq_contexts, &ctx->extra_irq_contexts);
ctx = new_ctx;
}
}
return 0;
}
/* Exported via cxl_base */
void _cxl_cx4_teardown_msi_irqs(struct pci_dev *pdev)
{
struct cxl_context *ctx, *pos, *tmp;
ctx = cxl_get_context(pdev);
if (WARN_ON(!ctx))
return;
cxl_free_afu_irqs(ctx);
list_for_each_entry_safe(pos, tmp, &ctx->extra_irq_contexts, extra_irq_contexts) {
cxl_stop_context(pos);
cxl_free_afu_irqs(pos);
list_del(&pos->extra_irq_contexts);
cxl_release_context(pos);
}
}
/* Exported via cxl_base */