linux_dsm_epyc7002/drivers/gpu/drm/i915/intel_pm.c
Ville Syrjälä 5cecf5070f drm/i915/fbc: Allow FBC to recompress after a 3D workload on i85x/i865
Normally i85x/i865 3D activity will block FBC until a 2D blit
occurs. I suppose this was meant to avoid recompression while
3D activity is still going on but the frame hasn't yet been
presented. Unfortunately that also means that a page flipped
3D workload will permanently block FBC even if it only renders
a single frame and then does nothing.

Since we are using software render tracking anyway we might as
well flip the chicken bit so that 3D does not block FBC. This
will avoid the permament FBC blockage in the aforemention use
case, but thanks to the software tracking the compressor will
not disturb 3D rendering activity.

Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20200702153723.24327-5-ville.syrjala@linux.intel.com
Reviewed-by: José Roberto de Souza <jose.souza@intel.com>
2020-07-03 15:03:04 +03:00

7743 lines
224 KiB
C

/*
* Copyright © 2012 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Eugeni Dodonov <eugeni.dodonov@intel.com>
*
*/
#include <linux/module.h>
#include <linux/pm_runtime.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_fourcc.h>
#include <drm/drm_plane_helper.h>
#include "display/intel_atomic.h"
#include "display/intel_bw.h"
#include "display/intel_display_types.h"
#include "display/intel_fbc.h"
#include "display/intel_sprite.h"
#include "gt/intel_llc.h"
#include "i915_drv.h"
#include "i915_fixed.h"
#include "i915_irq.h"
#include "i915_trace.h"
#include "intel_pm.h"
#include "intel_sideband.h"
#include "../../../platform/x86/intel_ips.h"
/* Stores plane specific WM parameters */
struct skl_wm_params {
bool x_tiled, y_tiled;
bool rc_surface;
bool is_planar;
u32 width;
u8 cpp;
u32 plane_pixel_rate;
u32 y_min_scanlines;
u32 plane_bytes_per_line;
uint_fixed_16_16_t plane_blocks_per_line;
uint_fixed_16_16_t y_tile_minimum;
u32 linetime_us;
u32 dbuf_block_size;
};
/* used in computing the new watermarks state */
struct intel_wm_config {
unsigned int num_pipes_active;
bool sprites_enabled;
bool sprites_scaled;
};
static void gen9_init_clock_gating(struct drm_i915_private *dev_priv)
{
if (HAS_LLC(dev_priv)) {
/*
* WaCompressedResourceDisplayNewHashMode:skl,kbl
* Display WA #0390: skl,kbl
*
* Must match Sampler, Pixel Back End, and Media. See
* WaCompressedResourceSamplerPbeMediaNewHashMode.
*/
I915_WRITE(CHICKEN_PAR1_1,
I915_READ(CHICKEN_PAR1_1) |
SKL_DE_COMPRESSED_HASH_MODE);
}
/* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl,cfl */
I915_WRITE(CHICKEN_PAR1_1,
I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);
/* WaEnableChickenDCPR:skl,bxt,kbl,glk,cfl */
I915_WRITE(GEN8_CHICKEN_DCPR_1,
I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
/* WaFbcTurnOffFbcWatermark:skl,bxt,kbl,cfl */
/* WaFbcWakeMemOn:skl,bxt,kbl,glk,cfl */
I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
DISP_FBC_WM_DIS |
DISP_FBC_MEMORY_WAKE);
/* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl,cfl */
I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
ILK_DPFC_DISABLE_DUMMY0);
if (IS_SKYLAKE(dev_priv)) {
/* WaDisableDopClockGating */
I915_WRITE(GEN7_MISCCPCTL, I915_READ(GEN7_MISCCPCTL)
& ~GEN7_DOP_CLOCK_GATE_ENABLE);
}
}
static void bxt_init_clock_gating(struct drm_i915_private *dev_priv)
{
gen9_init_clock_gating(dev_priv);
/* WaDisableSDEUnitClockGating:bxt */
I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
/*
* FIXME:
* GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
*/
I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
/*
* Wa: Backlight PWM may stop in the asserted state, causing backlight
* to stay fully on.
*/
I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
PWM1_GATING_DIS | PWM2_GATING_DIS);
/*
* Lower the display internal timeout.
* This is needed to avoid any hard hangs when DSI port PLL
* is off and a MMIO access is attempted by any privilege
* application, using batch buffers or any other means.
*/
I915_WRITE(RM_TIMEOUT, MMIO_TIMEOUT_US(950));
}
static void glk_init_clock_gating(struct drm_i915_private *dev_priv)
{
gen9_init_clock_gating(dev_priv);
/*
* WaDisablePWMClockGating:glk
* Backlight PWM may stop in the asserted state, causing backlight
* to stay fully on.
*/
I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
PWM1_GATING_DIS | PWM2_GATING_DIS);
}
static void pnv_get_mem_freq(struct drm_i915_private *dev_priv)
{
u32 tmp;
tmp = I915_READ(CLKCFG);
switch (tmp & CLKCFG_FSB_MASK) {
case CLKCFG_FSB_533:
dev_priv->fsb_freq = 533; /* 133*4 */
break;
case CLKCFG_FSB_800:
dev_priv->fsb_freq = 800; /* 200*4 */
break;
case CLKCFG_FSB_667:
dev_priv->fsb_freq = 667; /* 167*4 */
break;
case CLKCFG_FSB_400:
dev_priv->fsb_freq = 400; /* 100*4 */
break;
}
switch (tmp & CLKCFG_MEM_MASK) {
case CLKCFG_MEM_533:
dev_priv->mem_freq = 533;
break;
case CLKCFG_MEM_667:
dev_priv->mem_freq = 667;
break;
case CLKCFG_MEM_800:
dev_priv->mem_freq = 800;
break;
}
/* detect pineview DDR3 setting */
tmp = I915_READ(CSHRDDR3CTL);
dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
}
static void ilk_get_mem_freq(struct drm_i915_private *dev_priv)
{
u16 ddrpll, csipll;
ddrpll = intel_uncore_read16(&dev_priv->uncore, DDRMPLL1);
csipll = intel_uncore_read16(&dev_priv->uncore, CSIPLL0);
switch (ddrpll & 0xff) {
case 0xc:
dev_priv->mem_freq = 800;
break;
case 0x10:
dev_priv->mem_freq = 1066;
break;
case 0x14:
dev_priv->mem_freq = 1333;
break;
case 0x18:
dev_priv->mem_freq = 1600;
break;
default:
drm_dbg(&dev_priv->drm, "unknown memory frequency 0x%02x\n",
ddrpll & 0xff);
dev_priv->mem_freq = 0;
break;
}
switch (csipll & 0x3ff) {
case 0x00c:
dev_priv->fsb_freq = 3200;
break;
case 0x00e:
dev_priv->fsb_freq = 3733;
break;
case 0x010:
dev_priv->fsb_freq = 4266;
break;
case 0x012:
dev_priv->fsb_freq = 4800;
break;
case 0x014:
dev_priv->fsb_freq = 5333;
break;
case 0x016:
dev_priv->fsb_freq = 5866;
break;
case 0x018:
dev_priv->fsb_freq = 6400;
break;
default:
drm_dbg(&dev_priv->drm, "unknown fsb frequency 0x%04x\n",
csipll & 0x3ff);
dev_priv->fsb_freq = 0;
break;
}
}
static const struct cxsr_latency cxsr_latency_table[] = {
{1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
{1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
{1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
{1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
{1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
{1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
{1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
{1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
{1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
{1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
{1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
{1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
{1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
{1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
{1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
{0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
{0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
{0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
{0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
{0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
{0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
{0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
{0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
{0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
{0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
{0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
{0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
{0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
{0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
{0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
};
static const struct cxsr_latency *intel_get_cxsr_latency(bool is_desktop,
bool is_ddr3,
int fsb,
int mem)
{
const struct cxsr_latency *latency;
int i;
if (fsb == 0 || mem == 0)
return NULL;
for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
latency = &cxsr_latency_table[i];
if (is_desktop == latency->is_desktop &&
is_ddr3 == latency->is_ddr3 &&
fsb == latency->fsb_freq && mem == latency->mem_freq)
return latency;
}
DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
return NULL;
}
static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
{
u32 val;
vlv_punit_get(dev_priv);
val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
if (enable)
val &= ~FORCE_DDR_HIGH_FREQ;
else
val |= FORCE_DDR_HIGH_FREQ;
val &= ~FORCE_DDR_LOW_FREQ;
val |= FORCE_DDR_FREQ_REQ_ACK;
vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
drm_err(&dev_priv->drm,
"timed out waiting for Punit DDR DVFS request\n");
vlv_punit_put(dev_priv);
}
static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
{
u32 val;
vlv_punit_get(dev_priv);
val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
if (enable)
val |= DSP_MAXFIFO_PM5_ENABLE;
else
val &= ~DSP_MAXFIFO_PM5_ENABLE;
vlv_punit_write(dev_priv, PUNIT_REG_DSPSSPM, val);
vlv_punit_put(dev_priv);
}
#define FW_WM(value, plane) \
(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
static bool _intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
{
bool was_enabled;
u32 val;
if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
was_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
POSTING_READ(FW_BLC_SELF_VLV);
} else if (IS_G4X(dev_priv) || IS_I965GM(dev_priv)) {
was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
POSTING_READ(FW_BLC_SELF);
} else if (IS_PINEVIEW(dev_priv)) {
val = I915_READ(DSPFW3);
was_enabled = val & PINEVIEW_SELF_REFRESH_EN;
if (enable)
val |= PINEVIEW_SELF_REFRESH_EN;
else
val &= ~PINEVIEW_SELF_REFRESH_EN;
I915_WRITE(DSPFW3, val);
POSTING_READ(DSPFW3);
} else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv)) {
was_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
_MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
I915_WRITE(FW_BLC_SELF, val);
POSTING_READ(FW_BLC_SELF);
} else if (IS_I915GM(dev_priv)) {
/*
* FIXME can't find a bit like this for 915G, and
* and yet it does have the related watermark in
* FW_BLC_SELF. What's going on?
*/
was_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
_MASKED_BIT_DISABLE(INSTPM_SELF_EN);
I915_WRITE(INSTPM, val);
POSTING_READ(INSTPM);
} else {
return false;
}
trace_intel_memory_cxsr(dev_priv, was_enabled, enable);
drm_dbg_kms(&dev_priv->drm, "memory self-refresh is %s (was %s)\n",
enableddisabled(enable),
enableddisabled(was_enabled));
return was_enabled;
}
/**
* intel_set_memory_cxsr - Configure CxSR state
* @dev_priv: i915 device
* @enable: Allow vs. disallow CxSR
*
* Allow or disallow the system to enter a special CxSR
* (C-state self refresh) state. What typically happens in CxSR mode
* is that several display FIFOs may get combined into a single larger
* FIFO for a particular plane (so called max FIFO mode) to allow the
* system to defer memory fetches longer, and the memory will enter
* self refresh.
*
* Note that enabling CxSR does not guarantee that the system enter
* this special mode, nor does it guarantee that the system stays
* in that mode once entered. So this just allows/disallows the system
* to autonomously utilize the CxSR mode. Other factors such as core
* C-states will affect when/if the system actually enters/exits the
* CxSR mode.
*
* Note that on VLV/CHV this actually only controls the max FIFO mode,
* and the system is free to enter/exit memory self refresh at any time
* even when the use of CxSR has been disallowed.
*
* While the system is actually in the CxSR/max FIFO mode, some plane
* control registers will not get latched on vblank. Thus in order to
* guarantee the system will respond to changes in the plane registers
* we must always disallow CxSR prior to making changes to those registers.
* Unfortunately the system will re-evaluate the CxSR conditions at
* frame start which happens after vblank start (which is when the plane
* registers would get latched), so we can't proceed with the plane update
* during the same frame where we disallowed CxSR.
*
* Certain platforms also have a deeper HPLL SR mode. Fortunately the
* HPLL SR mode depends on CxSR itself, so we don't have to hand hold
* the hardware w.r.t. HPLL SR when writing to plane registers.
* Disallowing just CxSR is sufficient.
*/
bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
{
bool ret;
mutex_lock(&dev_priv->wm.wm_mutex);
ret = _intel_set_memory_cxsr(dev_priv, enable);
if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
dev_priv->wm.vlv.cxsr = enable;
else if (IS_G4X(dev_priv))
dev_priv->wm.g4x.cxsr = enable;
mutex_unlock(&dev_priv->wm.wm_mutex);
return ret;
}
/*
* Latency for FIFO fetches is dependent on several factors:
* - memory configuration (speed, channels)
* - chipset
* - current MCH state
* It can be fairly high in some situations, so here we assume a fairly
* pessimal value. It's a tradeoff between extra memory fetches (if we
* set this value too high, the FIFO will fetch frequently to stay full)
* and power consumption (set it too low to save power and we might see
* FIFO underruns and display "flicker").
*
* A value of 5us seems to be a good balance; safe for very low end
* platforms but not overly aggressive on lower latency configs.
*/
static const int pessimal_latency_ns = 5000;
#define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
static void vlv_get_fifo_size(struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
enum pipe pipe = crtc->pipe;
int sprite0_start, sprite1_start;
u32 dsparb, dsparb2, dsparb3;
switch (pipe) {
case PIPE_A:
dsparb = I915_READ(DSPARB);
dsparb2 = I915_READ(DSPARB2);
sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
break;
case PIPE_B:
dsparb = I915_READ(DSPARB);
dsparb2 = I915_READ(DSPARB2);
sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
break;
case PIPE_C:
dsparb2 = I915_READ(DSPARB2);
dsparb3 = I915_READ(DSPARB3);
sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
break;
default:
MISSING_CASE(pipe);
return;
}
fifo_state->plane[PLANE_PRIMARY] = sprite0_start;
fifo_state->plane[PLANE_SPRITE0] = sprite1_start - sprite0_start;
fifo_state->plane[PLANE_SPRITE1] = 511 - sprite1_start;
fifo_state->plane[PLANE_CURSOR] = 63;
}
static int i9xx_get_fifo_size(struct drm_i915_private *dev_priv,
enum i9xx_plane_id i9xx_plane)
{
u32 dsparb = I915_READ(DSPARB);
int size;
size = dsparb & 0x7f;
if (i9xx_plane == PLANE_B)
size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
dsparb, plane_name(i9xx_plane), size);
return size;
}
static int i830_get_fifo_size(struct drm_i915_private *dev_priv,
enum i9xx_plane_id i9xx_plane)
{
u32 dsparb = I915_READ(DSPARB);
int size;
size = dsparb & 0x1ff;
if (i9xx_plane == PLANE_B)
size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
size >>= 1; /* Convert to cachelines */
drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
dsparb, plane_name(i9xx_plane), size);
return size;
}
static int i845_get_fifo_size(struct drm_i915_private *dev_priv,
enum i9xx_plane_id i9xx_plane)
{
u32 dsparb = I915_READ(DSPARB);
int size;
size = dsparb & 0x7f;
size >>= 2; /* Convert to cachelines */
drm_dbg_kms(&dev_priv->drm, "FIFO size - (0x%08x) %c: %d\n",
dsparb, plane_name(i9xx_plane), size);
return size;
}
/* Pineview has different values for various configs */
static const struct intel_watermark_params pnv_display_wm = {
.fifo_size = PINEVIEW_DISPLAY_FIFO,
.max_wm = PINEVIEW_MAX_WM,
.default_wm = PINEVIEW_DFT_WM,
.guard_size = PINEVIEW_GUARD_WM,
.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params pnv_display_hplloff_wm = {
.fifo_size = PINEVIEW_DISPLAY_FIFO,
.max_wm = PINEVIEW_MAX_WM,
.default_wm = PINEVIEW_DFT_HPLLOFF_WM,
.guard_size = PINEVIEW_GUARD_WM,
.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params pnv_cursor_wm = {
.fifo_size = PINEVIEW_CURSOR_FIFO,
.max_wm = PINEVIEW_CURSOR_MAX_WM,
.default_wm = PINEVIEW_CURSOR_DFT_WM,
.guard_size = PINEVIEW_CURSOR_GUARD_WM,
.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params pnv_cursor_hplloff_wm = {
.fifo_size = PINEVIEW_CURSOR_FIFO,
.max_wm = PINEVIEW_CURSOR_MAX_WM,
.default_wm = PINEVIEW_CURSOR_DFT_WM,
.guard_size = PINEVIEW_CURSOR_GUARD_WM,
.cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params i965_cursor_wm_info = {
.fifo_size = I965_CURSOR_FIFO,
.max_wm = I965_CURSOR_MAX_WM,
.default_wm = I965_CURSOR_DFT_WM,
.guard_size = 2,
.cacheline_size = I915_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params i945_wm_info = {
.fifo_size = I945_FIFO_SIZE,
.max_wm = I915_MAX_WM,
.default_wm = 1,
.guard_size = 2,
.cacheline_size = I915_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params i915_wm_info = {
.fifo_size = I915_FIFO_SIZE,
.max_wm = I915_MAX_WM,
.default_wm = 1,
.guard_size = 2,
.cacheline_size = I915_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params i830_a_wm_info = {
.fifo_size = I855GM_FIFO_SIZE,
.max_wm = I915_MAX_WM,
.default_wm = 1,
.guard_size = 2,
.cacheline_size = I830_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params i830_bc_wm_info = {
.fifo_size = I855GM_FIFO_SIZE,
.max_wm = I915_MAX_WM/2,
.default_wm = 1,
.guard_size = 2,
.cacheline_size = I830_FIFO_LINE_SIZE,
};
static const struct intel_watermark_params i845_wm_info = {
.fifo_size = I830_FIFO_SIZE,
.max_wm = I915_MAX_WM,
.default_wm = 1,
.guard_size = 2,
.cacheline_size = I830_FIFO_LINE_SIZE,
};
/**
* intel_wm_method1 - Method 1 / "small buffer" watermark formula
* @pixel_rate: Pipe pixel rate in kHz
* @cpp: Plane bytes per pixel
* @latency: Memory wakeup latency in 0.1us units
*
* Compute the watermark using the method 1 or "small buffer"
* formula. The caller may additonally add extra cachelines
* to account for TLB misses and clock crossings.
*
* This method is concerned with the short term drain rate
* of the FIFO, ie. it does not account for blanking periods
* which would effectively reduce the average drain rate across
* a longer period. The name "small" refers to the fact the
* FIFO is relatively small compared to the amount of data
* fetched.
*
* The FIFO level vs. time graph might look something like:
*
* |\ |\
* | \ | \
* __---__---__ (- plane active, _ blanking)
* -> time
*
* or perhaps like this:
*
* |\|\ |\|\
* __----__----__ (- plane active, _ blanking)
* -> time
*
* Returns:
* The watermark in bytes
*/
static unsigned int intel_wm_method1(unsigned int pixel_rate,
unsigned int cpp,
unsigned int latency)
{
u64 ret;
ret = mul_u32_u32(pixel_rate, cpp * latency);
ret = DIV_ROUND_UP_ULL(ret, 10000);
return ret;
}
/**
* intel_wm_method2 - Method 2 / "large buffer" watermark formula
* @pixel_rate: Pipe pixel rate in kHz
* @htotal: Pipe horizontal total
* @width: Plane width in pixels
* @cpp: Plane bytes per pixel
* @latency: Memory wakeup latency in 0.1us units
*
* Compute the watermark using the method 2 or "large buffer"
* formula. The caller may additonally add extra cachelines
* to account for TLB misses and clock crossings.
*
* This method is concerned with the long term drain rate
* of the FIFO, ie. it does account for blanking periods
* which effectively reduce the average drain rate across
* a longer period. The name "large" refers to the fact the
* FIFO is relatively large compared to the amount of data
* fetched.
*
* The FIFO level vs. time graph might look something like:
*
* |\___ |\___
* | \___ | \___
* | \ | \
* __ --__--__--__--__--__--__ (- plane active, _ blanking)
* -> time
*
* Returns:
* The watermark in bytes
*/
static unsigned int intel_wm_method2(unsigned int pixel_rate,
unsigned int htotal,
unsigned int width,
unsigned int cpp,
unsigned int latency)
{
unsigned int ret;
/*
* FIXME remove once all users are computing
* watermarks in the correct place.
*/
if (WARN_ON_ONCE(htotal == 0))
htotal = 1;
ret = (latency * pixel_rate) / (htotal * 10000);
ret = (ret + 1) * width * cpp;
return ret;
}
/**
* intel_calculate_wm - calculate watermark level
* @pixel_rate: pixel clock
* @wm: chip FIFO params
* @fifo_size: size of the FIFO buffer
* @cpp: bytes per pixel
* @latency_ns: memory latency for the platform
*
* Calculate the watermark level (the level at which the display plane will
* start fetching from memory again). Each chip has a different display
* FIFO size and allocation, so the caller needs to figure that out and pass
* in the correct intel_watermark_params structure.
*
* As the pixel clock runs, the FIFO will be drained at a rate that depends
* on the pixel size. When it reaches the watermark level, it'll start
* fetching FIFO line sized based chunks from memory until the FIFO fills
* past the watermark point. If the FIFO drains completely, a FIFO underrun
* will occur, and a display engine hang could result.
*/
static unsigned int intel_calculate_wm(int pixel_rate,
const struct intel_watermark_params *wm,
int fifo_size, int cpp,
unsigned int latency_ns)
{
int entries, wm_size;
/*
* Note: we need to make sure we don't overflow for various clock &
* latency values.
* clocks go from a few thousand to several hundred thousand.
* latency is usually a few thousand
*/
entries = intel_wm_method1(pixel_rate, cpp,
latency_ns / 100);
entries = DIV_ROUND_UP(entries, wm->cacheline_size) +
wm->guard_size;
DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries);
wm_size = fifo_size - entries;
DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
/* Don't promote wm_size to unsigned... */
if (wm_size > wm->max_wm)
wm_size = wm->max_wm;
if (wm_size <= 0)
wm_size = wm->default_wm;
/*
* Bspec seems to indicate that the value shouldn't be lower than
* 'burst size + 1'. Certainly 830 is quite unhappy with low values.
* Lets go for 8 which is the burst size since certain platforms
* already use a hardcoded 8 (which is what the spec says should be
* done).
*/
if (wm_size <= 8)
wm_size = 8;
return wm_size;
}
static bool is_disabling(int old, int new, int threshold)
{
return old >= threshold && new < threshold;
}
static bool is_enabling(int old, int new, int threshold)
{
return old < threshold && new >= threshold;
}
static int intel_wm_num_levels(struct drm_i915_private *dev_priv)
{
return dev_priv->wm.max_level + 1;
}
static bool intel_wm_plane_visible(const struct intel_crtc_state *crtc_state,
const struct intel_plane_state *plane_state)
{
struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
/* FIXME check the 'enable' instead */
if (!crtc_state->hw.active)
return false;
/*
* Treat cursor with fb as always visible since cursor updates
* can happen faster than the vrefresh rate, and the current
* watermark code doesn't handle that correctly. Cursor updates
* which set/clear the fb or change the cursor size are going
* to get throttled by intel_legacy_cursor_update() to work
* around this problem with the watermark code.
*/
if (plane->id == PLANE_CURSOR)
return plane_state->hw.fb != NULL;
else
return plane_state->uapi.visible;
}
static bool intel_crtc_active(struct intel_crtc *crtc)
{
/* Be paranoid as we can arrive here with only partial
* state retrieved from the hardware during setup.
*
* We can ditch the adjusted_mode.crtc_clock check as soon
* as Haswell has gained clock readout/fastboot support.
*
* We can ditch the crtc->primary->state->fb check as soon as we can
* properly reconstruct framebuffers.
*
* FIXME: The intel_crtc->active here should be switched to
* crtc->state->active once we have proper CRTC states wired up
* for atomic.
*/
return crtc->active && crtc->base.primary->state->fb &&
crtc->config->hw.adjusted_mode.crtc_clock;
}
static struct intel_crtc *single_enabled_crtc(struct drm_i915_private *dev_priv)
{
struct intel_crtc *crtc, *enabled = NULL;
for_each_intel_crtc(&dev_priv->drm, crtc) {
if (intel_crtc_active(crtc)) {
if (enabled)
return NULL;
enabled = crtc;
}
}
return enabled;
}
static void pnv_update_wm(struct intel_crtc *unused_crtc)
{
struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
struct intel_crtc *crtc;
const struct cxsr_latency *latency;
u32 reg;
unsigned int wm;
latency = intel_get_cxsr_latency(!IS_MOBILE(dev_priv),
dev_priv->is_ddr3,
dev_priv->fsb_freq,
dev_priv->mem_freq);
if (!latency) {
drm_dbg_kms(&dev_priv->drm,
"Unknown FSB/MEM found, disable CxSR\n");
intel_set_memory_cxsr(dev_priv, false);
return;
}
crtc = single_enabled_crtc(dev_priv);
if (crtc) {
const struct drm_display_mode *adjusted_mode =
&crtc->config->hw.adjusted_mode;
const struct drm_framebuffer *fb =
crtc->base.primary->state->fb;
int cpp = fb->format->cpp[0];
int clock = adjusted_mode->crtc_clock;
/* Display SR */
wm = intel_calculate_wm(clock, &pnv_display_wm,
pnv_display_wm.fifo_size,
cpp, latency->display_sr);
reg = I915_READ(DSPFW1);
reg &= ~DSPFW_SR_MASK;
reg |= FW_WM(wm, SR);
I915_WRITE(DSPFW1, reg);
drm_dbg_kms(&dev_priv->drm, "DSPFW1 register is %x\n", reg);
/* cursor SR */
wm = intel_calculate_wm(clock, &pnv_cursor_wm,
pnv_display_wm.fifo_size,
4, latency->cursor_sr);
reg = I915_READ(DSPFW3);
reg &= ~DSPFW_CURSOR_SR_MASK;
reg |= FW_WM(wm, CURSOR_SR);
I915_WRITE(DSPFW3, reg);
/* Display HPLL off SR */
wm = intel_calculate_wm(clock, &pnv_display_hplloff_wm,
pnv_display_hplloff_wm.fifo_size,
cpp, latency->display_hpll_disable);
reg = I915_READ(DSPFW3);
reg &= ~DSPFW_HPLL_SR_MASK;
reg |= FW_WM(wm, HPLL_SR);
I915_WRITE(DSPFW3, reg);
/* cursor HPLL off SR */
wm = intel_calculate_wm(clock, &pnv_cursor_hplloff_wm,
pnv_display_hplloff_wm.fifo_size,
4, latency->cursor_hpll_disable);
reg = I915_READ(DSPFW3);
reg &= ~DSPFW_HPLL_CURSOR_MASK;
reg |= FW_WM(wm, HPLL_CURSOR);
I915_WRITE(DSPFW3, reg);
drm_dbg_kms(&dev_priv->drm, "DSPFW3 register is %x\n", reg);
intel_set_memory_cxsr(dev_priv, true);
} else {
intel_set_memory_cxsr(dev_priv, false);
}
}
/*
* Documentation says:
* "If the line size is small, the TLB fetches can get in the way of the
* data fetches, causing some lag in the pixel data return which is not
* accounted for in the above formulas. The following adjustment only
* needs to be applied if eight whole lines fit in the buffer at once.
* The WM is adjusted upwards by the difference between the FIFO size
* and the size of 8 whole lines. This adjustment is always performed
* in the actual pixel depth regardless of whether FBC is enabled or not."
*/
static unsigned int g4x_tlb_miss_wa(int fifo_size, int width, int cpp)
{
int tlb_miss = fifo_size * 64 - width * cpp * 8;
return max(0, tlb_miss);
}
static void g4x_write_wm_values(struct drm_i915_private *dev_priv,
const struct g4x_wm_values *wm)
{
enum pipe pipe;
for_each_pipe(dev_priv, pipe)
trace_g4x_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);
I915_WRITE(DSPFW1,
FW_WM(wm->sr.plane, SR) |
FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
I915_WRITE(DSPFW2,
(wm->fbc_en ? DSPFW_FBC_SR_EN : 0) |
FW_WM(wm->sr.fbc, FBC_SR) |
FW_WM(wm->hpll.fbc, FBC_HPLL_SR) |
FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEB) |
FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
I915_WRITE(DSPFW3,
(wm->hpll_en ? DSPFW_HPLL_SR_EN : 0) |
FW_WM(wm->sr.cursor, CURSOR_SR) |
FW_WM(wm->hpll.cursor, HPLL_CURSOR) |
FW_WM(wm->hpll.plane, HPLL_SR));
POSTING_READ(DSPFW1);
}
#define FW_WM_VLV(value, plane) \
(((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
static void vlv_write_wm_values(struct drm_i915_private *dev_priv,
const struct vlv_wm_values *wm)
{
enum pipe pipe;
for_each_pipe(dev_priv, pipe) {
trace_vlv_wm(intel_get_crtc_for_pipe(dev_priv, pipe), wm);
I915_WRITE(VLV_DDL(pipe),
(wm->ddl[pipe].plane[PLANE_CURSOR] << DDL_CURSOR_SHIFT) |
(wm->ddl[pipe].plane[PLANE_SPRITE1] << DDL_SPRITE_SHIFT(1)) |
(wm->ddl[pipe].plane[PLANE_SPRITE0] << DDL_SPRITE_SHIFT(0)) |
(wm->ddl[pipe].plane[PLANE_PRIMARY] << DDL_PLANE_SHIFT));
}
/*
* Zero the (unused) WM1 watermarks, and also clear all the
* high order bits so that there are no out of bounds values
* present in the registers during the reprogramming.
*/
I915_WRITE(DSPHOWM, 0);
I915_WRITE(DSPHOWM1, 0);
I915_WRITE(DSPFW4, 0);
I915_WRITE(DSPFW5, 0);
I915_WRITE(DSPFW6, 0);
I915_WRITE(DSPFW1,
FW_WM(wm->sr.plane, SR) |
FW_WM(wm->pipe[PIPE_B].plane[PLANE_CURSOR], CURSORB) |
FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_PRIMARY], PLANEB) |
FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_PRIMARY], PLANEA));
I915_WRITE(DSPFW2,
FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE1], SPRITEB) |
FW_WM(wm->pipe[PIPE_A].plane[PLANE_CURSOR], CURSORA) |
FW_WM_VLV(wm->pipe[PIPE_A].plane[PLANE_SPRITE0], SPRITEA));
I915_WRITE(DSPFW3,
FW_WM(wm->sr.cursor, CURSOR_SR));
if (IS_CHERRYVIEW(dev_priv)) {
I915_WRITE(DSPFW7_CHV,
FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
I915_WRITE(DSPFW8_CHV,
FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE1], SPRITEF) |
FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_SPRITE0], SPRITEE));
I915_WRITE(DSPFW9_CHV,
FW_WM_VLV(wm->pipe[PIPE_C].plane[PLANE_PRIMARY], PLANEC) |
FW_WM(wm->pipe[PIPE_C].plane[PLANE_CURSOR], CURSORC));
I915_WRITE(DSPHOWM,
FW_WM(wm->sr.plane >> 9, SR_HI) |
FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE1] >> 8, SPRITEF_HI) |
FW_WM(wm->pipe[PIPE_C].plane[PLANE_SPRITE0] >> 8, SPRITEE_HI) |
FW_WM(wm->pipe[PIPE_C].plane[PLANE_PRIMARY] >> 8, PLANEC_HI) |
FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
} else {
I915_WRITE(DSPFW7,
FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE1], SPRITED) |
FW_WM_VLV(wm->pipe[PIPE_B].plane[PLANE_SPRITE0], SPRITEC));
I915_WRITE(DSPHOWM,
FW_WM(wm->sr.plane >> 9, SR_HI) |
FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE1] >> 8, SPRITED_HI) |
FW_WM(wm->pipe[PIPE_B].plane[PLANE_SPRITE0] >> 8, SPRITEC_HI) |
FW_WM(wm->pipe[PIPE_B].plane[PLANE_PRIMARY] >> 8, PLANEB_HI) |
FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE1] >> 8, SPRITEB_HI) |
FW_WM(wm->pipe[PIPE_A].plane[PLANE_SPRITE0] >> 8, SPRITEA_HI) |
FW_WM(wm->pipe[PIPE_A].plane[PLANE_PRIMARY] >> 8, PLANEA_HI));
}
POSTING_READ(DSPFW1);
}
#undef FW_WM_VLV
static void g4x_setup_wm_latency(struct drm_i915_private *dev_priv)
{
/* all latencies in usec */
dev_priv->wm.pri_latency[G4X_WM_LEVEL_NORMAL] = 5;
dev_priv->wm.pri_latency[G4X_WM_LEVEL_SR] = 12;
dev_priv->wm.pri_latency[G4X_WM_LEVEL_HPLL] = 35;
dev_priv->wm.max_level = G4X_WM_LEVEL_HPLL;
}
static int g4x_plane_fifo_size(enum plane_id plane_id, int level)
{
/*
* DSPCNTR[13] supposedly controls whether the
* primary plane can use the FIFO space otherwise
* reserved for the sprite plane. It's not 100% clear
* what the actual FIFO size is, but it looks like we
* can happily set both primary and sprite watermarks
* up to 127 cachelines. So that would seem to mean
* that either DSPCNTR[13] doesn't do anything, or that
* the total FIFO is >= 256 cachelines in size. Either
* way, we don't seem to have to worry about this
* repartitioning as the maximum watermark value the
* register can hold for each plane is lower than the
* minimum FIFO size.
*/
switch (plane_id) {
case PLANE_CURSOR:
return 63;
case PLANE_PRIMARY:
return level == G4X_WM_LEVEL_NORMAL ? 127 : 511;
case PLANE_SPRITE0:
return level == G4X_WM_LEVEL_NORMAL ? 127 : 0;
default:
MISSING_CASE(plane_id);
return 0;
}
}
static int g4x_fbc_fifo_size(int level)
{
switch (level) {
case G4X_WM_LEVEL_SR:
return 7;
case G4X_WM_LEVEL_HPLL:
return 15;
default:
MISSING_CASE(level);
return 0;
}
}
static u16 g4x_compute_wm(const struct intel_crtc_state *crtc_state,
const struct intel_plane_state *plane_state,
int level)
{
struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
const struct drm_display_mode *adjusted_mode =
&crtc_state->hw.adjusted_mode;
unsigned int latency = dev_priv->wm.pri_latency[level] * 10;
unsigned int clock, htotal, cpp, width, wm;
if (latency == 0)
return USHRT_MAX;
if (!intel_wm_plane_visible(crtc_state, plane_state))
return 0;
cpp = plane_state->hw.fb->format->cpp[0];
/*
* Not 100% sure which way ELK should go here as the
* spec only says CL/CTG should assume 32bpp and BW
* doesn't need to. But as these things followed the
* mobile vs. desktop lines on gen3 as well, let's
* assume ELK doesn't need this.
*
* The spec also fails to list such a restriction for
* the HPLL watermark, which seems a little strange.
* Let's use 32bpp for the HPLL watermark as well.
*/
if (IS_GM45(dev_priv) && plane->id == PLANE_PRIMARY &&
level != G4X_WM_LEVEL_NORMAL)
cpp = max(cpp, 4u);
clock = adjusted_mode->crtc_clock;
htotal = adjusted_mode->crtc_htotal;
width = drm_rect_width(&plane_state->uapi.dst);
if (plane->id == PLANE_CURSOR) {
wm = intel_wm_method2(clock, htotal, width, cpp, latency);
} else if (plane->id == PLANE_PRIMARY &&
level == G4X_WM_LEVEL_NORMAL) {
wm = intel_wm_method1(clock, cpp, latency);
} else {
unsigned int small, large;
small = intel_wm_method1(clock, cpp, latency);
large = intel_wm_method2(clock, htotal, width, cpp, latency);
wm = min(small, large);
}
wm += g4x_tlb_miss_wa(g4x_plane_fifo_size(plane->id, level),
width, cpp);
wm = DIV_ROUND_UP(wm, 64) + 2;
return min_t(unsigned int, wm, USHRT_MAX);
}
static bool g4x_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
int level, enum plane_id plane_id, u16 value)
{
struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
bool dirty = false;
for (; level < intel_wm_num_levels(dev_priv); level++) {
struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
dirty |= raw->plane[plane_id] != value;
raw->plane[plane_id] = value;
}
return dirty;
}
static bool g4x_raw_fbc_wm_set(struct intel_crtc_state *crtc_state,
int level, u16 value)
{
struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
bool dirty = false;
/* NORMAL level doesn't have an FBC watermark */
level = max(level, G4X_WM_LEVEL_SR);
for (; level < intel_wm_num_levels(dev_priv); level++) {
struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
dirty |= raw->fbc != value;
raw->fbc = value;
}
return dirty;
}
static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state,
const struct intel_plane_state *plane_state,
u32 pri_val);
static bool g4x_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
const struct intel_plane_state *plane_state)
{
struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
enum plane_id plane_id = plane->id;
bool dirty = false;
int level;
if (!intel_wm_plane_visible(crtc_state, plane_state)) {
dirty |= g4x_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
if (plane_id == PLANE_PRIMARY)
dirty |= g4x_raw_fbc_wm_set(crtc_state, 0, 0);
goto out;
}
for (level = 0; level < num_levels; level++) {
struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
int wm, max_wm;
wm = g4x_compute_wm(crtc_state, plane_state, level);
max_wm = g4x_plane_fifo_size(plane_id, level);
if (wm > max_wm)
break;
dirty |= raw->plane[plane_id] != wm;
raw->plane[plane_id] = wm;
if (plane_id != PLANE_PRIMARY ||
level == G4X_WM_LEVEL_NORMAL)
continue;
wm = ilk_compute_fbc_wm(crtc_state, plane_state,
raw->plane[plane_id]);
max_wm = g4x_fbc_fifo_size(level);
/*
* FBC wm is not mandatory as we
* can always just disable its use.
*/
if (wm > max_wm)
wm = USHRT_MAX;
dirty |= raw->fbc != wm;
raw->fbc = wm;
}
/* mark watermarks as invalid */
dirty |= g4x_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
if (plane_id == PLANE_PRIMARY)
dirty |= g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
out:
if (dirty) {
drm_dbg_kms(&dev_priv->drm,
"%s watermarks: normal=%d, SR=%d, HPLL=%d\n",
plane->base.name,
crtc_state->wm.g4x.raw[G4X_WM_LEVEL_NORMAL].plane[plane_id],
crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].plane[plane_id],
crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].plane[plane_id]);
if (plane_id == PLANE_PRIMARY)
drm_dbg_kms(&dev_priv->drm,
"FBC watermarks: SR=%d, HPLL=%d\n",
crtc_state->wm.g4x.raw[G4X_WM_LEVEL_SR].fbc,
crtc_state->wm.g4x.raw[G4X_WM_LEVEL_HPLL].fbc);
}
return dirty;
}
static bool g4x_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
enum plane_id plane_id, int level)
{
const struct g4x_pipe_wm *raw = &crtc_state->wm.g4x.raw[level];
return raw->plane[plane_id] <= g4x_plane_fifo_size(plane_id, level);
}
static bool g4x_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state,
int level)
{
struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
if (level > dev_priv->wm.max_level)
return false;
return g4x_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
g4x_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
g4x_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
}
/* mark all levels starting from 'level' as invalid */
static void g4x_invalidate_wms(struct intel_crtc *crtc,
struct g4x_wm_state *wm_state, int level)
{
if (level <= G4X_WM_LEVEL_NORMAL) {
enum plane_id plane_id;
for_each_plane_id_on_crtc(crtc, plane_id)
wm_state->wm.plane[plane_id] = USHRT_MAX;
}
if (level <= G4X_WM_LEVEL_SR) {
wm_state->cxsr = false;
wm_state->sr.cursor = USHRT_MAX;
wm_state->sr.plane = USHRT_MAX;
wm_state->sr.fbc = USHRT_MAX;
}
if (level <= G4X_WM_LEVEL_HPLL) {
wm_state->hpll_en = false;
wm_state->hpll.cursor = USHRT_MAX;
wm_state->hpll.plane = USHRT_MAX;
wm_state->hpll.fbc = USHRT_MAX;
}
}
static bool g4x_compute_fbc_en(const struct g4x_wm_state *wm_state,
int level)
{
if (level < G4X_WM_LEVEL_SR)
return false;
if (level >= G4X_WM_LEVEL_SR &&
wm_state->sr.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_SR))
return false;
if (level >= G4X_WM_LEVEL_HPLL &&
wm_state->hpll.fbc > g4x_fbc_fifo_size(G4X_WM_LEVEL_HPLL))
return false;
return true;
}
static int g4x_compute_pipe_wm(struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct intel_atomic_state *state =
to_intel_atomic_state(crtc_state->uapi.state);
struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
int num_active_planes = hweight8(crtc_state->active_planes &
~BIT(PLANE_CURSOR));
const struct g4x_pipe_wm *raw;
const struct intel_plane_state *old_plane_state;
const struct intel_plane_state *new_plane_state;
struct intel_plane *plane;
enum plane_id plane_id;
int i, level;
unsigned int dirty = 0;
for_each_oldnew_intel_plane_in_state(state, plane,
old_plane_state,
new_plane_state, i) {
if (new_plane_state->hw.crtc != &crtc->base &&
old_plane_state->hw.crtc != &crtc->base)
continue;
if (g4x_raw_plane_wm_compute(crtc_state, new_plane_state))
dirty |= BIT(plane->id);
}
if (!dirty)
return 0;
level = G4X_WM_LEVEL_NORMAL;
if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
goto out;
raw = &crtc_state->wm.g4x.raw[level];
for_each_plane_id_on_crtc(crtc, plane_id)
wm_state->wm.plane[plane_id] = raw->plane[plane_id];
level = G4X_WM_LEVEL_SR;
if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
goto out;
raw = &crtc_state->wm.g4x.raw[level];
wm_state->sr.plane = raw->plane[PLANE_PRIMARY];
wm_state->sr.cursor = raw->plane[PLANE_CURSOR];
wm_state->sr.fbc = raw->fbc;
wm_state->cxsr = num_active_planes == BIT(PLANE_PRIMARY);
level = G4X_WM_LEVEL_HPLL;
if (!g4x_raw_crtc_wm_is_valid(crtc_state, level))
goto out;
raw = &crtc_state->wm.g4x.raw[level];
wm_state->hpll.plane = raw->plane[PLANE_PRIMARY];
wm_state->hpll.cursor = raw->plane[PLANE_CURSOR];
wm_state->hpll.fbc = raw->fbc;
wm_state->hpll_en = wm_state->cxsr;
level++;
out:
if (level == G4X_WM_LEVEL_NORMAL)
return -EINVAL;
/* invalidate the higher levels */
g4x_invalidate_wms(crtc, wm_state, level);
/*
* Determine if the FBC watermark(s) can be used. IF
* this isn't the case we prefer to disable the FBC
* watermark(s) rather than disable the SR/HPLL
* level(s) entirely. 'level-1' is the highest valid
* level here.
*/
wm_state->fbc_en = g4x_compute_fbc_en(wm_state, level - 1);
return 0;
}
static int g4x_compute_intermediate_wm(struct intel_crtc_state *new_crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
struct g4x_wm_state *intermediate = &new_crtc_state->wm.g4x.intermediate;
const struct g4x_wm_state *optimal = &new_crtc_state->wm.g4x.optimal;
struct intel_atomic_state *intel_state =
to_intel_atomic_state(new_crtc_state->uapi.state);
const struct intel_crtc_state *old_crtc_state =
intel_atomic_get_old_crtc_state(intel_state, crtc);
const struct g4x_wm_state *active = &old_crtc_state->wm.g4x.optimal;
enum plane_id plane_id;
if (!new_crtc_state->hw.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi)) {
*intermediate = *optimal;
intermediate->cxsr = false;
intermediate->hpll_en = false;
goto out;
}
intermediate->cxsr = optimal->cxsr && active->cxsr &&
!new_crtc_state->disable_cxsr;
intermediate->hpll_en = optimal->hpll_en && active->hpll_en &&
!new_crtc_state->disable_cxsr;
intermediate->fbc_en = optimal->fbc_en && active->fbc_en;
for_each_plane_id_on_crtc(crtc, plane_id) {
intermediate->wm.plane[plane_id] =
max(optimal->wm.plane[plane_id],
active->wm.plane[plane_id]);
drm_WARN_ON(&dev_priv->drm, intermediate->wm.plane[plane_id] >
g4x_plane_fifo_size(plane_id, G4X_WM_LEVEL_NORMAL));
}
intermediate->sr.plane = max(optimal->sr.plane,
active->sr.plane);
intermediate->sr.cursor = max(optimal->sr.cursor,
active->sr.cursor);
intermediate->sr.fbc = max(optimal->sr.fbc,
active->sr.fbc);
intermediate->hpll.plane = max(optimal->hpll.plane,
active->hpll.plane);
intermediate->hpll.cursor = max(optimal->hpll.cursor,
active->hpll.cursor);
intermediate->hpll.fbc = max(optimal->hpll.fbc,
active->hpll.fbc);
drm_WARN_ON(&dev_priv->drm,
(intermediate->sr.plane >
g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_SR) ||
intermediate->sr.cursor >
g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_SR)) &&
intermediate->cxsr);
drm_WARN_ON(&dev_priv->drm,
(intermediate->sr.plane >
g4x_plane_fifo_size(PLANE_PRIMARY, G4X_WM_LEVEL_HPLL) ||
intermediate->sr.cursor >
g4x_plane_fifo_size(PLANE_CURSOR, G4X_WM_LEVEL_HPLL)) &&
intermediate->hpll_en);
drm_WARN_ON(&dev_priv->drm,
intermediate->sr.fbc > g4x_fbc_fifo_size(1) &&
intermediate->fbc_en && intermediate->cxsr);
drm_WARN_ON(&dev_priv->drm,
intermediate->hpll.fbc > g4x_fbc_fifo_size(2) &&
intermediate->fbc_en && intermediate->hpll_en);
out:
/*
* If our intermediate WM are identical to the final WM, then we can
* omit the post-vblank programming; only update if it's different.
*/
if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
new_crtc_state->wm.need_postvbl_update = true;
return 0;
}
static void g4x_merge_wm(struct drm_i915_private *dev_priv,
struct g4x_wm_values *wm)
{
struct intel_crtc *crtc;
int num_active_pipes = 0;
wm->cxsr = true;
wm->hpll_en = true;
wm->fbc_en = true;
for_each_intel_crtc(&dev_priv->drm, crtc) {
const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
if (!crtc->active)
continue;
if (!wm_state->cxsr)
wm->cxsr = false;
if (!wm_state->hpll_en)
wm->hpll_en = false;
if (!wm_state->fbc_en)
wm->fbc_en = false;
num_active_pipes++;
}
if (num_active_pipes != 1) {
wm->cxsr = false;
wm->hpll_en = false;
wm->fbc_en = false;
}
for_each_intel_crtc(&dev_priv->drm, crtc) {
const struct g4x_wm_state *wm_state = &crtc->wm.active.g4x;
enum pipe pipe = crtc->pipe;
wm->pipe[pipe] = wm_state->wm;
if (crtc->active && wm->cxsr)
wm->sr = wm_state->sr;
if (crtc->active && wm->hpll_en)
wm->hpll = wm_state->hpll;
}
}
static void g4x_program_watermarks(struct drm_i915_private *dev_priv)
{
struct g4x_wm_values *old_wm = &dev_priv->wm.g4x;
struct g4x_wm_values new_wm = {};
g4x_merge_wm(dev_priv, &new_wm);
if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
return;
if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
_intel_set_memory_cxsr(dev_priv, false);
g4x_write_wm_values(dev_priv, &new_wm);
if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
_intel_set_memory_cxsr(dev_priv, true);
*old_wm = new_wm;
}
static void g4x_initial_watermarks(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
const struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
mutex_lock(&dev_priv->wm.wm_mutex);
crtc->wm.active.g4x = crtc_state->wm.g4x.intermediate;
g4x_program_watermarks(dev_priv);
mutex_unlock(&dev_priv->wm.wm_mutex);
}
static void g4x_optimize_watermarks(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
const struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
if (!crtc_state->wm.need_postvbl_update)
return;
mutex_lock(&dev_priv->wm.wm_mutex);
crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
g4x_program_watermarks(dev_priv);
mutex_unlock(&dev_priv->wm.wm_mutex);
}
/* latency must be in 0.1us units. */
static unsigned int vlv_wm_method2(unsigned int pixel_rate,
unsigned int htotal,
unsigned int width,
unsigned int cpp,
unsigned int latency)
{
unsigned int ret;
ret = intel_wm_method2(pixel_rate, htotal,
width, cpp, latency);
ret = DIV_ROUND_UP(ret, 64);
return ret;
}
static void vlv_setup_wm_latency(struct drm_i915_private *dev_priv)
{
/* all latencies in usec */
dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
if (IS_CHERRYVIEW(dev_priv)) {
dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
}
}
static u16 vlv_compute_wm_level(const struct intel_crtc_state *crtc_state,
const struct intel_plane_state *plane_state,
int level)
{
struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
const struct drm_display_mode *adjusted_mode =
&crtc_state->hw.adjusted_mode;
unsigned int clock, htotal, cpp, width, wm;
if (dev_priv->wm.pri_latency[level] == 0)
return USHRT_MAX;
if (!intel_wm_plane_visible(crtc_state, plane_state))
return 0;
cpp = plane_state->hw.fb->format->cpp[0];
clock = adjusted_mode->crtc_clock;
htotal = adjusted_mode->crtc_htotal;
width = crtc_state->pipe_src_w;
if (plane->id == PLANE_CURSOR) {
/*
* FIXME the formula gives values that are
* too big for the cursor FIFO, and hence we
* would never be able to use cursors. For
* now just hardcode the watermark.
*/
wm = 63;
} else {
wm = vlv_wm_method2(clock, htotal, width, cpp,
dev_priv->wm.pri_latency[level] * 10);
}
return min_t(unsigned int, wm, USHRT_MAX);
}
static bool vlv_need_sprite0_fifo_workaround(unsigned int active_planes)
{
return (active_planes & (BIT(PLANE_SPRITE0) |
BIT(PLANE_SPRITE1))) == BIT(PLANE_SPRITE1);
}
static int vlv_compute_fifo(struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
const struct g4x_pipe_wm *raw =
&crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2];
struct vlv_fifo_state *fifo_state = &crtc_state->wm.vlv.fifo_state;
unsigned int active_planes = crtc_state->active_planes & ~BIT(PLANE_CURSOR);
int num_active_planes = hweight8(active_planes);
const int fifo_size = 511;
int fifo_extra, fifo_left = fifo_size;
int sprite0_fifo_extra = 0;
unsigned int total_rate;
enum plane_id plane_id;
/*
* When enabling sprite0 after sprite1 has already been enabled
* we tend to get an underrun unless sprite0 already has some
* FIFO space allcoated. Hence we always allocate at least one
* cacheline for sprite0 whenever sprite1 is enabled.
*
* All other plane enable sequences appear immune to this problem.
*/
if (vlv_need_sprite0_fifo_workaround(active_planes))
sprite0_fifo_extra = 1;
total_rate = raw->plane[PLANE_PRIMARY] +
raw->plane[PLANE_SPRITE0] +
raw->plane[PLANE_SPRITE1] +
sprite0_fifo_extra;
if (total_rate > fifo_size)
return -EINVAL;
if (total_rate == 0)
total_rate = 1;
for_each_plane_id_on_crtc(crtc, plane_id) {
unsigned int rate;
if ((active_planes & BIT(plane_id)) == 0) {
fifo_state->plane[plane_id] = 0;
continue;
}
rate = raw->plane[plane_id];
fifo_state->plane[plane_id] = fifo_size * rate / total_rate;
fifo_left -= fifo_state->plane[plane_id];
}
fifo_state->plane[PLANE_SPRITE0] += sprite0_fifo_extra;
fifo_left -= sprite0_fifo_extra;
fifo_state->plane[PLANE_CURSOR] = 63;
fifo_extra = DIV_ROUND_UP(fifo_left, num_active_planes ?: 1);
/* spread the remainder evenly */
for_each_plane_id_on_crtc(crtc, plane_id) {
int plane_extra;
if (fifo_left == 0)
break;
if ((active_planes & BIT(plane_id)) == 0)
continue;
plane_extra = min(fifo_extra, fifo_left);
fifo_state->plane[plane_id] += plane_extra;
fifo_left -= plane_extra;
}
drm_WARN_ON(&dev_priv->drm, active_planes != 0 && fifo_left != 0);
/* give it all to the first plane if none are active */
if (active_planes == 0) {
drm_WARN_ON(&dev_priv->drm, fifo_left != fifo_size);
fifo_state->plane[PLANE_PRIMARY] = fifo_left;
}
return 0;
}
/* mark all levels starting from 'level' as invalid */
static void vlv_invalidate_wms(struct intel_crtc *crtc,
struct vlv_wm_state *wm_state, int level)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
for (; level < intel_wm_num_levels(dev_priv); level++) {
enum plane_id plane_id;
for_each_plane_id_on_crtc(crtc, plane_id)
wm_state->wm[level].plane[plane_id] = USHRT_MAX;
wm_state->sr[level].cursor = USHRT_MAX;
wm_state->sr[level].plane = USHRT_MAX;
}
}
static u16 vlv_invert_wm_value(u16 wm, u16 fifo_size)
{
if (wm > fifo_size)
return USHRT_MAX;
else
return fifo_size - wm;
}
/*
* Starting from 'level' set all higher
* levels to 'value' in the "raw" watermarks.
*/
static bool vlv_raw_plane_wm_set(struct intel_crtc_state *crtc_state,
int level, enum plane_id plane_id, u16 value)
{
struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
int num_levels = intel_wm_num_levels(dev_priv);
bool dirty = false;
for (; level < num_levels; level++) {
struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
dirty |= raw->plane[plane_id] != value;
raw->plane[plane_id] = value;
}
return dirty;
}
static bool vlv_raw_plane_wm_compute(struct intel_crtc_state *crtc_state,
const struct intel_plane_state *plane_state)
{
struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
enum plane_id plane_id = plane->id;
int num_levels = intel_wm_num_levels(to_i915(plane->base.dev));
int level;
bool dirty = false;
if (!intel_wm_plane_visible(crtc_state, plane_state)) {
dirty |= vlv_raw_plane_wm_set(crtc_state, 0, plane_id, 0);
goto out;
}
for (level = 0; level < num_levels; level++) {
struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
int wm = vlv_compute_wm_level(crtc_state, plane_state, level);
int max_wm = plane_id == PLANE_CURSOR ? 63 : 511;
if (wm > max_wm)
break;
dirty |= raw->plane[plane_id] != wm;
raw->plane[plane_id] = wm;
}
/* mark all higher levels as invalid */
dirty |= vlv_raw_plane_wm_set(crtc_state, level, plane_id, USHRT_MAX);
out:
if (dirty)
drm_dbg_kms(&dev_priv->drm,
"%s watermarks: PM2=%d, PM5=%d, DDR DVFS=%d\n",
plane->base.name,
crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM2].plane[plane_id],
crtc_state->wm.vlv.raw[VLV_WM_LEVEL_PM5].plane[plane_id],
crtc_state->wm.vlv.raw[VLV_WM_LEVEL_DDR_DVFS].plane[plane_id]);
return dirty;
}
static bool vlv_raw_plane_wm_is_valid(const struct intel_crtc_state *crtc_state,
enum plane_id plane_id, int level)
{
const struct g4x_pipe_wm *raw =
&crtc_state->wm.vlv.raw[level];
const struct vlv_fifo_state *fifo_state =
&crtc_state->wm.vlv.fifo_state;
return raw->plane[plane_id] <= fifo_state->plane[plane_id];
}
static bool vlv_raw_crtc_wm_is_valid(const struct intel_crtc_state *crtc_state, int level)
{
return vlv_raw_plane_wm_is_valid(crtc_state, PLANE_PRIMARY, level) &&
vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE0, level) &&
vlv_raw_plane_wm_is_valid(crtc_state, PLANE_SPRITE1, level) &&
vlv_raw_plane_wm_is_valid(crtc_state, PLANE_CURSOR, level);
}
static int vlv_compute_pipe_wm(struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
struct intel_atomic_state *state =
to_intel_atomic_state(crtc_state->uapi.state);
struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
const struct vlv_fifo_state *fifo_state =
&crtc_state->wm.vlv.fifo_state;
int num_active_planes = hweight8(crtc_state->active_planes &
~BIT(PLANE_CURSOR));
bool needs_modeset = drm_atomic_crtc_needs_modeset(&crtc_state->uapi);
const struct intel_plane_state *old_plane_state;
const struct intel_plane_state *new_plane_state;
struct intel_plane *plane;
enum plane_id plane_id;
int level, ret, i;
unsigned int dirty = 0;
for_each_oldnew_intel_plane_in_state(state, plane,
old_plane_state,
new_plane_state, i) {
if (new_plane_state->hw.crtc != &crtc->base &&
old_plane_state->hw.crtc != &crtc->base)
continue;
if (vlv_raw_plane_wm_compute(crtc_state, new_plane_state))
dirty |= BIT(plane->id);
}
/*
* DSPARB registers may have been reset due to the
* power well being turned off. Make sure we restore
* them to a consistent state even if no primary/sprite
* planes are initially active.
*/
if (needs_modeset)
crtc_state->fifo_changed = true;
if (!dirty)
return 0;
/* cursor changes don't warrant a FIFO recompute */
if (dirty & ~BIT(PLANE_CURSOR)) {
const struct intel_crtc_state *old_crtc_state =
intel_atomic_get_old_crtc_state(state, crtc);
const struct vlv_fifo_state *old_fifo_state =
&old_crtc_state->wm.vlv.fifo_state;
ret = vlv_compute_fifo(crtc_state);
if (ret)
return ret;
if (needs_modeset ||
memcmp(old_fifo_state, fifo_state,
sizeof(*fifo_state)) != 0)
crtc_state->fifo_changed = true;
}
/* initially allow all levels */
wm_state->num_levels = intel_wm_num_levels(dev_priv);
/*
* Note that enabling cxsr with no primary/sprite planes
* enabled can wedge the pipe. Hence we only allow cxsr
* with exactly one enabled primary/sprite plane.
*/
wm_state->cxsr = crtc->pipe != PIPE_C && num_active_planes == 1;
for (level = 0; level < wm_state->num_levels; level++) {
const struct g4x_pipe_wm *raw = &crtc_state->wm.vlv.raw[level];
const int sr_fifo_size = INTEL_NUM_PIPES(dev_priv) * 512 - 1;
if (!vlv_raw_crtc_wm_is_valid(crtc_state, level))
break;
for_each_plane_id_on_crtc(crtc, plane_id) {
wm_state->wm[level].plane[plane_id] =
vlv_invert_wm_value(raw->plane[plane_id],
fifo_state->plane[plane_id]);
}
wm_state->sr[level].plane =
vlv_invert_wm_value(max3(raw->plane[PLANE_PRIMARY],
raw->plane[PLANE_SPRITE0],
raw->plane[PLANE_SPRITE1]),
sr_fifo_size);
wm_state->sr[level].cursor =
vlv_invert_wm_value(raw->plane[PLANE_CURSOR],
63);
}
if (level == 0)
return -EINVAL;
/* limit to only levels we can actually handle */
wm_state->num_levels = level;
/* invalidate the higher levels */
vlv_invalidate_wms(crtc, wm_state, level);
return 0;
}
#define VLV_FIFO(plane, value) \
(((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
static void vlv_atomic_update_fifo(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
struct intel_uncore *uncore = &dev_priv->uncore;
const struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
const struct vlv_fifo_state *fifo_state =
&crtc_state->wm.vlv.fifo_state;
int sprite0_start, sprite1_start, fifo_size;
u32 dsparb, dsparb2, dsparb3;
if (!crtc_state->fifo_changed)
return;
sprite0_start = fifo_state->plane[PLANE_PRIMARY];
sprite1_start = fifo_state->plane[PLANE_SPRITE0] + sprite0_start;
fifo_size = fifo_state->plane[PLANE_SPRITE1] + sprite1_start;
drm_WARN_ON(&dev_priv->drm, fifo_state->plane[PLANE_CURSOR] != 63);
drm_WARN_ON(&dev_priv->drm, fifo_size != 511);
trace_vlv_fifo_size(crtc, sprite0_start, sprite1_start, fifo_size);
/*
* uncore.lock serves a double purpose here. It allows us to
* use the less expensive I915_{READ,WRITE}_FW() functions, and
* it protects the DSPARB registers from getting clobbered by
* parallel updates from multiple pipes.
*
* intel_pipe_update_start() has already disabled interrupts
* for us, so a plain spin_lock() is sufficient here.
*/
spin_lock(&uncore->lock);
switch (crtc->pipe) {
case PIPE_A:
dsparb = intel_uncore_read_fw(uncore, DSPARB);
dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
VLV_FIFO(SPRITEB, 0xff));
dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
VLV_FIFO(SPRITEB, sprite1_start));
dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
VLV_FIFO(SPRITEB_HI, 0x1));
dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
intel_uncore_write_fw(uncore, DSPARB, dsparb);
intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
break;
case PIPE_B:
dsparb = intel_uncore_read_fw(uncore, DSPARB);
dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
VLV_FIFO(SPRITED, 0xff));
dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
VLV_FIFO(SPRITED, sprite1_start));
dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
VLV_FIFO(SPRITED_HI, 0xff));
dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
intel_uncore_write_fw(uncore, DSPARB, dsparb);
intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
break;
case PIPE_C:
dsparb3 = intel_uncore_read_fw(uncore, DSPARB3);
dsparb2 = intel_uncore_read_fw(uncore, DSPARB2);
dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
VLV_FIFO(SPRITEF, 0xff));
dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
VLV_FIFO(SPRITEF, sprite1_start));
dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
VLV_FIFO(SPRITEF_HI, 0xff));
dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
intel_uncore_write_fw(uncore, DSPARB3, dsparb3);
intel_uncore_write_fw(uncore, DSPARB2, dsparb2);
break;
default:
break;
}
intel_uncore_posting_read_fw(uncore, DSPARB);
spin_unlock(&uncore->lock);
}
#undef VLV_FIFO
static int vlv_compute_intermediate_wm(struct intel_crtc_state *new_crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
struct vlv_wm_state *intermediate = &new_crtc_state->wm.vlv.intermediate;
const struct vlv_wm_state *optimal = &new_crtc_state->wm.vlv.optimal;
struct intel_atomic_state *intel_state =
to_intel_atomic_state(new_crtc_state->uapi.state);
const struct intel_crtc_state *old_crtc_state =
intel_atomic_get_old_crtc_state(intel_state, crtc);
const struct vlv_wm_state *active = &old_crtc_state->wm.vlv.optimal;
int level;
if (!new_crtc_state->hw.active || drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi)) {
*intermediate = *optimal;
intermediate->cxsr = false;
goto out;
}
intermediate->num_levels = min(optimal->num_levels, active->num_levels);
intermediate->cxsr = optimal->cxsr && active->cxsr &&
!new_crtc_state->disable_cxsr;
for (level = 0; level < intermediate->num_levels; level++) {
enum plane_id plane_id;
for_each_plane_id_on_crtc(crtc, plane_id) {
intermediate->wm[level].plane[plane_id] =
min(optimal->wm[level].plane[plane_id],
active->wm[level].plane[plane_id]);
}
intermediate->sr[level].plane = min(optimal->sr[level].plane,
active->sr[level].plane);
intermediate->sr[level].cursor = min(optimal->sr[level].cursor,
active->sr[level].cursor);
}
vlv_invalidate_wms(crtc, intermediate, level);
out:
/*
* If our intermediate WM are identical to the final WM, then we can
* omit the post-vblank programming; only update if it's different.
*/
if (memcmp(intermediate, optimal, sizeof(*intermediate)) != 0)
new_crtc_state->wm.need_postvbl_update = true;
return 0;
}
static void vlv_merge_wm(struct drm_i915_private *dev_priv,
struct vlv_wm_values *wm)
{
struct intel_crtc *crtc;
int num_active_pipes = 0;
wm->level = dev_priv->wm.max_level;
wm->cxsr = true;
for_each_intel_crtc(&dev_priv->drm, crtc) {
const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
if (!crtc->active)
continue;
if (!wm_state->cxsr)
wm->cxsr = false;
num_active_pipes++;
wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
}
if (num_active_pipes != 1)
wm->cxsr = false;
if (num_active_pipes > 1)
wm->level = VLV_WM_LEVEL_PM2;
for_each_intel_crtc(&dev_priv->drm, crtc) {
const struct vlv_wm_state *wm_state = &crtc->wm.active.vlv;
enum pipe pipe = crtc->pipe;
wm->pipe[pipe] = wm_state->wm[wm->level];
if (crtc->active && wm->cxsr)
wm->sr = wm_state->sr[wm->level];
wm->ddl[pipe].plane[PLANE_PRIMARY] = DDL_PRECISION_HIGH | 2;
wm->ddl[pipe].plane[PLANE_SPRITE0] = DDL_PRECISION_HIGH | 2;
wm->ddl[pipe].plane[PLANE_SPRITE1] = DDL_PRECISION_HIGH | 2;
wm->ddl[pipe].plane[PLANE_CURSOR] = DDL_PRECISION_HIGH | 2;
}
}
static void vlv_program_watermarks(struct drm_i915_private *dev_priv)
{
struct vlv_wm_values *old_wm = &dev_priv->wm.vlv;
struct vlv_wm_values new_wm = {};
vlv_merge_wm(dev_priv, &new_wm);
if (memcmp(old_wm, &new_wm, sizeof(new_wm)) == 0)
return;
if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
chv_set_memory_dvfs(dev_priv, false);
if (is_disabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
chv_set_memory_pm5(dev_priv, false);
if (is_disabling(old_wm->cxsr, new_wm.cxsr, true))
_intel_set_memory_cxsr(dev_priv, false);
vlv_write_wm_values(dev_priv, &new_wm);
if (is_enabling(old_wm->cxsr, new_wm.cxsr, true))
_intel_set_memory_cxsr(dev_priv, true);
if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_PM5))
chv_set_memory_pm5(dev_priv, true);
if (is_enabling(old_wm->level, new_wm.level, VLV_WM_LEVEL_DDR_DVFS))
chv_set_memory_dvfs(dev_priv, true);
*old_wm = new_wm;
}
static void vlv_initial_watermarks(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
const struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
mutex_lock(&dev_priv->wm.wm_mutex);
crtc->wm.active.vlv = crtc_state->wm.vlv.intermediate;
vlv_program_watermarks(dev_priv);
mutex_unlock(&dev_priv->wm.wm_mutex);
}
static void vlv_optimize_watermarks(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
const struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
if (!crtc_state->wm.need_postvbl_update)
return;
mutex_lock(&dev_priv->wm.wm_mutex);
crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
vlv_program_watermarks(dev_priv);
mutex_unlock(&dev_priv->wm.wm_mutex);
}
static void i965_update_wm(struct intel_crtc *unused_crtc)
{
struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
struct intel_crtc *crtc;
int srwm = 1;
int cursor_sr = 16;
bool cxsr_enabled;
/* Calc sr entries for one plane configs */
crtc = single_enabled_crtc(dev_priv);
if (crtc) {
/* self-refresh has much higher latency */
static const int sr_latency_ns = 12000;
const struct drm_display_mode *adjusted_mode =
&crtc->config->hw.adjusted_mode;
const struct drm_framebuffer *fb =
crtc->base.primary->state->fb;
int clock = adjusted_mode->crtc_clock;
int htotal = adjusted_mode->crtc_htotal;
int hdisplay = crtc->config->pipe_src_w;
int cpp = fb->format->cpp[0];
int entries;
entries = intel_wm_method2(clock, htotal,
hdisplay, cpp, sr_latency_ns / 100);
entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
srwm = I965_FIFO_SIZE - entries;
if (srwm < 0)
srwm = 1;
srwm &= 0x1ff;
drm_dbg_kms(&dev_priv->drm,
"self-refresh entries: %d, wm: %d\n",
entries, srwm);
entries = intel_wm_method2(clock, htotal,
crtc->base.cursor->state->crtc_w, 4,
sr_latency_ns / 100);
entries = DIV_ROUND_UP(entries,
i965_cursor_wm_info.cacheline_size) +
i965_cursor_wm_info.guard_size;
cursor_sr = i965_cursor_wm_info.fifo_size - entries;
if (cursor_sr > i965_cursor_wm_info.max_wm)
cursor_sr = i965_cursor_wm_info.max_wm;
drm_dbg_kms(&dev_priv->drm,
"self-refresh watermark: display plane %d "
"cursor %d\n", srwm, cursor_sr);
cxsr_enabled = true;
} else {
cxsr_enabled = false;
/* Turn off self refresh if both pipes are enabled */
intel_set_memory_cxsr(dev_priv, false);
}
drm_dbg_kms(&dev_priv->drm,
"Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
srwm);
/* 965 has limitations... */
I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
FW_WM(8, CURSORB) |
FW_WM(8, PLANEB) |
FW_WM(8, PLANEA));
I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
FW_WM(8, PLANEC_OLD));
/* update cursor SR watermark */
I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
if (cxsr_enabled)
intel_set_memory_cxsr(dev_priv, true);
}
#undef FW_WM
static void i9xx_update_wm(struct intel_crtc *unused_crtc)
{
struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
const struct intel_watermark_params *wm_info;
u32 fwater_lo;
u32 fwater_hi;
int cwm, srwm = 1;
int fifo_size;
int planea_wm, planeb_wm;
struct intel_crtc *crtc, *enabled = NULL;
if (IS_I945GM(dev_priv))
wm_info = &i945_wm_info;
else if (!IS_GEN(dev_priv, 2))
wm_info = &i915_wm_info;
else
wm_info = &i830_a_wm_info;
fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_A);
crtc = intel_get_crtc_for_plane(dev_priv, PLANE_A);
if (intel_crtc_active(crtc)) {
const struct drm_display_mode *adjusted_mode =
&crtc->config->hw.adjusted_mode;
const struct drm_framebuffer *fb =
crtc->base.primary->state->fb;
int cpp;
if (IS_GEN(dev_priv, 2))
cpp = 4;
else
cpp = fb->format->cpp[0];
planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
wm_info, fifo_size, cpp,
pessimal_latency_ns);
enabled = crtc;
} else {
planea_wm = fifo_size - wm_info->guard_size;
if (planea_wm > (long)wm_info->max_wm)
planea_wm = wm_info->max_wm;
}
if (IS_GEN(dev_priv, 2))
wm_info = &i830_bc_wm_info;
fifo_size = dev_priv->display.get_fifo_size(dev_priv, PLANE_B);
crtc = intel_get_crtc_for_plane(dev_priv, PLANE_B);
if (intel_crtc_active(crtc)) {
const struct drm_display_mode *adjusted_mode =
&crtc->config->hw.adjusted_mode;
const struct drm_framebuffer *fb =
crtc->base.primary->state->fb;
int cpp;
if (IS_GEN(dev_priv, 2))
cpp = 4;
else
cpp = fb->format->cpp[0];
planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
wm_info, fifo_size, cpp,
pessimal_latency_ns);
if (enabled == NULL)
enabled = crtc;
else
enabled = NULL;
} else {
planeb_wm = fifo_size - wm_info->guard_size;
if (planeb_wm > (long)wm_info->max_wm)
planeb_wm = wm_info->max_wm;
}
drm_dbg_kms(&dev_priv->drm,
"FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
if (IS_I915GM(dev_priv) && enabled) {
struct drm_i915_gem_object *obj;
obj = intel_fb_obj(enabled->base.primary->state->fb);
/* self-refresh seems busted with untiled */
if (!i915_gem_object_is_tiled(obj))
enabled = NULL;
}
/*
* Overlay gets an aggressive default since video jitter is bad.
*/
cwm = 2;
/* Play safe and disable self-refresh before adjusting watermarks. */
intel_set_memory_cxsr(dev_priv, false);
/* Calc sr entries for one plane configs */
if (HAS_FW_BLC(dev_priv) && enabled) {
/* self-refresh has much higher latency */
static const int sr_latency_ns = 6000;
const struct drm_display_mode *adjusted_mode =
&enabled->config->hw.adjusted_mode;
const struct drm_framebuffer *fb =
enabled->base.primary->state->fb;
int clock = adjusted_mode->crtc_clock;
int htotal = adjusted_mode->crtc_htotal;
int hdisplay = enabled->config->pipe_src_w;
int cpp;
int entries;
if (IS_I915GM(dev_priv) || IS_I945GM(dev_priv))
cpp = 4;
else
cpp = fb->format->cpp[0];
entries = intel_wm_method2(clock, htotal, hdisplay, cpp,
sr_latency_ns / 100);
entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
drm_dbg_kms(&dev_priv->drm,
"self-refresh entries: %d\n", entries);
srwm = wm_info->fifo_size - entries;
if (srwm < 0)
srwm = 1;
if (IS_I945G(dev_priv) || IS_I945GM(dev_priv))
I915_WRITE(FW_BLC_SELF,
FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
else
I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
}
drm_dbg_kms(&dev_priv->drm,
"Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
planea_wm, planeb_wm, cwm, srwm);
fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
fwater_hi = (cwm & 0x1f);
/* Set request length to 8 cachelines per fetch */
fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
fwater_hi = fwater_hi | (1 << 8);
I915_WRITE(FW_BLC, fwater_lo);
I915_WRITE(FW_BLC2, fwater_hi);
if (enabled)
intel_set_memory_cxsr(dev_priv, true);
}
static void i845_update_wm(struct intel_crtc *unused_crtc)
{
struct drm_i915_private *dev_priv = to_i915(unused_crtc->base.dev);
struct intel_crtc *crtc;
const struct drm_display_mode *adjusted_mode;
u32 fwater_lo;
int planea_wm;
crtc = single_enabled_crtc(dev_priv);
if (crtc == NULL)
return;
adjusted_mode = &crtc->config->hw.adjusted_mode;
planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
&i845_wm_info,
dev_priv->display.get_fifo_size(dev_priv, PLANE_A),
4, pessimal_latency_ns);
fwater_lo = I915_READ(FW_BLC) & ~0xfff;
fwater_lo |= (3<<8) | planea_wm;
drm_dbg_kms(&dev_priv->drm,
"Setting FIFO watermarks - A: %d\n", planea_wm);
I915_WRITE(FW_BLC, fwater_lo);
}
/* latency must be in 0.1us units. */
static unsigned int ilk_wm_method1(unsigned int pixel_rate,
unsigned int cpp,
unsigned int latency)
{
unsigned int ret;
ret = intel_wm_method1(pixel_rate, cpp, latency);
ret = DIV_ROUND_UP(ret, 64) + 2;
return ret;
}
/* latency must be in 0.1us units. */
static unsigned int ilk_wm_method2(unsigned int pixel_rate,
unsigned int htotal,
unsigned int width,
unsigned int cpp,
unsigned int latency)
{
unsigned int ret;
ret = intel_wm_method2(pixel_rate, htotal,
width, cpp, latency);
ret = DIV_ROUND_UP(ret, 64) + 2;
return ret;
}
static u32 ilk_wm_fbc(u32 pri_val, u32 horiz_pixels, u8 cpp)
{
/*
* Neither of these should be possible since this function shouldn't be
* called if the CRTC is off or the plane is invisible. But let's be
* extra paranoid to avoid a potential divide-by-zero if we screw up
* elsewhere in the driver.
*/
if (WARN_ON(!cpp))
return 0;
if (WARN_ON(!horiz_pixels))
return 0;
return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
}
struct ilk_wm_maximums {
u16 pri;
u16 spr;
u16 cur;
u16 fbc;
};
/*
* For both WM_PIPE and WM_LP.
* mem_value must be in 0.1us units.
*/
static u32 ilk_compute_pri_wm(const struct intel_crtc_state *crtc_state,
const struct intel_plane_state *plane_state,
u32 mem_value, bool is_lp)
{
u32 method1, method2;
int cpp;
if (mem_value == 0)
return U32_MAX;
if (!intel_wm_plane_visible(crtc_state, plane_state))
return 0;
cpp = plane_state->hw.fb->format->cpp[0];
method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value);
if (!is_lp)
return method1;
method2 = ilk_wm_method2(crtc_state->pixel_rate,
crtc_state->hw.adjusted_mode.crtc_htotal,
drm_rect_width(&plane_state->uapi.dst),
cpp, mem_value);
return min(method1, method2);
}
/*
* For both WM_PIPE and WM_LP.
* mem_value must be in 0.1us units.
*/
static u32 ilk_compute_spr_wm(const struct intel_crtc_state *crtc_state,
const struct intel_plane_state *plane_state,
u32 mem_value)
{
u32 method1, method2;
int cpp;
if (mem_value == 0)
return U32_MAX;
if (!intel_wm_plane_visible(crtc_state, plane_state))
return 0;
cpp = plane_state->hw.fb->format->cpp[0];
method1 = ilk_wm_method1(crtc_state->pixel_rate, cpp, mem_value);
method2 = ilk_wm_method2(crtc_state->pixel_rate,
crtc_state->hw.adjusted_mode.crtc_htotal,
drm_rect_width(&plane_state->uapi.dst),
cpp, mem_value);
return min(method1, method2);
}
/*
* For both WM_PIPE and WM_LP.
* mem_value must be in 0.1us units.
*/
static u32 ilk_compute_cur_wm(const struct intel_crtc_state *crtc_state,
const struct intel_plane_state *plane_state,
u32 mem_value)
{
int cpp;
if (mem_value == 0)
return U32_MAX;
if (!intel_wm_plane_visible(crtc_state, plane_state))
return 0;
cpp = plane_state->hw.fb->format->cpp[0];
return ilk_wm_method2(crtc_state->pixel_rate,
crtc_state->hw.adjusted_mode.crtc_htotal,
drm_rect_width(&plane_state->uapi.dst),
cpp, mem_value);
}
/* Only for WM_LP. */
static u32 ilk_compute_fbc_wm(const struct intel_crtc_state *crtc_state,
const struct intel_plane_state *plane_state,
u32 pri_val)
{
int cpp;
if (!intel_wm_plane_visible(crtc_state, plane_state))
return 0;
cpp = plane_state->hw.fb->format->cpp[0];
return ilk_wm_fbc(pri_val, drm_rect_width(&plane_state->uapi.dst),
cpp);
}
static unsigned int
ilk_display_fifo_size(const struct drm_i915_private *dev_priv)
{
if (INTEL_GEN(dev_priv) >= 8)
return 3072;
else if (INTEL_GEN(dev_priv) >= 7)
return 768;
else
return 512;
}
static unsigned int
ilk_plane_wm_reg_max(const struct drm_i915_private *dev_priv,
int level, bool is_sprite)
{
if (INTEL_GEN(dev_priv) >= 8)
/* BDW primary/sprite plane watermarks */
return level == 0 ? 255 : 2047;
else if (INTEL_GEN(dev_priv) >= 7)
/* IVB/HSW primary/sprite plane watermarks */
return level == 0 ? 127 : 1023;
else if (!is_sprite)
/* ILK/SNB primary plane watermarks */
return level == 0 ? 127 : 511;
else
/* ILK/SNB sprite plane watermarks */
return level == 0 ? 63 : 255;
}
static unsigned int
ilk_cursor_wm_reg_max(const struct drm_i915_private *dev_priv, int level)
{
if (INTEL_GEN(dev_priv) >= 7)
return level == 0 ? 63 : 255;
else
return level == 0 ? 31 : 63;
}
static unsigned int ilk_fbc_wm_reg_max(const struct drm_i915_private *dev_priv)
{
if (INTEL_GEN(dev_priv) >= 8)
return 31;
else
return 15;
}
/* Calculate the maximum primary/sprite plane watermark */
static unsigned int ilk_plane_wm_max(const struct drm_i915_private *dev_priv,
int level,
const struct intel_wm_config *config,
enum intel_ddb_partitioning ddb_partitioning,
bool is_sprite)
{
unsigned int fifo_size = ilk_display_fifo_size(dev_priv);
/* if sprites aren't enabled, sprites get nothing */
if (is_sprite && !config->sprites_enabled)
return 0;
/* HSW allows LP1+ watermarks even with multiple pipes */
if (level == 0 || config->num_pipes_active > 1) {
fifo_size /= INTEL_NUM_PIPES(dev_priv);
/*
* For some reason the non self refresh
* FIFO size is only half of the self
* refresh FIFO size on ILK/SNB.
*/
if (INTEL_GEN(dev_priv) <= 6)
fifo_size /= 2;
}
if (config->sprites_enabled) {
/* level 0 is always calculated with 1:1 split */
if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
if (is_sprite)
fifo_size *= 5;
fifo_size /= 6;
} else {
fifo_size /= 2;
}
}
/* clamp to max that the registers can hold */
return min(fifo_size, ilk_plane_wm_reg_max(dev_priv, level, is_sprite));
}
/* Calculate the maximum cursor plane watermark */
static unsigned int ilk_cursor_wm_max(const struct drm_i915_private *dev_priv,
int level,
const struct intel_wm_config *config)
{
/* HSW LP1+ watermarks w/ multiple pipes */
if (level > 0 && config->num_pipes_active > 1)
return 64;
/* otherwise just report max that registers can hold */
return ilk_cursor_wm_reg_max(dev_priv, level);
}
static void ilk_compute_wm_maximums(const struct drm_i915_private *dev_priv,
int level,
const struct intel_wm_config *config,
enum intel_ddb_partitioning ddb_partitioning,
struct ilk_wm_maximums *max)
{
max->pri = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, false);
max->spr = ilk_plane_wm_max(dev_priv, level, config, ddb_partitioning, true);
max->cur = ilk_cursor_wm_max(dev_priv, level, config);
max->fbc = ilk_fbc_wm_reg_max(dev_priv);
}
static void ilk_compute_wm_reg_maximums(const struct drm_i915_private *dev_priv,
int level,
struct ilk_wm_maximums *max)
{
max->pri = ilk_plane_wm_reg_max(dev_priv, level, false);
max->spr = ilk_plane_wm_reg_max(dev_priv, level, true);
max->cur = ilk_cursor_wm_reg_max(dev_priv, level);
max->fbc = ilk_fbc_wm_reg_max(dev_priv);
}
static bool ilk_validate_wm_level(int level,
const struct ilk_wm_maximums *max,
struct intel_wm_level *result)
{
bool ret;
/* already determined to be invalid? */
if (!result->enable)
return false;
result->enable = result->pri_val <= max->pri &&
result->spr_val <= max->spr &&
result->cur_val <= max->cur;
ret = result->enable;
/*
* HACK until we can pre-compute everything,
* and thus fail gracefully if LP0 watermarks
* are exceeded...
*/
if (level == 0 && !result->enable) {
if (result->pri_val > max->pri)
DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
level, result->pri_val, max->pri);
if (result->spr_val > max->spr)
DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
level, result->spr_val, max->spr);
if (result->cur_val > max->cur)
DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
level, result->cur_val, max->cur);
result->pri_val = min_t(u32, result->pri_val, max->pri);
result->spr_val = min_t(u32, result->spr_val, max->spr);
result->cur_val = min_t(u32, result->cur_val, max->cur);
result->enable = true;
}
return ret;
}
static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
const struct intel_crtc *crtc,
int level,
struct intel_crtc_state *crtc_state,
const struct intel_plane_state *pristate,
const struct intel_plane_state *sprstate,
const struct intel_plane_state *curstate,
struct intel_wm_level *result)
{
u16 pri_latency = dev_priv->wm.pri_latency[level];
u16 spr_latency = dev_priv->wm.spr_latency[level];
u16 cur_latency = dev_priv->wm.cur_latency[level];
/* WM1+ latency values stored in 0.5us units */
if (level > 0) {
pri_latency *= 5;
spr_latency *= 5;
cur_latency *= 5;
}
if (pristate) {
result->pri_val = ilk_compute_pri_wm(crtc_state, pristate,
pri_latency, level);
result->fbc_val = ilk_compute_fbc_wm(crtc_state, pristate, result->pri_val);
}
if (sprstate)
result->spr_val = ilk_compute_spr_wm(crtc_state, sprstate, spr_latency);
if (curstate)
result->cur_val = ilk_compute_cur_wm(crtc_state, curstate, cur_latency);
result->enable = true;
}
static void intel_read_wm_latency(struct drm_i915_private *dev_priv,
u16 wm[8])
{
struct intel_uncore *uncore = &dev_priv->uncore;
if (INTEL_GEN(dev_priv) >= 9) {
u32 val;
int ret, i;
int level, max_level = ilk_wm_max_level(dev_priv);
/* read the first set of memory latencies[0:3] */
val = 0; /* data0 to be programmed to 0 for first set */
ret = sandybridge_pcode_read(dev_priv,
GEN9_PCODE_READ_MEM_LATENCY,
&val, NULL);
if (ret) {
drm_err(&dev_priv->drm,
"SKL Mailbox read error = %d\n", ret);
return;
}
wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
GEN9_MEM_LATENCY_LEVEL_MASK;
wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
GEN9_MEM_LATENCY_LEVEL_MASK;
wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
GEN9_MEM_LATENCY_LEVEL_MASK;
/* read the second set of memory latencies[4:7] */
val = 1; /* data0 to be programmed to 1 for second set */
ret = sandybridge_pcode_read(dev_priv,
GEN9_PCODE_READ_MEM_LATENCY,
&val, NULL);
if (ret) {
drm_err(&dev_priv->drm,
"SKL Mailbox read error = %d\n", ret);
return;
}
wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
GEN9_MEM_LATENCY_LEVEL_MASK;
wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
GEN9_MEM_LATENCY_LEVEL_MASK;
wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
GEN9_MEM_LATENCY_LEVEL_MASK;
/*
* If a level n (n > 1) has a 0us latency, all levels m (m >= n)
* need to be disabled. We make sure to sanitize the values out
* of the punit to satisfy this requirement.
*/
for (level = 1; level <= max_level; level++) {
if (wm[level] == 0) {
for (i = level + 1; i <= max_level; i++)
wm[i] = 0;
break;
}
}
/*
* WaWmMemoryReadLatency:skl+,glk
*
* punit doesn't take into account the read latency so we need
* to add 2us to the various latency levels we retrieve from the
* punit when level 0 response data us 0us.
*/
if (wm[0] == 0) {
wm[0] += 2;
for (level = 1; level <= max_level; level++) {
if (wm[level] == 0)
break;
wm[level] += 2;
}
}
/*
* WA Level-0 adjustment for 16GB DIMMs: SKL+
* If we could not get dimm info enable this WA to prevent from
* any underrun. If not able to get Dimm info assume 16GB dimm
* to avoid any underrun.
*/
if (dev_priv->dram_info.is_16gb_dimm)
wm[0] += 1;
} else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
u64 sskpd = intel_uncore_read64(uncore, MCH_SSKPD);
wm[0] = (sskpd >> 56) & 0xFF;
if (wm[0] == 0)
wm[0] = sskpd & 0xF;
wm[1] = (sskpd >> 4) & 0xFF;
wm[2] = (sskpd >> 12) & 0xFF;
wm[3] = (sskpd >> 20) & 0x1FF;
wm[4] = (sskpd >> 32) & 0x1FF;
} else if (INTEL_GEN(dev_priv) >= 6) {
u32 sskpd = intel_uncore_read(uncore, MCH_SSKPD);
wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
} else if (INTEL_GEN(dev_priv) >= 5) {
u32 mltr = intel_uncore_read(uncore, MLTR_ILK);
/* ILK primary LP0 latency is 700 ns */
wm[0] = 7;
wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
} else {
MISSING_CASE(INTEL_DEVID(dev_priv));
}
}
static void intel_fixup_spr_wm_latency(struct drm_i915_private *dev_priv,
u16 wm[5])
{
/* ILK sprite LP0 latency is 1300 ns */
if (IS_GEN(dev_priv, 5))
wm[0] = 13;
}
static void intel_fixup_cur_wm_latency(struct drm_i915_private *dev_priv,
u16 wm[5])
{
/* ILK cursor LP0 latency is 1300 ns */
if (IS_GEN(dev_priv, 5))
wm[0] = 13;
}
int ilk_wm_max_level(const struct drm_i915_private *dev_priv)
{
/* how many WM levels are we expecting */
if (INTEL_GEN(dev_priv) >= 9)
return 7;
else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
return 4;
else if (INTEL_GEN(dev_priv) >= 6)
return 3;
else
return 2;
}
static void intel_print_wm_latency(struct drm_i915_private *dev_priv,
const char *name,
const u16 wm[8])
{
int level, max_level = ilk_wm_max_level(dev_priv);
for (level = 0; level <= max_level; level++) {
unsigned int latency = wm[level];
if (latency == 0) {
drm_dbg_kms(&dev_priv->drm,
"%s WM%d latency not provided\n",
name, level);
continue;
}
/*
* - latencies are in us on gen9.
* - before then, WM1+ latency values are in 0.5us units
*/
if (INTEL_GEN(dev_priv) >= 9)
latency *= 10;
else if (level > 0)
latency *= 5;
drm_dbg_kms(&dev_priv->drm,
"%s WM%d latency %u (%u.%u usec)\n", name, level,
wm[level], latency / 10, latency % 10);
}
}
static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
u16 wm[5], u16 min)
{
int level, max_level = ilk_wm_max_level(dev_priv);
if (wm[0] >= min)
return false;
wm[0] = max(wm[0], min);
for (level = 1; level <= max_level; level++)
wm[level] = max_t(u16, wm[level], DIV_ROUND_UP(min, 5));
return true;
}
static void snb_wm_latency_quirk(struct drm_i915_private *dev_priv)
{
bool changed;
/*
* The BIOS provided WM memory latency values are often
* inadequate for high resolution displays. Adjust them.
*/
changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
if (!changed)
return;
drm_dbg_kms(&dev_priv->drm,
"WM latency values increased to avoid potential underruns\n");
intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
}
static void snb_wm_lp3_irq_quirk(struct drm_i915_private *dev_priv)
{
/*
* On some SNB machines (Thinkpad X220 Tablet at least)
* LP3 usage can cause vblank interrupts to be lost.
* The DEIIR bit will go high but it looks like the CPU
* never gets interrupted.
*
* It's not clear whether other interrupt source could
* be affected or if this is somehow limited to vblank
* interrupts only. To play it safe we disable LP3
* watermarks entirely.
*/
if (dev_priv->wm.pri_latency[3] == 0 &&
dev_priv->wm.spr_latency[3] == 0 &&
dev_priv->wm.cur_latency[3] == 0)
return;
dev_priv->wm.pri_latency[3] = 0;
dev_priv->wm.spr_latency[3] = 0;
dev_priv->wm.cur_latency[3] = 0;
drm_dbg_kms(&dev_priv->drm,
"LP3 watermarks disabled due to potential for lost interrupts\n");
intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
}
static void ilk_setup_wm_latency(struct drm_i915_private *dev_priv)
{
intel_read_wm_latency(dev_priv, dev_priv->wm.pri_latency);
memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
sizeof(dev_priv->wm.pri_latency));
memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
sizeof(dev_priv->wm.pri_latency));
intel_fixup_spr_wm_latency(dev_priv, dev_priv->wm.spr_latency);
intel_fixup_cur_wm_latency(dev_priv, dev_priv->wm.cur_latency);
intel_print_wm_latency(dev_priv, "Primary", dev_priv->wm.pri_latency);
intel_print_wm_latency(dev_priv, "Sprite", dev_priv->wm.spr_latency);
intel_print_wm_latency(dev_priv, "Cursor", dev_priv->wm.cur_latency);
if (IS_GEN(dev_priv, 6)) {
snb_wm_latency_quirk(dev_priv);
snb_wm_lp3_irq_quirk(dev_priv);
}
}
static void skl_setup_wm_latency(struct drm_i915_private *dev_priv)
{
intel_read_wm_latency(dev_priv, dev_priv->wm.skl_latency);
intel_print_wm_latency(dev_priv, "Gen9 Plane", dev_priv->wm.skl_latency);
}
static bool ilk_validate_pipe_wm(const struct drm_i915_private *dev_priv,
struct intel_pipe_wm *pipe_wm)
{
/* LP0 watermark maximums depend on this pipe alone */
const struct intel_wm_config config = {
.num_pipes_active = 1,
.sprites_enabled = pipe_wm->sprites_enabled,
.sprites_scaled = pipe_wm->sprites_scaled,
};
struct ilk_wm_maximums max;
/* LP0 watermarks always use 1/2 DDB partitioning */
ilk_compute_wm_maximums(dev_priv, 0, &config, INTEL_DDB_PART_1_2, &max);
/* At least LP0 must be valid */
if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
drm_dbg_kms(&dev_priv->drm, "LP0 watermark invalid\n");
return false;
}
return true;
}
/* Compute new watermarks for the pipe */
static int ilk_compute_pipe_wm(struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct intel_pipe_wm *pipe_wm;
struct intel_plane *plane;
const struct intel_plane_state *plane_state;
const struct intel_plane_state *pristate = NULL;
const struct intel_plane_state *sprstate = NULL;
const struct intel_plane_state *curstate = NULL;
int level, max_level = ilk_wm_max_level(dev_priv), usable_level;
struct ilk_wm_maximums max;
pipe_wm = &crtc_state->wm.ilk.optimal;
intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
pristate = plane_state;
else if (plane->base.type == DRM_PLANE_TYPE_OVERLAY)
sprstate = plane_state;
else if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
curstate = plane_state;
}
pipe_wm->pipe_enabled = crtc_state->hw.active;
if (sprstate) {
pipe_wm->sprites_enabled = sprstate->uapi.visible;
pipe_wm->sprites_scaled = sprstate->uapi.visible &&
(drm_rect_width(&sprstate->uapi.dst) != drm_rect_width(&sprstate->uapi.src) >> 16 ||
drm_rect_height(&sprstate->uapi.dst) != drm_rect_height(&sprstate->uapi.src) >> 16);
}
usable_level = max_level;
/* ILK/SNB: LP2+ watermarks only w/o sprites */
if (INTEL_GEN(dev_priv) <= 6 && pipe_wm->sprites_enabled)
usable_level = 1;
/* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
if (pipe_wm->sprites_scaled)
usable_level = 0;
memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
ilk_compute_wm_level(dev_priv, crtc, 0, crtc_state,
pristate, sprstate, curstate, &pipe_wm->wm[0]);
if (!ilk_validate_pipe_wm(dev_priv, pipe_wm))
return -EINVAL;
ilk_compute_wm_reg_maximums(dev_priv, 1, &max);
for (level = 1; level <= usable_level; level++) {
struct intel_wm_level *wm = &pipe_wm->wm[level];
ilk_compute_wm_level(dev_priv, crtc, level, crtc_state,
pristate, sprstate, curstate, wm);
/*
* Disable any watermark level that exceeds the
* register maximums since such watermarks are
* always invalid.
*/
if (!ilk_validate_wm_level(level, &max, wm)) {
memset(wm, 0, sizeof(*wm));
break;
}
}
return 0;
}
/*
* Build a set of 'intermediate' watermark values that satisfy both the old
* state and the new state. These can be programmed to the hardware
* immediately.
*/
static int ilk_compute_intermediate_wm(struct intel_crtc_state *newstate)
{
struct intel_crtc *intel_crtc = to_intel_crtc(newstate->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
struct intel_atomic_state *intel_state =
to_intel_atomic_state(newstate->uapi.state);
const struct intel_crtc_state *oldstate =
intel_atomic_get_old_crtc_state(intel_state, intel_crtc);
const struct intel_pipe_wm *b = &oldstate->wm.ilk.optimal;
int level, max_level = ilk_wm_max_level(dev_priv);
/*
* Start with the final, target watermarks, then combine with the
* currently active watermarks to get values that are safe both before
* and after the vblank.
*/
*a = newstate->wm.ilk.optimal;
if (!newstate->hw.active || drm_atomic_crtc_needs_modeset(&newstate->uapi) ||
intel_state->skip_intermediate_wm)
return 0;
a->pipe_enabled |= b->pipe_enabled;
a->sprites_enabled |= b->sprites_enabled;
a->sprites_scaled |= b->sprites_scaled;
for (level = 0; level <= max_level; level++) {
struct intel_wm_level *a_wm = &a->wm[level];
const struct intel_wm_level *b_wm = &b->wm[level];
a_wm->enable &= b_wm->enable;
a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
}
/*
* We need to make sure that these merged watermark values are
* actually a valid configuration themselves. If they're not,
* there's no safe way to transition from the old state to
* the new state, so we need to fail the atomic transaction.
*/
if (!ilk_validate_pipe_wm(dev_priv, a))
return -EINVAL;
/*
* If our intermediate WM are identical to the final WM, then we can
* omit the post-vblank programming; only update if it's different.
*/
if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) != 0)
newstate->wm.need_postvbl_update = true;
return 0;
}
/*
* Merge the watermarks from all active pipes for a specific level.
*/
static void ilk_merge_wm_level(struct drm_i915_private *dev_priv,
int level,
struct intel_wm_level *ret_wm)
{
const struct intel_crtc *intel_crtc;
ret_wm->enable = true;
for_each_intel_crtc(&dev_priv->drm, intel_crtc) {
const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
const struct intel_wm_level *wm = &active->wm[level];
if (!active->pipe_enabled)
continue;
/*
* The watermark values may have been used in the past,
* so we must maintain them in the registers for some
* time even if the level is now disabled.
*/
if (!wm->enable)
ret_wm->enable = false;
ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
}
}
/*
* Merge all low power watermarks for all active pipes.
*/
static void ilk_wm_merge(struct drm_i915_private *dev_priv,
const struct intel_wm_config *config,
const struct ilk_wm_maximums *max,
struct intel_pipe_wm *merged)
{
int level, max_level = ilk_wm_max_level(dev_priv);
int last_enabled_level = max_level;
/* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
if ((INTEL_GEN(dev_priv) <= 6 || IS_IVYBRIDGE(dev_priv)) &&
config->num_pipes_active > 1)
last_enabled_level = 0;
/* ILK: FBC WM must be disabled always */
merged->fbc_wm_enabled = INTEL_GEN(dev_priv) >= 6;
/* merge each WM1+ level */
for (level = 1; level <= max_level; level++) {
struct intel_wm_level *wm = &merged->wm[level];
ilk_merge_wm_level(dev_priv, level, wm);
if (level > last_enabled_level)
wm->enable = false;
else if (!ilk_validate_wm_level(level, max, wm))
/* make sure all following levels get disabled */
last_enabled_level = level - 1;
/*
* The spec says it is preferred to disable
* FBC WMs instead of disabling a WM level.
*/
if (wm->fbc_val > max->fbc) {
if (wm->enable)
merged->fbc_wm_enabled = false;
wm->fbc_val = 0;
}
}
/* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
/*
* FIXME this is racy. FBC might get enabled later.
* What we should check here is whether FBC can be
* enabled sometime later.
*/
if (IS_GEN(dev_priv, 5) && !merged->fbc_wm_enabled &&
intel_fbc_is_active(dev_priv)) {
for (level = 2; level <= max_level; level++) {
struct intel_wm_level *wm = &merged->wm[level];
wm->enable = false;
}
}
}
static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
{
/* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
}
/* The value we need to program into the WM_LPx latency field */
static unsigned int ilk_wm_lp_latency(struct drm_i915_private *dev_priv,
int level)
{
if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
return 2 * level;
else
return dev_priv->wm.pri_latency[level];
}
static void ilk_compute_wm_results(struct drm_i915_private *dev_priv,
const struct intel_pipe_wm *merged,
enum intel_ddb_partitioning partitioning,
struct ilk_wm_values *results)
{
struct intel_crtc *intel_crtc;
int level, wm_lp;
results->enable_fbc_wm = merged->fbc_wm_enabled;
results->partitioning = partitioning;
/* LP1+ register values */
for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
const struct intel_wm_level *r;
level = ilk_wm_lp_to_level(wm_lp, merged);
r = &merged->wm[level];
/*
* Maintain the watermark values even if the level is
* disabled. Doing otherwise could cause underruns.
*/
results->wm_lp[wm_lp - 1] =
(ilk_wm_lp_latency(dev_priv, level) << WM1_LP_LATENCY_SHIFT) |
(r->pri_val << WM1_LP_SR_SHIFT) |
r->cur_val;
if (r->enable)
results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
if (INTEL_GEN(dev_priv) >= 8)
results->wm_lp[wm_lp - 1] |=
r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
else
results->wm_lp[wm_lp - 1] |=
r->fbc_val << WM1_LP_FBC_SHIFT;
/*
* Always set WM1S_LP_EN when spr_val != 0, even if the
* level is disabled. Doing otherwise could cause underruns.
*/
if (INTEL_GEN(dev_priv) <= 6 && r->spr_val) {
drm_WARN_ON(&dev_priv->drm, wm_lp != 1);
results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
} else
results->wm_lp_spr[wm_lp - 1] = r->spr_val;
}
/* LP0 register values */
for_each_intel_crtc(&dev_priv->drm, intel_crtc) {
enum pipe pipe = intel_crtc->pipe;
const struct intel_pipe_wm *pipe_wm = &intel_crtc->wm.active.ilk;
const struct intel_wm_level *r = &pipe_wm->wm[0];
if (drm_WARN_ON(&dev_priv->drm, !r->enable))
continue;
results->wm_pipe[pipe] =
(r->pri_val << WM0_PIPE_PLANE_SHIFT) |
(r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
r->cur_val;
}
}
/* Find the result with the highest level enabled. Check for enable_fbc_wm in
* case both are at the same level. Prefer r1 in case they're the same. */
static struct intel_pipe_wm *
ilk_find_best_result(struct drm_i915_private *dev_priv,
struct intel_pipe_wm *r1,
struct intel_pipe_wm *r2)
{
int level, max_level = ilk_wm_max_level(dev_priv);
int level1 = 0, level2 = 0;
for (level = 1; level <= max_level; level++) {
if (r1->wm[level].enable)
level1 = level;
if (r2->wm[level].enable)
level2 = level;
}
if (level1 == level2) {
if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
return r2;
else
return r1;
} else if (level1 > level2) {
return r1;
} else {
return r2;
}
}
/* dirty bits used to track which watermarks need changes */
#define WM_DIRTY_PIPE(pipe) (1 << (pipe))
#define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
#define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
#define WM_DIRTY_FBC (1 << 24)
#define WM_DIRTY_DDB (1 << 25)
static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
const struct ilk_wm_values *old,
const struct ilk_wm_values *new)
{
unsigned int dirty = 0;
enum pipe pipe;
int wm_lp;
for_each_pipe(dev_priv, pipe) {
if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
dirty |= WM_DIRTY_PIPE(pipe);
/* Must disable LP1+ watermarks too */
dirty |= WM_DIRTY_LP_ALL;
}
}
if (old->enable_fbc_wm != new->enable_fbc_wm) {
dirty |= WM_DIRTY_FBC;
/* Must disable LP1+ watermarks too */
dirty |= WM_DIRTY_LP_ALL;
}
if (old->partitioning != new->partitioning) {
dirty |= WM_DIRTY_DDB;
/* Must disable LP1+ watermarks too */
dirty |= WM_DIRTY_LP_ALL;
}
/* LP1+ watermarks already deemed dirty, no need to continue */
if (dirty & WM_DIRTY_LP_ALL)
return dirty;
/* Find the lowest numbered LP1+ watermark in need of an update... */
for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
break;
}
/* ...and mark it and all higher numbered LP1+ watermarks as dirty */
for (; wm_lp <= 3; wm_lp++)
dirty |= WM_DIRTY_LP(wm_lp);
return dirty;
}
static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
unsigned int dirty)
{
struct ilk_wm_values *previous = &dev_priv->wm.hw;
bool changed = false;
if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
previous->wm_lp[2] &= ~WM1_LP_SR_EN;
I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
changed = true;
}
if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
previous->wm_lp[1] &= ~WM1_LP_SR_EN;
I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
changed = true;
}
if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
previous->wm_lp[0] &= ~WM1_LP_SR_EN;
I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
changed = true;
}
/*
* Don't touch WM1S_LP_EN here.
* Doing so could cause underruns.
*/
return changed;
}
/*
* The spec says we shouldn't write when we don't need, because every write
* causes WMs to be re-evaluated, expending some power.
*/
static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
struct ilk_wm_values *results)
{
struct ilk_wm_values *previous = &dev_priv->wm.hw;
unsigned int dirty;
u32 val;
dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
if (!dirty)
return;
_ilk_disable_lp_wm(dev_priv, dirty);
if (dirty & WM_DIRTY_PIPE(PIPE_A))
I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
if (dirty & WM_DIRTY_PIPE(PIPE_B))
I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
if (dirty & WM_DIRTY_PIPE(PIPE_C))
I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
if (dirty & WM_DIRTY_DDB) {
if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
val = I915_READ(WM_MISC);
if (results->partitioning == INTEL_DDB_PART_1_2)
val &= ~WM_MISC_DATA_PARTITION_5_6;
else
val |= WM_MISC_DATA_PARTITION_5_6;
I915_WRITE(WM_MISC, val);
} else {
val = I915_READ(DISP_ARB_CTL2);
if (results->partitioning == INTEL_DDB_PART_1_2)
val &= ~DISP_DATA_PARTITION_5_6;
else
val |= DISP_DATA_PARTITION_5_6;
I915_WRITE(DISP_ARB_CTL2, val);
}
}
if (dirty & WM_DIRTY_FBC) {
val = I915_READ(DISP_ARB_CTL);
if (results->enable_fbc_wm)
val &= ~DISP_FBC_WM_DIS;
else
val |= DISP_FBC_WM_DIS;
I915_WRITE(DISP_ARB_CTL, val);
}
if (dirty & WM_DIRTY_LP(1) &&
previous->wm_lp_spr[0] != results->wm_lp_spr[0])
I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
if (INTEL_GEN(dev_priv) >= 7) {
if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
}
if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
dev_priv->wm.hw = *results;
}
bool ilk_disable_lp_wm(struct drm_i915_private *dev_priv)
{
return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
}
u8 intel_enabled_dbuf_slices_mask(struct drm_i915_private *dev_priv)
{
int i;
int max_slices = INTEL_INFO(dev_priv)->num_supported_dbuf_slices;
u8 enabled_slices_mask = 0;
for (i = 0; i < max_slices; i++) {
if (I915_READ(DBUF_CTL_S(i)) & DBUF_POWER_STATE)
enabled_slices_mask |= BIT(i);
}
return enabled_slices_mask;
}
/*
* FIXME: We still don't have the proper code detect if we need to apply the WA,
* so assume we'll always need it in order to avoid underruns.
*/
static bool skl_needs_memory_bw_wa(struct drm_i915_private *dev_priv)
{
return IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv);
}
static bool
intel_has_sagv(struct drm_i915_private *dev_priv)
{
return (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) &&
dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED;
}
static void
skl_setup_sagv_block_time(struct drm_i915_private *dev_priv)
{
if (INTEL_GEN(dev_priv) >= 12) {
u32 val = 0;
int ret;
ret = sandybridge_pcode_read(dev_priv,
GEN12_PCODE_READ_SAGV_BLOCK_TIME_US,
&val, NULL);
if (!ret) {
dev_priv->sagv_block_time_us = val;
return;
}
drm_dbg(&dev_priv->drm, "Couldn't read SAGV block time!\n");
} else if (IS_GEN(dev_priv, 11)) {
dev_priv->sagv_block_time_us = 10;
return;
} else if (IS_GEN(dev_priv, 10)) {
dev_priv->sagv_block_time_us = 20;
return;
} else if (IS_GEN(dev_priv, 9)) {
dev_priv->sagv_block_time_us = 30;
return;
} else {
MISSING_CASE(INTEL_GEN(dev_priv));
}
/* Default to an unusable block time */
dev_priv->sagv_block_time_us = -1;
}
/*
* SAGV dynamically adjusts the system agent voltage and clock frequencies
* depending on power and performance requirements. The display engine access
* to system memory is blocked during the adjustment time. Because of the
* blocking time, having this enabled can cause full system hangs and/or pipe
* underruns if we don't meet all of the following requirements:
*
* - <= 1 pipe enabled
* - All planes can enable watermarks for latencies >= SAGV engine block time
* - We're not using an interlaced display configuration
*/
int
intel_enable_sagv(struct drm_i915_private *dev_priv)
{
int ret;
if (!intel_has_sagv(dev_priv))
return 0;
if (dev_priv->sagv_status == I915_SAGV_ENABLED)
return 0;
drm_dbg_kms(&dev_priv->drm, "Enabling SAGV\n");
ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
GEN9_SAGV_ENABLE);
/* We don't need to wait for SAGV when enabling */
/*
* Some skl systems, pre-release machines in particular,
* don't actually have SAGV.
*/
if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
drm_dbg(&dev_priv->drm, "No SAGV found on system, ignoring\n");
dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
return 0;
} else if (ret < 0) {
drm_err(&dev_priv->drm, "Failed to enable SAGV\n");
return ret;
}
dev_priv->sagv_status = I915_SAGV_ENABLED;
return 0;
}
int
intel_disable_sagv(struct drm_i915_private *dev_priv)
{
int ret;
if (!intel_has_sagv(dev_priv))
return 0;
if (dev_priv->sagv_status == I915_SAGV_DISABLED)
return 0;
drm_dbg_kms(&dev_priv->drm, "Disabling SAGV\n");
/* bspec says to keep retrying for at least 1 ms */
ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
GEN9_SAGV_DISABLE,
GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
1);
/*
* Some skl systems, pre-release machines in particular,
* don't actually have SAGV.
*/
if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
drm_dbg(&dev_priv->drm, "No SAGV found on system, ignoring\n");
dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
return 0;
} else if (ret < 0) {
drm_err(&dev_priv->drm, "Failed to disable SAGV (%d)\n", ret);
return ret;
}
dev_priv->sagv_status = I915_SAGV_DISABLED;
return 0;
}
void intel_sagv_pre_plane_update(struct intel_atomic_state *state)
{
struct drm_i915_private *dev_priv = to_i915(state->base.dev);
const struct intel_bw_state *new_bw_state;
const struct intel_bw_state *old_bw_state;
u32 new_mask = 0;
/*
* Just return if we can't control SAGV or don't have it.
* This is different from situation when we have SAGV but just can't
* afford it due to DBuf limitation - in case if SAGV is completely
* disabled in a BIOS, we are not even allowed to send a PCode request,
* as it will throw an error. So have to check it here.
*/
if (!intel_has_sagv(dev_priv))
return;
new_bw_state = intel_atomic_get_new_bw_state(state);
if (!new_bw_state)
return;
if (INTEL_GEN(dev_priv) < 11 && !intel_can_enable_sagv(dev_priv, new_bw_state)) {
intel_disable_sagv(dev_priv);
return;
}
old_bw_state = intel_atomic_get_old_bw_state(state);
/*
* Nothing to mask
*/
if (new_bw_state->qgv_points_mask == old_bw_state->qgv_points_mask)
return;
new_mask = old_bw_state->qgv_points_mask | new_bw_state->qgv_points_mask;
/*
* If new mask is zero - means there is nothing to mask,
* we can only unmask, which should be done in unmask.
*/
if (!new_mask)
return;
/*
* Restrict required qgv points before updating the configuration.
* According to BSpec we can't mask and unmask qgv points at the same
* time. Also masking should be done before updating the configuration
* and unmasking afterwards.
*/
icl_pcode_restrict_qgv_points(dev_priv, new_mask);
}
void intel_sagv_post_plane_update(struct intel_atomic_state *state)
{
struct drm_i915_private *dev_priv = to_i915(state->base.dev);
const struct intel_bw_state *new_bw_state;
const struct intel_bw_state *old_bw_state;
u32 new_mask = 0;
/*
* Just return if we can't control SAGV or don't have it.
* This is different from situation when we have SAGV but just can't
* afford it due to DBuf limitation - in case if SAGV is completely
* disabled in a BIOS, we are not even allowed to send a PCode request,
* as it will throw an error. So have to check it here.
*/
if (!intel_has_sagv(dev_priv))
return;
new_bw_state = intel_atomic_get_new_bw_state(state);
if (!new_bw_state)
return;
if (INTEL_GEN(dev_priv) < 11 && intel_can_enable_sagv(dev_priv, new_bw_state)) {
intel_enable_sagv(dev_priv);
return;
}
old_bw_state = intel_atomic_get_old_bw_state(state);
/*
* Nothing to unmask
*/
if (new_bw_state->qgv_points_mask == old_bw_state->qgv_points_mask)
return;
new_mask = new_bw_state->qgv_points_mask;
/*
* Allow required qgv points after updating the configuration.
* According to BSpec we can't mask and unmask qgv points at the same
* time. Also masking should be done before updating the configuration
* and unmasking afterwards.
*/
icl_pcode_restrict_qgv_points(dev_priv, new_mask);
}
static bool skl_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
struct intel_plane *plane;
const struct intel_plane_state *plane_state;
int level, latency;
if (!intel_has_sagv(dev_priv))
return false;
if (!crtc_state->hw.active)
return true;
if (crtc_state->hw.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
return false;
intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
const struct skl_plane_wm *wm =
&crtc_state->wm.skl.optimal.planes[plane->id];
/* Skip this plane if it's not enabled */
if (!wm->wm[0].plane_en)
continue;
/* Find the highest enabled wm level for this plane */
for (level = ilk_wm_max_level(dev_priv);
!wm->wm[level].plane_en; --level)
{ }
latency = dev_priv->wm.skl_latency[level];
if (skl_needs_memory_bw_wa(dev_priv) &&
plane_state->uapi.fb->modifier ==
I915_FORMAT_MOD_X_TILED)
latency += 15;
/*
* If any of the planes on this pipe don't enable wm levels that
* incur memory latencies higher than sagv_block_time_us we
* can't enable SAGV.
*/
if (latency < dev_priv->sagv_block_time_us)
return false;
}
return true;
}
static bool tgl_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
enum plane_id plane_id;
if (!crtc_state->hw.active)
return true;
for_each_plane_id_on_crtc(crtc, plane_id) {
const struct skl_ddb_entry *plane_alloc =
&crtc_state->wm.skl.plane_ddb_y[plane_id];
const struct skl_plane_wm *wm =
&crtc_state->wm.skl.optimal.planes[plane_id];
if (skl_ddb_entry_size(plane_alloc) < wm->sagv_wm0.min_ddb_alloc)
return false;
}
return true;
}
static bool intel_crtc_can_enable_sagv(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
if (INTEL_GEN(dev_priv) >= 12)
return tgl_crtc_can_enable_sagv(crtc_state);
else
return skl_crtc_can_enable_sagv(crtc_state);
}
bool intel_can_enable_sagv(struct drm_i915_private *dev_priv,
const struct intel_bw_state *bw_state)
{
if (INTEL_GEN(dev_priv) < 11 &&
bw_state->active_pipes && !is_power_of_2(bw_state->active_pipes))
return false;
return bw_state->pipe_sagv_reject == 0;
}
static int intel_compute_sagv_mask(struct intel_atomic_state *state)
{
struct drm_i915_private *dev_priv = to_i915(state->base.dev);
int ret;
struct intel_crtc *crtc;
struct intel_crtc_state *new_crtc_state;
struct intel_bw_state *new_bw_state = NULL;
const struct intel_bw_state *old_bw_state = NULL;
int i;
for_each_new_intel_crtc_in_state(state, crtc,
new_crtc_state, i) {
new_bw_state = intel_atomic_get_bw_state(state);
if (IS_ERR(new_bw_state))
return PTR_ERR(new_bw_state);
old_bw_state = intel_atomic_get_old_bw_state(state);
if (intel_crtc_can_enable_sagv(new_crtc_state))
new_bw_state->pipe_sagv_reject &= ~BIT(crtc->pipe);
else
new_bw_state->pipe_sagv_reject |= BIT(crtc->pipe);
}
if (!new_bw_state)
return 0;
new_bw_state->active_pipes =
intel_calc_active_pipes(state, old_bw_state->active_pipes);
if (new_bw_state->active_pipes != old_bw_state->active_pipes) {
ret = intel_atomic_lock_global_state(&new_bw_state->base);
if (ret)
return ret;
}
for_each_new_intel_crtc_in_state(state, crtc,
new_crtc_state, i) {
struct skl_pipe_wm *pipe_wm = &new_crtc_state->wm.skl.optimal;
/*
* We store use_sagv_wm in the crtc state rather than relying on
* that bw state since we have no convenient way to get at the
* latter from the plane commit hooks (especially in the legacy
* cursor case)
*/
pipe_wm->use_sagv_wm = INTEL_GEN(dev_priv) >= 12 &&
intel_can_enable_sagv(dev_priv, new_bw_state);
}
if (intel_can_enable_sagv(dev_priv, new_bw_state) !=
intel_can_enable_sagv(dev_priv, old_bw_state)) {
ret = intel_atomic_serialize_global_state(&new_bw_state->base);
if (ret)
return ret;
} else if (new_bw_state->pipe_sagv_reject != old_bw_state->pipe_sagv_reject) {
ret = intel_atomic_lock_global_state(&new_bw_state->base);
if (ret)
return ret;
}
return 0;
}
/*
* Calculate initial DBuf slice offset, based on slice size
* and mask(i.e if slice size is 1024 and second slice is enabled
* offset would be 1024)
*/
static unsigned int
icl_get_first_dbuf_slice_offset(u32 dbuf_slice_mask,
u32 slice_size,
u32 ddb_size)
{
unsigned int offset = 0;
if (!dbuf_slice_mask)
return 0;
offset = (ffs(dbuf_slice_mask) - 1) * slice_size;
WARN_ON(offset >= ddb_size);
return offset;
}
u16 intel_get_ddb_size(struct drm_i915_private *dev_priv)
{
u16 ddb_size = INTEL_INFO(dev_priv)->ddb_size;
drm_WARN_ON(&dev_priv->drm, ddb_size == 0);
if (INTEL_GEN(dev_priv) < 11)
return ddb_size - 4; /* 4 blocks for bypass path allocation */
return ddb_size;
}
u32 skl_ddb_dbuf_slice_mask(struct drm_i915_private *dev_priv,
const struct skl_ddb_entry *entry)
{
u32 slice_mask = 0;
u16 ddb_size = intel_get_ddb_size(dev_priv);
u16 num_supported_slices = INTEL_INFO(dev_priv)->num_supported_dbuf_slices;
u16 slice_size = ddb_size / num_supported_slices;
u16 start_slice;
u16 end_slice;
if (!skl_ddb_entry_size(entry))
return 0;
start_slice = entry->start / slice_size;
end_slice = (entry->end - 1) / slice_size;
/*
* Per plane DDB entry can in a really worst case be on multiple slices
* but single entry is anyway contigious.
*/
while (start_slice <= end_slice) {
slice_mask |= BIT(start_slice);
start_slice++;
}
return slice_mask;
}
static u8 skl_compute_dbuf_slices(const struct intel_crtc_state *crtc_state,
u8 active_pipes);
static int
skl_ddb_get_pipe_allocation_limits(struct drm_i915_private *dev_priv,
const struct intel_crtc_state *crtc_state,
const u64 total_data_rate,
struct skl_ddb_entry *alloc, /* out */
int *num_active /* out */)
{
struct drm_atomic_state *state = crtc_state->uapi.state;
struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
struct drm_crtc *for_crtc = crtc_state->uapi.crtc;
const struct intel_crtc *crtc;
u32 pipe_width = 0, total_width_in_range = 0, width_before_pipe_in_range = 0;
enum pipe for_pipe = to_intel_crtc(for_crtc)->pipe;
struct intel_dbuf_state *new_dbuf_state =
intel_atomic_get_new_dbuf_state(intel_state);
const struct intel_dbuf_state *old_dbuf_state =
intel_atomic_get_old_dbuf_state(intel_state);
u8 active_pipes = new_dbuf_state->active_pipes;
u16 ddb_size;
u32 ddb_range_size;
u32 i;
u32 dbuf_slice_mask;
u32 offset;
u32 slice_size;
u32 total_slice_mask;
u32 start, end;
int ret;
*num_active = hweight8(active_pipes);
if (!crtc_state->hw.active) {
alloc->start = 0;
alloc->end = 0;
return 0;
}
ddb_size = intel_get_ddb_size(dev_priv);
slice_size = ddb_size / INTEL_INFO(dev_priv)->num_supported_dbuf_slices;
/*
* If the state doesn't change the active CRTC's or there is no
* modeset request, then there's no need to recalculate;
* the existing pipe allocation limits should remain unchanged.
* Note that we're safe from racing commits since any racing commit
* that changes the active CRTC list or do modeset would need to
* grab _all_ crtc locks, including the one we currently hold.
*/
if (old_dbuf_state->active_pipes == new_dbuf_state->active_pipes &&
!dev_priv->wm.distrust_bios_wm) {
/*
* alloc may be cleared by clear_intel_crtc_state,
* copy from old state to be sure
*
* FIXME get rid of this mess
*/
*alloc = to_intel_crtc_state(for_crtc->state)->wm.skl.ddb;
return 0;
}
/*
* Get allowed DBuf slices for correspondent pipe and platform.
*/
dbuf_slice_mask = skl_compute_dbuf_slices(crtc_state, active_pipes);
/*
* Figure out at which DBuf slice we start, i.e if we start at Dbuf S2
* and slice size is 1024, the offset would be 1024
*/
offset = icl_get_first_dbuf_slice_offset(dbuf_slice_mask,
slice_size, ddb_size);
/*
* Figure out total size of allowed DBuf slices, which is basically
* a number of allowed slices for that pipe multiplied by slice size.
* Inside of this
* range ddb entries are still allocated in proportion to display width.
*/
ddb_range_size = hweight8(dbuf_slice_mask) * slice_size;
/*
* Watermark/ddb requirement highly depends upon width of the
* framebuffer, So instead of allocating DDB equally among pipes
* distribute DDB based on resolution/width of the display.
*/
total_slice_mask = dbuf_slice_mask;
for_each_new_intel_crtc_in_state(intel_state, crtc, crtc_state, i) {
const struct drm_display_mode *adjusted_mode =
&crtc_state->hw.adjusted_mode;
enum pipe pipe = crtc->pipe;
int hdisplay, vdisplay;
u32 pipe_dbuf_slice_mask;
if (!crtc_state->hw.active)
continue;
pipe_dbuf_slice_mask = skl_compute_dbuf_slices(crtc_state,
active_pipes);
/*
* According to BSpec pipe can share one dbuf slice with another
* pipes or pipe can use multiple dbufs, in both cases we
* account for other pipes only if they have exactly same mask.
* However we need to account how many slices we should enable
* in total.
*/
total_slice_mask |= pipe_dbuf_slice_mask;
/*
* Do not account pipes using other slice sets
* luckily as of current BSpec slice sets do not partially
* intersect(pipes share either same one slice or same slice set
* i.e no partial intersection), so it is enough to check for
* equality for now.
*/
if (dbuf_slice_mask != pipe_dbuf_slice_mask)
continue;
drm_mode_get_hv_timing(adjusted_mode, &hdisplay, &vdisplay);
total_width_in_range += hdisplay;
if (pipe < for_pipe)
width_before_pipe_in_range += hdisplay;
else if (pipe == for_pipe)
pipe_width = hdisplay;
}
/*
* FIXME: For now we always enable slice S1 as per
* the Bspec display initialization sequence.
*/
new_dbuf_state->enabled_slices = total_slice_mask | BIT(DBUF_S1);
if (old_dbuf_state->enabled_slices != new_dbuf_state->enabled_slices) {
ret = intel_atomic_serialize_global_state(&new_dbuf_state->base);
if (ret)
return ret;
}
start = ddb_range_size * width_before_pipe_in_range / total_width_in_range;
end = ddb_range_size *
(width_before_pipe_in_range + pipe_width) / total_width_in_range;
alloc->start = offset + start;
alloc->end = offset + end;
drm_dbg_kms(&dev_priv->drm,
"[CRTC:%d:%s] dbuf slices 0x%x, ddb (%d - %d), active pipes 0x%x\n",
for_crtc->base.id, for_crtc->name,
dbuf_slice_mask, alloc->start, alloc->end, active_pipes);
return 0;
}
static int skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
int width, const struct drm_format_info *format,
u64 modifier, unsigned int rotation,
u32 plane_pixel_rate, struct skl_wm_params *wp,
int color_plane);
static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state,
int level,
unsigned int latency,
const struct skl_wm_params *wp,
const struct skl_wm_level *result_prev,
struct skl_wm_level *result /* out */);
static unsigned int
skl_cursor_allocation(const struct intel_crtc_state *crtc_state,
int num_active)
{
struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
int level, max_level = ilk_wm_max_level(dev_priv);
struct skl_wm_level wm = {};
int ret, min_ddb_alloc = 0;
struct skl_wm_params wp;
ret = skl_compute_wm_params(crtc_state, 256,
drm_format_info(DRM_FORMAT_ARGB8888),
DRM_FORMAT_MOD_LINEAR,
DRM_MODE_ROTATE_0,
crtc_state->pixel_rate, &wp, 0);
drm_WARN_ON(&dev_priv->drm, ret);
for (level = 0; level <= max_level; level++) {
unsigned int latency = dev_priv->wm.skl_latency[level];
skl_compute_plane_wm(crtc_state, level, latency, &wp, &wm, &wm);
if (wm.min_ddb_alloc == U16_MAX)
break;
min_ddb_alloc = wm.min_ddb_alloc;
}
return max(num_active == 1 ? 32 : 8, min_ddb_alloc);
}
static void skl_ddb_entry_init_from_hw(struct drm_i915_private *dev_priv,
struct skl_ddb_entry *entry, u32 reg)
{
entry->start = reg & DDB_ENTRY_MASK;
entry->end = (reg >> DDB_ENTRY_END_SHIFT) & DDB_ENTRY_MASK;
if (entry->end)
entry->end += 1;
}
static void
skl_ddb_get_hw_plane_state(struct drm_i915_private *dev_priv,
const enum pipe pipe,
const enum plane_id plane_id,
struct skl_ddb_entry *ddb_y,
struct skl_ddb_entry *ddb_uv)
{
u32 val, val2;
u32 fourcc = 0;
/* Cursor doesn't support NV12/planar, so no extra calculation needed */
if (plane_id == PLANE_CURSOR) {
val = I915_READ(CUR_BUF_CFG(pipe));
skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
return;
}
val = I915_READ(PLANE_CTL(pipe, plane_id));
/* No DDB allocated for disabled planes */
if (val & PLANE_CTL_ENABLE)
fourcc = skl_format_to_fourcc(val & PLANE_CTL_FORMAT_MASK,
val & PLANE_CTL_ORDER_RGBX,
val & PLANE_CTL_ALPHA_MASK);
if (INTEL_GEN(dev_priv) >= 11) {
val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
} else {
val = I915_READ(PLANE_BUF_CFG(pipe, plane_id));
val2 = I915_READ(PLANE_NV12_BUF_CFG(pipe, plane_id));
if (fourcc &&
drm_format_info_is_yuv_semiplanar(drm_format_info(fourcc)))
swap(val, val2);
skl_ddb_entry_init_from_hw(dev_priv, ddb_y, val);
skl_ddb_entry_init_from_hw(dev_priv, ddb_uv, val2);
}
}
void skl_pipe_ddb_get_hw_state(struct intel_crtc *crtc,
struct skl_ddb_entry *ddb_y,
struct skl_ddb_entry *ddb_uv)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum intel_display_power_domain power_domain;
enum pipe pipe = crtc->pipe;
intel_wakeref_t wakeref;
enum plane_id plane_id;
power_domain = POWER_DOMAIN_PIPE(pipe);
wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
if (!wakeref)
return;
for_each_plane_id_on_crtc(crtc, plane_id)
skl_ddb_get_hw_plane_state(dev_priv, pipe,
plane_id,
&ddb_y[plane_id],
&ddb_uv[plane_id]);
intel_display_power_put(dev_priv, power_domain, wakeref);
}
/*
* Determines the downscale amount of a plane for the purposes of watermark calculations.
* The bspec defines downscale amount as:
*
* """
* Horizontal down scale amount = maximum[1, Horizontal source size /
* Horizontal destination size]
* Vertical down scale amount = maximum[1, Vertical source size /
* Vertical destination size]
* Total down scale amount = Horizontal down scale amount *
* Vertical down scale amount
* """
*
* Return value is provided in 16.16 fixed point form to retain fractional part.
* Caller should take care of dividing & rounding off the value.
*/
static uint_fixed_16_16_t
skl_plane_downscale_amount(const struct intel_crtc_state *crtc_state,
const struct intel_plane_state *plane_state)
{
struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
u32 src_w, src_h, dst_w, dst_h;
uint_fixed_16_16_t fp_w_ratio, fp_h_ratio;
uint_fixed_16_16_t downscale_h, downscale_w;
if (drm_WARN_ON(&dev_priv->drm,
!intel_wm_plane_visible(crtc_state, plane_state)))
return u32_to_fixed16(0);
/*
* Src coordinates are already rotated by 270 degrees for
* the 90/270 degree plane rotation cases (to match the
* GTT mapping), hence no need to account for rotation here.
*
* n.b., src is 16.16 fixed point, dst is whole integer.
*/
src_w = drm_rect_width(&plane_state->uapi.src) >> 16;
src_h = drm_rect_height(&plane_state->uapi.src) >> 16;
dst_w = drm_rect_width(&plane_state->uapi.dst);
dst_h = drm_rect_height(&plane_state->uapi.dst);
fp_w_ratio = div_fixed16(src_w, dst_w);
fp_h_ratio = div_fixed16(src_h, dst_h);
downscale_w = max_fixed16(fp_w_ratio, u32_to_fixed16(1));
downscale_h = max_fixed16(fp_h_ratio, u32_to_fixed16(1));
return mul_fixed16(downscale_w, downscale_h);
}
struct dbuf_slice_conf_entry {
u8 active_pipes;
u8 dbuf_mask[I915_MAX_PIPES];
};
/*
* Table taken from Bspec 12716
* Pipes do have some preferred DBuf slice affinity,
* plus there are some hardcoded requirements on how
* those should be distributed for multipipe scenarios.
* For more DBuf slices algorithm can get even more messy
* and less readable, so decided to use a table almost
* as is from BSpec itself - that way it is at least easier
* to compare, change and check.
*/
static const struct dbuf_slice_conf_entry icl_allowed_dbufs[] =
/* Autogenerated with igt/tools/intel_dbuf_map tool: */
{
{
.active_pipes = BIT(PIPE_A),
.dbuf_mask = {
[PIPE_A] = BIT(DBUF_S1),
},
},
{
.active_pipes = BIT(PIPE_B),
.dbuf_mask = {
[PIPE_B] = BIT(DBUF_S1),
},
},
{
.active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
.dbuf_mask = {
[PIPE_A] = BIT(DBUF_S1),
[PIPE_B] = BIT(DBUF_S2),
},
},
{
.active_pipes = BIT(PIPE_C),
.dbuf_mask = {
[PIPE_C] = BIT(DBUF_S2),
},
},
{
.active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
.dbuf_mask = {
[PIPE_A] = BIT(DBUF_S1),
[PIPE_C] = BIT(DBUF_S2),
},
},
{
.active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
.dbuf_mask = {
[PIPE_B] = BIT(DBUF_S1),
[PIPE_C] = BIT(DBUF_S2),
},
},
{
.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
.dbuf_mask = {
[PIPE_A] = BIT(DBUF_S1),
[PIPE_B] = BIT(DBUF_S1),
[PIPE_C] = BIT(DBUF_S2),
},
},
{}
};
/*
* Table taken from Bspec 49255
* Pipes do have some preferred DBuf slice affinity,
* plus there are some hardcoded requirements on how
* those should be distributed for multipipe scenarios.
* For more DBuf slices algorithm can get even more messy
* and less readable, so decided to use a table almost
* as is from BSpec itself - that way it is at least easier
* to compare, change and check.
*/
static const struct dbuf_slice_conf_entry tgl_allowed_dbufs[] =
/* Autogenerated with igt/tools/intel_dbuf_map tool: */
{
{
.active_pipes = BIT(PIPE_A),
.dbuf_mask = {
[PIPE_A] = BIT(DBUF_S1) | BIT(DBUF_S2),
},
},
{
.active_pipes = BIT(PIPE_B),
.dbuf_mask = {
[PIPE_B] = BIT(DBUF_S1) | BIT(DBUF_S2),
},
},
{
.active_pipes = BIT(PIPE_A) | BIT(PIPE_B),
.dbuf_mask = {
[PIPE_A] = BIT(DBUF_S2),
[PIPE_B] = BIT(DBUF_S1),
},
},
{
.active_pipes = BIT(PIPE_C),
.dbuf_mask = {
[PIPE_C] = BIT(DBUF_S2) | BIT(DBUF_S1),
},
},
{
.active_pipes = BIT(PIPE_A) | BIT(PIPE_C),
.dbuf_mask = {
[PIPE_A] = BIT(DBUF_S1),
[PIPE_C] = BIT(DBUF_S2),
},
},
{
.active_pipes = BIT(PIPE_B) | BIT(PIPE_C),
.dbuf_mask = {
[PIPE_B] = BIT(DBUF_S1),
[PIPE_C] = BIT(DBUF_S2),
},
},
{
.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C),
.dbuf_mask = {
[PIPE_A] = BIT(DBUF_S1),
[PIPE_B] = BIT(DBUF_S1),
[PIPE_C] = BIT(DBUF_S2),
},
},
{
.active_pipes = BIT(PIPE_D),
.dbuf_mask = {
[PIPE_D] = BIT(DBUF_S2) | BIT(DBUF_S1),
},
},
{
.active_pipes = BIT(PIPE_A) | BIT(PIPE_D),
.dbuf_mask = {
[PIPE_A] = BIT(DBUF_S1),
[PIPE_D] = BIT(DBUF_S2),
},
},
{
.active_pipes = BIT(PIPE_B) | BIT(PIPE_D),
.dbuf_mask = {
[PIPE_B] = BIT(DBUF_S1),
[PIPE_D] = BIT(DBUF_S2),
},
},
{
.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_D),
.dbuf_mask = {
[PIPE_A] = BIT(DBUF_S1),
[PIPE_B] = BIT(DBUF_S1),
[PIPE_D] = BIT(DBUF_S2),
},
},
{
.active_pipes = BIT(PIPE_C) | BIT(PIPE_D),
.dbuf_mask = {
[PIPE_C] = BIT(DBUF_S1),
[PIPE_D] = BIT(DBUF_S2),
},
},
{
.active_pipes = BIT(PIPE_A) | BIT(PIPE_C) | BIT(PIPE_D),
.dbuf_mask = {
[PIPE_A] = BIT(DBUF_S1),
[PIPE_C] = BIT(DBUF_S2),
[PIPE_D] = BIT(DBUF_S2),
},
},
{
.active_pipes = BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
.dbuf_mask = {
[PIPE_B] = BIT(DBUF_S1),
[PIPE_C] = BIT(DBUF_S2),
[PIPE_D] = BIT(DBUF_S2),
},
},
{
.active_pipes = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C) | BIT(PIPE_D),
.dbuf_mask = {
[PIPE_A] = BIT(DBUF_S1),
[PIPE_B] = BIT(DBUF_S1),
[PIPE_C] = BIT(DBUF_S2),
[PIPE_D] = BIT(DBUF_S2),
},
},
{}
};
static u8 compute_dbuf_slices(enum pipe pipe, u8 active_pipes,
const struct dbuf_slice_conf_entry *dbuf_slices)
{
int i;
for (i = 0; i < dbuf_slices[i].active_pipes; i++) {
if (dbuf_slices[i].active_pipes == active_pipes)
return dbuf_slices[i].dbuf_mask[pipe];
}
return 0;
}
/*
* This function finds an entry with same enabled pipe configuration and
* returns correspondent DBuf slice mask as stated in BSpec for particular
* platform.
*/
static u8 icl_compute_dbuf_slices(enum pipe pipe, u8 active_pipes)
{
/*
* FIXME: For ICL this is still a bit unclear as prev BSpec revision
* required calculating "pipe ratio" in order to determine
* if one or two slices can be used for single pipe configurations
* as additional constraint to the existing table.
* However based on recent info, it should be not "pipe ratio"
* but rather ratio between pixel_rate and cdclk with additional
* constants, so for now we are using only table until this is
* clarified. Also this is the reason why crtc_state param is
* still here - we will need it once those additional constraints
* pop up.
*/
return compute_dbuf_slices(pipe, active_pipes, icl_allowed_dbufs);
}
static u8 tgl_compute_dbuf_slices(enum pipe pipe, u8 active_pipes)
{
return compute_dbuf_slices(pipe, active_pipes, tgl_allowed_dbufs);
}
static u8 skl_compute_dbuf_slices(const struct intel_crtc_state *crtc_state,
u8 active_pipes)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum pipe pipe = crtc->pipe;
if (IS_GEN(dev_priv, 12))
return tgl_compute_dbuf_slices(pipe, active_pipes);
else if (IS_GEN(dev_priv, 11))
return icl_compute_dbuf_slices(pipe, active_pipes);
/*
* For anything else just return one slice yet.
* Should be extended for other platforms.
*/
return active_pipes & BIT(pipe) ? BIT(DBUF_S1) : 0;
}
static u64
skl_plane_relative_data_rate(const struct intel_crtc_state *crtc_state,
const struct intel_plane_state *plane_state,
int color_plane)
{
struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
const struct drm_framebuffer *fb = plane_state->hw.fb;
u32 data_rate;
u32 width = 0, height = 0;
uint_fixed_16_16_t down_scale_amount;
u64 rate;
if (!plane_state->uapi.visible)
return 0;
if (plane->id == PLANE_CURSOR)
return 0;
if (color_plane == 1 &&
!intel_format_info_is_yuv_semiplanar(fb->format, fb->modifier))
return 0;
/*
* Src coordinates are already rotated by 270 degrees for
* the 90/270 degree plane rotation cases (to match the
* GTT mapping), hence no need to account for rotation here.
*/
width = drm_rect_width(&plane_state->uapi.src) >> 16;
height = drm_rect_height(&plane_state->uapi.src) >> 16;
/* UV plane does 1/2 pixel sub-sampling */
if (color_plane == 1) {
width /= 2;
height /= 2;
}
data_rate = width * height;
down_scale_amount = skl_plane_downscale_amount(crtc_state, plane_state);
rate = mul_round_up_u32_fixed16(data_rate, down_scale_amount);
rate *= fb->format->cpp[color_plane];
return rate;
}
static u64
skl_get_total_relative_data_rate(struct intel_crtc_state *crtc_state,
u64 *plane_data_rate,
u64 *uv_plane_data_rate)
{
struct intel_plane *plane;
const struct intel_plane_state *plane_state;
u64 total_data_rate = 0;
/* Calculate and cache data rate for each plane */
intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
enum plane_id plane_id = plane->id;
u64 rate;
/* packed/y */
rate = skl_plane_relative_data_rate(crtc_state, plane_state, 0);
plane_data_rate[plane_id] = rate;
total_data_rate += rate;
/* uv-plane */
rate = skl_plane_relative_data_rate(crtc_state, plane_state, 1);
uv_plane_data_rate[plane_id] = rate;
total_data_rate += rate;
}
return total_data_rate;
}
static u64
icl_get_total_relative_data_rate(struct intel_crtc_state *crtc_state,
u64 *plane_data_rate)
{
struct intel_plane *plane;
const struct intel_plane_state *plane_state;
u64 total_data_rate = 0;
/* Calculate and cache data rate for each plane */
intel_atomic_crtc_state_for_each_plane_state(plane, plane_state, crtc_state) {
enum plane_id plane_id = plane->id;
u64 rate;
if (!plane_state->planar_linked_plane) {
rate = skl_plane_relative_data_rate(crtc_state, plane_state, 0);
plane_data_rate[plane_id] = rate;
total_data_rate += rate;
} else {
enum plane_id y_plane_id;
/*
* The slave plane might not iterate in
* intel_atomic_crtc_state_for_each_plane_state(),
* and needs the master plane state which may be
* NULL if we try get_new_plane_state(), so we
* always calculate from the master.
*/
if (plane_state->planar_slave)
continue;
/* Y plane rate is calculated on the slave */
rate = skl_plane_relative_data_rate(crtc_state, plane_state, 0);
y_plane_id = plane_state->planar_linked_plane->id;
plane_data_rate[y_plane_id] = rate;
total_data_rate += rate;
rate = skl_plane_relative_data_rate(crtc_state, plane_state, 1);
plane_data_rate[plane_id] = rate;
total_data_rate += rate;
}
}
return total_data_rate;
}
static const struct skl_wm_level *
skl_plane_wm_level(const struct intel_crtc_state *crtc_state,
enum plane_id plane_id,
int level)
{
const struct skl_pipe_wm *pipe_wm = &crtc_state->wm.skl.optimal;
const struct skl_plane_wm *wm = &pipe_wm->planes[plane_id];
if (level == 0 && pipe_wm->use_sagv_wm)
return &wm->sagv_wm0;
return &wm->wm[level];
}
static int
skl_allocate_pipe_ddb(struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
struct skl_ddb_entry *alloc = &crtc_state->wm.skl.ddb;
u16 alloc_size, start = 0;
u16 total[I915_MAX_PLANES] = {};
u16 uv_total[I915_MAX_PLANES] = {};
u64 total_data_rate;
enum plane_id plane_id;
int num_active;
u64 plane_data_rate[I915_MAX_PLANES] = {};
u64 uv_plane_data_rate[I915_MAX_PLANES] = {};
u32 blocks;
int level;
int ret;
/* Clear the partitioning for disabled planes. */
memset(crtc_state->wm.skl.plane_ddb_y, 0, sizeof(crtc_state->wm.skl.plane_ddb_y));
memset(crtc_state->wm.skl.plane_ddb_uv, 0, sizeof(crtc_state->wm.skl.plane_ddb_uv));
if (!crtc_state->hw.active) {
struct intel_atomic_state *state =
to_intel_atomic_state(crtc_state->uapi.state);
struct intel_dbuf_state *new_dbuf_state =
intel_atomic_get_new_dbuf_state(state);
const struct intel_dbuf_state *old_dbuf_state =
intel_atomic_get_old_dbuf_state(state);
/*
* FIXME hack to make sure we compute this sensibly when
* turning off all the pipes. Otherwise we leave it at
* whatever we had previously, and then runtime PM will
* mess it up by turning off all but S1. Remove this
* once the dbuf state computation flow becomes sane.
*/
if (new_dbuf_state->active_pipes == 0) {
new_dbuf_state->enabled_slices = BIT(DBUF_S1);
if (old_dbuf_state->enabled_slices != new_dbuf_state->enabled_slices) {
ret = intel_atomic_serialize_global_state(&new_dbuf_state->base);
if (ret)
return ret;
}
}
alloc->start = alloc->end = 0;
return 0;
}
if (INTEL_GEN(dev_priv) >= 11)
total_data_rate =
icl_get_total_relative_data_rate(crtc_state,
plane_data_rate);
else
total_data_rate =
skl_get_total_relative_data_rate(crtc_state,
plane_data_rate,
uv_plane_data_rate);
ret = skl_ddb_get_pipe_allocation_limits(dev_priv, crtc_state,
total_data_rate,
alloc, &num_active);
if (ret)
return ret;
alloc_size = skl_ddb_entry_size(alloc);
if (alloc_size == 0)
return 0;
/* Allocate fixed number of blocks for cursor. */
total[PLANE_CURSOR] = skl_cursor_allocation(crtc_state, num_active);
alloc_size -= total[PLANE_CURSOR];
crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR].start =
alloc->end - total[PLANE_CURSOR];
crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR].end = alloc->end;
if (total_data_rate == 0)
return 0;
/*
* Find the highest watermark level for which we can satisfy the block
* requirement of active planes.
*/
for (level = ilk_wm_max_level(dev_priv); level >= 0; level--) {
blocks = 0;
for_each_plane_id_on_crtc(crtc, plane_id) {
const struct skl_plane_wm *wm =
&crtc_state->wm.skl.optimal.planes[plane_id];
if (plane_id == PLANE_CURSOR) {
if (wm->wm[level].min_ddb_alloc > total[PLANE_CURSOR]) {
drm_WARN_ON(&dev_priv->drm,
wm->wm[level].min_ddb_alloc != U16_MAX);
blocks = U32_MAX;
break;
}
continue;
}
blocks += wm->wm[level].min_ddb_alloc;
blocks += wm->uv_wm[level].min_ddb_alloc;
}
if (blocks <= alloc_size) {
alloc_size -= blocks;
break;
}
}
if (level < 0) {
drm_dbg_kms(&dev_priv->drm,
"Requested display configuration exceeds system DDB limitations");
drm_dbg_kms(&dev_priv->drm, "minimum required %d/%d\n",
blocks, alloc_size);
return -EINVAL;
}
/*
* Grant each plane the blocks it requires at the highest achievable
* watermark level, plus an extra share of the leftover blocks
* proportional to its relative data rate.
*/
for_each_plane_id_on_crtc(crtc, plane_id) {
const struct skl_plane_wm *wm =
&crtc_state->wm.skl.optimal.planes[plane_id];
u64 rate;
u16 extra;
if (plane_id == PLANE_CURSOR)
continue;
/*
* We've accounted for all active planes; remaining planes are
* all disabled.
*/
if (total_data_rate == 0)
break;
rate = plane_data_rate[plane_id];
extra = min_t(u16, alloc_size,
DIV64_U64_ROUND_UP(alloc_size * rate,
total_data_rate));
total[plane_id] = wm->wm[level].min_ddb_alloc + extra;
alloc_size -= extra;
total_data_rate -= rate;
if (total_data_rate == 0)
break;
rate = uv_plane_data_rate[plane_id];
extra = min_t(u16, alloc_size,
DIV64_U64_ROUND_UP(alloc_size * rate,
total_data_rate));
uv_total[plane_id] = wm->uv_wm[level].min_ddb_alloc + extra;
alloc_size -= extra;
total_data_rate -= rate;
}
drm_WARN_ON(&dev_priv->drm, alloc_size != 0 || total_data_rate != 0);
/* Set the actual DDB start/end points for each plane */
start = alloc->start;
for_each_plane_id_on_crtc(crtc, plane_id) {
struct skl_ddb_entry *plane_alloc =
&crtc_state->wm.skl.plane_ddb_y[plane_id];
struct skl_ddb_entry *uv_plane_alloc =
&crtc_state->wm.skl.plane_ddb_uv[plane_id];
if (plane_id == PLANE_CURSOR)
continue;
/* Gen11+ uses a separate plane for UV watermarks */
drm_WARN_ON(&dev_priv->drm,
INTEL_GEN(dev_priv) >= 11 && uv_total[plane_id]);
/* Leave disabled planes at (0,0) */
if (total[plane_id]) {
plane_alloc->start = start;
start += total[plane_id];
plane_alloc->end = start;
}
if (uv_total[plane_id]) {
uv_plane_alloc->start = start;
start += uv_total[plane_id];
uv_plane_alloc->end = start;
}
}
/*
* When we calculated watermark values we didn't know how high
* of a level we'd actually be able to hit, so we just marked
* all levels as "enabled." Go back now and disable the ones
* that aren't actually possible.
*/
for (level++; level <= ilk_wm_max_level(dev_priv); level++) {
for_each_plane_id_on_crtc(crtc, plane_id) {
struct skl_plane_wm *wm =
&crtc_state->wm.skl.optimal.planes[plane_id];
/*
* We only disable the watermarks for each plane if
* they exceed the ddb allocation of said plane. This
* is done so that we don't end up touching cursor
* watermarks needlessly when some other plane reduces
* our max possible watermark level.
*
* Bspec has this to say about the PLANE_WM enable bit:
* "All the watermarks at this level for all enabled
* planes must be enabled before the level will be used."
* So this is actually safe to do.
*/
if (wm->wm[level].min_ddb_alloc > total[plane_id] ||
wm->uv_wm[level].min_ddb_alloc > uv_total[plane_id])
memset(&wm->wm[level], 0, sizeof(wm->wm[level]));
/*
* Wa_1408961008:icl, ehl
* Underruns with WM1+ disabled
*/
if (IS_GEN(dev_priv, 11) &&
level == 1 && wm->wm[0].plane_en) {
wm->wm[level].plane_res_b = wm->wm[0].plane_res_b;
wm->wm[level].plane_res_l = wm->wm[0].plane_res_l;
wm->wm[level].ignore_lines = wm->wm[0].ignore_lines;
}
}
}
/*
* Go back and disable the transition watermark if it turns out we
* don't have enough DDB blocks for it.
*/
for_each_plane_id_on_crtc(crtc, plane_id) {
struct skl_plane_wm *wm =
&crtc_state->wm.skl.optimal.planes[plane_id];
if (wm->trans_wm.plane_res_b >= total[plane_id])
memset(&wm->trans_wm, 0, sizeof(wm->trans_wm));
}
return 0;
}
/*
* The max latency should be 257 (max the punit can code is 255 and we add 2us
* for the read latency) and cpp should always be <= 8, so that
* should allow pixel_rate up to ~2 GHz which seems sufficient since max
* 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
*/
static uint_fixed_16_16_t
skl_wm_method1(const struct drm_i915_private *dev_priv, u32 pixel_rate,
u8 cpp, u32 latency, u32 dbuf_block_size)
{
u32 wm_intermediate_val;
uint_fixed_16_16_t ret;
if (latency == 0)
return FP_16_16_MAX;
wm_intermediate_val = latency * pixel_rate * cpp;
ret = div_fixed16(wm_intermediate_val, 1000 * dbuf_block_size);
if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
ret = add_fixed16_u32(ret, 1);
return ret;
}
static uint_fixed_16_16_t
skl_wm_method2(u32 pixel_rate, u32 pipe_htotal, u32 latency,
uint_fixed_16_16_t plane_blocks_per_line)
{
u32 wm_intermediate_val;
uint_fixed_16_16_t ret;
if (latency == 0)
return FP_16_16_MAX;
wm_intermediate_val = latency * pixel_rate;
wm_intermediate_val = DIV_ROUND_UP(wm_intermediate_val,
pipe_htotal * 1000);
ret = mul_u32_fixed16(wm_intermediate_val, plane_blocks_per_line);
return ret;
}
static uint_fixed_16_16_t
intel_get_linetime_us(const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
u32 pixel_rate;
u32 crtc_htotal;
uint_fixed_16_16_t linetime_us;
if (!crtc_state->hw.active)
return u32_to_fixed16(0);
pixel_rate = crtc_state->pixel_rate;
if (drm_WARN_ON(&dev_priv->drm, pixel_rate == 0))
return u32_to_fixed16(0);
crtc_htotal = crtc_state->hw.adjusted_mode.crtc_htotal;
linetime_us = div_fixed16(crtc_htotal * 1000, pixel_rate);
return linetime_us;
}
static u32
skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *crtc_state,
const struct intel_plane_state *plane_state)
{
struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
u64 adjusted_pixel_rate;
uint_fixed_16_16_t downscale_amount;
/* Shouldn't reach here on disabled planes... */
if (drm_WARN_ON(&dev_priv->drm,
!intel_wm_plane_visible(crtc_state, plane_state)))
return 0;
/*
* Adjusted plane pixel rate is just the pipe's adjusted pixel rate
* with additional adjustments for plane-specific scaling.
*/
adjusted_pixel_rate = crtc_state->pixel_rate;
downscale_amount = skl_plane_downscale_amount(crtc_state, plane_state);
return mul_round_up_u32_fixed16(adjusted_pixel_rate,
downscale_amount);
}
static int
skl_compute_wm_params(const struct intel_crtc_state *crtc_state,
int width, const struct drm_format_info *format,
u64 modifier, unsigned int rotation,
u32 plane_pixel_rate, struct skl_wm_params *wp,
int color_plane)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
u32 interm_pbpl;
/* only planar format has two planes */
if (color_plane == 1 &&
!intel_format_info_is_yuv_semiplanar(format, modifier)) {
drm_dbg_kms(&dev_priv->drm,
"Non planar format have single plane\n");
return -EINVAL;
}
wp->y_tiled = modifier == I915_FORMAT_MOD_Y_TILED ||
modifier == I915_FORMAT_MOD_Yf_TILED ||
modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
wp->x_tiled = modifier == I915_FORMAT_MOD_X_TILED;
wp->rc_surface = modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
wp->is_planar = intel_format_info_is_yuv_semiplanar(format, modifier);
wp->width = width;
if (color_plane == 1 && wp->is_planar)
wp->width /= 2;
wp->cpp = format->cpp[color_plane];
wp->plane_pixel_rate = plane_pixel_rate;
if (INTEL_GEN(dev_priv) >= 11 &&
modifier == I915_FORMAT_MOD_Yf_TILED && wp->cpp == 1)
wp->dbuf_block_size = 256;
else
wp->dbuf_block_size = 512;
if (drm_rotation_90_or_270(rotation)) {
switch (wp->cpp) {
case 1:
wp->y_min_scanlines = 16;
break;
case 2:
wp->y_min_scanlines = 8;
break;
case 4:
wp->y_min_scanlines = 4;
break;
default:
MISSING_CASE(wp->cpp);
return -EINVAL;
}
} else {
wp->y_min_scanlines = 4;
}
if (skl_needs_memory_bw_wa(dev_priv))
wp->y_min_scanlines *= 2;
wp->plane_bytes_per_line = wp->width * wp->cpp;
if (wp->y_tiled) {
interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line *
wp->y_min_scanlines,
wp->dbuf_block_size);
if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
interm_pbpl++;
wp->plane_blocks_per_line = div_fixed16(interm_pbpl,
wp->y_min_scanlines);
} else {
interm_pbpl = DIV_ROUND_UP(wp->plane_bytes_per_line,
wp->dbuf_block_size);
if (!wp->x_tiled ||
INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
interm_pbpl++;
wp->plane_blocks_per_line = u32_to_fixed16(interm_pbpl);
}
wp->y_tile_minimum = mul_u32_fixed16(wp->y_min_scanlines,
wp->plane_blocks_per_line);
wp->linetime_us = fixed16_to_u32_round_up(
intel_get_linetime_us(crtc_state));
return 0;
}
static int
skl_compute_plane_wm_params(const struct intel_crtc_state *crtc_state,
const struct intel_plane_state *plane_state,
struct skl_wm_params *wp, int color_plane)
{
const struct drm_framebuffer *fb = plane_state->hw.fb;
int width;
/*
* Src coordinates are already rotated by 270 degrees for
* the 90/270 degree plane rotation cases (to match the
* GTT mapping), hence no need to account for rotation here.
*/
width = drm_rect_width(&plane_state->uapi.src) >> 16;
return skl_compute_wm_params(crtc_state, width,
fb->format, fb->modifier,
plane_state->hw.rotation,
skl_adjusted_plane_pixel_rate(crtc_state, plane_state),
wp, color_plane);
}
static bool skl_wm_has_lines(struct drm_i915_private *dev_priv, int level)
{
if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
return true;
/* The number of lines are ignored for the level 0 watermark. */
return level > 0;
}
static void skl_compute_plane_wm(const struct intel_crtc_state *crtc_state,
int level,
unsigned int latency,
const struct skl_wm_params *wp,
const struct skl_wm_level *result_prev,
struct skl_wm_level *result /* out */)
{
struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
uint_fixed_16_16_t method1, method2;
uint_fixed_16_16_t selected_result;
u32 res_blocks, res_lines, min_ddb_alloc = 0;
if (latency == 0) {
/* reject it */
result->min_ddb_alloc = U16_MAX;
return;
}
/*
* WaIncreaseLatencyIPCEnabled: kbl,cfl
* Display WA #1141: kbl,cfl
*/
if ((IS_KABYLAKE(dev_priv) ||
IS_COFFEELAKE(dev_priv) ||
IS_COMETLAKE(dev_priv)) &&
dev_priv->ipc_enabled)
latency += 4;
if (skl_needs_memory_bw_wa(dev_priv) && wp->x_tiled)
latency += 15;
method1 = skl_wm_method1(dev_priv, wp->plane_pixel_rate,
wp->cpp, latency, wp->dbuf_block_size);
method2 = skl_wm_method2(wp->plane_pixel_rate,
crtc_state->hw.adjusted_mode.crtc_htotal,
latency,
wp->plane_blocks_per_line);
if (wp->y_tiled) {
selected_result = max_fixed16(method2, wp->y_tile_minimum);
} else {
if ((wp->cpp * crtc_state->hw.adjusted_mode.crtc_htotal /
wp->dbuf_block_size < 1) &&
(wp->plane_bytes_per_line / wp->dbuf_block_size < 1)) {
selected_result = method2;
} else if (latency >= wp->linetime_us) {
if (IS_GEN(dev_priv, 9) &&
!IS_GEMINILAKE(dev_priv))
selected_result = min_fixed16(method1, method2);
else
selected_result = method2;
} else {
selected_result = method1;
}
}
res_blocks = fixed16_to_u32_round_up(selected_result) + 1;
res_lines = div_round_up_fixed16(selected_result,
wp->plane_blocks_per_line);
if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv)) {
/* Display WA #1125: skl,bxt,kbl */
if (level == 0 && wp->rc_surface)
res_blocks +=
fixed16_to_u32_round_up(wp->y_tile_minimum);
/* Display WA #1126: skl,bxt,kbl */
if (level >= 1 && level <= 7) {
if (wp->y_tiled) {
res_blocks +=
fixed16_to_u32_round_up(wp->y_tile_minimum);
res_lines += wp->y_min_scanlines;
} else {
res_blocks++;
}
/*
* Make sure result blocks for higher latency levels are
* atleast as high as level below the current level.
* Assumption in DDB algorithm optimization for special
* cases. Also covers Display WA #1125 for RC.
*/
if (result_prev->plane_res_b > res_blocks)
res_blocks = result_prev->plane_res_b;
}
}
if (INTEL_GEN(dev_priv) >= 11) {
if (wp->y_tiled) {
int extra_lines;
if (res_lines % wp->y_min_scanlines == 0)
extra_lines = wp->y_min_scanlines;
else
extra_lines = wp->y_min_scanlines * 2 -
res_lines % wp->y_min_scanlines;
min_ddb_alloc = mul_round_up_u32_fixed16(res_lines + extra_lines,
wp->plane_blocks_per_line);
} else {
min_ddb_alloc = res_blocks +
DIV_ROUND_UP(res_blocks, 10);
}
}
if (!skl_wm_has_lines(dev_priv, level))
res_lines = 0;
if (res_lines > 31) {
/* reject it */
result->min_ddb_alloc = U16_MAX;
return;
}
/*
* If res_lines is valid, assume we can use this watermark level
* for now. We'll come back and disable it after we calculate the
* DDB allocation if it turns out we don't actually have enough
* blocks to satisfy it.
*/
result->plane_res_b = res_blocks;
result->plane_res_l = res_lines;
/* Bspec says: value >= plane ddb allocation -> invalid, hence the +1 here */
result->min_ddb_alloc = max(min_ddb_alloc, res_blocks) + 1;
result->plane_en = true;
}
static void
skl_compute_wm_levels(const struct intel_crtc_state *crtc_state,
const struct skl_wm_params *wm_params,
struct skl_wm_level *levels)
{
struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
int level, max_level = ilk_wm_max_level(dev_priv);
struct skl_wm_level *result_prev = &levels[0];
for (level = 0; level <= max_level; level++) {
struct skl_wm_level *result = &levels[level];
unsigned int latency = dev_priv->wm.skl_latency[level];
skl_compute_plane_wm(crtc_state, level, latency,
wm_params, result_prev, result);
result_prev = result;
}
}
static void tgl_compute_sagv_wm(const struct intel_crtc_state *crtc_state,
const struct skl_wm_params *wm_params,
struct skl_plane_wm *plane_wm)
{
struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
struct skl_wm_level *sagv_wm = &plane_wm->sagv_wm0;
struct skl_wm_level *levels = plane_wm->wm;
unsigned int latency = dev_priv->wm.skl_latency[0] + dev_priv->sagv_block_time_us;
skl_compute_plane_wm(crtc_state, 0, latency,
wm_params, &levels[0],
sagv_wm);
}
static void skl_compute_transition_wm(const struct intel_crtc_state *crtc_state,
const struct skl_wm_params *wp,
struct skl_plane_wm *wm)
{
struct drm_device *dev = crtc_state->uapi.crtc->dev;
const struct drm_i915_private *dev_priv = to_i915(dev);
u16 trans_min, trans_amount, trans_y_tile_min;
u16 wm0_sel_res_b, trans_offset_b, res_blocks;
/* Transition WM don't make any sense if ipc is disabled */
if (!dev_priv->ipc_enabled)
return;
/*
* WaDisableTWM:skl,kbl,cfl,bxt
* Transition WM are not recommended by HW team for GEN9
*/
if (IS_GEN9_BC(dev_priv) || IS_BROXTON(dev_priv))
return;
if (INTEL_GEN(dev_priv) >= 11)
trans_min = 4;
else
trans_min = 14;
/* Display WA #1140: glk,cnl */
if (IS_CANNONLAKE(dev_priv) || IS_GEMINILAKE(dev_priv))
trans_amount = 0;
else
trans_amount = 10; /* This is configurable amount */
trans_offset_b = trans_min + trans_amount;
/*
* The spec asks for Selected Result Blocks for wm0 (the real value),
* not Result Blocks (the integer value). Pay attention to the capital
* letters. The value wm_l0->plane_res_b is actually Result Blocks, but
* since Result Blocks is the ceiling of Selected Result Blocks plus 1,
* and since we later will have to get the ceiling of the sum in the
* transition watermarks calculation, we can just pretend Selected
* Result Blocks is Result Blocks minus 1 and it should work for the
* current platforms.
*/
wm0_sel_res_b = wm->wm[0].plane_res_b - 1;
if (wp->y_tiled) {
trans_y_tile_min =
(u16)mul_round_up_u32_fixed16(2, wp->y_tile_minimum);
res_blocks = max(wm0_sel_res_b, trans_y_tile_min) +
trans_offset_b;
} else {
res_blocks = wm0_sel_res_b + trans_offset_b;
}
/*
* Just assume we can enable the transition watermark. After
* computing the DDB we'll come back and disable it if that
* assumption turns out to be false.
*/
wm->trans_wm.plane_res_b = res_blocks + 1;
wm->trans_wm.plane_en = true;
}
static int skl_build_plane_wm_single(struct intel_crtc_state *crtc_state,
const struct intel_plane_state *plane_state,
enum plane_id plane_id, int color_plane)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id];
struct skl_wm_params wm_params;
int ret;
ret = skl_compute_plane_wm_params(crtc_state, plane_state,
&wm_params, color_plane);
if (ret)
return ret;
skl_compute_wm_levels(crtc_state, &wm_params, wm->wm);
if (INTEL_GEN(dev_priv) >= 12)
tgl_compute_sagv_wm(crtc_state, &wm_params, wm);
skl_compute_transition_wm(crtc_state, &wm_params, wm);
return 0;
}
static int skl_build_plane_wm_uv(struct intel_crtc_state *crtc_state,
const struct intel_plane_state *plane_state,
enum plane_id plane_id)
{
struct skl_plane_wm *wm = &crtc_state->wm.skl.optimal.planes[plane_id];
struct skl_wm_params wm_params;
int ret;
wm->is_planar = true;
/* uv plane watermarks must also be validated for NV12/Planar */
ret = skl_compute_plane_wm_params(crtc_state, plane_state,
&wm_params, 1);
if (ret)
return ret;
skl_compute_wm_levels(crtc_state, &wm_params, wm->uv_wm);
return 0;
}
static int skl_build_plane_wm(struct intel_crtc_state *crtc_state,
const struct intel_plane_state *plane_state)
{
struct intel_plane *plane = to_intel_plane(plane_state->uapi.plane);
const struct drm_framebuffer *fb = plane_state->hw.fb;
enum plane_id plane_id = plane->id;
int ret;
if (!intel_wm_plane_visible(crtc_state, plane_state))
return 0;
ret = skl_build_plane_wm_single(crtc_state, plane_state,
plane_id, 0);
if (ret)
return ret;
if (fb->format->is_yuv && fb->format->num_planes > 1) {
ret = skl_build_plane_wm_uv(crtc_state, plane_state,
plane_id);
if (ret)
return ret;
}
return 0;
}
static int icl_build_plane_wm(struct intel_crtc_state *crtc_state,
const struct intel_plane_state *plane_state)
{
struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
enum plane_id plane_id = to_intel_plane(plane_state->uapi.plane)->id;
int ret;
/* Watermarks calculated in master */
if (plane_state->planar_slave)
return 0;
if (plane_state->planar_linked_plane) {
const struct drm_framebuffer *fb = plane_state->hw.fb;
enum plane_id y_plane_id = plane_state->planar_linked_plane->id;
drm_WARN_ON(&dev_priv->drm,
!intel_wm_plane_visible(crtc_state, plane_state));
drm_WARN_ON(&dev_priv->drm, !fb->format->is_yuv ||
fb->format->num_planes == 1);
ret = skl_build_plane_wm_single(crtc_state, plane_state,
y_plane_id, 0);
if (ret)
return ret;
ret = skl_build_plane_wm_single(crtc_state, plane_state,
plane_id, 1);
if (ret)
return ret;
} else if (intel_wm_plane_visible(crtc_state, plane_state)) {
ret = skl_build_plane_wm_single(crtc_state, plane_state,
plane_id, 0);
if (ret)
return ret;
}
return 0;
}
static int skl_build_pipe_wm(struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
struct skl_pipe_wm *pipe_wm = &crtc_state->wm.skl.optimal;
struct intel_plane *plane;
const struct intel_plane_state *plane_state;
int ret;
/*
* We'll only calculate watermarks for planes that are actually
* enabled, so make sure all other planes are set as disabled.
*/
memset(pipe_wm->planes, 0, sizeof(pipe_wm->planes));
intel_atomic_crtc_state_for_each_plane_state(plane, plane_state,
crtc_state) {
if (INTEL_GEN(dev_priv) >= 11)
ret = icl_build_plane_wm(crtc_state, plane_state);
else
ret = skl_build_plane_wm(crtc_state, plane_state);
if (ret)
return ret;
}
return 0;
}
static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
i915_reg_t reg,
const struct skl_ddb_entry *entry)
{
if (entry->end)
intel_de_write_fw(dev_priv, reg,
(entry->end - 1) << 16 | entry->start);
else
intel_de_write_fw(dev_priv, reg, 0);
}
static void skl_write_wm_level(struct drm_i915_private *dev_priv,
i915_reg_t reg,
const struct skl_wm_level *level)
{
u32 val = 0;
if (level->plane_en)
val |= PLANE_WM_EN;
if (level->ignore_lines)
val |= PLANE_WM_IGNORE_LINES;
val |= level->plane_res_b;
val |= level->plane_res_l << PLANE_WM_LINES_SHIFT;
intel_de_write_fw(dev_priv, reg, val);
}
void skl_write_plane_wm(struct intel_plane *plane,
const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
int level, max_level = ilk_wm_max_level(dev_priv);
enum plane_id plane_id = plane->id;
enum pipe pipe = plane->pipe;
const struct skl_plane_wm *wm =
&crtc_state->wm.skl.optimal.planes[plane_id];
const struct skl_ddb_entry *ddb_y =
&crtc_state->wm.skl.plane_ddb_y[plane_id];
const struct skl_ddb_entry *ddb_uv =
&crtc_state->wm.skl.plane_ddb_uv[plane_id];
for (level = 0; level <= max_level; level++) {
const struct skl_wm_level *wm_level;
wm_level = skl_plane_wm_level(crtc_state, plane_id, level);
skl_write_wm_level(dev_priv, PLANE_WM(pipe, plane_id, level),
wm_level);
}
skl_write_wm_level(dev_priv, PLANE_WM_TRANS(pipe, plane_id),
&wm->trans_wm);
if (INTEL_GEN(dev_priv) >= 11) {
skl_ddb_entry_write(dev_priv,
PLANE_BUF_CFG(pipe, plane_id), ddb_y);
return;
}
if (wm->is_planar)
swap(ddb_y, ddb_uv);
skl_ddb_entry_write(dev_priv,
PLANE_BUF_CFG(pipe, plane_id), ddb_y);
skl_ddb_entry_write(dev_priv,
PLANE_NV12_BUF_CFG(pipe, plane_id), ddb_uv);
}
void skl_write_cursor_wm(struct intel_plane *plane,
const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
int level, max_level = ilk_wm_max_level(dev_priv);
enum plane_id plane_id = plane->id;
enum pipe pipe = plane->pipe;
const struct skl_plane_wm *wm =
&crtc_state->wm.skl.optimal.planes[plane_id];
const struct skl_ddb_entry *ddb =
&crtc_state->wm.skl.plane_ddb_y[plane_id];
for (level = 0; level <= max_level; level++) {
const struct skl_wm_level *wm_level;
wm_level = skl_plane_wm_level(crtc_state, plane_id, level);
skl_write_wm_level(dev_priv, CUR_WM(pipe, level),
wm_level);
}
skl_write_wm_level(dev_priv, CUR_WM_TRANS(pipe), &wm->trans_wm);
skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe), ddb);
}
bool skl_wm_level_equals(const struct skl_wm_level *l1,
const struct skl_wm_level *l2)
{
return l1->plane_en == l2->plane_en &&
l1->ignore_lines == l2->ignore_lines &&
l1->plane_res_l == l2->plane_res_l &&
l1->plane_res_b == l2->plane_res_b;
}
static bool skl_plane_wm_equals(struct drm_i915_private *dev_priv,
const struct skl_plane_wm *wm1,
const struct skl_plane_wm *wm2)
{
int level, max_level = ilk_wm_max_level(dev_priv);
for (level = 0; level <= max_level; level++) {
/*
* We don't check uv_wm as the hardware doesn't actually
* use it. It only gets used for calculating the required
* ddb allocation.
*/
if (!skl_wm_level_equals(&wm1->wm[level], &wm2->wm[level]))
return false;
}
return skl_wm_level_equals(&wm1->trans_wm, &wm2->trans_wm);
}
static bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
const struct skl_ddb_entry *b)
{
return a->start < b->end && b->start < a->end;
}
bool skl_ddb_allocation_overlaps(const struct skl_ddb_entry *ddb,
const struct skl_ddb_entry *entries,
int num_entries, int ignore_idx)
{
int i;
for (i = 0; i < num_entries; i++) {
if (i != ignore_idx &&
skl_ddb_entries_overlap(ddb, &entries[i]))
return true;
}
return false;
}
static int
skl_ddb_add_affected_planes(const struct intel_crtc_state *old_crtc_state,
struct intel_crtc_state *new_crtc_state)
{
struct intel_atomic_state *state = to_intel_atomic_state(new_crtc_state->uapi.state);
struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
struct intel_plane *plane;
for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
struct intel_plane_state *plane_state;
enum plane_id plane_id = plane->id;
if (skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_y[plane_id],
&new_crtc_state->wm.skl.plane_ddb_y[plane_id]) &&
skl_ddb_entry_equal(&old_crtc_state->wm.skl.plane_ddb_uv[plane_id],
&new_crtc_state->wm.skl.plane_ddb_uv[plane_id]))
continue;
plane_state = intel_atomic_get_plane_state(state, plane);
if (IS_ERR(plane_state))
return PTR_ERR(plane_state);
new_crtc_state->update_planes |= BIT(plane_id);
}
return 0;
}
static int
skl_compute_ddb(struct intel_atomic_state *state)
{
struct drm_i915_private *dev_priv = to_i915(state->base.dev);
const struct intel_dbuf_state *old_dbuf_state;
const struct intel_dbuf_state *new_dbuf_state;
const struct intel_crtc_state *old_crtc_state;
struct intel_crtc_state *new_crtc_state;
struct intel_crtc *crtc;
int ret, i;
for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
new_crtc_state, i) {
ret = skl_allocate_pipe_ddb(new_crtc_state);
if (ret)
return ret;
ret = skl_ddb_add_affected_planes(old_crtc_state,
new_crtc_state);
if (ret)
return ret;
}
old_dbuf_state = intel_atomic_get_old_dbuf_state(state);
new_dbuf_state = intel_atomic_get_new_dbuf_state(state);
if (new_dbuf_state &&
new_dbuf_state->enabled_slices != old_dbuf_state->enabled_slices)
drm_dbg_kms(&dev_priv->drm,
"Enabled dbuf slices 0x%x -> 0x%x (out of %d dbuf slices)\n",
old_dbuf_state->enabled_slices,
new_dbuf_state->enabled_slices,
INTEL_INFO(dev_priv)->num_supported_dbuf_slices);
return 0;
}
static char enast(bool enable)
{
return enable ? '*' : ' ';
}
static void
skl_print_wm_changes(struct intel_atomic_state *state)
{
struct drm_i915_private *dev_priv = to_i915(state->base.dev);
const struct intel_crtc_state *old_crtc_state;
const struct intel_crtc_state *new_crtc_state;
struct intel_plane *plane;
struct intel_crtc *crtc;
int i;
if (!drm_debug_enabled(DRM_UT_KMS))
return;
for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
new_crtc_state, i) {
const struct skl_pipe_wm *old_pipe_wm, *new_pipe_wm;
old_pipe_wm = &old_crtc_state->wm.skl.optimal;
new_pipe_wm = &new_crtc_state->wm.skl.optimal;
for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
enum plane_id plane_id = plane->id;
const struct skl_ddb_entry *old, *new;
old = &old_crtc_state->wm.skl.plane_ddb_y[plane_id];
new = &new_crtc_state->wm.skl.plane_ddb_y[plane_id];
if (skl_ddb_entry_equal(old, new))
continue;
drm_dbg_kms(&dev_priv->drm,
"[PLANE:%d:%s] ddb (%4d - %4d) -> (%4d - %4d), size %4d -> %4d\n",
plane->base.base.id, plane->base.name,
old->start, old->end, new->start, new->end,
skl_ddb_entry_size(old), skl_ddb_entry_size(new));
}
for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
enum plane_id plane_id = plane->id;
const struct skl_plane_wm *old_wm, *new_wm;
old_wm = &old_pipe_wm->planes[plane_id];
new_wm = &new_pipe_wm->planes[plane_id];
if (skl_plane_wm_equals(dev_priv, old_wm, new_wm))
continue;
drm_dbg_kms(&dev_priv->drm,
"[PLANE:%d:%s] level %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm,%cswm"
" -> %cwm0,%cwm1,%cwm2,%cwm3,%cwm4,%cwm5,%cwm6,%cwm7,%ctwm,%cswm\n",
plane->base.base.id, plane->base.name,
enast(old_wm->wm[0].plane_en), enast(old_wm->wm[1].plane_en),
enast(old_wm->wm[2].plane_en), enast(old_wm->wm[3].plane_en),
enast(old_wm->wm[4].plane_en), enast(old_wm->wm[5].plane_en),
enast(old_wm->wm[6].plane_en), enast(old_wm->wm[7].plane_en),
enast(old_wm->trans_wm.plane_en),
enast(old_wm->sagv_wm0.plane_en),
enast(new_wm->wm[0].plane_en), enast(new_wm->wm[1].plane_en),
enast(new_wm->wm[2].plane_en), enast(new_wm->wm[3].plane_en),
enast(new_wm->wm[4].plane_en), enast(new_wm->wm[5].plane_en),
enast(new_wm->wm[6].plane_en), enast(new_wm->wm[7].plane_en),
enast(new_wm->trans_wm.plane_en),
enast(new_wm->sagv_wm0.plane_en));
drm_dbg_kms(&dev_priv->drm,
"[PLANE:%d:%s] lines %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d"
" -> %c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d,%c%3d\n",
plane->base.base.id, plane->base.name,
enast(old_wm->wm[0].ignore_lines), old_wm->wm[0].plane_res_l,
enast(old_wm->wm[1].ignore_lines), old_wm->wm[1].plane_res_l,
enast(old_wm->wm[2].ignore_lines), old_wm->wm[2].plane_res_l,
enast(old_wm->wm[3].ignore_lines), old_wm->wm[3].plane_res_l,
enast(old_wm->wm[4].ignore_lines), old_wm->wm[4].plane_res_l,
enast(old_wm->wm[5].ignore_lines), old_wm->wm[5].plane_res_l,
enast(old_wm->wm[6].ignore_lines), old_wm->wm[6].plane_res_l,
enast(old_wm->wm[7].ignore_lines), old_wm->wm[7].plane_res_l,
enast(old_wm->trans_wm.ignore_lines), old_wm->trans_wm.plane_res_l,
enast(old_wm->sagv_wm0.ignore_lines), old_wm->sagv_wm0.plane_res_l,
enast(new_wm->wm[0].ignore_lines), new_wm->wm[0].plane_res_l,
enast(new_wm->wm[1].ignore_lines), new_wm->wm[1].plane_res_l,
enast(new_wm->wm[2].ignore_lines), new_wm->wm[2].plane_res_l,
enast(new_wm->wm[3].ignore_lines), new_wm->wm[3].plane_res_l,
enast(new_wm->wm[4].ignore_lines), new_wm->wm[4].plane_res_l,
enast(new_wm->wm[5].ignore_lines), new_wm->wm[5].plane_res_l,
enast(new_wm->wm[6].ignore_lines), new_wm->wm[6].plane_res_l,
enast(new_wm->wm[7].ignore_lines), new_wm->wm[7].plane_res_l,
enast(new_wm->trans_wm.ignore_lines), new_wm->trans_wm.plane_res_l,
enast(new_wm->sagv_wm0.ignore_lines), new_wm->sagv_wm0.plane_res_l);
drm_dbg_kms(&dev_priv->drm,
"[PLANE:%d:%s] blocks %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d"
" -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d\n",
plane->base.base.id, plane->base.name,
old_wm->wm[0].plane_res_b, old_wm->wm[1].plane_res_b,
old_wm->wm[2].plane_res_b, old_wm->wm[3].plane_res_b,
old_wm->wm[4].plane_res_b, old_wm->wm[5].plane_res_b,
old_wm->wm[6].plane_res_b, old_wm->wm[7].plane_res_b,
old_wm->trans_wm.plane_res_b,
old_wm->sagv_wm0.plane_res_b,
new_wm->wm[0].plane_res_b, new_wm->wm[1].plane_res_b,
new_wm->wm[2].plane_res_b, new_wm->wm[3].plane_res_b,
new_wm->wm[4].plane_res_b, new_wm->wm[5].plane_res_b,
new_wm->wm[6].plane_res_b, new_wm->wm[7].plane_res_b,
new_wm->trans_wm.plane_res_b,
new_wm->sagv_wm0.plane_res_b);
drm_dbg_kms(&dev_priv->drm,
"[PLANE:%d:%s] min_ddb %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d"
" -> %4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d,%4d\n",
plane->base.base.id, plane->base.name,
old_wm->wm[0].min_ddb_alloc, old_wm->wm[1].min_ddb_alloc,
old_wm->wm[2].min_ddb_alloc, old_wm->wm[3].min_ddb_alloc,
old_wm->wm[4].min_ddb_alloc, old_wm->wm[5].min_ddb_alloc,
old_wm->wm[6].min_ddb_alloc, old_wm->wm[7].min_ddb_alloc,
old_wm->trans_wm.min_ddb_alloc,
old_wm->sagv_wm0.min_ddb_alloc,
new_wm->wm[0].min_ddb_alloc, new_wm->wm[1].min_ddb_alloc,
new_wm->wm[2].min_ddb_alloc, new_wm->wm[3].min_ddb_alloc,
new_wm->wm[4].min_ddb_alloc, new_wm->wm[5].min_ddb_alloc,
new_wm->wm[6].min_ddb_alloc, new_wm->wm[7].min_ddb_alloc,
new_wm->trans_wm.min_ddb_alloc,
new_wm->sagv_wm0.min_ddb_alloc);
}
}
}
static int intel_add_affected_pipes(struct intel_atomic_state *state,
u8 pipe_mask)
{
struct drm_i915_private *dev_priv = to_i915(state->base.dev);
struct intel_crtc *crtc;
for_each_intel_crtc(&dev_priv->drm, crtc) {
struct intel_crtc_state *crtc_state;
if ((pipe_mask & BIT(crtc->pipe)) == 0)
continue;
crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
if (IS_ERR(crtc_state))
return PTR_ERR(crtc_state);
}
return 0;
}
static int
skl_ddb_add_affected_pipes(struct intel_atomic_state *state)
{
struct drm_i915_private *dev_priv = to_i915(state->base.dev);
struct intel_crtc_state *crtc_state;
struct intel_crtc *crtc;
int i, ret;
if (dev_priv->wm.distrust_bios_wm) {
/*
* skl_ddb_get_pipe_allocation_limits() currently requires
* all active pipes to be included in the state so that
* it can redistribute the dbuf among them, and it really
* wants to recompute things when distrust_bios_wm is set
* so we add all the pipes to the state.
*/
ret = intel_add_affected_pipes(state, ~0);
if (ret)
return ret;
}
for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
struct intel_dbuf_state *new_dbuf_state;
const struct intel_dbuf_state *old_dbuf_state;
new_dbuf_state = intel_atomic_get_dbuf_state(state);
if (IS_ERR(new_dbuf_state))
return PTR_ERR(new_dbuf_state);
old_dbuf_state = intel_atomic_get_old_dbuf_state(state);
new_dbuf_state->active_pipes =
intel_calc_active_pipes(state, old_dbuf_state->active_pipes);
if (old_dbuf_state->active_pipes == new_dbuf_state->active_pipes)
break;
ret = intel_atomic_lock_global_state(&new_dbuf_state->base);
if (ret)
return ret;
/*
* skl_ddb_get_pipe_allocation_limits() currently requires
* all active pipes to be included in the state so that
* it can redistribute the dbuf among them.
*/
ret = intel_add_affected_pipes(state,
new_dbuf_state->active_pipes);
if (ret)
return ret;
break;
}
return 0;
}
/*
* To make sure the cursor watermark registers are always consistent
* with our computed state the following scenario needs special
* treatment:
*
* 1. enable cursor
* 2. move cursor entirely offscreen
* 3. disable cursor
*
* Step 2. does call .disable_plane() but does not zero the watermarks
* (since we consider an offscreen cursor still active for the purposes
* of watermarks). Step 3. would not normally call .disable_plane()
* because the actual plane visibility isn't changing, and we don't
* deallocate the cursor ddb until the pipe gets disabled. So we must
* force step 3. to call .disable_plane() to update the watermark
* registers properly.
*
* Other planes do not suffer from this issues as their watermarks are
* calculated based on the actual plane visibility. The only time this
* can trigger for the other planes is during the initial readout as the
* default value of the watermarks registers is not zero.
*/
static int skl_wm_add_affected_planes(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
const struct intel_crtc_state *old_crtc_state =
intel_atomic_get_old_crtc_state(state, crtc);
struct intel_crtc_state *new_crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
struct intel_plane *plane;
for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
struct intel_plane_state *plane_state;
enum plane_id plane_id = plane->id;
/*
* Force a full wm update for every plane on modeset.
* Required because the reset value of the wm registers
* is non-zero, whereas we want all disabled planes to
* have zero watermarks. So if we turn off the relevant
* power well the hardware state will go out of sync
* with the software state.
*/
if (!drm_atomic_crtc_needs_modeset(&new_crtc_state->uapi) &&
skl_plane_wm_equals(dev_priv,
&old_crtc_state->wm.skl.optimal.planes[plane_id],
&new_crtc_state->wm.skl.optimal.planes[plane_id]))
continue;
plane_state = intel_atomic_get_plane_state(state, plane);
if (IS_ERR(plane_state))
return PTR_ERR(plane_state);
new_crtc_state->update_planes |= BIT(plane_id);
}
return 0;
}
static int
skl_compute_wm(struct intel_atomic_state *state)
{
struct intel_crtc *crtc;
struct intel_crtc_state *new_crtc_state;
struct intel_crtc_state *old_crtc_state;
int ret, i;
ret = skl_ddb_add_affected_pipes(state);
if (ret)
return ret;
/*
* Calculate WM's for all pipes that are part of this transaction.
* Note that skl_ddb_add_affected_pipes may have added more CRTC's that
* weren't otherwise being modified if pipe allocations had to change.
*/
for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
new_crtc_state, i) {
ret = skl_build_pipe_wm(new_crtc_state);
if (ret)
return ret;
}
ret = skl_compute_ddb(state);
if (ret)
return ret;
ret = intel_compute_sagv_mask(state);
if (ret)
return ret;
/*
* skl_compute_ddb() will have adjusted the final watermarks
* based on how much ddb is available. Now we can actually
* check if the final watermarks changed.
*/
for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
new_crtc_state, i) {
ret = skl_wm_add_affected_planes(state, crtc);
if (ret)
return ret;
}
skl_print_wm_changes(state);
return 0;
}
static void ilk_compute_wm_config(struct drm_i915_private *dev_priv,
struct intel_wm_config *config)
{
struct intel_crtc *crtc;
/* Compute the currently _active_ config */
for_each_intel_crtc(&dev_priv->drm, crtc) {
const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
if (!wm->pipe_enabled)
continue;
config->sprites_enabled |= wm->sprites_enabled;
config->sprites_scaled |= wm->sprites_scaled;
config->num_pipes_active++;
}
}
static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
{
struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
struct ilk_wm_maximums max;
struct intel_wm_config config = {};
struct ilk_wm_values results = {};
enum intel_ddb_partitioning partitioning;
ilk_compute_wm_config(dev_priv, &config);
ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_1_2, &max);
ilk_wm_merge(dev_priv, &config, &max, &lp_wm_1_2);
/* 5/6 split only in single pipe config on IVB+ */
if (INTEL_GEN(dev_priv) >= 7 &&
config.num_pipes_active == 1 && config.sprites_enabled) {
ilk_compute_wm_maximums(dev_priv, 1, &config, INTEL_DDB_PART_5_6, &max);
ilk_wm_merge(dev_priv, &config, &max, &lp_wm_5_6);
best_lp_wm = ilk_find_best_result(dev_priv, &lp_wm_1_2, &lp_wm_5_6);
} else {
best_lp_wm = &lp_wm_1_2;
}
partitioning = (best_lp_wm == &lp_wm_1_2) ?
INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
ilk_compute_wm_results(dev_priv, best_lp_wm, partitioning, &results);
ilk_write_wm_values(dev_priv, &results);
}
static void ilk_initial_watermarks(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
const struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
mutex_lock(&dev_priv->wm.wm_mutex);
crtc->wm.active.ilk = crtc_state->wm.ilk.intermediate;
ilk_program_watermarks(dev_priv);
mutex_unlock(&dev_priv->wm.wm_mutex);
}
static void ilk_optimize_watermarks(struct intel_atomic_state *state,
struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
const struct intel_crtc_state *crtc_state =
intel_atomic_get_new_crtc_state(state, crtc);
if (!crtc_state->wm.need_postvbl_update)
return;
mutex_lock(&dev_priv->wm.wm_mutex);
crtc->wm.active.ilk = crtc_state->wm.ilk.optimal;
ilk_program_watermarks(dev_priv);
mutex_unlock(&dev_priv->wm.wm_mutex);
}
static void skl_wm_level_from_reg_val(u32 val, struct skl_wm_level *level)
{
level->plane_en = val & PLANE_WM_EN;
level->ignore_lines = val & PLANE_WM_IGNORE_LINES;
level->plane_res_b = val & PLANE_WM_BLOCKS_MASK;
level->plane_res_l = (val >> PLANE_WM_LINES_SHIFT) &
PLANE_WM_LINES_MASK;
}
void skl_pipe_wm_get_hw_state(struct intel_crtc *crtc,
struct skl_pipe_wm *out)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum pipe pipe = crtc->pipe;
int level, max_level;
enum plane_id plane_id;
u32 val;
max_level = ilk_wm_max_level(dev_priv);
for_each_plane_id_on_crtc(crtc, plane_id) {
struct skl_plane_wm *wm = &out->planes[plane_id];
for (level = 0; level <= max_level; level++) {
if (plane_id != PLANE_CURSOR)
val = I915_READ(PLANE_WM(pipe, plane_id, level));
else
val = I915_READ(CUR_WM(pipe, level));
skl_wm_level_from_reg_val(val, &wm->wm[level]);
}
if (INTEL_GEN(dev_priv) >= 12)
wm->sagv_wm0 = wm->wm[0];
if (plane_id != PLANE_CURSOR)
val = I915_READ(PLANE_WM_TRANS(pipe, plane_id));
else
val = I915_READ(CUR_WM_TRANS(pipe));
skl_wm_level_from_reg_val(val, &wm->trans_wm);
}
if (!crtc->active)
return;
}
void skl_wm_get_hw_state(struct drm_i915_private *dev_priv)
{
struct intel_crtc *crtc;
struct intel_crtc_state *crtc_state;
for_each_intel_crtc(&dev_priv->drm, crtc) {
crtc_state = to_intel_crtc_state(crtc->base.state);
skl_pipe_wm_get_hw_state(crtc, &crtc_state->wm.skl.optimal);
}
if (dev_priv->active_pipes) {
/* Fully recompute DDB on first atomic commit */
dev_priv->wm.distrust_bios_wm = true;
}
}
static void ilk_pipe_wm_get_hw_state(struct intel_crtc *crtc)
{
struct drm_device *dev = crtc->base.dev;
struct drm_i915_private *dev_priv = to_i915(dev);
struct ilk_wm_values *hw = &dev_priv->wm.hw;
struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state);
struct intel_pipe_wm *active = &crtc_state->wm.ilk.optimal;
enum pipe pipe = crtc->pipe;
static const i915_reg_t wm0_pipe_reg[] = {
[PIPE_A] = WM0_PIPEA_ILK,
[PIPE_B] = WM0_PIPEB_ILK,
[PIPE_C] = WM0_PIPEC_IVB,
};
hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
memset(active, 0, sizeof(*active));
active->pipe_enabled = crtc->active;
if (active->pipe_enabled) {
u32 tmp = hw->wm_pipe[pipe];
/*
* For active pipes LP0 watermark is marked as
* enabled, and LP1+ watermaks as disabled since
* we can't really reverse compute them in case
* multiple pipes are active.
*/
active->wm[0].enable = true;
active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
} else {
int level, max_level = ilk_wm_max_level(dev_priv);
/*
* For inactive pipes, all watermark levels
* should be marked as enabled but zeroed,
* which is what we'd compute them to.
*/
for (level = 0; level <= max_level; level++)
active->wm[level].enable = true;
}
crtc->wm.active.ilk = *active;
}
#define _FW_WM(value, plane) \
(((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
#define _FW_WM_VLV(value, plane) \
(((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
static void g4x_read_wm_values(struct drm_i915_private *dev_priv,
struct g4x_wm_values *wm)
{
u32 tmp;
tmp = I915_READ(DSPFW1);
wm->sr.plane = _FW_WM(tmp, SR);
wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEB);
wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM(tmp, PLANEA);
tmp = I915_READ(DSPFW2);
wm->fbc_en = tmp & DSPFW_FBC_SR_EN;
wm->sr.fbc = _FW_WM(tmp, FBC_SR);
wm->hpll.fbc = _FW_WM(tmp, FBC_HPLL_SR);
wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEB);
wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM(tmp, SPRITEA);
tmp = I915_READ(DSPFW3);
wm->hpll_en = tmp & DSPFW_HPLL_SR_EN;
wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
wm->hpll.cursor = _FW_WM(tmp, HPLL_CURSOR);
wm->hpll.plane = _FW_WM(tmp, HPLL_SR);
}
static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
struct vlv_wm_values *wm)
{
enum pipe pipe;
u32 tmp;
for_each_pipe(dev_priv, pipe) {
tmp = I915_READ(VLV_DDL(pipe));
wm->ddl[pipe].plane[PLANE_PRIMARY] =
(tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
wm->ddl[pipe].plane[PLANE_CURSOR] =
(tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
wm->ddl[pipe].plane[PLANE_SPRITE0] =
(tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
wm->ddl[pipe].plane[PLANE_SPRITE1] =
(tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
}
tmp = I915_READ(DSPFW1);
wm->sr.plane = _FW_WM(tmp, SR);
wm->pipe[PIPE_B].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORB);
wm->pipe[PIPE_B].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEB);
wm->pipe[PIPE_A].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEA);
tmp = I915_READ(DSPFW2);
wm->pipe[PIPE_A].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEB);
wm->pipe[PIPE_A].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORA);
wm->pipe[PIPE_A].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEA);
tmp = I915_READ(DSPFW3);
wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
if (IS_CHERRYVIEW(dev_priv)) {
tmp = I915_READ(DSPFW7_CHV);
wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
tmp = I915_READ(DSPFW8_CHV);
wm->pipe[PIPE_C].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITEF);
wm->pipe[PIPE_C].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEE);
tmp = I915_READ(DSPFW9_CHV);
wm->pipe[PIPE_C].plane[PLANE_PRIMARY] = _FW_WM_VLV(tmp, PLANEC);
wm->pipe[PIPE_C].plane[PLANE_CURSOR] = _FW_WM(tmp, CURSORC);
tmp = I915_READ(DSPHOWM);
wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
wm->pipe[PIPE_C].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
wm->pipe[PIPE_C].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
wm->pipe[PIPE_C].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEC_HI) << 8;
wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
} else {
tmp = I915_READ(DSPFW7);
wm->pipe[PIPE_B].plane[PLANE_SPRITE1] = _FW_WM_VLV(tmp, SPRITED);
wm->pipe[PIPE_B].plane[PLANE_SPRITE0] = _FW_WM_VLV(tmp, SPRITEC);
tmp = I915_READ(DSPHOWM);
wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
wm->pipe[PIPE_B].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITED_HI) << 8;
wm->pipe[PIPE_B].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
wm->pipe[PIPE_B].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEB_HI) << 8;
wm->pipe[PIPE_A].plane[PLANE_SPRITE1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
wm->pipe[PIPE_A].plane[PLANE_SPRITE0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
wm->pipe[PIPE_A].plane[PLANE_PRIMARY] |= _FW_WM(tmp, PLANEA_HI) << 8;
}
}
#undef _FW_WM
#undef _FW_WM_VLV
void g4x_wm_get_hw_state(struct drm_i915_private *dev_priv)
{
struct g4x_wm_values *wm = &dev_priv->wm.g4x;
struct intel_crtc *crtc;
g4x_read_wm_values(dev_priv, wm);
wm->cxsr = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
for_each_intel_crtc(&dev_priv->drm, crtc) {
struct intel_crtc_state *crtc_state =
to_intel_crtc_state(crtc->base.state);
struct g4x_wm_state *active = &crtc->wm.active.g4x;
struct g4x_pipe_wm *raw;
enum pipe pipe = crtc->pipe;
enum plane_id plane_id;
int level, max_level;
active->cxsr = wm->cxsr;
active->hpll_en = wm->hpll_en;
active->fbc_en = wm->fbc_en;
active->sr = wm->sr;
active->hpll = wm->hpll;
for_each_plane_id_on_crtc(crtc, plane_id) {
active->wm.plane[plane_id] =
wm->pipe[pipe].plane[plane_id];
}
if (wm->cxsr && wm->hpll_en)
max_level = G4X_WM_LEVEL_HPLL;
else if (wm->cxsr)
max_level = G4X_WM_LEVEL_SR;
else
max_level = G4X_WM_LEVEL_NORMAL;
level = G4X_WM_LEVEL_NORMAL;
raw = &crtc_state->wm.g4x.raw[level];
for_each_plane_id_on_crtc(crtc, plane_id)
raw->plane[plane_id] = active->wm.plane[plane_id];
if (++level > max_level)
goto out;
raw = &crtc_state->wm.g4x.raw[level];
raw->plane[PLANE_PRIMARY] = active->sr.plane;
raw->plane[PLANE_CURSOR] = active->sr.cursor;
raw->plane[PLANE_SPRITE0] = 0;
raw->fbc = active->sr.fbc;
if (++level > max_level)
goto out;
raw = &crtc_state->wm.g4x.raw[level];
raw->plane[PLANE_PRIMARY] = active->hpll.plane;
raw->plane[PLANE_CURSOR] = active->hpll.cursor;
raw->plane[PLANE_SPRITE0] = 0;
raw->fbc = active->hpll.fbc;
out:
for_each_plane_id_on_crtc(crtc, plane_id)
g4x_raw_plane_wm_set(crtc_state, level,
plane_id, USHRT_MAX);
g4x_raw_fbc_wm_set(crtc_state, level, USHRT_MAX);
crtc_state->wm.g4x.optimal = *active;
crtc_state->wm.g4x.intermediate = *active;
drm_dbg_kms(&dev_priv->drm,
"Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite=%d\n",
pipe_name(pipe),
wm->pipe[pipe].plane[PLANE_PRIMARY],
wm->pipe[pipe].plane[PLANE_CURSOR],
wm->pipe[pipe].plane[PLANE_SPRITE0]);
}
drm_dbg_kms(&dev_priv->drm,
"Initial SR watermarks: plane=%d, cursor=%d fbc=%d\n",
wm->sr.plane, wm->sr.cursor, wm->sr.fbc);
drm_dbg_kms(&dev_priv->drm,
"Initial HPLL watermarks: plane=%d, SR cursor=%d fbc=%d\n",
wm->hpll.plane, wm->hpll.cursor, wm->hpll.fbc);
drm_dbg_kms(&dev_priv->drm, "Initial SR=%s HPLL=%s FBC=%s\n",
yesno(wm->cxsr), yesno(wm->hpll_en), yesno(wm->fbc_en));
}
void g4x_wm_sanitize(struct drm_i915_private *dev_priv)
{
struct intel_plane *plane;
struct intel_crtc *crtc;
mutex_lock(&dev_priv->wm.wm_mutex);
for_each_intel_plane(&dev_priv->drm, plane) {
struct intel_crtc *crtc =
intel_get_crtc_for_pipe(dev_priv, plane->pipe);
struct intel_crtc_state *crtc_state =
to_intel_crtc_state(crtc->base.state);
struct intel_plane_state *plane_state =
to_intel_plane_state(plane->base.state);
struct g4x_wm_state *wm_state = &crtc_state->wm.g4x.optimal;
enum plane_id plane_id = plane->id;
int level;
if (plane_state->uapi.visible)
continue;
for (level = 0; level < 3; level++) {
struct g4x_pipe_wm *raw =
&crtc_state->wm.g4x.raw[level];
raw->plane[plane_id] = 0;
wm_state->wm.plane[plane_id] = 0;
}
if (plane_id == PLANE_PRIMARY) {
for (level = 0; level < 3; level++) {
struct g4x_pipe_wm *raw =
&crtc_state->wm.g4x.raw[level];
raw->fbc = 0;
}
wm_state->sr.fbc = 0;
wm_state->hpll.fbc = 0;
wm_state->fbc_en = false;
}
}
for_each_intel_crtc(&dev_priv->drm, crtc) {
struct intel_crtc_state *crtc_state =
to_intel_crtc_state(crtc->base.state);
crtc_state->wm.g4x.intermediate =
crtc_state->wm.g4x.optimal;
crtc->wm.active.g4x = crtc_state->wm.g4x.optimal;
}
g4x_program_watermarks(dev_priv);
mutex_unlock(&dev_priv->wm.wm_mutex);
}
void vlv_wm_get_hw_state(struct drm_i915_private *dev_priv)
{
struct vlv_wm_values *wm = &dev_priv->wm.vlv;
struct intel_crtc *crtc;
u32 val;
vlv_read_wm_values(dev_priv, wm);
wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
wm->level = VLV_WM_LEVEL_PM2;
if (IS_CHERRYVIEW(dev_priv)) {
vlv_punit_get(dev_priv);
val = vlv_punit_read(dev_priv, PUNIT_REG_DSPSSPM);
if (val & DSP_MAXFIFO_PM5_ENABLE)
wm->level = VLV_WM_LEVEL_PM5;
/*
* If DDR DVFS is disabled in the BIOS, Punit
* will never ack the request. So if that happens
* assume we don't have to enable/disable DDR DVFS
* dynamically. To test that just set the REQ_ACK
* bit to poke the Punit, but don't change the
* HIGH/LOW bits so that we don't actually change
* the current state.
*/
val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
val |= FORCE_DDR_FREQ_REQ_ACK;
vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
drm_dbg_kms(&dev_priv->drm,
"Punit not acking DDR DVFS request, "
"assuming DDR DVFS is disabled\n");
dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
} else {
val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
if ((val & FORCE_DDR_HIGH_FREQ) == 0)
wm->level = VLV_WM_LEVEL_DDR_DVFS;
}
vlv_punit_put(dev_priv);
}
for_each_intel_crtc(&dev_priv->drm, crtc) {
struct intel_crtc_state *crtc_state =
to_intel_crtc_state(crtc->base.state);
struct vlv_wm_state *active = &crtc->wm.active.vlv;
const struct vlv_fifo_state *fifo_state =
&crtc_state->wm.vlv.fifo_state;
enum pipe pipe = crtc->pipe;
enum plane_id plane_id;
int level;
vlv_get_fifo_size(crtc_state);
active->num_levels = wm->level + 1;
active->cxsr = wm->cxsr;
for (level = 0; level < active->num_levels; level++) {
struct g4x_pipe_wm *raw =
&crtc_state->wm.vlv.raw[level];
active->sr[level].plane = wm->sr.plane;
active->sr[level].cursor = wm->sr.cursor;
for_each_plane_id_on_crtc(crtc, plane_id) {
active->wm[level].plane[plane_id] =
wm->pipe[pipe].plane[plane_id];
raw->plane[plane_id] =
vlv_invert_wm_value(active->wm[level].plane[plane_id],
fifo_state->plane[plane_id]);
}
}
for_each_plane_id_on_crtc(crtc, plane_id)
vlv_raw_plane_wm_set(crtc_state, level,
plane_id, USHRT_MAX);
vlv_invalidate_wms(crtc, active, level);
crtc_state->wm.vlv.optimal = *active;
crtc_state->wm.vlv.intermediate = *active;
drm_dbg_kms(&dev_priv->drm,
"Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
pipe_name(pipe),
wm->pipe[pipe].plane[PLANE_PRIMARY],
wm->pipe[pipe].plane[PLANE_CURSOR],
wm->pipe[pipe].plane[PLANE_SPRITE0],
wm->pipe[pipe].plane[PLANE_SPRITE1]);
}
drm_dbg_kms(&dev_priv->drm,
"Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
}
void vlv_wm_sanitize(struct drm_i915_private *dev_priv)
{
struct intel_plane *plane;
struct intel_crtc *crtc;
mutex_lock(&dev_priv->wm.wm_mutex);
for_each_intel_plane(&dev_priv->drm, plane) {
struct intel_crtc *crtc =
intel_get_crtc_for_pipe(dev_priv, plane->pipe);
struct intel_crtc_state *crtc_state =
to_intel_crtc_state(crtc->base.state);
struct intel_plane_state *plane_state =
to_intel_plane_state(plane->base.state);
struct vlv_wm_state *wm_state = &crtc_state->wm.vlv.optimal;
const struct vlv_fifo_state *fifo_state =
&crtc_state->wm.vlv.fifo_state;
enum plane_id plane_id = plane->id;
int level;
if (plane_state->uapi.visible)
continue;
for (level = 0; level < wm_state->num_levels; level++) {
struct g4x_pipe_wm *raw =
&crtc_state->wm.vlv.raw[level];
raw->plane[plane_id] = 0;
wm_state->wm[level].plane[plane_id] =
vlv_invert_wm_value(raw->plane[plane_id],
fifo_state->plane[plane_id]);
}
}
for_each_intel_crtc(&dev_priv->drm, crtc) {
struct intel_crtc_state *crtc_state =
to_intel_crtc_state(crtc->base.state);
crtc_state->wm.vlv.intermediate =
crtc_state->wm.vlv.optimal;
crtc->wm.active.vlv = crtc_state->wm.vlv.optimal;
}
vlv_program_watermarks(dev_priv);
mutex_unlock(&dev_priv->wm.wm_mutex);
}
/*
* FIXME should probably kill this and improve
* the real watermark readout/sanitation instead
*/
static void ilk_init_lp_watermarks(struct drm_i915_private *dev_priv)
{
I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
/*
* Don't touch WM1S_LP_EN here.
* Doing so could cause underruns.
*/
}
void ilk_wm_get_hw_state(struct drm_i915_private *dev_priv)
{
struct ilk_wm_values *hw = &dev_priv->wm.hw;
struct intel_crtc *crtc;
ilk_init_lp_watermarks(dev_priv);
for_each_intel_crtc(&dev_priv->drm, crtc)
ilk_pipe_wm_get_hw_state(crtc);
hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
if (INTEL_GEN(dev_priv) >= 7) {
hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
}
if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
else if (IS_IVYBRIDGE(dev_priv))
hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
hw->enable_fbc_wm =
!(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
}
/**
* intel_update_watermarks - update FIFO watermark values based on current modes
* @crtc: the #intel_crtc on which to compute the WM
*
* Calculate watermark values for the various WM regs based on current mode
* and plane configuration.
*
* There are several cases to deal with here:
* - normal (i.e. non-self-refresh)
* - self-refresh (SR) mode
* - lines are large relative to FIFO size (buffer can hold up to 2)
* - lines are small relative to FIFO size (buffer can hold more than 2
* lines), so need to account for TLB latency
*
* The normal calculation is:
* watermark = dotclock * bytes per pixel * latency
* where latency is platform & configuration dependent (we assume pessimal
* values here).
*
* The SR calculation is:
* watermark = (trunc(latency/line time)+1) * surface width *
* bytes per pixel
* where
* line time = htotal / dotclock
* surface width = hdisplay for normal plane and 64 for cursor
* and latency is assumed to be high, as above.
*
* The final value programmed to the register should always be rounded up,
* and include an extra 2 entries to account for clock crossings.
*
* We don't use the sprite, so we can ignore that. And on Crestline we have
* to set the non-SR watermarks to 8.
*/
void intel_update_watermarks(struct intel_crtc *crtc)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
if (dev_priv->display.update_wm)
dev_priv->display.update_wm(crtc);
}
void intel_enable_ipc(struct drm_i915_private *dev_priv)
{
u32 val;
if (!HAS_IPC(dev_priv))
return;
val = I915_READ(DISP_ARB_CTL2);
if (dev_priv->ipc_enabled)
val |= DISP_IPC_ENABLE;
else
val &= ~DISP_IPC_ENABLE;
I915_WRITE(DISP_ARB_CTL2, val);
}
static bool intel_can_enable_ipc(struct drm_i915_private *dev_priv)
{
/* Display WA #0477 WaDisableIPC: skl */
if (IS_SKYLAKE(dev_priv))
return false;
/* Display WA #1141: SKL:all KBL:all CFL */
if (IS_KABYLAKE(dev_priv) ||
IS_COFFEELAKE(dev_priv) ||
IS_COMETLAKE(dev_priv))
return dev_priv->dram_info.symmetric_memory;
return true;
}
void intel_init_ipc(struct drm_i915_private *dev_priv)
{
if (!HAS_IPC(dev_priv))
return;
dev_priv->ipc_enabled = intel_can_enable_ipc(dev_priv);
intel_enable_ipc(dev_priv);
}
static void ibx_init_clock_gating(struct drm_i915_private *dev_priv)
{
/*
* On Ibex Peak and Cougar Point, we need to disable clock
* gating for the panel power sequencer or it will fail to
* start up when no ports are active.
*/
I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
}
static void g4x_disable_trickle_feed(struct drm_i915_private *dev_priv)
{
enum pipe pipe;
for_each_pipe(dev_priv, pipe) {
I915_WRITE(DSPCNTR(pipe),
I915_READ(DSPCNTR(pipe)) |
DISPPLANE_TRICKLE_FEED_DISABLE);
I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
POSTING_READ(DSPSURF(pipe));
}
}
static void ilk_init_clock_gating(struct drm_i915_private *dev_priv)
{
u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
/*
* Required for FBC
* WaFbcDisableDpfcClockGating:ilk
*/
dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
I915_WRITE(PCH_3DCGDIS0,
MARIUNIT_CLOCK_GATE_DISABLE |
SVSMUNIT_CLOCK_GATE_DISABLE);
I915_WRITE(PCH_3DCGDIS1,
VFMUNIT_CLOCK_GATE_DISABLE);
/*
* According to the spec the following bits should be set in
* order to enable memory self-refresh
* The bit 22/21 of 0x42004
* The bit 5 of 0x42020
* The bit 15 of 0x45000
*/
I915_WRITE(ILK_DISPLAY_CHICKEN2,
(I915_READ(ILK_DISPLAY_CHICKEN2) |
ILK_DPARB_GATE | ILK_VSDPFD_FULL));
dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
I915_WRITE(DISP_ARB_CTL,
(I915_READ(DISP_ARB_CTL) |
DISP_FBC_WM_DIS));
/*
* Based on the document from hardware guys the following bits
* should be set unconditionally in order to enable FBC.
* The bit 22 of 0x42000
* The bit 22 of 0x42004
* The bit 7,8,9 of 0x42020.
*/
if (IS_IRONLAKE_M(dev_priv)) {
/* WaFbcAsynchFlipDisableFbcQueue:ilk */
I915_WRITE(ILK_DISPLAY_CHICKEN1,
I915_READ(ILK_DISPLAY_CHICKEN1) |
ILK_FBCQ_DIS);
I915_WRITE(ILK_DISPLAY_CHICKEN2,
I915_READ(ILK_DISPLAY_CHICKEN2) |
ILK_DPARB_GATE);
}
I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
I915_WRITE(ILK_DISPLAY_CHICKEN2,
I915_READ(ILK_DISPLAY_CHICKEN2) |
ILK_ELPIN_409_SELECT);
g4x_disable_trickle_feed(dev_priv);
ibx_init_clock_gating(dev_priv);
}
static void cpt_init_clock_gating(struct drm_i915_private *dev_priv)
{
enum pipe pipe;
u32 val;
/*
* On Ibex Peak and Cougar Point, we need to disable clock
* gating for the panel power sequencer or it will fail to
* start up when no ports are active.
*/
I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
PCH_DPLUNIT_CLOCK_GATE_DISABLE |
PCH_CPUNIT_CLOCK_GATE_DISABLE);
I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
DPLS_EDP_PPS_FIX_DIS);
/* The below fixes the weird display corruption, a few pixels shifted
* downward, on (only) LVDS of some HP laptops with IVY.
*/
for_each_pipe(dev_priv, pipe) {
val = I915_READ(TRANS_CHICKEN2(pipe));
val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
if (dev_priv->vbt.fdi_rx_polarity_inverted)
val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
I915_WRITE(TRANS_CHICKEN2(pipe), val);
}
/* WADP0ClockGatingDisable */
for_each_pipe(dev_priv, pipe) {
I915_WRITE(TRANS_CHICKEN1(pipe),
TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
}
}
static void gen6_check_mch_setup(struct drm_i915_private *dev_priv)
{
u32 tmp;
tmp = I915_READ(MCH_SSKPD);
if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
drm_dbg_kms(&dev_priv->drm,
"Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
tmp);
}
static void gen6_init_clock_gating(struct drm_i915_private *dev_priv)
{
u32 dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
I915_WRITE(ILK_DISPLAY_CHICKEN2,
I915_READ(ILK_DISPLAY_CHICKEN2) |
ILK_ELPIN_409_SELECT);
I915_WRITE(GEN6_UCGCTL1,
I915_READ(GEN6_UCGCTL1) |
GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
GEN6_CSUNIT_CLOCK_GATE_DISABLE);
/* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
* gating disable must be set. Failure to set it results in
* flickering pixels due to Z write ordering failures after
* some amount of runtime in the Mesa "fire" demo, and Unigine
* Sanctuary and Tropics, and apparently anything else with
* alpha test or pixel discard.
*
* According to the spec, bit 11 (RCCUNIT) must also be set,
* but we didn't debug actual testcases to find it out.
*
* WaDisableRCCUnitClockGating:snb
* WaDisableRCPBUnitClockGating:snb
*/
I915_WRITE(GEN6_UCGCTL2,
GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
/*
* According to the spec the following bits should be
* set in order to enable memory self-refresh and fbc:
* The bit21 and bit22 of 0x42000
* The bit21 and bit22 of 0x42004
* The bit5 and bit7 of 0x42020
* The bit14 of 0x70180
* The bit14 of 0x71180
*
* WaFbcAsynchFlipDisableFbcQueue:snb
*/
I915_WRITE(ILK_DISPLAY_CHICKEN1,
I915_READ(ILK_DISPLAY_CHICKEN1) |
ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
I915_WRITE(ILK_DISPLAY_CHICKEN2,
I915_READ(ILK_DISPLAY_CHICKEN2) |
ILK_DPARB_GATE | ILK_VSDPFD_FULL);
I915_WRITE(ILK_DSPCLK_GATE_D,
I915_READ(ILK_DSPCLK_GATE_D) |
ILK_DPARBUNIT_CLOCK_GATE_ENABLE |
ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
g4x_disable_trickle_feed(dev_priv);
cpt_init_clock_gating(dev_priv);
gen6_check_mch_setup(dev_priv);
}
static void lpt_init_clock_gating(struct drm_i915_private *dev_priv)
{
/*
* TODO: this bit should only be enabled when really needed, then
* disabled when not needed anymore in order to save power.
*/
if (HAS_PCH_LPT_LP(dev_priv))
I915_WRITE(SOUTH_DSPCLK_GATE_D,
I915_READ(SOUTH_DSPCLK_GATE_D) |
PCH_LP_PARTITION_LEVEL_DISABLE);
/* WADPOClockGatingDisable:hsw */
I915_WRITE(TRANS_CHICKEN1(PIPE_A),
I915_READ(TRANS_CHICKEN1(PIPE_A)) |
TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
}
static void lpt_suspend_hw(struct drm_i915_private *dev_priv)
{
if (HAS_PCH_LPT_LP(dev_priv)) {
u32 val = I915_READ(SOUTH_DSPCLK_GATE_D);
val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
}
}
static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
int general_prio_credits,
int high_prio_credits)
{
u32 misccpctl;
u32 val;
/* WaTempDisableDOPClkGating:bdw */
misccpctl = I915_READ(GEN7_MISCCPCTL);
I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
val = I915_READ(GEN8_L3SQCREG1);
val &= ~L3_PRIO_CREDITS_MASK;
val |= L3_GENERAL_PRIO_CREDITS(general_prio_credits);
val |= L3_HIGH_PRIO_CREDITS(high_prio_credits);
I915_WRITE(GEN8_L3SQCREG1, val);
/*
* Wait at least 100 clocks before re-enabling clock gating.
* See the definition of L3SQCREG1 in BSpec.
*/
POSTING_READ(GEN8_L3SQCREG1);
udelay(1);
I915_WRITE(GEN7_MISCCPCTL, misccpctl);
}
static void icl_init_clock_gating(struct drm_i915_private *dev_priv)
{
/* This is not an Wa. Enable to reduce Sampler power */
I915_WRITE(GEN10_DFR_RATIO_EN_AND_CHICKEN,
I915_READ(GEN10_DFR_RATIO_EN_AND_CHICKEN) & ~DFR_DISABLE);
/*Wa_14010594013:icl, ehl */
intel_uncore_rmw(&dev_priv->uncore, GEN8_CHICKEN_DCPR_1,
0, CNL_DELAY_PMRSP);
}
static void tgl_init_clock_gating(struct drm_i915_private *dev_priv)
{
u32 vd_pg_enable = 0;
unsigned int i;
/* This is not a WA. Enable VD HCP & MFX_ENC powergate */
for (i = 0; i < I915_MAX_VCS; i++) {
if (HAS_ENGINE(dev_priv, _VCS(i)))
vd_pg_enable |= VDN_HCP_POWERGATE_ENABLE(i) |
VDN_MFX_POWERGATE_ENABLE(i);
}
I915_WRITE(POWERGATE_ENABLE,
I915_READ(POWERGATE_ENABLE) | vd_pg_enable);
/* Wa_1409825376:tgl (pre-prod)*/
if (IS_TGL_REVID(dev_priv, TGL_REVID_A0, TGL_REVID_A0))
I915_WRITE(GEN9_CLKGATE_DIS_3, I915_READ(GEN9_CLKGATE_DIS_3) |
TGL_VRH_GATING_DIS);
/* Wa_14011059788:tgl */
intel_uncore_rmw(&dev_priv->uncore, GEN10_DFR_RATIO_EN_AND_CHICKEN,
0, DFR_DISABLE);
}
static void cnp_init_clock_gating(struct drm_i915_private *dev_priv)
{
if (!HAS_PCH_CNP(dev_priv))
return;
/* Display WA #1181 WaSouthDisplayDisablePWMCGEGating: cnp */
I915_WRITE(SOUTH_DSPCLK_GATE_D, I915_READ(SOUTH_DSPCLK_GATE_D) |
CNP_PWM_CGE_GATING_DISABLE);
}
static void cnl_init_clock_gating(struct drm_i915_private *dev_priv)
{
u32 val;
cnp_init_clock_gating(dev_priv);
/* This is not an Wa. Enable for better image quality */
I915_WRITE(_3D_CHICKEN3,
_MASKED_BIT_ENABLE(_3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE));
/* WaEnableChickenDCPR:cnl */
I915_WRITE(GEN8_CHICKEN_DCPR_1,
I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
/* WaFbcWakeMemOn:cnl */
I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
DISP_FBC_MEMORY_WAKE);
val = I915_READ(SLICE_UNIT_LEVEL_CLKGATE);
/* ReadHitWriteOnlyDisable:cnl */
val |= RCCUNIT_CLKGATE_DIS;
I915_WRITE(SLICE_UNIT_LEVEL_CLKGATE, val);
/* Wa_2201832410:cnl */
val = I915_READ(SUBSLICE_UNIT_LEVEL_CLKGATE);
val |= GWUNIT_CLKGATE_DIS;
I915_WRITE(SUBSLICE_UNIT_LEVEL_CLKGATE, val);
/* WaDisableVFclkgate:cnl */
/* WaVFUnitClockGatingDisable:cnl */
val = I915_READ(UNSLICE_UNIT_LEVEL_CLKGATE);
val |= VFUNIT_CLKGATE_DIS;
I915_WRITE(UNSLICE_UNIT_LEVEL_CLKGATE, val);
}
static void cfl_init_clock_gating(struct drm_i915_private *dev_priv)
{
cnp_init_clock_gating(dev_priv);
gen9_init_clock_gating(dev_priv);
/* WaFbcNukeOnHostModify:cfl */
I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
}
static void kbl_init_clock_gating(struct drm_i915_private *dev_priv)
{
gen9_init_clock_gating(dev_priv);
/* WaDisableSDEUnitClockGating:kbl */
if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
/* WaDisableGamClockGating:kbl */
if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
/* WaFbcNukeOnHostModify:kbl */
I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
}
static void skl_init_clock_gating(struct drm_i915_private *dev_priv)
{
gen9_init_clock_gating(dev_priv);
/* WAC6entrylatency:skl */
I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
FBC_LLC_FULLY_OPEN);
/* WaFbcNukeOnHostModify:skl */
I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
}
static void bdw_init_clock_gating(struct drm_i915_private *dev_priv)
{
enum pipe pipe;
/* WaSwitchSolVfFArbitrationPriority:bdw */
I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
/* WaPsrDPAMaskVBlankInSRD:bdw */
I915_WRITE(CHICKEN_PAR1_1,
I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
/* WaPsrDPRSUnmaskVBlankInSRD:bdw */
for_each_pipe(dev_priv, pipe) {
I915_WRITE(CHICKEN_PIPESL_1(pipe),
I915_READ(CHICKEN_PIPESL_1(pipe)) |
BDW_DPRS_MASK_VBLANK_SRD);
}
/* WaVSRefCountFullforceMissDisable:bdw */
/* WaDSRefCountFullforceMissDisable:bdw */
I915_WRITE(GEN7_FF_THREAD_MODE,
I915_READ(GEN7_FF_THREAD_MODE) &
~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
_MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
/* WaDisableSDEUnitClockGating:bdw */
I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
/* WaProgramL3SqcReg1Default:bdw */
gen8_set_l3sqc_credits(dev_priv, 30, 2);
/* WaKVMNotificationOnConfigChange:bdw */
I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
| KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);
lpt_init_clock_gating(dev_priv);
/* WaDisableDopClockGating:bdw
*
* Also see the CHICKEN2 write in bdw_init_workarounds() to disable DOP
* clock gating.
*/
I915_WRITE(GEN6_UCGCTL1,
I915_READ(GEN6_UCGCTL1) | GEN6_EU_TCUNIT_CLOCK_GATE_DISABLE);
}
static void hsw_init_clock_gating(struct drm_i915_private *dev_priv)
{
/* This is required by WaCatErrorRejectionIssue:hsw */
I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
/* WaSwitchSolVfFArbitrationPriority:hsw */
I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
lpt_init_clock_gating(dev_priv);
}
static void ivb_init_clock_gating(struct drm_i915_private *dev_priv)
{
u32 snpcr;
I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
/* WaDisableBackToBackFlipFix:ivb */
I915_WRITE(IVB_CHICKEN3,
CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
CHICKEN3_DGMG_DONE_FIX_DISABLE);
if (IS_IVB_GT1(dev_priv))
I915_WRITE(GEN7_ROW_CHICKEN2,
_MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
else {
/* must write both registers */
I915_WRITE(GEN7_ROW_CHICKEN2,
_MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
_MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
}
/*
* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
* This implements the WaDisableRCZUnitClockGating:ivb workaround.
*/
I915_WRITE(GEN6_UCGCTL2,
GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
/* This is required by WaCatErrorRejectionIssue:ivb */
I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
g4x_disable_trickle_feed(dev_priv);
snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
snpcr &= ~GEN6_MBC_SNPCR_MASK;
snpcr |= GEN6_MBC_SNPCR_MED;
I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
if (!HAS_PCH_NOP(dev_priv))
cpt_init_clock_gating(dev_priv);
gen6_check_mch_setup(dev_priv);
}
static void vlv_init_clock_gating(struct drm_i915_private *dev_priv)
{
/* WaDisableBackToBackFlipFix:vlv */
I915_WRITE(IVB_CHICKEN3,
CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
CHICKEN3_DGMG_DONE_FIX_DISABLE);
/* WaDisableDopClockGating:vlv */
I915_WRITE(GEN7_ROW_CHICKEN2,
_MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
/* This is required by WaCatErrorRejectionIssue:vlv */
I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
/*
* According to the spec, bit 13 (RCZUNIT) must be set on IVB.
* This implements the WaDisableRCZUnitClockGating:vlv workaround.
*/
I915_WRITE(GEN6_UCGCTL2,
GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
/* WaDisableL3Bank2xClockGate:vlv
* Disabling L3 clock gating- MMIO 940c[25] = 1
* Set bit 25, to disable L3_BANK_2x_CLK_GATING */
I915_WRITE(GEN7_UCGCTL4,
I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
/*
* WaDisableVLVClockGating_VBIIssue:vlv
* Disable clock gating on th GCFG unit to prevent a delay
* in the reporting of vblank events.
*/
I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
}
static void chv_init_clock_gating(struct drm_i915_private *dev_priv)
{
/* WaVSRefCountFullforceMissDisable:chv */
/* WaDSRefCountFullforceMissDisable:chv */
I915_WRITE(GEN7_FF_THREAD_MODE,
I915_READ(GEN7_FF_THREAD_MODE) &
~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
/* WaDisableSemaphoreAndSyncFlipWait:chv */
I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
_MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
/* WaDisableCSUnitClockGating:chv */
I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
GEN6_CSUNIT_CLOCK_GATE_DISABLE);
/* WaDisableSDEUnitClockGating:chv */
I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
/*
* WaProgramL3SqcReg1Default:chv
* See gfxspecs/Related Documents/Performance Guide/
* LSQC Setting Recommendations.
*/
gen8_set_l3sqc_credits(dev_priv, 38, 2);
}
static void g4x_init_clock_gating(struct drm_i915_private *dev_priv)
{
u32 dspclk_gate;
I915_WRITE(RENCLK_GATE_D1, 0);
I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
GS_UNIT_CLOCK_GATE_DISABLE |
CL_UNIT_CLOCK_GATE_DISABLE);
I915_WRITE(RAMCLK_GATE_D, 0);
dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
OVRUNIT_CLOCK_GATE_DISABLE |
OVCUNIT_CLOCK_GATE_DISABLE;
if (IS_GM45(dev_priv))
dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
g4x_disable_trickle_feed(dev_priv);
}
static void i965gm_init_clock_gating(struct drm_i915_private *dev_priv)
{
struct intel_uncore *uncore = &dev_priv->uncore;
intel_uncore_write(uncore, RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
intel_uncore_write(uncore, RENCLK_GATE_D2, 0);
intel_uncore_write(uncore, DSPCLK_GATE_D, 0);
intel_uncore_write(uncore, RAMCLK_GATE_D, 0);
intel_uncore_write16(uncore, DEUC, 0);
intel_uncore_write(uncore,
MI_ARB_STATE,
_MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
}
static void i965g_init_clock_gating(struct drm_i915_private *dev_priv)
{
I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
I965_RCC_CLOCK_GATE_DISABLE |
I965_RCPB_CLOCK_GATE_DISABLE |
I965_ISC_CLOCK_GATE_DISABLE |
I965_FBC_CLOCK_GATE_DISABLE);
I915_WRITE(RENCLK_GATE_D2, 0);
I915_WRITE(MI_ARB_STATE,
_MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
}
static void gen3_init_clock_gating(struct drm_i915_private *dev_priv)
{
u32 dstate = I915_READ(D_STATE);
dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
DSTATE_DOT_CLOCK_GATING;
I915_WRITE(D_STATE, dstate);
if (IS_PINEVIEW(dev_priv))
I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
/* IIR "flip pending" means done if this bit is set */
I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
/* interrupts should cause a wake up from C3 */
I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
/* On GEN3 we really need to make sure the ARB C3 LP bit is set */
I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
I915_WRITE(MI_ARB_STATE,
_MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
}
static void i85x_init_clock_gating(struct drm_i915_private *dev_priv)
{
I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
/* interrupts should cause a wake up from C3 */
I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
_MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
I915_WRITE(MEM_MODE,
_MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
/*
* Have FBC ignore 3D activity since we use software
* render tracking, and otherwise a pure 3D workload
* (even if it just renders a single frame and then does
* abosultely nothing) would not allow FBC to recompress
* until a 2D blit occurs.
*/
I915_WRITE(SCPD0,
_MASKED_BIT_ENABLE(SCPD_FBC_IGNORE_3D));
}
static void i830_init_clock_gating(struct drm_i915_private *dev_priv)
{
I915_WRITE(MEM_MODE,
_MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
_MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
}
void intel_init_clock_gating(struct drm_i915_private *dev_priv)
{
dev_priv->display.init_clock_gating(dev_priv);
}
void intel_suspend_hw(struct drm_i915_private *dev_priv)
{
if (HAS_PCH_LPT(dev_priv))
lpt_suspend_hw(dev_priv);
}
static void nop_init_clock_gating(struct drm_i915_private *dev_priv)
{
drm_dbg_kms(&dev_priv->drm,
"No clock gating settings or workarounds applied.\n");
}
/**
* intel_init_clock_gating_hooks - setup the clock gating hooks
* @dev_priv: device private
*
* Setup the hooks that configure which clocks of a given platform can be
* gated and also apply various GT and display specific workarounds for these
* platforms. Note that some GT specific workarounds are applied separately
* when GPU contexts or batchbuffers start their execution.
*/
void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
{
if (IS_GEN(dev_priv, 12))
dev_priv->display.init_clock_gating = tgl_init_clock_gating;
else if (IS_GEN(dev_priv, 11))
dev_priv->display.init_clock_gating = icl_init_clock_gating;
else if (IS_CANNONLAKE(dev_priv))
dev_priv->display.init_clock_gating = cnl_init_clock_gating;
else if (IS_COFFEELAKE(dev_priv) || IS_COMETLAKE(dev_priv))
dev_priv->display.init_clock_gating = cfl_init_clock_gating;
else if (IS_SKYLAKE(dev_priv))
dev_priv->display.init_clock_gating = skl_init_clock_gating;
else if (IS_KABYLAKE(dev_priv))
dev_priv->display.init_clock_gating = kbl_init_clock_gating;
else if (IS_BROXTON(dev_priv))
dev_priv->display.init_clock_gating = bxt_init_clock_gating;
else if (IS_GEMINILAKE(dev_priv))
dev_priv->display.init_clock_gating = glk_init_clock_gating;
else if (IS_BROADWELL(dev_priv))
dev_priv->display.init_clock_gating = bdw_init_clock_gating;
else if (IS_CHERRYVIEW(dev_priv))
dev_priv->display.init_clock_gating = chv_init_clock_gating;
else if (IS_HASWELL(dev_priv))
dev_priv->display.init_clock_gating = hsw_init_clock_gating;
else if (IS_IVYBRIDGE(dev_priv))
dev_priv->display.init_clock_gating = ivb_init_clock_gating;
else if (IS_VALLEYVIEW(dev_priv))
dev_priv->display.init_clock_gating = vlv_init_clock_gating;
else if (IS_GEN(dev_priv, 6))
dev_priv->display.init_clock_gating = gen6_init_clock_gating;
else if (IS_GEN(dev_priv, 5))
dev_priv->display.init_clock_gating = ilk_init_clock_gating;
else if (IS_G4X(dev_priv))
dev_priv->display.init_clock_gating = g4x_init_clock_gating;
else if (IS_I965GM(dev_priv))
dev_priv->display.init_clock_gating = i965gm_init_clock_gating;
else if (IS_I965G(dev_priv))
dev_priv->display.init_clock_gating = i965g_init_clock_gating;
else if (IS_GEN(dev_priv, 3))
dev_priv->display.init_clock_gating = gen3_init_clock_gating;
else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
dev_priv->display.init_clock_gating = i85x_init_clock_gating;
else if (IS_GEN(dev_priv, 2))
dev_priv->display.init_clock_gating = i830_init_clock_gating;
else {
MISSING_CASE(INTEL_DEVID(dev_priv));
dev_priv->display.init_clock_gating = nop_init_clock_gating;
}
}
/* Set up chip specific power management-related functions */
void intel_init_pm(struct drm_i915_private *dev_priv)
{
/* For cxsr */
if (IS_PINEVIEW(dev_priv))
pnv_get_mem_freq(dev_priv);
else if (IS_GEN(dev_priv, 5))
ilk_get_mem_freq(dev_priv);
if (intel_has_sagv(dev_priv))
skl_setup_sagv_block_time(dev_priv);
/* For FIFO watermark updates */
if (INTEL_GEN(dev_priv) >= 9) {
skl_setup_wm_latency(dev_priv);
dev_priv->display.compute_global_watermarks = skl_compute_wm;
} else if (HAS_PCH_SPLIT(dev_priv)) {
ilk_setup_wm_latency(dev_priv);
if ((IS_GEN(dev_priv, 5) && dev_priv->wm.pri_latency[1] &&
dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
(!IS_GEN(dev_priv, 5) && dev_priv->wm.pri_latency[0] &&
dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
dev_priv->display.compute_intermediate_wm =
ilk_compute_intermediate_wm;
dev_priv->display.initial_watermarks =
ilk_initial_watermarks;
dev_priv->display.optimize_watermarks =
ilk_optimize_watermarks;
} else {
drm_dbg_kms(&dev_priv->drm,
"Failed to read display plane latency. "
"Disable CxSR\n");
}
} else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
vlv_setup_wm_latency(dev_priv);
dev_priv->display.compute_pipe_wm = vlv_compute_pipe_wm;
dev_priv->display.compute_intermediate_wm = vlv_compute_intermediate_wm;
dev_priv->display.initial_watermarks = vlv_initial_watermarks;
dev_priv->display.optimize_watermarks = vlv_optimize_watermarks;
dev_priv->display.atomic_update_watermarks = vlv_atomic_update_fifo;
} else if (IS_G4X(dev_priv)) {
g4x_setup_wm_latency(dev_priv);
dev_priv->display.compute_pipe_wm = g4x_compute_pipe_wm;
dev_priv->display.compute_intermediate_wm = g4x_compute_intermediate_wm;
dev_priv->display.initial_watermarks = g4x_initial_watermarks;
dev_priv->display.optimize_watermarks = g4x_optimize_watermarks;
} else if (IS_PINEVIEW(dev_priv)) {
if (!intel_get_cxsr_latency(!IS_MOBILE(dev_priv),
dev_priv->is_ddr3,
dev_priv->fsb_freq,
dev_priv->mem_freq)) {
drm_info(&dev_priv->drm,
"failed to find known CxSR latency "
"(found ddr%s fsb freq %d, mem freq %d), "
"disabling CxSR\n",
(dev_priv->is_ddr3 == 1) ? "3" : "2",
dev_priv->fsb_freq, dev_priv->mem_freq);
/* Disable CxSR and never update its watermark again */
intel_set_memory_cxsr(dev_priv, false);
dev_priv->display.update_wm = NULL;
} else
dev_priv->display.update_wm = pnv_update_wm;
} else if (IS_GEN(dev_priv, 4)) {
dev_priv->display.update_wm = i965_update_wm;
} else if (IS_GEN(dev_priv, 3)) {
dev_priv->display.update_wm = i9xx_update_wm;
dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
} else if (IS_GEN(dev_priv, 2)) {
if (INTEL_NUM_PIPES(dev_priv) == 1) {
dev_priv->display.update_wm = i845_update_wm;
dev_priv->display.get_fifo_size = i845_get_fifo_size;
} else {
dev_priv->display.update_wm = i9xx_update_wm;
dev_priv->display.get_fifo_size = i830_get_fifo_size;
}
} else {
drm_err(&dev_priv->drm,
"unexpected fall-through in %s\n", __func__);
}
}
void intel_pm_setup(struct drm_i915_private *dev_priv)
{
dev_priv->runtime_pm.suspended = false;
atomic_set(&dev_priv->runtime_pm.wakeref_count, 0);
}
static struct intel_global_state *intel_dbuf_duplicate_state(struct intel_global_obj *obj)
{
struct intel_dbuf_state *dbuf_state;
dbuf_state = kmemdup(obj->state, sizeof(*dbuf_state), GFP_KERNEL);
if (!dbuf_state)
return NULL;
return &dbuf_state->base;
}
static void intel_dbuf_destroy_state(struct intel_global_obj *obj,
struct intel_global_state *state)
{
kfree(state);
}
static const struct intel_global_state_funcs intel_dbuf_funcs = {
.atomic_duplicate_state = intel_dbuf_duplicate_state,
.atomic_destroy_state = intel_dbuf_destroy_state,
};
struct intel_dbuf_state *
intel_atomic_get_dbuf_state(struct intel_atomic_state *state)
{
struct drm_i915_private *dev_priv = to_i915(state->base.dev);
struct intel_global_state *dbuf_state;
dbuf_state = intel_atomic_get_global_obj_state(state, &dev_priv->dbuf.obj);
if (IS_ERR(dbuf_state))
return ERR_CAST(dbuf_state);
return to_intel_dbuf_state(dbuf_state);
}
int intel_dbuf_init(struct drm_i915_private *dev_priv)
{
struct intel_dbuf_state *dbuf_state;
dbuf_state = kzalloc(sizeof(*dbuf_state), GFP_KERNEL);
if (!dbuf_state)
return -ENOMEM;
intel_atomic_global_obj_init(dev_priv, &dev_priv->dbuf.obj,
&dbuf_state->base, &intel_dbuf_funcs);
return 0;
}
void intel_dbuf_pre_plane_update(struct intel_atomic_state *state)
{
struct drm_i915_private *dev_priv = to_i915(state->base.dev);
const struct intel_dbuf_state *new_dbuf_state =
intel_atomic_get_new_dbuf_state(state);
const struct intel_dbuf_state *old_dbuf_state =
intel_atomic_get_old_dbuf_state(state);
if (!new_dbuf_state ||
new_dbuf_state->enabled_slices == old_dbuf_state->enabled_slices)
return;
WARN_ON(!new_dbuf_state->base.changed);
gen9_dbuf_slices_update(dev_priv,
old_dbuf_state->enabled_slices |
new_dbuf_state->enabled_slices);
}
void intel_dbuf_post_plane_update(struct intel_atomic_state *state)
{
struct drm_i915_private *dev_priv = to_i915(state->base.dev);
const struct intel_dbuf_state *new_dbuf_state =
intel_atomic_get_new_dbuf_state(state);
const struct intel_dbuf_state *old_dbuf_state =
intel_atomic_get_old_dbuf_state(state);
if (!new_dbuf_state ||
new_dbuf_state->enabled_slices == old_dbuf_state->enabled_slices)
return;
WARN_ON(!new_dbuf_state->base.changed);
gen9_dbuf_slices_update(dev_priv,
new_dbuf_state->enabled_slices);
}