mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-11-25 22:40:51 +07:00
854e8bb1aa
Upon WRMSR, the CPU should inject #GP if a non-canonical value (address) is written to certain MSRs. The behavior is "almost" identical for AMD and Intel (ignoring MSRs that are not implemented in either architecture since they would anyhow #GP). However, IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if non-canonical address is written on Intel but not on AMD (which ignores the top 32-bits). Accordingly, this patch injects a #GP on the MSRs which behave identically on Intel and AMD. To eliminate the differences between the architecutres, the value which is written to IA32_SYSENTER_ESP and IA32_SYSENTER_EIP is turned to canonical value before writing instead of injecting a #GP. Some references from Intel and AMD manuals: According to Intel SDM description of WRMSR instruction #GP is expected on WRMSR "If the source register contains a non-canonical address and ECX specifies one of the following MSRs: IA32_DS_AREA, IA32_FS_BASE, IA32_GS_BASE, IA32_KERNEL_GS_BASE, IA32_LSTAR, IA32_SYSENTER_EIP, IA32_SYSENTER_ESP." According to AMD manual instruction manual: LSTAR/CSTAR (SYSCALL): "The WRMSR instruction loads the target RIP into the LSTAR and CSTAR registers. If an RIP written by WRMSR is not in canonical form, a general-protection exception (#GP) occurs." IA32_GS_BASE and IA32_FS_BASE (WRFSBASE/WRGSBASE): "The address written to the base field must be in canonical form or a #GP fault will occur." IA32_KERNEL_GS_BASE (SWAPGS): "The address stored in the KernelGSbase MSR must be in canonical form." This patch fixes CVE-2014-3610. Cc: stable@vger.kernel.org Signed-off-by: Nadav Amit <namit@cs.technion.ac.il> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
4446 lines
113 KiB
C
4446 lines
113 KiB
C
/*
|
|
* Kernel-based Virtual Machine driver for Linux
|
|
*
|
|
* AMD SVM support
|
|
*
|
|
* Copyright (C) 2006 Qumranet, Inc.
|
|
* Copyright 2010 Red Hat, Inc. and/or its affiliates.
|
|
*
|
|
* Authors:
|
|
* Yaniv Kamay <yaniv@qumranet.com>
|
|
* Avi Kivity <avi@qumranet.com>
|
|
*
|
|
* This work is licensed under the terms of the GNU GPL, version 2. See
|
|
* the COPYING file in the top-level directory.
|
|
*
|
|
*/
|
|
#include <linux/kvm_host.h>
|
|
|
|
#include "irq.h"
|
|
#include "mmu.h"
|
|
#include "kvm_cache_regs.h"
|
|
#include "x86.h"
|
|
#include "cpuid.h"
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/mod_devicetable.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/ftrace_event.h>
|
|
#include <linux/slab.h>
|
|
|
|
#include <asm/perf_event.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/desc.h>
|
|
#include <asm/debugreg.h>
|
|
#include <asm/kvm_para.h>
|
|
|
|
#include <asm/virtext.h>
|
|
#include "trace.h"
|
|
|
|
#define __ex(x) __kvm_handle_fault_on_reboot(x)
|
|
|
|
MODULE_AUTHOR("Qumranet");
|
|
MODULE_LICENSE("GPL");
|
|
|
|
static const struct x86_cpu_id svm_cpu_id[] = {
|
|
X86_FEATURE_MATCH(X86_FEATURE_SVM),
|
|
{}
|
|
};
|
|
MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
|
|
|
|
#define IOPM_ALLOC_ORDER 2
|
|
#define MSRPM_ALLOC_ORDER 1
|
|
|
|
#define SEG_TYPE_LDT 2
|
|
#define SEG_TYPE_BUSY_TSS16 3
|
|
|
|
#define SVM_FEATURE_NPT (1 << 0)
|
|
#define SVM_FEATURE_LBRV (1 << 1)
|
|
#define SVM_FEATURE_SVML (1 << 2)
|
|
#define SVM_FEATURE_NRIP (1 << 3)
|
|
#define SVM_FEATURE_TSC_RATE (1 << 4)
|
|
#define SVM_FEATURE_VMCB_CLEAN (1 << 5)
|
|
#define SVM_FEATURE_FLUSH_ASID (1 << 6)
|
|
#define SVM_FEATURE_DECODE_ASSIST (1 << 7)
|
|
#define SVM_FEATURE_PAUSE_FILTER (1 << 10)
|
|
|
|
#define NESTED_EXIT_HOST 0 /* Exit handled on host level */
|
|
#define NESTED_EXIT_DONE 1 /* Exit caused nested vmexit */
|
|
#define NESTED_EXIT_CONTINUE 2 /* Further checks needed */
|
|
|
|
#define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
|
|
|
|
#define TSC_RATIO_RSVD 0xffffff0000000000ULL
|
|
#define TSC_RATIO_MIN 0x0000000000000001ULL
|
|
#define TSC_RATIO_MAX 0x000000ffffffffffULL
|
|
|
|
static bool erratum_383_found __read_mostly;
|
|
|
|
static const u32 host_save_user_msrs[] = {
|
|
#ifdef CONFIG_X86_64
|
|
MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
|
|
MSR_FS_BASE,
|
|
#endif
|
|
MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
|
|
};
|
|
|
|
#define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
|
|
|
|
struct kvm_vcpu;
|
|
|
|
struct nested_state {
|
|
struct vmcb *hsave;
|
|
u64 hsave_msr;
|
|
u64 vm_cr_msr;
|
|
u64 vmcb;
|
|
|
|
/* These are the merged vectors */
|
|
u32 *msrpm;
|
|
|
|
/* gpa pointers to the real vectors */
|
|
u64 vmcb_msrpm;
|
|
u64 vmcb_iopm;
|
|
|
|
/* A VMEXIT is required but not yet emulated */
|
|
bool exit_required;
|
|
|
|
/* cache for intercepts of the guest */
|
|
u32 intercept_cr;
|
|
u32 intercept_dr;
|
|
u32 intercept_exceptions;
|
|
u64 intercept;
|
|
|
|
/* Nested Paging related state */
|
|
u64 nested_cr3;
|
|
};
|
|
|
|
#define MSRPM_OFFSETS 16
|
|
static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
|
|
|
|
/*
|
|
* Set osvw_len to higher value when updated Revision Guides
|
|
* are published and we know what the new status bits are
|
|
*/
|
|
static uint64_t osvw_len = 4, osvw_status;
|
|
|
|
struct vcpu_svm {
|
|
struct kvm_vcpu vcpu;
|
|
struct vmcb *vmcb;
|
|
unsigned long vmcb_pa;
|
|
struct svm_cpu_data *svm_data;
|
|
uint64_t asid_generation;
|
|
uint64_t sysenter_esp;
|
|
uint64_t sysenter_eip;
|
|
|
|
u64 next_rip;
|
|
|
|
u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
|
|
struct {
|
|
u16 fs;
|
|
u16 gs;
|
|
u16 ldt;
|
|
u64 gs_base;
|
|
} host;
|
|
|
|
u32 *msrpm;
|
|
|
|
ulong nmi_iret_rip;
|
|
|
|
struct nested_state nested;
|
|
|
|
bool nmi_singlestep;
|
|
|
|
unsigned int3_injected;
|
|
unsigned long int3_rip;
|
|
u32 apf_reason;
|
|
|
|
u64 tsc_ratio;
|
|
};
|
|
|
|
static DEFINE_PER_CPU(u64, current_tsc_ratio);
|
|
#define TSC_RATIO_DEFAULT 0x0100000000ULL
|
|
|
|
#define MSR_INVALID 0xffffffffU
|
|
|
|
static const struct svm_direct_access_msrs {
|
|
u32 index; /* Index of the MSR */
|
|
bool always; /* True if intercept is always on */
|
|
} direct_access_msrs[] = {
|
|
{ .index = MSR_STAR, .always = true },
|
|
{ .index = MSR_IA32_SYSENTER_CS, .always = true },
|
|
#ifdef CONFIG_X86_64
|
|
{ .index = MSR_GS_BASE, .always = true },
|
|
{ .index = MSR_FS_BASE, .always = true },
|
|
{ .index = MSR_KERNEL_GS_BASE, .always = true },
|
|
{ .index = MSR_LSTAR, .always = true },
|
|
{ .index = MSR_CSTAR, .always = true },
|
|
{ .index = MSR_SYSCALL_MASK, .always = true },
|
|
#endif
|
|
{ .index = MSR_IA32_LASTBRANCHFROMIP, .always = false },
|
|
{ .index = MSR_IA32_LASTBRANCHTOIP, .always = false },
|
|
{ .index = MSR_IA32_LASTINTFROMIP, .always = false },
|
|
{ .index = MSR_IA32_LASTINTTOIP, .always = false },
|
|
{ .index = MSR_INVALID, .always = false },
|
|
};
|
|
|
|
/* enable NPT for AMD64 and X86 with PAE */
|
|
#if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
|
|
static bool npt_enabled = true;
|
|
#else
|
|
static bool npt_enabled;
|
|
#endif
|
|
|
|
/* allow nested paging (virtualized MMU) for all guests */
|
|
static int npt = true;
|
|
module_param(npt, int, S_IRUGO);
|
|
|
|
/* allow nested virtualization in KVM/SVM */
|
|
static int nested = true;
|
|
module_param(nested, int, S_IRUGO);
|
|
|
|
static void svm_flush_tlb(struct kvm_vcpu *vcpu);
|
|
static void svm_complete_interrupts(struct vcpu_svm *svm);
|
|
|
|
static int nested_svm_exit_handled(struct vcpu_svm *svm);
|
|
static int nested_svm_intercept(struct vcpu_svm *svm);
|
|
static int nested_svm_vmexit(struct vcpu_svm *svm);
|
|
static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
|
|
bool has_error_code, u32 error_code);
|
|
static u64 __scale_tsc(u64 ratio, u64 tsc);
|
|
|
|
enum {
|
|
VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
|
|
pause filter count */
|
|
VMCB_PERM_MAP, /* IOPM Base and MSRPM Base */
|
|
VMCB_ASID, /* ASID */
|
|
VMCB_INTR, /* int_ctl, int_vector */
|
|
VMCB_NPT, /* npt_en, nCR3, gPAT */
|
|
VMCB_CR, /* CR0, CR3, CR4, EFER */
|
|
VMCB_DR, /* DR6, DR7 */
|
|
VMCB_DT, /* GDT, IDT */
|
|
VMCB_SEG, /* CS, DS, SS, ES, CPL */
|
|
VMCB_CR2, /* CR2 only */
|
|
VMCB_LBR, /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
|
|
VMCB_DIRTY_MAX,
|
|
};
|
|
|
|
/* TPR and CR2 are always written before VMRUN */
|
|
#define VMCB_ALWAYS_DIRTY_MASK ((1U << VMCB_INTR) | (1U << VMCB_CR2))
|
|
|
|
static inline void mark_all_dirty(struct vmcb *vmcb)
|
|
{
|
|
vmcb->control.clean = 0;
|
|
}
|
|
|
|
static inline void mark_all_clean(struct vmcb *vmcb)
|
|
{
|
|
vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
|
|
& ~VMCB_ALWAYS_DIRTY_MASK;
|
|
}
|
|
|
|
static inline void mark_dirty(struct vmcb *vmcb, int bit)
|
|
{
|
|
vmcb->control.clean &= ~(1 << bit);
|
|
}
|
|
|
|
static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
|
|
{
|
|
return container_of(vcpu, struct vcpu_svm, vcpu);
|
|
}
|
|
|
|
static void recalc_intercepts(struct vcpu_svm *svm)
|
|
{
|
|
struct vmcb_control_area *c, *h;
|
|
struct nested_state *g;
|
|
|
|
mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
|
|
|
|
if (!is_guest_mode(&svm->vcpu))
|
|
return;
|
|
|
|
c = &svm->vmcb->control;
|
|
h = &svm->nested.hsave->control;
|
|
g = &svm->nested;
|
|
|
|
c->intercept_cr = h->intercept_cr | g->intercept_cr;
|
|
c->intercept_dr = h->intercept_dr | g->intercept_dr;
|
|
c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
|
|
c->intercept = h->intercept | g->intercept;
|
|
}
|
|
|
|
static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
|
|
{
|
|
if (is_guest_mode(&svm->vcpu))
|
|
return svm->nested.hsave;
|
|
else
|
|
return svm->vmcb;
|
|
}
|
|
|
|
static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
|
|
{
|
|
struct vmcb *vmcb = get_host_vmcb(svm);
|
|
|
|
vmcb->control.intercept_cr |= (1U << bit);
|
|
|
|
recalc_intercepts(svm);
|
|
}
|
|
|
|
static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
|
|
{
|
|
struct vmcb *vmcb = get_host_vmcb(svm);
|
|
|
|
vmcb->control.intercept_cr &= ~(1U << bit);
|
|
|
|
recalc_intercepts(svm);
|
|
}
|
|
|
|
static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
|
|
{
|
|
struct vmcb *vmcb = get_host_vmcb(svm);
|
|
|
|
return vmcb->control.intercept_cr & (1U << bit);
|
|
}
|
|
|
|
static inline void set_dr_intercepts(struct vcpu_svm *svm)
|
|
{
|
|
struct vmcb *vmcb = get_host_vmcb(svm);
|
|
|
|
vmcb->control.intercept_dr = (1 << INTERCEPT_DR0_READ)
|
|
| (1 << INTERCEPT_DR1_READ)
|
|
| (1 << INTERCEPT_DR2_READ)
|
|
| (1 << INTERCEPT_DR3_READ)
|
|
| (1 << INTERCEPT_DR4_READ)
|
|
| (1 << INTERCEPT_DR5_READ)
|
|
| (1 << INTERCEPT_DR6_READ)
|
|
| (1 << INTERCEPT_DR7_READ)
|
|
| (1 << INTERCEPT_DR0_WRITE)
|
|
| (1 << INTERCEPT_DR1_WRITE)
|
|
| (1 << INTERCEPT_DR2_WRITE)
|
|
| (1 << INTERCEPT_DR3_WRITE)
|
|
| (1 << INTERCEPT_DR4_WRITE)
|
|
| (1 << INTERCEPT_DR5_WRITE)
|
|
| (1 << INTERCEPT_DR6_WRITE)
|
|
| (1 << INTERCEPT_DR7_WRITE);
|
|
|
|
recalc_intercepts(svm);
|
|
}
|
|
|
|
static inline void clr_dr_intercepts(struct vcpu_svm *svm)
|
|
{
|
|
struct vmcb *vmcb = get_host_vmcb(svm);
|
|
|
|
vmcb->control.intercept_dr = 0;
|
|
|
|
recalc_intercepts(svm);
|
|
}
|
|
|
|
static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
|
|
{
|
|
struct vmcb *vmcb = get_host_vmcb(svm);
|
|
|
|
vmcb->control.intercept_exceptions |= (1U << bit);
|
|
|
|
recalc_intercepts(svm);
|
|
}
|
|
|
|
static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
|
|
{
|
|
struct vmcb *vmcb = get_host_vmcb(svm);
|
|
|
|
vmcb->control.intercept_exceptions &= ~(1U << bit);
|
|
|
|
recalc_intercepts(svm);
|
|
}
|
|
|
|
static inline void set_intercept(struct vcpu_svm *svm, int bit)
|
|
{
|
|
struct vmcb *vmcb = get_host_vmcb(svm);
|
|
|
|
vmcb->control.intercept |= (1ULL << bit);
|
|
|
|
recalc_intercepts(svm);
|
|
}
|
|
|
|
static inline void clr_intercept(struct vcpu_svm *svm, int bit)
|
|
{
|
|
struct vmcb *vmcb = get_host_vmcb(svm);
|
|
|
|
vmcb->control.intercept &= ~(1ULL << bit);
|
|
|
|
recalc_intercepts(svm);
|
|
}
|
|
|
|
static inline void enable_gif(struct vcpu_svm *svm)
|
|
{
|
|
svm->vcpu.arch.hflags |= HF_GIF_MASK;
|
|
}
|
|
|
|
static inline void disable_gif(struct vcpu_svm *svm)
|
|
{
|
|
svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
|
|
}
|
|
|
|
static inline bool gif_set(struct vcpu_svm *svm)
|
|
{
|
|
return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
|
|
}
|
|
|
|
static unsigned long iopm_base;
|
|
|
|
struct kvm_ldttss_desc {
|
|
u16 limit0;
|
|
u16 base0;
|
|
unsigned base1:8, type:5, dpl:2, p:1;
|
|
unsigned limit1:4, zero0:3, g:1, base2:8;
|
|
u32 base3;
|
|
u32 zero1;
|
|
} __attribute__((packed));
|
|
|
|
struct svm_cpu_data {
|
|
int cpu;
|
|
|
|
u64 asid_generation;
|
|
u32 max_asid;
|
|
u32 next_asid;
|
|
struct kvm_ldttss_desc *tss_desc;
|
|
|
|
struct page *save_area;
|
|
};
|
|
|
|
static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
|
|
|
|
struct svm_init_data {
|
|
int cpu;
|
|
int r;
|
|
};
|
|
|
|
static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
|
|
|
|
#define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
|
|
#define MSRS_RANGE_SIZE 2048
|
|
#define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
|
|
|
|
static u32 svm_msrpm_offset(u32 msr)
|
|
{
|
|
u32 offset;
|
|
int i;
|
|
|
|
for (i = 0; i < NUM_MSR_MAPS; i++) {
|
|
if (msr < msrpm_ranges[i] ||
|
|
msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
|
|
continue;
|
|
|
|
offset = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
|
|
offset += (i * MSRS_RANGE_SIZE); /* add range offset */
|
|
|
|
/* Now we have the u8 offset - but need the u32 offset */
|
|
return offset / 4;
|
|
}
|
|
|
|
/* MSR not in any range */
|
|
return MSR_INVALID;
|
|
}
|
|
|
|
#define MAX_INST_SIZE 15
|
|
|
|
static inline void clgi(void)
|
|
{
|
|
asm volatile (__ex(SVM_CLGI));
|
|
}
|
|
|
|
static inline void stgi(void)
|
|
{
|
|
asm volatile (__ex(SVM_STGI));
|
|
}
|
|
|
|
static inline void invlpga(unsigned long addr, u32 asid)
|
|
{
|
|
asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
|
|
}
|
|
|
|
static int get_npt_level(void)
|
|
{
|
|
#ifdef CONFIG_X86_64
|
|
return PT64_ROOT_LEVEL;
|
|
#else
|
|
return PT32E_ROOT_LEVEL;
|
|
#endif
|
|
}
|
|
|
|
static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
|
|
{
|
|
vcpu->arch.efer = efer;
|
|
if (!npt_enabled && !(efer & EFER_LMA))
|
|
efer &= ~EFER_LME;
|
|
|
|
to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
|
|
mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
|
|
}
|
|
|
|
static int is_external_interrupt(u32 info)
|
|
{
|
|
info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
|
|
return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
|
|
}
|
|
|
|
static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
u32 ret = 0;
|
|
|
|
if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
|
|
ret = KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
|
|
return ret;
|
|
}
|
|
|
|
static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
if (mask == 0)
|
|
svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
|
|
else
|
|
svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
|
|
|
|
}
|
|
|
|
static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
if (svm->vmcb->control.next_rip != 0)
|
|
svm->next_rip = svm->vmcb->control.next_rip;
|
|
|
|
if (!svm->next_rip) {
|
|
if (emulate_instruction(vcpu, EMULTYPE_SKIP) !=
|
|
EMULATE_DONE)
|
|
printk(KERN_DEBUG "%s: NOP\n", __func__);
|
|
return;
|
|
}
|
|
if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
|
|
printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
|
|
__func__, kvm_rip_read(vcpu), svm->next_rip);
|
|
|
|
kvm_rip_write(vcpu, svm->next_rip);
|
|
svm_set_interrupt_shadow(vcpu, 0);
|
|
}
|
|
|
|
static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
|
|
bool has_error_code, u32 error_code,
|
|
bool reinject)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
/*
|
|
* If we are within a nested VM we'd better #VMEXIT and let the guest
|
|
* handle the exception
|
|
*/
|
|
if (!reinject &&
|
|
nested_svm_check_exception(svm, nr, has_error_code, error_code))
|
|
return;
|
|
|
|
if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
|
|
unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
|
|
|
|
/*
|
|
* For guest debugging where we have to reinject #BP if some
|
|
* INT3 is guest-owned:
|
|
* Emulate nRIP by moving RIP forward. Will fail if injection
|
|
* raises a fault that is not intercepted. Still better than
|
|
* failing in all cases.
|
|
*/
|
|
skip_emulated_instruction(&svm->vcpu);
|
|
rip = kvm_rip_read(&svm->vcpu);
|
|
svm->int3_rip = rip + svm->vmcb->save.cs.base;
|
|
svm->int3_injected = rip - old_rip;
|
|
}
|
|
|
|
svm->vmcb->control.event_inj = nr
|
|
| SVM_EVTINJ_VALID
|
|
| (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
|
|
| SVM_EVTINJ_TYPE_EXEPT;
|
|
svm->vmcb->control.event_inj_err = error_code;
|
|
}
|
|
|
|
static void svm_init_erratum_383(void)
|
|
{
|
|
u32 low, high;
|
|
int err;
|
|
u64 val;
|
|
|
|
if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
|
|
return;
|
|
|
|
/* Use _safe variants to not break nested virtualization */
|
|
val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
|
|
if (err)
|
|
return;
|
|
|
|
val |= (1ULL << 47);
|
|
|
|
low = lower_32_bits(val);
|
|
high = upper_32_bits(val);
|
|
|
|
native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
|
|
|
|
erratum_383_found = true;
|
|
}
|
|
|
|
static void svm_init_osvw(struct kvm_vcpu *vcpu)
|
|
{
|
|
/*
|
|
* Guests should see errata 400 and 415 as fixed (assuming that
|
|
* HLT and IO instructions are intercepted).
|
|
*/
|
|
vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
|
|
vcpu->arch.osvw.status = osvw_status & ~(6ULL);
|
|
|
|
/*
|
|
* By increasing VCPU's osvw.length to 3 we are telling the guest that
|
|
* all osvw.status bits inside that length, including bit 0 (which is
|
|
* reserved for erratum 298), are valid. However, if host processor's
|
|
* osvw_len is 0 then osvw_status[0] carries no information. We need to
|
|
* be conservative here and therefore we tell the guest that erratum 298
|
|
* is present (because we really don't know).
|
|
*/
|
|
if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
|
|
vcpu->arch.osvw.status |= 1;
|
|
}
|
|
|
|
static int has_svm(void)
|
|
{
|
|
const char *msg;
|
|
|
|
if (!cpu_has_svm(&msg)) {
|
|
printk(KERN_INFO "has_svm: %s\n", msg);
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static void svm_hardware_disable(void)
|
|
{
|
|
/* Make sure we clean up behind us */
|
|
if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
|
|
wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
|
|
|
|
cpu_svm_disable();
|
|
|
|
amd_pmu_disable_virt();
|
|
}
|
|
|
|
static int svm_hardware_enable(void)
|
|
{
|
|
|
|
struct svm_cpu_data *sd;
|
|
uint64_t efer;
|
|
struct desc_ptr gdt_descr;
|
|
struct desc_struct *gdt;
|
|
int me = raw_smp_processor_id();
|
|
|
|
rdmsrl(MSR_EFER, efer);
|
|
if (efer & EFER_SVME)
|
|
return -EBUSY;
|
|
|
|
if (!has_svm()) {
|
|
pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
|
|
return -EINVAL;
|
|
}
|
|
sd = per_cpu(svm_data, me);
|
|
if (!sd) {
|
|
pr_err("%s: svm_data is NULL on %d\n", __func__, me);
|
|
return -EINVAL;
|
|
}
|
|
|
|
sd->asid_generation = 1;
|
|
sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
|
|
sd->next_asid = sd->max_asid + 1;
|
|
|
|
native_store_gdt(&gdt_descr);
|
|
gdt = (struct desc_struct *)gdt_descr.address;
|
|
sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
|
|
|
|
wrmsrl(MSR_EFER, efer | EFER_SVME);
|
|
|
|
wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
|
|
|
|
if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
|
|
wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
|
|
__this_cpu_write(current_tsc_ratio, TSC_RATIO_DEFAULT);
|
|
}
|
|
|
|
|
|
/*
|
|
* Get OSVW bits.
|
|
*
|
|
* Note that it is possible to have a system with mixed processor
|
|
* revisions and therefore different OSVW bits. If bits are not the same
|
|
* on different processors then choose the worst case (i.e. if erratum
|
|
* is present on one processor and not on another then assume that the
|
|
* erratum is present everywhere).
|
|
*/
|
|
if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
|
|
uint64_t len, status = 0;
|
|
int err;
|
|
|
|
len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
|
|
if (!err)
|
|
status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
|
|
&err);
|
|
|
|
if (err)
|
|
osvw_status = osvw_len = 0;
|
|
else {
|
|
if (len < osvw_len)
|
|
osvw_len = len;
|
|
osvw_status |= status;
|
|
osvw_status &= (1ULL << osvw_len) - 1;
|
|
}
|
|
} else
|
|
osvw_status = osvw_len = 0;
|
|
|
|
svm_init_erratum_383();
|
|
|
|
amd_pmu_enable_virt();
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void svm_cpu_uninit(int cpu)
|
|
{
|
|
struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
|
|
|
|
if (!sd)
|
|
return;
|
|
|
|
per_cpu(svm_data, raw_smp_processor_id()) = NULL;
|
|
__free_page(sd->save_area);
|
|
kfree(sd);
|
|
}
|
|
|
|
static int svm_cpu_init(int cpu)
|
|
{
|
|
struct svm_cpu_data *sd;
|
|
int r;
|
|
|
|
sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
|
|
if (!sd)
|
|
return -ENOMEM;
|
|
sd->cpu = cpu;
|
|
sd->save_area = alloc_page(GFP_KERNEL);
|
|
r = -ENOMEM;
|
|
if (!sd->save_area)
|
|
goto err_1;
|
|
|
|
per_cpu(svm_data, cpu) = sd;
|
|
|
|
return 0;
|
|
|
|
err_1:
|
|
kfree(sd);
|
|
return r;
|
|
|
|
}
|
|
|
|
static bool valid_msr_intercept(u32 index)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
|
|
if (direct_access_msrs[i].index == index)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static void set_msr_interception(u32 *msrpm, unsigned msr,
|
|
int read, int write)
|
|
{
|
|
u8 bit_read, bit_write;
|
|
unsigned long tmp;
|
|
u32 offset;
|
|
|
|
/*
|
|
* If this warning triggers extend the direct_access_msrs list at the
|
|
* beginning of the file
|
|
*/
|
|
WARN_ON(!valid_msr_intercept(msr));
|
|
|
|
offset = svm_msrpm_offset(msr);
|
|
bit_read = 2 * (msr & 0x0f);
|
|
bit_write = 2 * (msr & 0x0f) + 1;
|
|
tmp = msrpm[offset];
|
|
|
|
BUG_ON(offset == MSR_INVALID);
|
|
|
|
read ? clear_bit(bit_read, &tmp) : set_bit(bit_read, &tmp);
|
|
write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
|
|
|
|
msrpm[offset] = tmp;
|
|
}
|
|
|
|
static void svm_vcpu_init_msrpm(u32 *msrpm)
|
|
{
|
|
int i;
|
|
|
|
memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
|
|
|
|
for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
|
|
if (!direct_access_msrs[i].always)
|
|
continue;
|
|
|
|
set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
|
|
}
|
|
}
|
|
|
|
static void add_msr_offset(u32 offset)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < MSRPM_OFFSETS; ++i) {
|
|
|
|
/* Offset already in list? */
|
|
if (msrpm_offsets[i] == offset)
|
|
return;
|
|
|
|
/* Slot used by another offset? */
|
|
if (msrpm_offsets[i] != MSR_INVALID)
|
|
continue;
|
|
|
|
/* Add offset to list */
|
|
msrpm_offsets[i] = offset;
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* If this BUG triggers the msrpm_offsets table has an overflow. Just
|
|
* increase MSRPM_OFFSETS in this case.
|
|
*/
|
|
BUG();
|
|
}
|
|
|
|
static void init_msrpm_offsets(void)
|
|
{
|
|
int i;
|
|
|
|
memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
|
|
|
|
for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
|
|
u32 offset;
|
|
|
|
offset = svm_msrpm_offset(direct_access_msrs[i].index);
|
|
BUG_ON(offset == MSR_INVALID);
|
|
|
|
add_msr_offset(offset);
|
|
}
|
|
}
|
|
|
|
static void svm_enable_lbrv(struct vcpu_svm *svm)
|
|
{
|
|
u32 *msrpm = svm->msrpm;
|
|
|
|
svm->vmcb->control.lbr_ctl = 1;
|
|
set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
|
|
set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
|
|
set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
|
|
set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
|
|
}
|
|
|
|
static void svm_disable_lbrv(struct vcpu_svm *svm)
|
|
{
|
|
u32 *msrpm = svm->msrpm;
|
|
|
|
svm->vmcb->control.lbr_ctl = 0;
|
|
set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
|
|
set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
|
|
set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
|
|
set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
|
|
}
|
|
|
|
static __init int svm_hardware_setup(void)
|
|
{
|
|
int cpu;
|
|
struct page *iopm_pages;
|
|
void *iopm_va;
|
|
int r;
|
|
|
|
iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
|
|
|
|
if (!iopm_pages)
|
|
return -ENOMEM;
|
|
|
|
iopm_va = page_address(iopm_pages);
|
|
memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
|
|
iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
|
|
|
|
init_msrpm_offsets();
|
|
|
|
if (boot_cpu_has(X86_FEATURE_NX))
|
|
kvm_enable_efer_bits(EFER_NX);
|
|
|
|
if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
|
|
kvm_enable_efer_bits(EFER_FFXSR);
|
|
|
|
if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
|
|
u64 max;
|
|
|
|
kvm_has_tsc_control = true;
|
|
|
|
/*
|
|
* Make sure the user can only configure tsc_khz values that
|
|
* fit into a signed integer.
|
|
* A min value is not calculated needed because it will always
|
|
* be 1 on all machines and a value of 0 is used to disable
|
|
* tsc-scaling for the vcpu.
|
|
*/
|
|
max = min(0x7fffffffULL, __scale_tsc(tsc_khz, TSC_RATIO_MAX));
|
|
|
|
kvm_max_guest_tsc_khz = max;
|
|
}
|
|
|
|
if (nested) {
|
|
printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
|
|
kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
|
|
}
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
r = svm_cpu_init(cpu);
|
|
if (r)
|
|
goto err;
|
|
}
|
|
|
|
if (!boot_cpu_has(X86_FEATURE_NPT))
|
|
npt_enabled = false;
|
|
|
|
if (npt_enabled && !npt) {
|
|
printk(KERN_INFO "kvm: Nested Paging disabled\n");
|
|
npt_enabled = false;
|
|
}
|
|
|
|
if (npt_enabled) {
|
|
printk(KERN_INFO "kvm: Nested Paging enabled\n");
|
|
kvm_enable_tdp();
|
|
} else
|
|
kvm_disable_tdp();
|
|
|
|
return 0;
|
|
|
|
err:
|
|
__free_pages(iopm_pages, IOPM_ALLOC_ORDER);
|
|
iopm_base = 0;
|
|
return r;
|
|
}
|
|
|
|
static __exit void svm_hardware_unsetup(void)
|
|
{
|
|
int cpu;
|
|
|
|
for_each_possible_cpu(cpu)
|
|
svm_cpu_uninit(cpu);
|
|
|
|
__free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
|
|
iopm_base = 0;
|
|
}
|
|
|
|
static void init_seg(struct vmcb_seg *seg)
|
|
{
|
|
seg->selector = 0;
|
|
seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
|
|
SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
|
|
seg->limit = 0xffff;
|
|
seg->base = 0;
|
|
}
|
|
|
|
static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
|
|
{
|
|
seg->selector = 0;
|
|
seg->attrib = SVM_SELECTOR_P_MASK | type;
|
|
seg->limit = 0xffff;
|
|
seg->base = 0;
|
|
}
|
|
|
|
static u64 __scale_tsc(u64 ratio, u64 tsc)
|
|
{
|
|
u64 mult, frac, _tsc;
|
|
|
|
mult = ratio >> 32;
|
|
frac = ratio & ((1ULL << 32) - 1);
|
|
|
|
_tsc = tsc;
|
|
_tsc *= mult;
|
|
_tsc += (tsc >> 32) * frac;
|
|
_tsc += ((tsc & ((1ULL << 32) - 1)) * frac) >> 32;
|
|
|
|
return _tsc;
|
|
}
|
|
|
|
static u64 svm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
u64 _tsc = tsc;
|
|
|
|
if (svm->tsc_ratio != TSC_RATIO_DEFAULT)
|
|
_tsc = __scale_tsc(svm->tsc_ratio, tsc);
|
|
|
|
return _tsc;
|
|
}
|
|
|
|
static void svm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
u64 ratio;
|
|
u64 khz;
|
|
|
|
/* Guest TSC same frequency as host TSC? */
|
|
if (!scale) {
|
|
svm->tsc_ratio = TSC_RATIO_DEFAULT;
|
|
return;
|
|
}
|
|
|
|
/* TSC scaling supported? */
|
|
if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
|
|
if (user_tsc_khz > tsc_khz) {
|
|
vcpu->arch.tsc_catchup = 1;
|
|
vcpu->arch.tsc_always_catchup = 1;
|
|
} else
|
|
WARN(1, "user requested TSC rate below hardware speed\n");
|
|
return;
|
|
}
|
|
|
|
khz = user_tsc_khz;
|
|
|
|
/* TSC scaling required - calculate ratio */
|
|
ratio = khz << 32;
|
|
do_div(ratio, tsc_khz);
|
|
|
|
if (ratio == 0 || ratio & TSC_RATIO_RSVD) {
|
|
WARN_ONCE(1, "Invalid TSC ratio - virtual-tsc-khz=%u\n",
|
|
user_tsc_khz);
|
|
return;
|
|
}
|
|
svm->tsc_ratio = ratio;
|
|
}
|
|
|
|
static u64 svm_read_tsc_offset(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
return svm->vmcb->control.tsc_offset;
|
|
}
|
|
|
|
static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
u64 g_tsc_offset = 0;
|
|
|
|
if (is_guest_mode(vcpu)) {
|
|
g_tsc_offset = svm->vmcb->control.tsc_offset -
|
|
svm->nested.hsave->control.tsc_offset;
|
|
svm->nested.hsave->control.tsc_offset = offset;
|
|
} else
|
|
trace_kvm_write_tsc_offset(vcpu->vcpu_id,
|
|
svm->vmcb->control.tsc_offset,
|
|
offset);
|
|
|
|
svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
|
|
|
|
mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
|
|
}
|
|
|
|
static void svm_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
WARN_ON(adjustment < 0);
|
|
if (host)
|
|
adjustment = svm_scale_tsc(vcpu, adjustment);
|
|
|
|
svm->vmcb->control.tsc_offset += adjustment;
|
|
if (is_guest_mode(vcpu))
|
|
svm->nested.hsave->control.tsc_offset += adjustment;
|
|
else
|
|
trace_kvm_write_tsc_offset(vcpu->vcpu_id,
|
|
svm->vmcb->control.tsc_offset - adjustment,
|
|
svm->vmcb->control.tsc_offset);
|
|
|
|
mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
|
|
}
|
|
|
|
static u64 svm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
|
|
{
|
|
u64 tsc;
|
|
|
|
tsc = svm_scale_tsc(vcpu, native_read_tsc());
|
|
|
|
return target_tsc - tsc;
|
|
}
|
|
|
|
static void init_vmcb(struct vcpu_svm *svm)
|
|
{
|
|
struct vmcb_control_area *control = &svm->vmcb->control;
|
|
struct vmcb_save_area *save = &svm->vmcb->save;
|
|
|
|
svm->vcpu.fpu_active = 1;
|
|
svm->vcpu.arch.hflags = 0;
|
|
|
|
set_cr_intercept(svm, INTERCEPT_CR0_READ);
|
|
set_cr_intercept(svm, INTERCEPT_CR3_READ);
|
|
set_cr_intercept(svm, INTERCEPT_CR4_READ);
|
|
set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
|
|
set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
|
|
set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
|
|
set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
|
|
|
|
set_dr_intercepts(svm);
|
|
|
|
set_exception_intercept(svm, PF_VECTOR);
|
|
set_exception_intercept(svm, UD_VECTOR);
|
|
set_exception_intercept(svm, MC_VECTOR);
|
|
|
|
set_intercept(svm, INTERCEPT_INTR);
|
|
set_intercept(svm, INTERCEPT_NMI);
|
|
set_intercept(svm, INTERCEPT_SMI);
|
|
set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
|
|
set_intercept(svm, INTERCEPT_RDPMC);
|
|
set_intercept(svm, INTERCEPT_CPUID);
|
|
set_intercept(svm, INTERCEPT_INVD);
|
|
set_intercept(svm, INTERCEPT_HLT);
|
|
set_intercept(svm, INTERCEPT_INVLPG);
|
|
set_intercept(svm, INTERCEPT_INVLPGA);
|
|
set_intercept(svm, INTERCEPT_IOIO_PROT);
|
|
set_intercept(svm, INTERCEPT_MSR_PROT);
|
|
set_intercept(svm, INTERCEPT_TASK_SWITCH);
|
|
set_intercept(svm, INTERCEPT_SHUTDOWN);
|
|
set_intercept(svm, INTERCEPT_VMRUN);
|
|
set_intercept(svm, INTERCEPT_VMMCALL);
|
|
set_intercept(svm, INTERCEPT_VMLOAD);
|
|
set_intercept(svm, INTERCEPT_VMSAVE);
|
|
set_intercept(svm, INTERCEPT_STGI);
|
|
set_intercept(svm, INTERCEPT_CLGI);
|
|
set_intercept(svm, INTERCEPT_SKINIT);
|
|
set_intercept(svm, INTERCEPT_WBINVD);
|
|
set_intercept(svm, INTERCEPT_MONITOR);
|
|
set_intercept(svm, INTERCEPT_MWAIT);
|
|
set_intercept(svm, INTERCEPT_XSETBV);
|
|
|
|
control->iopm_base_pa = iopm_base;
|
|
control->msrpm_base_pa = __pa(svm->msrpm);
|
|
control->int_ctl = V_INTR_MASKING_MASK;
|
|
|
|
init_seg(&save->es);
|
|
init_seg(&save->ss);
|
|
init_seg(&save->ds);
|
|
init_seg(&save->fs);
|
|
init_seg(&save->gs);
|
|
|
|
save->cs.selector = 0xf000;
|
|
save->cs.base = 0xffff0000;
|
|
/* Executable/Readable Code Segment */
|
|
save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
|
|
SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
|
|
save->cs.limit = 0xffff;
|
|
|
|
save->gdtr.limit = 0xffff;
|
|
save->idtr.limit = 0xffff;
|
|
|
|
init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
|
|
init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
|
|
|
|
svm_set_efer(&svm->vcpu, 0);
|
|
save->dr6 = 0xffff0ff0;
|
|
kvm_set_rflags(&svm->vcpu, 2);
|
|
save->rip = 0x0000fff0;
|
|
svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
|
|
|
|
/*
|
|
* This is the guest-visible cr0 value.
|
|
* svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
|
|
*/
|
|
svm->vcpu.arch.cr0 = 0;
|
|
(void)kvm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
|
|
|
|
save->cr4 = X86_CR4_PAE;
|
|
/* rdx = ?? */
|
|
|
|
if (npt_enabled) {
|
|
/* Setup VMCB for Nested Paging */
|
|
control->nested_ctl = 1;
|
|
clr_intercept(svm, INTERCEPT_INVLPG);
|
|
clr_exception_intercept(svm, PF_VECTOR);
|
|
clr_cr_intercept(svm, INTERCEPT_CR3_READ);
|
|
clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
|
|
save->g_pat = 0x0007040600070406ULL;
|
|
save->cr3 = 0;
|
|
save->cr4 = 0;
|
|
}
|
|
svm->asid_generation = 0;
|
|
|
|
svm->nested.vmcb = 0;
|
|
svm->vcpu.arch.hflags = 0;
|
|
|
|
if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
|
|
control->pause_filter_count = 3000;
|
|
set_intercept(svm, INTERCEPT_PAUSE);
|
|
}
|
|
|
|
mark_all_dirty(svm->vmcb);
|
|
|
|
enable_gif(svm);
|
|
}
|
|
|
|
static void svm_vcpu_reset(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
u32 dummy;
|
|
u32 eax = 1;
|
|
|
|
init_vmcb(svm);
|
|
|
|
kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy);
|
|
kvm_register_write(vcpu, VCPU_REGS_RDX, eax);
|
|
}
|
|
|
|
static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
|
|
{
|
|
struct vcpu_svm *svm;
|
|
struct page *page;
|
|
struct page *msrpm_pages;
|
|
struct page *hsave_page;
|
|
struct page *nested_msrpm_pages;
|
|
int err;
|
|
|
|
svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
|
|
if (!svm) {
|
|
err = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
svm->tsc_ratio = TSC_RATIO_DEFAULT;
|
|
|
|
err = kvm_vcpu_init(&svm->vcpu, kvm, id);
|
|
if (err)
|
|
goto free_svm;
|
|
|
|
err = -ENOMEM;
|
|
page = alloc_page(GFP_KERNEL);
|
|
if (!page)
|
|
goto uninit;
|
|
|
|
msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
|
|
if (!msrpm_pages)
|
|
goto free_page1;
|
|
|
|
nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
|
|
if (!nested_msrpm_pages)
|
|
goto free_page2;
|
|
|
|
hsave_page = alloc_page(GFP_KERNEL);
|
|
if (!hsave_page)
|
|
goto free_page3;
|
|
|
|
svm->nested.hsave = page_address(hsave_page);
|
|
|
|
svm->msrpm = page_address(msrpm_pages);
|
|
svm_vcpu_init_msrpm(svm->msrpm);
|
|
|
|
svm->nested.msrpm = page_address(nested_msrpm_pages);
|
|
svm_vcpu_init_msrpm(svm->nested.msrpm);
|
|
|
|
svm->vmcb = page_address(page);
|
|
clear_page(svm->vmcb);
|
|
svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
|
|
svm->asid_generation = 0;
|
|
init_vmcb(svm);
|
|
|
|
svm->vcpu.arch.apic_base = APIC_DEFAULT_PHYS_BASE |
|
|
MSR_IA32_APICBASE_ENABLE;
|
|
if (kvm_vcpu_is_bsp(&svm->vcpu))
|
|
svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
|
|
|
|
svm_init_osvw(&svm->vcpu);
|
|
|
|
return &svm->vcpu;
|
|
|
|
free_page3:
|
|
__free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
|
|
free_page2:
|
|
__free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
|
|
free_page1:
|
|
__free_page(page);
|
|
uninit:
|
|
kvm_vcpu_uninit(&svm->vcpu);
|
|
free_svm:
|
|
kmem_cache_free(kvm_vcpu_cache, svm);
|
|
out:
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
static void svm_free_vcpu(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
__free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
|
|
__free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
|
|
__free_page(virt_to_page(svm->nested.hsave));
|
|
__free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
|
|
kvm_vcpu_uninit(vcpu);
|
|
kmem_cache_free(kvm_vcpu_cache, svm);
|
|
}
|
|
|
|
static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
int i;
|
|
|
|
if (unlikely(cpu != vcpu->cpu)) {
|
|
svm->asid_generation = 0;
|
|
mark_all_dirty(svm->vmcb);
|
|
}
|
|
|
|
#ifdef CONFIG_X86_64
|
|
rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
|
|
#endif
|
|
savesegment(fs, svm->host.fs);
|
|
savesegment(gs, svm->host.gs);
|
|
svm->host.ldt = kvm_read_ldt();
|
|
|
|
for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
|
|
rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
|
|
|
|
if (static_cpu_has(X86_FEATURE_TSCRATEMSR) &&
|
|
svm->tsc_ratio != __this_cpu_read(current_tsc_ratio)) {
|
|
__this_cpu_write(current_tsc_ratio, svm->tsc_ratio);
|
|
wrmsrl(MSR_AMD64_TSC_RATIO, svm->tsc_ratio);
|
|
}
|
|
}
|
|
|
|
static void svm_vcpu_put(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
int i;
|
|
|
|
++vcpu->stat.host_state_reload;
|
|
kvm_load_ldt(svm->host.ldt);
|
|
#ifdef CONFIG_X86_64
|
|
loadsegment(fs, svm->host.fs);
|
|
wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gs);
|
|
load_gs_index(svm->host.gs);
|
|
#else
|
|
#ifdef CONFIG_X86_32_LAZY_GS
|
|
loadsegment(gs, svm->host.gs);
|
|
#endif
|
|
#endif
|
|
for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
|
|
wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
|
|
}
|
|
|
|
static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
|
|
{
|
|
return to_svm(vcpu)->vmcb->save.rflags;
|
|
}
|
|
|
|
static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
|
|
{
|
|
/*
|
|
* Any change of EFLAGS.VM is accompained by a reload of SS
|
|
* (caused by either a task switch or an inter-privilege IRET),
|
|
* so we do not need to update the CPL here.
|
|
*/
|
|
to_svm(vcpu)->vmcb->save.rflags = rflags;
|
|
}
|
|
|
|
static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
|
|
{
|
|
switch (reg) {
|
|
case VCPU_EXREG_PDPTR:
|
|
BUG_ON(!npt_enabled);
|
|
load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
}
|
|
|
|
static void svm_set_vintr(struct vcpu_svm *svm)
|
|
{
|
|
set_intercept(svm, INTERCEPT_VINTR);
|
|
}
|
|
|
|
static void svm_clear_vintr(struct vcpu_svm *svm)
|
|
{
|
|
clr_intercept(svm, INTERCEPT_VINTR);
|
|
}
|
|
|
|
static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
|
|
{
|
|
struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
|
|
|
|
switch (seg) {
|
|
case VCPU_SREG_CS: return &save->cs;
|
|
case VCPU_SREG_DS: return &save->ds;
|
|
case VCPU_SREG_ES: return &save->es;
|
|
case VCPU_SREG_FS: return &save->fs;
|
|
case VCPU_SREG_GS: return &save->gs;
|
|
case VCPU_SREG_SS: return &save->ss;
|
|
case VCPU_SREG_TR: return &save->tr;
|
|
case VCPU_SREG_LDTR: return &save->ldtr;
|
|
}
|
|
BUG();
|
|
return NULL;
|
|
}
|
|
|
|
static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
|
|
{
|
|
struct vmcb_seg *s = svm_seg(vcpu, seg);
|
|
|
|
return s->base;
|
|
}
|
|
|
|
static void svm_get_segment(struct kvm_vcpu *vcpu,
|
|
struct kvm_segment *var, int seg)
|
|
{
|
|
struct vmcb_seg *s = svm_seg(vcpu, seg);
|
|
|
|
var->base = s->base;
|
|
var->limit = s->limit;
|
|
var->selector = s->selector;
|
|
var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
|
|
var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
|
|
var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
|
|
var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
|
|
var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
|
|
var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
|
|
var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
|
|
|
|
/*
|
|
* AMD CPUs circa 2014 track the G bit for all segments except CS.
|
|
* However, the SVM spec states that the G bit is not observed by the
|
|
* CPU, and some VMware virtual CPUs drop the G bit for all segments.
|
|
* So let's synthesize a legal G bit for all segments, this helps
|
|
* running KVM nested. It also helps cross-vendor migration, because
|
|
* Intel's vmentry has a check on the 'G' bit.
|
|
*/
|
|
var->g = s->limit > 0xfffff;
|
|
|
|
/*
|
|
* AMD's VMCB does not have an explicit unusable field, so emulate it
|
|
* for cross vendor migration purposes by "not present"
|
|
*/
|
|
var->unusable = !var->present || (var->type == 0);
|
|
|
|
switch (seg) {
|
|
case VCPU_SREG_TR:
|
|
/*
|
|
* Work around a bug where the busy flag in the tr selector
|
|
* isn't exposed
|
|
*/
|
|
var->type |= 0x2;
|
|
break;
|
|
case VCPU_SREG_DS:
|
|
case VCPU_SREG_ES:
|
|
case VCPU_SREG_FS:
|
|
case VCPU_SREG_GS:
|
|
/*
|
|
* The accessed bit must always be set in the segment
|
|
* descriptor cache, although it can be cleared in the
|
|
* descriptor, the cached bit always remains at 1. Since
|
|
* Intel has a check on this, set it here to support
|
|
* cross-vendor migration.
|
|
*/
|
|
if (!var->unusable)
|
|
var->type |= 0x1;
|
|
break;
|
|
case VCPU_SREG_SS:
|
|
/*
|
|
* On AMD CPUs sometimes the DB bit in the segment
|
|
* descriptor is left as 1, although the whole segment has
|
|
* been made unusable. Clear it here to pass an Intel VMX
|
|
* entry check when cross vendor migrating.
|
|
*/
|
|
if (var->unusable)
|
|
var->db = 0;
|
|
var->dpl = to_svm(vcpu)->vmcb->save.cpl;
|
|
break;
|
|
}
|
|
}
|
|
|
|
static int svm_get_cpl(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
|
|
|
|
return save->cpl;
|
|
}
|
|
|
|
static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
dt->size = svm->vmcb->save.idtr.limit;
|
|
dt->address = svm->vmcb->save.idtr.base;
|
|
}
|
|
|
|
static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
svm->vmcb->save.idtr.limit = dt->size;
|
|
svm->vmcb->save.idtr.base = dt->address ;
|
|
mark_dirty(svm->vmcb, VMCB_DT);
|
|
}
|
|
|
|
static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
dt->size = svm->vmcb->save.gdtr.limit;
|
|
dt->address = svm->vmcb->save.gdtr.base;
|
|
}
|
|
|
|
static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
svm->vmcb->save.gdtr.limit = dt->size;
|
|
svm->vmcb->save.gdtr.base = dt->address ;
|
|
mark_dirty(svm->vmcb, VMCB_DT);
|
|
}
|
|
|
|
static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
|
|
{
|
|
}
|
|
|
|
static void svm_decache_cr3(struct kvm_vcpu *vcpu)
|
|
{
|
|
}
|
|
|
|
static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
|
|
{
|
|
}
|
|
|
|
static void update_cr0_intercept(struct vcpu_svm *svm)
|
|
{
|
|
ulong gcr0 = svm->vcpu.arch.cr0;
|
|
u64 *hcr0 = &svm->vmcb->save.cr0;
|
|
|
|
if (!svm->vcpu.fpu_active)
|
|
*hcr0 |= SVM_CR0_SELECTIVE_MASK;
|
|
else
|
|
*hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
|
|
| (gcr0 & SVM_CR0_SELECTIVE_MASK);
|
|
|
|
mark_dirty(svm->vmcb, VMCB_CR);
|
|
|
|
if (gcr0 == *hcr0 && svm->vcpu.fpu_active) {
|
|
clr_cr_intercept(svm, INTERCEPT_CR0_READ);
|
|
clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
|
|
} else {
|
|
set_cr_intercept(svm, INTERCEPT_CR0_READ);
|
|
set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
|
|
}
|
|
}
|
|
|
|
static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
#ifdef CONFIG_X86_64
|
|
if (vcpu->arch.efer & EFER_LME) {
|
|
if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
|
|
vcpu->arch.efer |= EFER_LMA;
|
|
svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
|
|
}
|
|
|
|
if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
|
|
vcpu->arch.efer &= ~EFER_LMA;
|
|
svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
|
|
}
|
|
}
|
|
#endif
|
|
vcpu->arch.cr0 = cr0;
|
|
|
|
if (!npt_enabled)
|
|
cr0 |= X86_CR0_PG | X86_CR0_WP;
|
|
|
|
if (!vcpu->fpu_active)
|
|
cr0 |= X86_CR0_TS;
|
|
/*
|
|
* re-enable caching here because the QEMU bios
|
|
* does not do it - this results in some delay at
|
|
* reboot
|
|
*/
|
|
cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
|
|
svm->vmcb->save.cr0 = cr0;
|
|
mark_dirty(svm->vmcb, VMCB_CR);
|
|
update_cr0_intercept(svm);
|
|
}
|
|
|
|
static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
|
|
{
|
|
unsigned long host_cr4_mce = read_cr4() & X86_CR4_MCE;
|
|
unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
|
|
|
|
if (cr4 & X86_CR4_VMXE)
|
|
return 1;
|
|
|
|
if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
|
|
svm_flush_tlb(vcpu);
|
|
|
|
vcpu->arch.cr4 = cr4;
|
|
if (!npt_enabled)
|
|
cr4 |= X86_CR4_PAE;
|
|
cr4 |= host_cr4_mce;
|
|
to_svm(vcpu)->vmcb->save.cr4 = cr4;
|
|
mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
|
|
return 0;
|
|
}
|
|
|
|
static void svm_set_segment(struct kvm_vcpu *vcpu,
|
|
struct kvm_segment *var, int seg)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
struct vmcb_seg *s = svm_seg(vcpu, seg);
|
|
|
|
s->base = var->base;
|
|
s->limit = var->limit;
|
|
s->selector = var->selector;
|
|
if (var->unusable)
|
|
s->attrib = 0;
|
|
else {
|
|
s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
|
|
s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
|
|
s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
|
|
s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
|
|
s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
|
|
s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
|
|
s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
|
|
s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
|
|
}
|
|
|
|
/*
|
|
* This is always accurate, except if SYSRET returned to a segment
|
|
* with SS.DPL != 3. Intel does not have this quirk, and always
|
|
* forces SS.DPL to 3 on sysret, so we ignore that case; fixing it
|
|
* would entail passing the CPL to userspace and back.
|
|
*/
|
|
if (seg == VCPU_SREG_SS)
|
|
svm->vmcb->save.cpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
|
|
|
|
mark_dirty(svm->vmcb, VMCB_SEG);
|
|
}
|
|
|
|
static void update_db_bp_intercept(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
clr_exception_intercept(svm, DB_VECTOR);
|
|
clr_exception_intercept(svm, BP_VECTOR);
|
|
|
|
if (svm->nmi_singlestep)
|
|
set_exception_intercept(svm, DB_VECTOR);
|
|
|
|
if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
|
|
if (vcpu->guest_debug &
|
|
(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
|
|
set_exception_intercept(svm, DB_VECTOR);
|
|
if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
|
|
set_exception_intercept(svm, BP_VECTOR);
|
|
} else
|
|
vcpu->guest_debug = 0;
|
|
}
|
|
|
|
static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
|
|
{
|
|
if (sd->next_asid > sd->max_asid) {
|
|
++sd->asid_generation;
|
|
sd->next_asid = 1;
|
|
svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
|
|
}
|
|
|
|
svm->asid_generation = sd->asid_generation;
|
|
svm->vmcb->control.asid = sd->next_asid++;
|
|
|
|
mark_dirty(svm->vmcb, VMCB_ASID);
|
|
}
|
|
|
|
static u64 svm_get_dr6(struct kvm_vcpu *vcpu)
|
|
{
|
|
return to_svm(vcpu)->vmcb->save.dr6;
|
|
}
|
|
|
|
static void svm_set_dr6(struct kvm_vcpu *vcpu, unsigned long value)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
svm->vmcb->save.dr6 = value;
|
|
mark_dirty(svm->vmcb, VMCB_DR);
|
|
}
|
|
|
|
static void svm_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
get_debugreg(vcpu->arch.db[0], 0);
|
|
get_debugreg(vcpu->arch.db[1], 1);
|
|
get_debugreg(vcpu->arch.db[2], 2);
|
|
get_debugreg(vcpu->arch.db[3], 3);
|
|
vcpu->arch.dr6 = svm_get_dr6(vcpu);
|
|
vcpu->arch.dr7 = svm->vmcb->save.dr7;
|
|
|
|
vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
|
|
set_dr_intercepts(svm);
|
|
}
|
|
|
|
static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
svm->vmcb->save.dr7 = value;
|
|
mark_dirty(svm->vmcb, VMCB_DR);
|
|
}
|
|
|
|
static int pf_interception(struct vcpu_svm *svm)
|
|
{
|
|
u64 fault_address = svm->vmcb->control.exit_info_2;
|
|
u32 error_code;
|
|
int r = 1;
|
|
|
|
switch (svm->apf_reason) {
|
|
default:
|
|
error_code = svm->vmcb->control.exit_info_1;
|
|
|
|
trace_kvm_page_fault(fault_address, error_code);
|
|
if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
|
|
kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
|
|
r = kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
|
|
svm->vmcb->control.insn_bytes,
|
|
svm->vmcb->control.insn_len);
|
|
break;
|
|
case KVM_PV_REASON_PAGE_NOT_PRESENT:
|
|
svm->apf_reason = 0;
|
|
local_irq_disable();
|
|
kvm_async_pf_task_wait(fault_address);
|
|
local_irq_enable();
|
|
break;
|
|
case KVM_PV_REASON_PAGE_READY:
|
|
svm->apf_reason = 0;
|
|
local_irq_disable();
|
|
kvm_async_pf_task_wake(fault_address);
|
|
local_irq_enable();
|
|
break;
|
|
}
|
|
return r;
|
|
}
|
|
|
|
static int db_interception(struct vcpu_svm *svm)
|
|
{
|
|
struct kvm_run *kvm_run = svm->vcpu.run;
|
|
|
|
if (!(svm->vcpu.guest_debug &
|
|
(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
|
|
!svm->nmi_singlestep) {
|
|
kvm_queue_exception(&svm->vcpu, DB_VECTOR);
|
|
return 1;
|
|
}
|
|
|
|
if (svm->nmi_singlestep) {
|
|
svm->nmi_singlestep = false;
|
|
if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
|
|
svm->vmcb->save.rflags &=
|
|
~(X86_EFLAGS_TF | X86_EFLAGS_RF);
|
|
update_db_bp_intercept(&svm->vcpu);
|
|
}
|
|
|
|
if (svm->vcpu.guest_debug &
|
|
(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
|
|
kvm_run->exit_reason = KVM_EXIT_DEBUG;
|
|
kvm_run->debug.arch.pc =
|
|
svm->vmcb->save.cs.base + svm->vmcb->save.rip;
|
|
kvm_run->debug.arch.exception = DB_VECTOR;
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int bp_interception(struct vcpu_svm *svm)
|
|
{
|
|
struct kvm_run *kvm_run = svm->vcpu.run;
|
|
|
|
kvm_run->exit_reason = KVM_EXIT_DEBUG;
|
|
kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
|
|
kvm_run->debug.arch.exception = BP_VECTOR;
|
|
return 0;
|
|
}
|
|
|
|
static int ud_interception(struct vcpu_svm *svm)
|
|
{
|
|
int er;
|
|
|
|
er = emulate_instruction(&svm->vcpu, EMULTYPE_TRAP_UD);
|
|
if (er != EMULATE_DONE)
|
|
kvm_queue_exception(&svm->vcpu, UD_VECTOR);
|
|
return 1;
|
|
}
|
|
|
|
static void svm_fpu_activate(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
clr_exception_intercept(svm, NM_VECTOR);
|
|
|
|
svm->vcpu.fpu_active = 1;
|
|
update_cr0_intercept(svm);
|
|
}
|
|
|
|
static int nm_interception(struct vcpu_svm *svm)
|
|
{
|
|
svm_fpu_activate(&svm->vcpu);
|
|
return 1;
|
|
}
|
|
|
|
static bool is_erratum_383(void)
|
|
{
|
|
int err, i;
|
|
u64 value;
|
|
|
|
if (!erratum_383_found)
|
|
return false;
|
|
|
|
value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
|
|
if (err)
|
|
return false;
|
|
|
|
/* Bit 62 may or may not be set for this mce */
|
|
value &= ~(1ULL << 62);
|
|
|
|
if (value != 0xb600000000010015ULL)
|
|
return false;
|
|
|
|
/* Clear MCi_STATUS registers */
|
|
for (i = 0; i < 6; ++i)
|
|
native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
|
|
|
|
value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
|
|
if (!err) {
|
|
u32 low, high;
|
|
|
|
value &= ~(1ULL << 2);
|
|
low = lower_32_bits(value);
|
|
high = upper_32_bits(value);
|
|
|
|
native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
|
|
}
|
|
|
|
/* Flush tlb to evict multi-match entries */
|
|
__flush_tlb_all();
|
|
|
|
return true;
|
|
}
|
|
|
|
static void svm_handle_mce(struct vcpu_svm *svm)
|
|
{
|
|
if (is_erratum_383()) {
|
|
/*
|
|
* Erratum 383 triggered. Guest state is corrupt so kill the
|
|
* guest.
|
|
*/
|
|
pr_err("KVM: Guest triggered AMD Erratum 383\n");
|
|
|
|
kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* On an #MC intercept the MCE handler is not called automatically in
|
|
* the host. So do it by hand here.
|
|
*/
|
|
asm volatile (
|
|
"int $0x12\n");
|
|
/* not sure if we ever come back to this point */
|
|
|
|
return;
|
|
}
|
|
|
|
static int mc_interception(struct vcpu_svm *svm)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
static int shutdown_interception(struct vcpu_svm *svm)
|
|
{
|
|
struct kvm_run *kvm_run = svm->vcpu.run;
|
|
|
|
/*
|
|
* VMCB is undefined after a SHUTDOWN intercept
|
|
* so reinitialize it.
|
|
*/
|
|
clear_page(svm->vmcb);
|
|
init_vmcb(svm);
|
|
|
|
kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
|
|
return 0;
|
|
}
|
|
|
|
static int io_interception(struct vcpu_svm *svm)
|
|
{
|
|
struct kvm_vcpu *vcpu = &svm->vcpu;
|
|
u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
|
|
int size, in, string;
|
|
unsigned port;
|
|
|
|
++svm->vcpu.stat.io_exits;
|
|
string = (io_info & SVM_IOIO_STR_MASK) != 0;
|
|
in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
|
|
if (string || in)
|
|
return emulate_instruction(vcpu, 0) == EMULATE_DONE;
|
|
|
|
port = io_info >> 16;
|
|
size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
|
|
svm->next_rip = svm->vmcb->control.exit_info_2;
|
|
skip_emulated_instruction(&svm->vcpu);
|
|
|
|
return kvm_fast_pio_out(vcpu, size, port);
|
|
}
|
|
|
|
static int nmi_interception(struct vcpu_svm *svm)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
static int intr_interception(struct vcpu_svm *svm)
|
|
{
|
|
++svm->vcpu.stat.irq_exits;
|
|
return 1;
|
|
}
|
|
|
|
static int nop_on_interception(struct vcpu_svm *svm)
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
static int halt_interception(struct vcpu_svm *svm)
|
|
{
|
|
svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
|
|
skip_emulated_instruction(&svm->vcpu);
|
|
return kvm_emulate_halt(&svm->vcpu);
|
|
}
|
|
|
|
static int vmmcall_interception(struct vcpu_svm *svm)
|
|
{
|
|
svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
|
|
skip_emulated_instruction(&svm->vcpu);
|
|
kvm_emulate_hypercall(&svm->vcpu);
|
|
return 1;
|
|
}
|
|
|
|
static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
return svm->nested.nested_cr3;
|
|
}
|
|
|
|
static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
u64 cr3 = svm->nested.nested_cr3;
|
|
u64 pdpte;
|
|
int ret;
|
|
|
|
ret = kvm_read_guest_page(vcpu->kvm, gpa_to_gfn(cr3), &pdpte,
|
|
offset_in_page(cr3) + index * 8, 8);
|
|
if (ret)
|
|
return 0;
|
|
return pdpte;
|
|
}
|
|
|
|
static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
|
|
unsigned long root)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
svm->vmcb->control.nested_cr3 = root;
|
|
mark_dirty(svm->vmcb, VMCB_NPT);
|
|
svm_flush_tlb(vcpu);
|
|
}
|
|
|
|
static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
|
|
struct x86_exception *fault)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
if (svm->vmcb->control.exit_code != SVM_EXIT_NPF) {
|
|
/*
|
|
* TODO: track the cause of the nested page fault, and
|
|
* correctly fill in the high bits of exit_info_1.
|
|
*/
|
|
svm->vmcb->control.exit_code = SVM_EXIT_NPF;
|
|
svm->vmcb->control.exit_code_hi = 0;
|
|
svm->vmcb->control.exit_info_1 = (1ULL << 32);
|
|
svm->vmcb->control.exit_info_2 = fault->address;
|
|
}
|
|
|
|
svm->vmcb->control.exit_info_1 &= ~0xffffffffULL;
|
|
svm->vmcb->control.exit_info_1 |= fault->error_code;
|
|
|
|
/*
|
|
* The present bit is always zero for page structure faults on real
|
|
* hardware.
|
|
*/
|
|
if (svm->vmcb->control.exit_info_1 & (2ULL << 32))
|
|
svm->vmcb->control.exit_info_1 &= ~1;
|
|
|
|
nested_svm_vmexit(svm);
|
|
}
|
|
|
|
static void nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
|
|
{
|
|
kvm_init_shadow_mmu(vcpu, &vcpu->arch.mmu);
|
|
|
|
vcpu->arch.mmu.set_cr3 = nested_svm_set_tdp_cr3;
|
|
vcpu->arch.mmu.get_cr3 = nested_svm_get_tdp_cr3;
|
|
vcpu->arch.mmu.get_pdptr = nested_svm_get_tdp_pdptr;
|
|
vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
|
|
vcpu->arch.mmu.shadow_root_level = get_npt_level();
|
|
vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
|
|
}
|
|
|
|
static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
|
|
{
|
|
vcpu->arch.walk_mmu = &vcpu->arch.mmu;
|
|
}
|
|
|
|
static int nested_svm_check_permissions(struct vcpu_svm *svm)
|
|
{
|
|
if (!(svm->vcpu.arch.efer & EFER_SVME)
|
|
|| !is_paging(&svm->vcpu)) {
|
|
kvm_queue_exception(&svm->vcpu, UD_VECTOR);
|
|
return 1;
|
|
}
|
|
|
|
if (svm->vmcb->save.cpl) {
|
|
kvm_inject_gp(&svm->vcpu, 0);
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
|
|
bool has_error_code, u32 error_code)
|
|
{
|
|
int vmexit;
|
|
|
|
if (!is_guest_mode(&svm->vcpu))
|
|
return 0;
|
|
|
|
svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
|
|
svm->vmcb->control.exit_code_hi = 0;
|
|
svm->vmcb->control.exit_info_1 = error_code;
|
|
svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
|
|
|
|
vmexit = nested_svm_intercept(svm);
|
|
if (vmexit == NESTED_EXIT_DONE)
|
|
svm->nested.exit_required = true;
|
|
|
|
return vmexit;
|
|
}
|
|
|
|
/* This function returns true if it is save to enable the irq window */
|
|
static inline bool nested_svm_intr(struct vcpu_svm *svm)
|
|
{
|
|
if (!is_guest_mode(&svm->vcpu))
|
|
return true;
|
|
|
|
if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
|
|
return true;
|
|
|
|
if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
|
|
return false;
|
|
|
|
/*
|
|
* if vmexit was already requested (by intercepted exception
|
|
* for instance) do not overwrite it with "external interrupt"
|
|
* vmexit.
|
|
*/
|
|
if (svm->nested.exit_required)
|
|
return false;
|
|
|
|
svm->vmcb->control.exit_code = SVM_EXIT_INTR;
|
|
svm->vmcb->control.exit_info_1 = 0;
|
|
svm->vmcb->control.exit_info_2 = 0;
|
|
|
|
if (svm->nested.intercept & 1ULL) {
|
|
/*
|
|
* The #vmexit can't be emulated here directly because this
|
|
* code path runs with irqs and preemption disabled. A
|
|
* #vmexit emulation might sleep. Only signal request for
|
|
* the #vmexit here.
|
|
*/
|
|
svm->nested.exit_required = true;
|
|
trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* This function returns true if it is save to enable the nmi window */
|
|
static inline bool nested_svm_nmi(struct vcpu_svm *svm)
|
|
{
|
|
if (!is_guest_mode(&svm->vcpu))
|
|
return true;
|
|
|
|
if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
|
|
return true;
|
|
|
|
svm->vmcb->control.exit_code = SVM_EXIT_NMI;
|
|
svm->nested.exit_required = true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
|
|
{
|
|
struct page *page;
|
|
|
|
might_sleep();
|
|
|
|
page = gfn_to_page(svm->vcpu.kvm, gpa >> PAGE_SHIFT);
|
|
if (is_error_page(page))
|
|
goto error;
|
|
|
|
*_page = page;
|
|
|
|
return kmap(page);
|
|
|
|
error:
|
|
kvm_inject_gp(&svm->vcpu, 0);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void nested_svm_unmap(struct page *page)
|
|
{
|
|
kunmap(page);
|
|
kvm_release_page_dirty(page);
|
|
}
|
|
|
|
static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
|
|
{
|
|
unsigned port, size, iopm_len;
|
|
u16 val, mask;
|
|
u8 start_bit;
|
|
u64 gpa;
|
|
|
|
if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
|
|
return NESTED_EXIT_HOST;
|
|
|
|
port = svm->vmcb->control.exit_info_1 >> 16;
|
|
size = (svm->vmcb->control.exit_info_1 & SVM_IOIO_SIZE_MASK) >>
|
|
SVM_IOIO_SIZE_SHIFT;
|
|
gpa = svm->nested.vmcb_iopm + (port / 8);
|
|
start_bit = port % 8;
|
|
iopm_len = (start_bit + size > 8) ? 2 : 1;
|
|
mask = (0xf >> (4 - size)) << start_bit;
|
|
val = 0;
|
|
|
|
if (kvm_read_guest(svm->vcpu.kvm, gpa, &val, iopm_len))
|
|
return NESTED_EXIT_DONE;
|
|
|
|
return (val & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
|
|
}
|
|
|
|
static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
|
|
{
|
|
u32 offset, msr, value;
|
|
int write, mask;
|
|
|
|
if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
|
|
return NESTED_EXIT_HOST;
|
|
|
|
msr = svm->vcpu.arch.regs[VCPU_REGS_RCX];
|
|
offset = svm_msrpm_offset(msr);
|
|
write = svm->vmcb->control.exit_info_1 & 1;
|
|
mask = 1 << ((2 * (msr & 0xf)) + write);
|
|
|
|
if (offset == MSR_INVALID)
|
|
return NESTED_EXIT_DONE;
|
|
|
|
/* Offset is in 32 bit units but need in 8 bit units */
|
|
offset *= 4;
|
|
|
|
if (kvm_read_guest(svm->vcpu.kvm, svm->nested.vmcb_msrpm + offset, &value, 4))
|
|
return NESTED_EXIT_DONE;
|
|
|
|
return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
|
|
}
|
|
|
|
static int nested_svm_exit_special(struct vcpu_svm *svm)
|
|
{
|
|
u32 exit_code = svm->vmcb->control.exit_code;
|
|
|
|
switch (exit_code) {
|
|
case SVM_EXIT_INTR:
|
|
case SVM_EXIT_NMI:
|
|
case SVM_EXIT_EXCP_BASE + MC_VECTOR:
|
|
return NESTED_EXIT_HOST;
|
|
case SVM_EXIT_NPF:
|
|
/* For now we are always handling NPFs when using them */
|
|
if (npt_enabled)
|
|
return NESTED_EXIT_HOST;
|
|
break;
|
|
case SVM_EXIT_EXCP_BASE + PF_VECTOR:
|
|
/* When we're shadowing, trap PFs, but not async PF */
|
|
if (!npt_enabled && svm->apf_reason == 0)
|
|
return NESTED_EXIT_HOST;
|
|
break;
|
|
case SVM_EXIT_EXCP_BASE + NM_VECTOR:
|
|
nm_interception(svm);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return NESTED_EXIT_CONTINUE;
|
|
}
|
|
|
|
/*
|
|
* If this function returns true, this #vmexit was already handled
|
|
*/
|
|
static int nested_svm_intercept(struct vcpu_svm *svm)
|
|
{
|
|
u32 exit_code = svm->vmcb->control.exit_code;
|
|
int vmexit = NESTED_EXIT_HOST;
|
|
|
|
switch (exit_code) {
|
|
case SVM_EXIT_MSR:
|
|
vmexit = nested_svm_exit_handled_msr(svm);
|
|
break;
|
|
case SVM_EXIT_IOIO:
|
|
vmexit = nested_svm_intercept_ioio(svm);
|
|
break;
|
|
case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
|
|
u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
|
|
if (svm->nested.intercept_cr & bit)
|
|
vmexit = NESTED_EXIT_DONE;
|
|
break;
|
|
}
|
|
case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
|
|
u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
|
|
if (svm->nested.intercept_dr & bit)
|
|
vmexit = NESTED_EXIT_DONE;
|
|
break;
|
|
}
|
|
case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
|
|
u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
|
|
if (svm->nested.intercept_exceptions & excp_bits)
|
|
vmexit = NESTED_EXIT_DONE;
|
|
/* async page fault always cause vmexit */
|
|
else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
|
|
svm->apf_reason != 0)
|
|
vmexit = NESTED_EXIT_DONE;
|
|
break;
|
|
}
|
|
case SVM_EXIT_ERR: {
|
|
vmexit = NESTED_EXIT_DONE;
|
|
break;
|
|
}
|
|
default: {
|
|
u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
|
|
if (svm->nested.intercept & exit_bits)
|
|
vmexit = NESTED_EXIT_DONE;
|
|
}
|
|
}
|
|
|
|
return vmexit;
|
|
}
|
|
|
|
static int nested_svm_exit_handled(struct vcpu_svm *svm)
|
|
{
|
|
int vmexit;
|
|
|
|
vmexit = nested_svm_intercept(svm);
|
|
|
|
if (vmexit == NESTED_EXIT_DONE)
|
|
nested_svm_vmexit(svm);
|
|
|
|
return vmexit;
|
|
}
|
|
|
|
static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
|
|
{
|
|
struct vmcb_control_area *dst = &dst_vmcb->control;
|
|
struct vmcb_control_area *from = &from_vmcb->control;
|
|
|
|
dst->intercept_cr = from->intercept_cr;
|
|
dst->intercept_dr = from->intercept_dr;
|
|
dst->intercept_exceptions = from->intercept_exceptions;
|
|
dst->intercept = from->intercept;
|
|
dst->iopm_base_pa = from->iopm_base_pa;
|
|
dst->msrpm_base_pa = from->msrpm_base_pa;
|
|
dst->tsc_offset = from->tsc_offset;
|
|
dst->asid = from->asid;
|
|
dst->tlb_ctl = from->tlb_ctl;
|
|
dst->int_ctl = from->int_ctl;
|
|
dst->int_vector = from->int_vector;
|
|
dst->int_state = from->int_state;
|
|
dst->exit_code = from->exit_code;
|
|
dst->exit_code_hi = from->exit_code_hi;
|
|
dst->exit_info_1 = from->exit_info_1;
|
|
dst->exit_info_2 = from->exit_info_2;
|
|
dst->exit_int_info = from->exit_int_info;
|
|
dst->exit_int_info_err = from->exit_int_info_err;
|
|
dst->nested_ctl = from->nested_ctl;
|
|
dst->event_inj = from->event_inj;
|
|
dst->event_inj_err = from->event_inj_err;
|
|
dst->nested_cr3 = from->nested_cr3;
|
|
dst->lbr_ctl = from->lbr_ctl;
|
|
}
|
|
|
|
static int nested_svm_vmexit(struct vcpu_svm *svm)
|
|
{
|
|
struct vmcb *nested_vmcb;
|
|
struct vmcb *hsave = svm->nested.hsave;
|
|
struct vmcb *vmcb = svm->vmcb;
|
|
struct page *page;
|
|
|
|
trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
|
|
vmcb->control.exit_info_1,
|
|
vmcb->control.exit_info_2,
|
|
vmcb->control.exit_int_info,
|
|
vmcb->control.exit_int_info_err,
|
|
KVM_ISA_SVM);
|
|
|
|
nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
|
|
if (!nested_vmcb)
|
|
return 1;
|
|
|
|
/* Exit Guest-Mode */
|
|
leave_guest_mode(&svm->vcpu);
|
|
svm->nested.vmcb = 0;
|
|
|
|
/* Give the current vmcb to the guest */
|
|
disable_gif(svm);
|
|
|
|
nested_vmcb->save.es = vmcb->save.es;
|
|
nested_vmcb->save.cs = vmcb->save.cs;
|
|
nested_vmcb->save.ss = vmcb->save.ss;
|
|
nested_vmcb->save.ds = vmcb->save.ds;
|
|
nested_vmcb->save.gdtr = vmcb->save.gdtr;
|
|
nested_vmcb->save.idtr = vmcb->save.idtr;
|
|
nested_vmcb->save.efer = svm->vcpu.arch.efer;
|
|
nested_vmcb->save.cr0 = kvm_read_cr0(&svm->vcpu);
|
|
nested_vmcb->save.cr3 = kvm_read_cr3(&svm->vcpu);
|
|
nested_vmcb->save.cr2 = vmcb->save.cr2;
|
|
nested_vmcb->save.cr4 = svm->vcpu.arch.cr4;
|
|
nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
|
|
nested_vmcb->save.rip = vmcb->save.rip;
|
|
nested_vmcb->save.rsp = vmcb->save.rsp;
|
|
nested_vmcb->save.rax = vmcb->save.rax;
|
|
nested_vmcb->save.dr7 = vmcb->save.dr7;
|
|
nested_vmcb->save.dr6 = vmcb->save.dr6;
|
|
nested_vmcb->save.cpl = vmcb->save.cpl;
|
|
|
|
nested_vmcb->control.int_ctl = vmcb->control.int_ctl;
|
|
nested_vmcb->control.int_vector = vmcb->control.int_vector;
|
|
nested_vmcb->control.int_state = vmcb->control.int_state;
|
|
nested_vmcb->control.exit_code = vmcb->control.exit_code;
|
|
nested_vmcb->control.exit_code_hi = vmcb->control.exit_code_hi;
|
|
nested_vmcb->control.exit_info_1 = vmcb->control.exit_info_1;
|
|
nested_vmcb->control.exit_info_2 = vmcb->control.exit_info_2;
|
|
nested_vmcb->control.exit_int_info = vmcb->control.exit_int_info;
|
|
nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
|
|
nested_vmcb->control.next_rip = vmcb->control.next_rip;
|
|
|
|
/*
|
|
* If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
|
|
* to make sure that we do not lose injected events. So check event_inj
|
|
* here and copy it to exit_int_info if it is valid.
|
|
* Exit_int_info and event_inj can't be both valid because the case
|
|
* below only happens on a VMRUN instruction intercept which has
|
|
* no valid exit_int_info set.
|
|
*/
|
|
if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
|
|
struct vmcb_control_area *nc = &nested_vmcb->control;
|
|
|
|
nc->exit_int_info = vmcb->control.event_inj;
|
|
nc->exit_int_info_err = vmcb->control.event_inj_err;
|
|
}
|
|
|
|
nested_vmcb->control.tlb_ctl = 0;
|
|
nested_vmcb->control.event_inj = 0;
|
|
nested_vmcb->control.event_inj_err = 0;
|
|
|
|
/* We always set V_INTR_MASKING and remember the old value in hflags */
|
|
if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
|
|
nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
|
|
|
|
/* Restore the original control entries */
|
|
copy_vmcb_control_area(vmcb, hsave);
|
|
|
|
kvm_clear_exception_queue(&svm->vcpu);
|
|
kvm_clear_interrupt_queue(&svm->vcpu);
|
|
|
|
svm->nested.nested_cr3 = 0;
|
|
|
|
/* Restore selected save entries */
|
|
svm->vmcb->save.es = hsave->save.es;
|
|
svm->vmcb->save.cs = hsave->save.cs;
|
|
svm->vmcb->save.ss = hsave->save.ss;
|
|
svm->vmcb->save.ds = hsave->save.ds;
|
|
svm->vmcb->save.gdtr = hsave->save.gdtr;
|
|
svm->vmcb->save.idtr = hsave->save.idtr;
|
|
kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
|
|
svm_set_efer(&svm->vcpu, hsave->save.efer);
|
|
svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
|
|
svm_set_cr4(&svm->vcpu, hsave->save.cr4);
|
|
if (npt_enabled) {
|
|
svm->vmcb->save.cr3 = hsave->save.cr3;
|
|
svm->vcpu.arch.cr3 = hsave->save.cr3;
|
|
} else {
|
|
(void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
|
|
}
|
|
kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
|
|
kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
|
|
kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
|
|
svm->vmcb->save.dr7 = 0;
|
|
svm->vmcb->save.cpl = 0;
|
|
svm->vmcb->control.exit_int_info = 0;
|
|
|
|
mark_all_dirty(svm->vmcb);
|
|
|
|
nested_svm_unmap(page);
|
|
|
|
nested_svm_uninit_mmu_context(&svm->vcpu);
|
|
kvm_mmu_reset_context(&svm->vcpu);
|
|
kvm_mmu_load(&svm->vcpu);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
|
|
{
|
|
/*
|
|
* This function merges the msr permission bitmaps of kvm and the
|
|
* nested vmcb. It is optimized in that it only merges the parts where
|
|
* the kvm msr permission bitmap may contain zero bits
|
|
*/
|
|
int i;
|
|
|
|
if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
|
|
return true;
|
|
|
|
for (i = 0; i < MSRPM_OFFSETS; i++) {
|
|
u32 value, p;
|
|
u64 offset;
|
|
|
|
if (msrpm_offsets[i] == 0xffffffff)
|
|
break;
|
|
|
|
p = msrpm_offsets[i];
|
|
offset = svm->nested.vmcb_msrpm + (p * 4);
|
|
|
|
if (kvm_read_guest(svm->vcpu.kvm, offset, &value, 4))
|
|
return false;
|
|
|
|
svm->nested.msrpm[p] = svm->msrpm[p] | value;
|
|
}
|
|
|
|
svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool nested_vmcb_checks(struct vmcb *vmcb)
|
|
{
|
|
if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
|
|
return false;
|
|
|
|
if (vmcb->control.asid == 0)
|
|
return false;
|
|
|
|
if (vmcb->control.nested_ctl && !npt_enabled)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool nested_svm_vmrun(struct vcpu_svm *svm)
|
|
{
|
|
struct vmcb *nested_vmcb;
|
|
struct vmcb *hsave = svm->nested.hsave;
|
|
struct vmcb *vmcb = svm->vmcb;
|
|
struct page *page;
|
|
u64 vmcb_gpa;
|
|
|
|
vmcb_gpa = svm->vmcb->save.rax;
|
|
|
|
nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
|
|
if (!nested_vmcb)
|
|
return false;
|
|
|
|
if (!nested_vmcb_checks(nested_vmcb)) {
|
|
nested_vmcb->control.exit_code = SVM_EXIT_ERR;
|
|
nested_vmcb->control.exit_code_hi = 0;
|
|
nested_vmcb->control.exit_info_1 = 0;
|
|
nested_vmcb->control.exit_info_2 = 0;
|
|
|
|
nested_svm_unmap(page);
|
|
|
|
return false;
|
|
}
|
|
|
|
trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
|
|
nested_vmcb->save.rip,
|
|
nested_vmcb->control.int_ctl,
|
|
nested_vmcb->control.event_inj,
|
|
nested_vmcb->control.nested_ctl);
|
|
|
|
trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
|
|
nested_vmcb->control.intercept_cr >> 16,
|
|
nested_vmcb->control.intercept_exceptions,
|
|
nested_vmcb->control.intercept);
|
|
|
|
/* Clear internal status */
|
|
kvm_clear_exception_queue(&svm->vcpu);
|
|
kvm_clear_interrupt_queue(&svm->vcpu);
|
|
|
|
/*
|
|
* Save the old vmcb, so we don't need to pick what we save, but can
|
|
* restore everything when a VMEXIT occurs
|
|
*/
|
|
hsave->save.es = vmcb->save.es;
|
|
hsave->save.cs = vmcb->save.cs;
|
|
hsave->save.ss = vmcb->save.ss;
|
|
hsave->save.ds = vmcb->save.ds;
|
|
hsave->save.gdtr = vmcb->save.gdtr;
|
|
hsave->save.idtr = vmcb->save.idtr;
|
|
hsave->save.efer = svm->vcpu.arch.efer;
|
|
hsave->save.cr0 = kvm_read_cr0(&svm->vcpu);
|
|
hsave->save.cr4 = svm->vcpu.arch.cr4;
|
|
hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
|
|
hsave->save.rip = kvm_rip_read(&svm->vcpu);
|
|
hsave->save.rsp = vmcb->save.rsp;
|
|
hsave->save.rax = vmcb->save.rax;
|
|
if (npt_enabled)
|
|
hsave->save.cr3 = vmcb->save.cr3;
|
|
else
|
|
hsave->save.cr3 = kvm_read_cr3(&svm->vcpu);
|
|
|
|
copy_vmcb_control_area(hsave, vmcb);
|
|
|
|
if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
|
|
svm->vcpu.arch.hflags |= HF_HIF_MASK;
|
|
else
|
|
svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
|
|
|
|
if (nested_vmcb->control.nested_ctl) {
|
|
kvm_mmu_unload(&svm->vcpu);
|
|
svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
|
|
nested_svm_init_mmu_context(&svm->vcpu);
|
|
}
|
|
|
|
/* Load the nested guest state */
|
|
svm->vmcb->save.es = nested_vmcb->save.es;
|
|
svm->vmcb->save.cs = nested_vmcb->save.cs;
|
|
svm->vmcb->save.ss = nested_vmcb->save.ss;
|
|
svm->vmcb->save.ds = nested_vmcb->save.ds;
|
|
svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
|
|
svm->vmcb->save.idtr = nested_vmcb->save.idtr;
|
|
kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
|
|
svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
|
|
svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
|
|
svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
|
|
if (npt_enabled) {
|
|
svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
|
|
svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
|
|
} else
|
|
(void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
|
|
|
|
/* Guest paging mode is active - reset mmu */
|
|
kvm_mmu_reset_context(&svm->vcpu);
|
|
|
|
svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
|
|
kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
|
|
kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
|
|
kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
|
|
|
|
/* In case we don't even reach vcpu_run, the fields are not updated */
|
|
svm->vmcb->save.rax = nested_vmcb->save.rax;
|
|
svm->vmcb->save.rsp = nested_vmcb->save.rsp;
|
|
svm->vmcb->save.rip = nested_vmcb->save.rip;
|
|
svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
|
|
svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
|
|
svm->vmcb->save.cpl = nested_vmcb->save.cpl;
|
|
|
|
svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
|
|
svm->nested.vmcb_iopm = nested_vmcb->control.iopm_base_pa & ~0x0fffULL;
|
|
|
|
/* cache intercepts */
|
|
svm->nested.intercept_cr = nested_vmcb->control.intercept_cr;
|
|
svm->nested.intercept_dr = nested_vmcb->control.intercept_dr;
|
|
svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
|
|
svm->nested.intercept = nested_vmcb->control.intercept;
|
|
|
|
svm_flush_tlb(&svm->vcpu);
|
|
svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
|
|
if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
|
|
svm->vcpu.arch.hflags |= HF_VINTR_MASK;
|
|
else
|
|
svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
|
|
|
|
if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
|
|
/* We only want the cr8 intercept bits of the guest */
|
|
clr_cr_intercept(svm, INTERCEPT_CR8_READ);
|
|
clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
|
|
}
|
|
|
|
/* We don't want to see VMMCALLs from a nested guest */
|
|
clr_intercept(svm, INTERCEPT_VMMCALL);
|
|
|
|
svm->vmcb->control.lbr_ctl = nested_vmcb->control.lbr_ctl;
|
|
svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
|
|
svm->vmcb->control.int_state = nested_vmcb->control.int_state;
|
|
svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
|
|
svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
|
|
svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
|
|
|
|
nested_svm_unmap(page);
|
|
|
|
/* Enter Guest-Mode */
|
|
enter_guest_mode(&svm->vcpu);
|
|
|
|
/*
|
|
* Merge guest and host intercepts - must be called with vcpu in
|
|
* guest-mode to take affect here
|
|
*/
|
|
recalc_intercepts(svm);
|
|
|
|
svm->nested.vmcb = vmcb_gpa;
|
|
|
|
enable_gif(svm);
|
|
|
|
mark_all_dirty(svm->vmcb);
|
|
|
|
return true;
|
|
}
|
|
|
|
static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
|
|
{
|
|
to_vmcb->save.fs = from_vmcb->save.fs;
|
|
to_vmcb->save.gs = from_vmcb->save.gs;
|
|
to_vmcb->save.tr = from_vmcb->save.tr;
|
|
to_vmcb->save.ldtr = from_vmcb->save.ldtr;
|
|
to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
|
|
to_vmcb->save.star = from_vmcb->save.star;
|
|
to_vmcb->save.lstar = from_vmcb->save.lstar;
|
|
to_vmcb->save.cstar = from_vmcb->save.cstar;
|
|
to_vmcb->save.sfmask = from_vmcb->save.sfmask;
|
|
to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
|
|
to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
|
|
to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
|
|
}
|
|
|
|
static int vmload_interception(struct vcpu_svm *svm)
|
|
{
|
|
struct vmcb *nested_vmcb;
|
|
struct page *page;
|
|
|
|
if (nested_svm_check_permissions(svm))
|
|
return 1;
|
|
|
|
nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
|
|
if (!nested_vmcb)
|
|
return 1;
|
|
|
|
svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
|
|
skip_emulated_instruction(&svm->vcpu);
|
|
|
|
nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
|
|
nested_svm_unmap(page);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int vmsave_interception(struct vcpu_svm *svm)
|
|
{
|
|
struct vmcb *nested_vmcb;
|
|
struct page *page;
|
|
|
|
if (nested_svm_check_permissions(svm))
|
|
return 1;
|
|
|
|
nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
|
|
if (!nested_vmcb)
|
|
return 1;
|
|
|
|
svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
|
|
skip_emulated_instruction(&svm->vcpu);
|
|
|
|
nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
|
|
nested_svm_unmap(page);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int vmrun_interception(struct vcpu_svm *svm)
|
|
{
|
|
if (nested_svm_check_permissions(svm))
|
|
return 1;
|
|
|
|
/* Save rip after vmrun instruction */
|
|
kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
|
|
|
|
if (!nested_svm_vmrun(svm))
|
|
return 1;
|
|
|
|
if (!nested_svm_vmrun_msrpm(svm))
|
|
goto failed;
|
|
|
|
return 1;
|
|
|
|
failed:
|
|
|
|
svm->vmcb->control.exit_code = SVM_EXIT_ERR;
|
|
svm->vmcb->control.exit_code_hi = 0;
|
|
svm->vmcb->control.exit_info_1 = 0;
|
|
svm->vmcb->control.exit_info_2 = 0;
|
|
|
|
nested_svm_vmexit(svm);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int stgi_interception(struct vcpu_svm *svm)
|
|
{
|
|
if (nested_svm_check_permissions(svm))
|
|
return 1;
|
|
|
|
svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
|
|
skip_emulated_instruction(&svm->vcpu);
|
|
kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
|
|
|
|
enable_gif(svm);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int clgi_interception(struct vcpu_svm *svm)
|
|
{
|
|
if (nested_svm_check_permissions(svm))
|
|
return 1;
|
|
|
|
svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
|
|
skip_emulated_instruction(&svm->vcpu);
|
|
|
|
disable_gif(svm);
|
|
|
|
/* After a CLGI no interrupts should come */
|
|
svm_clear_vintr(svm);
|
|
svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
|
|
|
|
mark_dirty(svm->vmcb, VMCB_INTR);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int invlpga_interception(struct vcpu_svm *svm)
|
|
{
|
|
struct kvm_vcpu *vcpu = &svm->vcpu;
|
|
|
|
trace_kvm_invlpga(svm->vmcb->save.rip, vcpu->arch.regs[VCPU_REGS_RCX],
|
|
vcpu->arch.regs[VCPU_REGS_RAX]);
|
|
|
|
/* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
|
|
kvm_mmu_invlpg(vcpu, vcpu->arch.regs[VCPU_REGS_RAX]);
|
|
|
|
svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
|
|
skip_emulated_instruction(&svm->vcpu);
|
|
return 1;
|
|
}
|
|
|
|
static int skinit_interception(struct vcpu_svm *svm)
|
|
{
|
|
trace_kvm_skinit(svm->vmcb->save.rip, svm->vcpu.arch.regs[VCPU_REGS_RAX]);
|
|
|
|
kvm_queue_exception(&svm->vcpu, UD_VECTOR);
|
|
return 1;
|
|
}
|
|
|
|
static int xsetbv_interception(struct vcpu_svm *svm)
|
|
{
|
|
u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
|
|
u32 index = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
|
|
|
|
if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
|
|
svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
|
|
skip_emulated_instruction(&svm->vcpu);
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int task_switch_interception(struct vcpu_svm *svm)
|
|
{
|
|
u16 tss_selector;
|
|
int reason;
|
|
int int_type = svm->vmcb->control.exit_int_info &
|
|
SVM_EXITINTINFO_TYPE_MASK;
|
|
int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
|
|
uint32_t type =
|
|
svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
|
|
uint32_t idt_v =
|
|
svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
|
|
bool has_error_code = false;
|
|
u32 error_code = 0;
|
|
|
|
tss_selector = (u16)svm->vmcb->control.exit_info_1;
|
|
|
|
if (svm->vmcb->control.exit_info_2 &
|
|
(1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
|
|
reason = TASK_SWITCH_IRET;
|
|
else if (svm->vmcb->control.exit_info_2 &
|
|
(1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
|
|
reason = TASK_SWITCH_JMP;
|
|
else if (idt_v)
|
|
reason = TASK_SWITCH_GATE;
|
|
else
|
|
reason = TASK_SWITCH_CALL;
|
|
|
|
if (reason == TASK_SWITCH_GATE) {
|
|
switch (type) {
|
|
case SVM_EXITINTINFO_TYPE_NMI:
|
|
svm->vcpu.arch.nmi_injected = false;
|
|
break;
|
|
case SVM_EXITINTINFO_TYPE_EXEPT:
|
|
if (svm->vmcb->control.exit_info_2 &
|
|
(1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
|
|
has_error_code = true;
|
|
error_code =
|
|
(u32)svm->vmcb->control.exit_info_2;
|
|
}
|
|
kvm_clear_exception_queue(&svm->vcpu);
|
|
break;
|
|
case SVM_EXITINTINFO_TYPE_INTR:
|
|
kvm_clear_interrupt_queue(&svm->vcpu);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (reason != TASK_SWITCH_GATE ||
|
|
int_type == SVM_EXITINTINFO_TYPE_SOFT ||
|
|
(int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
|
|
(int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
|
|
skip_emulated_instruction(&svm->vcpu);
|
|
|
|
if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
|
|
int_vec = -1;
|
|
|
|
if (kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
|
|
has_error_code, error_code) == EMULATE_FAIL) {
|
|
svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
|
|
svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
|
|
svm->vcpu.run->internal.ndata = 0;
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static int cpuid_interception(struct vcpu_svm *svm)
|
|
{
|
|
svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
|
|
kvm_emulate_cpuid(&svm->vcpu);
|
|
return 1;
|
|
}
|
|
|
|
static int iret_interception(struct vcpu_svm *svm)
|
|
{
|
|
++svm->vcpu.stat.nmi_window_exits;
|
|
clr_intercept(svm, INTERCEPT_IRET);
|
|
svm->vcpu.arch.hflags |= HF_IRET_MASK;
|
|
svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
|
|
kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
|
|
return 1;
|
|
}
|
|
|
|
static int invlpg_interception(struct vcpu_svm *svm)
|
|
{
|
|
if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
|
|
return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
|
|
|
|
kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
|
|
skip_emulated_instruction(&svm->vcpu);
|
|
return 1;
|
|
}
|
|
|
|
static int emulate_on_interception(struct vcpu_svm *svm)
|
|
{
|
|
return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
|
|
}
|
|
|
|
static int rdpmc_interception(struct vcpu_svm *svm)
|
|
{
|
|
int err;
|
|
|
|
if (!static_cpu_has(X86_FEATURE_NRIPS))
|
|
return emulate_on_interception(svm);
|
|
|
|
err = kvm_rdpmc(&svm->vcpu);
|
|
kvm_complete_insn_gp(&svm->vcpu, err);
|
|
|
|
return 1;
|
|
}
|
|
|
|
bool check_selective_cr0_intercepted(struct vcpu_svm *svm, unsigned long val)
|
|
{
|
|
unsigned long cr0 = svm->vcpu.arch.cr0;
|
|
bool ret = false;
|
|
u64 intercept;
|
|
|
|
intercept = svm->nested.intercept;
|
|
|
|
if (!is_guest_mode(&svm->vcpu) ||
|
|
(!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
|
|
return false;
|
|
|
|
cr0 &= ~SVM_CR0_SELECTIVE_MASK;
|
|
val &= ~SVM_CR0_SELECTIVE_MASK;
|
|
|
|
if (cr0 ^ val) {
|
|
svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
|
|
ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
#define CR_VALID (1ULL << 63)
|
|
|
|
static int cr_interception(struct vcpu_svm *svm)
|
|
{
|
|
int reg, cr;
|
|
unsigned long val;
|
|
int err;
|
|
|
|
if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
|
|
return emulate_on_interception(svm);
|
|
|
|
if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
|
|
return emulate_on_interception(svm);
|
|
|
|
reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
|
|
cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
|
|
|
|
err = 0;
|
|
if (cr >= 16) { /* mov to cr */
|
|
cr -= 16;
|
|
val = kvm_register_read(&svm->vcpu, reg);
|
|
switch (cr) {
|
|
case 0:
|
|
if (!check_selective_cr0_intercepted(svm, val))
|
|
err = kvm_set_cr0(&svm->vcpu, val);
|
|
else
|
|
return 1;
|
|
|
|
break;
|
|
case 3:
|
|
err = kvm_set_cr3(&svm->vcpu, val);
|
|
break;
|
|
case 4:
|
|
err = kvm_set_cr4(&svm->vcpu, val);
|
|
break;
|
|
case 8:
|
|
err = kvm_set_cr8(&svm->vcpu, val);
|
|
break;
|
|
default:
|
|
WARN(1, "unhandled write to CR%d", cr);
|
|
kvm_queue_exception(&svm->vcpu, UD_VECTOR);
|
|
return 1;
|
|
}
|
|
} else { /* mov from cr */
|
|
switch (cr) {
|
|
case 0:
|
|
val = kvm_read_cr0(&svm->vcpu);
|
|
break;
|
|
case 2:
|
|
val = svm->vcpu.arch.cr2;
|
|
break;
|
|
case 3:
|
|
val = kvm_read_cr3(&svm->vcpu);
|
|
break;
|
|
case 4:
|
|
val = kvm_read_cr4(&svm->vcpu);
|
|
break;
|
|
case 8:
|
|
val = kvm_get_cr8(&svm->vcpu);
|
|
break;
|
|
default:
|
|
WARN(1, "unhandled read from CR%d", cr);
|
|
kvm_queue_exception(&svm->vcpu, UD_VECTOR);
|
|
return 1;
|
|
}
|
|
kvm_register_write(&svm->vcpu, reg, val);
|
|
}
|
|
kvm_complete_insn_gp(&svm->vcpu, err);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int dr_interception(struct vcpu_svm *svm)
|
|
{
|
|
int reg, dr;
|
|
unsigned long val;
|
|
int err;
|
|
|
|
if (svm->vcpu.guest_debug == 0) {
|
|
/*
|
|
* No more DR vmexits; force a reload of the debug registers
|
|
* and reenter on this instruction. The next vmexit will
|
|
* retrieve the full state of the debug registers.
|
|
*/
|
|
clr_dr_intercepts(svm);
|
|
svm->vcpu.arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
|
|
return 1;
|
|
}
|
|
|
|
if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
|
|
return emulate_on_interception(svm);
|
|
|
|
reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
|
|
dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
|
|
|
|
if (dr >= 16) { /* mov to DRn */
|
|
val = kvm_register_read(&svm->vcpu, reg);
|
|
kvm_set_dr(&svm->vcpu, dr - 16, val);
|
|
} else {
|
|
err = kvm_get_dr(&svm->vcpu, dr, &val);
|
|
if (!err)
|
|
kvm_register_write(&svm->vcpu, reg, val);
|
|
}
|
|
|
|
skip_emulated_instruction(&svm->vcpu);
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int cr8_write_interception(struct vcpu_svm *svm)
|
|
{
|
|
struct kvm_run *kvm_run = svm->vcpu.run;
|
|
int r;
|
|
|
|
u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
|
|
/* instruction emulation calls kvm_set_cr8() */
|
|
r = cr_interception(svm);
|
|
if (irqchip_in_kernel(svm->vcpu.kvm))
|
|
return r;
|
|
if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
|
|
return r;
|
|
kvm_run->exit_reason = KVM_EXIT_SET_TPR;
|
|
return 0;
|
|
}
|
|
|
|
static u64 svm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
|
|
{
|
|
struct vmcb *vmcb = get_host_vmcb(to_svm(vcpu));
|
|
return vmcb->control.tsc_offset +
|
|
svm_scale_tsc(vcpu, host_tsc);
|
|
}
|
|
|
|
static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
switch (ecx) {
|
|
case MSR_IA32_TSC: {
|
|
*data = svm->vmcb->control.tsc_offset +
|
|
svm_scale_tsc(vcpu, native_read_tsc());
|
|
|
|
break;
|
|
}
|
|
case MSR_STAR:
|
|
*data = svm->vmcb->save.star;
|
|
break;
|
|
#ifdef CONFIG_X86_64
|
|
case MSR_LSTAR:
|
|
*data = svm->vmcb->save.lstar;
|
|
break;
|
|
case MSR_CSTAR:
|
|
*data = svm->vmcb->save.cstar;
|
|
break;
|
|
case MSR_KERNEL_GS_BASE:
|
|
*data = svm->vmcb->save.kernel_gs_base;
|
|
break;
|
|
case MSR_SYSCALL_MASK:
|
|
*data = svm->vmcb->save.sfmask;
|
|
break;
|
|
#endif
|
|
case MSR_IA32_SYSENTER_CS:
|
|
*data = svm->vmcb->save.sysenter_cs;
|
|
break;
|
|
case MSR_IA32_SYSENTER_EIP:
|
|
*data = svm->sysenter_eip;
|
|
break;
|
|
case MSR_IA32_SYSENTER_ESP:
|
|
*data = svm->sysenter_esp;
|
|
break;
|
|
/*
|
|
* Nobody will change the following 5 values in the VMCB so we can
|
|
* safely return them on rdmsr. They will always be 0 until LBRV is
|
|
* implemented.
|
|
*/
|
|
case MSR_IA32_DEBUGCTLMSR:
|
|
*data = svm->vmcb->save.dbgctl;
|
|
break;
|
|
case MSR_IA32_LASTBRANCHFROMIP:
|
|
*data = svm->vmcb->save.br_from;
|
|
break;
|
|
case MSR_IA32_LASTBRANCHTOIP:
|
|
*data = svm->vmcb->save.br_to;
|
|
break;
|
|
case MSR_IA32_LASTINTFROMIP:
|
|
*data = svm->vmcb->save.last_excp_from;
|
|
break;
|
|
case MSR_IA32_LASTINTTOIP:
|
|
*data = svm->vmcb->save.last_excp_to;
|
|
break;
|
|
case MSR_VM_HSAVE_PA:
|
|
*data = svm->nested.hsave_msr;
|
|
break;
|
|
case MSR_VM_CR:
|
|
*data = svm->nested.vm_cr_msr;
|
|
break;
|
|
case MSR_IA32_UCODE_REV:
|
|
*data = 0x01000065;
|
|
break;
|
|
default:
|
|
return kvm_get_msr_common(vcpu, ecx, data);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int rdmsr_interception(struct vcpu_svm *svm)
|
|
{
|
|
u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
|
|
u64 data;
|
|
|
|
if (svm_get_msr(&svm->vcpu, ecx, &data)) {
|
|
trace_kvm_msr_read_ex(ecx);
|
|
kvm_inject_gp(&svm->vcpu, 0);
|
|
} else {
|
|
trace_kvm_msr_read(ecx, data);
|
|
|
|
svm->vcpu.arch.regs[VCPU_REGS_RAX] = data & 0xffffffff;
|
|
svm->vcpu.arch.regs[VCPU_REGS_RDX] = data >> 32;
|
|
svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
|
|
skip_emulated_instruction(&svm->vcpu);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
int svm_dis, chg_mask;
|
|
|
|
if (data & ~SVM_VM_CR_VALID_MASK)
|
|
return 1;
|
|
|
|
chg_mask = SVM_VM_CR_VALID_MASK;
|
|
|
|
if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
|
|
chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
|
|
|
|
svm->nested.vm_cr_msr &= ~chg_mask;
|
|
svm->nested.vm_cr_msr |= (data & chg_mask);
|
|
|
|
svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
|
|
|
|
/* check for svm_disable while efer.svme is set */
|
|
if (svm_dis && (vcpu->arch.efer & EFER_SVME))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
u32 ecx = msr->index;
|
|
u64 data = msr->data;
|
|
switch (ecx) {
|
|
case MSR_IA32_TSC:
|
|
kvm_write_tsc(vcpu, msr);
|
|
break;
|
|
case MSR_STAR:
|
|
svm->vmcb->save.star = data;
|
|
break;
|
|
#ifdef CONFIG_X86_64
|
|
case MSR_LSTAR:
|
|
svm->vmcb->save.lstar = data;
|
|
break;
|
|
case MSR_CSTAR:
|
|
svm->vmcb->save.cstar = data;
|
|
break;
|
|
case MSR_KERNEL_GS_BASE:
|
|
svm->vmcb->save.kernel_gs_base = data;
|
|
break;
|
|
case MSR_SYSCALL_MASK:
|
|
svm->vmcb->save.sfmask = data;
|
|
break;
|
|
#endif
|
|
case MSR_IA32_SYSENTER_CS:
|
|
svm->vmcb->save.sysenter_cs = data;
|
|
break;
|
|
case MSR_IA32_SYSENTER_EIP:
|
|
svm->sysenter_eip = data;
|
|
svm->vmcb->save.sysenter_eip = data;
|
|
break;
|
|
case MSR_IA32_SYSENTER_ESP:
|
|
svm->sysenter_esp = data;
|
|
svm->vmcb->save.sysenter_esp = data;
|
|
break;
|
|
case MSR_IA32_DEBUGCTLMSR:
|
|
if (!boot_cpu_has(X86_FEATURE_LBRV)) {
|
|
vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
|
|
__func__, data);
|
|
break;
|
|
}
|
|
if (data & DEBUGCTL_RESERVED_BITS)
|
|
return 1;
|
|
|
|
svm->vmcb->save.dbgctl = data;
|
|
mark_dirty(svm->vmcb, VMCB_LBR);
|
|
if (data & (1ULL<<0))
|
|
svm_enable_lbrv(svm);
|
|
else
|
|
svm_disable_lbrv(svm);
|
|
break;
|
|
case MSR_VM_HSAVE_PA:
|
|
svm->nested.hsave_msr = data;
|
|
break;
|
|
case MSR_VM_CR:
|
|
return svm_set_vm_cr(vcpu, data);
|
|
case MSR_VM_IGNNE:
|
|
vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
|
|
break;
|
|
default:
|
|
return kvm_set_msr_common(vcpu, msr);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int wrmsr_interception(struct vcpu_svm *svm)
|
|
{
|
|
struct msr_data msr;
|
|
u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
|
|
u64 data = (svm->vcpu.arch.regs[VCPU_REGS_RAX] & -1u)
|
|
| ((u64)(svm->vcpu.arch.regs[VCPU_REGS_RDX] & -1u) << 32);
|
|
|
|
msr.data = data;
|
|
msr.index = ecx;
|
|
msr.host_initiated = false;
|
|
|
|
svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
|
|
if (kvm_set_msr(&svm->vcpu, &msr)) {
|
|
trace_kvm_msr_write_ex(ecx, data);
|
|
kvm_inject_gp(&svm->vcpu, 0);
|
|
} else {
|
|
trace_kvm_msr_write(ecx, data);
|
|
skip_emulated_instruction(&svm->vcpu);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static int msr_interception(struct vcpu_svm *svm)
|
|
{
|
|
if (svm->vmcb->control.exit_info_1)
|
|
return wrmsr_interception(svm);
|
|
else
|
|
return rdmsr_interception(svm);
|
|
}
|
|
|
|
static int interrupt_window_interception(struct vcpu_svm *svm)
|
|
{
|
|
struct kvm_run *kvm_run = svm->vcpu.run;
|
|
|
|
kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
|
|
svm_clear_vintr(svm);
|
|
svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
|
|
mark_dirty(svm->vmcb, VMCB_INTR);
|
|
++svm->vcpu.stat.irq_window_exits;
|
|
/*
|
|
* If the user space waits to inject interrupts, exit as soon as
|
|
* possible
|
|
*/
|
|
if (!irqchip_in_kernel(svm->vcpu.kvm) &&
|
|
kvm_run->request_interrupt_window &&
|
|
!kvm_cpu_has_interrupt(&svm->vcpu)) {
|
|
kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int pause_interception(struct vcpu_svm *svm)
|
|
{
|
|
kvm_vcpu_on_spin(&(svm->vcpu));
|
|
return 1;
|
|
}
|
|
|
|
static int nop_interception(struct vcpu_svm *svm)
|
|
{
|
|
skip_emulated_instruction(&(svm->vcpu));
|
|
return 1;
|
|
}
|
|
|
|
static int monitor_interception(struct vcpu_svm *svm)
|
|
{
|
|
printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
|
|
return nop_interception(svm);
|
|
}
|
|
|
|
static int mwait_interception(struct vcpu_svm *svm)
|
|
{
|
|
printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
|
|
return nop_interception(svm);
|
|
}
|
|
|
|
static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
|
|
[SVM_EXIT_READ_CR0] = cr_interception,
|
|
[SVM_EXIT_READ_CR3] = cr_interception,
|
|
[SVM_EXIT_READ_CR4] = cr_interception,
|
|
[SVM_EXIT_READ_CR8] = cr_interception,
|
|
[SVM_EXIT_CR0_SEL_WRITE] = emulate_on_interception,
|
|
[SVM_EXIT_WRITE_CR0] = cr_interception,
|
|
[SVM_EXIT_WRITE_CR3] = cr_interception,
|
|
[SVM_EXIT_WRITE_CR4] = cr_interception,
|
|
[SVM_EXIT_WRITE_CR8] = cr8_write_interception,
|
|
[SVM_EXIT_READ_DR0] = dr_interception,
|
|
[SVM_EXIT_READ_DR1] = dr_interception,
|
|
[SVM_EXIT_READ_DR2] = dr_interception,
|
|
[SVM_EXIT_READ_DR3] = dr_interception,
|
|
[SVM_EXIT_READ_DR4] = dr_interception,
|
|
[SVM_EXIT_READ_DR5] = dr_interception,
|
|
[SVM_EXIT_READ_DR6] = dr_interception,
|
|
[SVM_EXIT_READ_DR7] = dr_interception,
|
|
[SVM_EXIT_WRITE_DR0] = dr_interception,
|
|
[SVM_EXIT_WRITE_DR1] = dr_interception,
|
|
[SVM_EXIT_WRITE_DR2] = dr_interception,
|
|
[SVM_EXIT_WRITE_DR3] = dr_interception,
|
|
[SVM_EXIT_WRITE_DR4] = dr_interception,
|
|
[SVM_EXIT_WRITE_DR5] = dr_interception,
|
|
[SVM_EXIT_WRITE_DR6] = dr_interception,
|
|
[SVM_EXIT_WRITE_DR7] = dr_interception,
|
|
[SVM_EXIT_EXCP_BASE + DB_VECTOR] = db_interception,
|
|
[SVM_EXIT_EXCP_BASE + BP_VECTOR] = bp_interception,
|
|
[SVM_EXIT_EXCP_BASE + UD_VECTOR] = ud_interception,
|
|
[SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception,
|
|
[SVM_EXIT_EXCP_BASE + NM_VECTOR] = nm_interception,
|
|
[SVM_EXIT_EXCP_BASE + MC_VECTOR] = mc_interception,
|
|
[SVM_EXIT_INTR] = intr_interception,
|
|
[SVM_EXIT_NMI] = nmi_interception,
|
|
[SVM_EXIT_SMI] = nop_on_interception,
|
|
[SVM_EXIT_INIT] = nop_on_interception,
|
|
[SVM_EXIT_VINTR] = interrupt_window_interception,
|
|
[SVM_EXIT_RDPMC] = rdpmc_interception,
|
|
[SVM_EXIT_CPUID] = cpuid_interception,
|
|
[SVM_EXIT_IRET] = iret_interception,
|
|
[SVM_EXIT_INVD] = emulate_on_interception,
|
|
[SVM_EXIT_PAUSE] = pause_interception,
|
|
[SVM_EXIT_HLT] = halt_interception,
|
|
[SVM_EXIT_INVLPG] = invlpg_interception,
|
|
[SVM_EXIT_INVLPGA] = invlpga_interception,
|
|
[SVM_EXIT_IOIO] = io_interception,
|
|
[SVM_EXIT_MSR] = msr_interception,
|
|
[SVM_EXIT_TASK_SWITCH] = task_switch_interception,
|
|
[SVM_EXIT_SHUTDOWN] = shutdown_interception,
|
|
[SVM_EXIT_VMRUN] = vmrun_interception,
|
|
[SVM_EXIT_VMMCALL] = vmmcall_interception,
|
|
[SVM_EXIT_VMLOAD] = vmload_interception,
|
|
[SVM_EXIT_VMSAVE] = vmsave_interception,
|
|
[SVM_EXIT_STGI] = stgi_interception,
|
|
[SVM_EXIT_CLGI] = clgi_interception,
|
|
[SVM_EXIT_SKINIT] = skinit_interception,
|
|
[SVM_EXIT_WBINVD] = emulate_on_interception,
|
|
[SVM_EXIT_MONITOR] = monitor_interception,
|
|
[SVM_EXIT_MWAIT] = mwait_interception,
|
|
[SVM_EXIT_XSETBV] = xsetbv_interception,
|
|
[SVM_EXIT_NPF] = pf_interception,
|
|
};
|
|
|
|
static void dump_vmcb(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
struct vmcb_control_area *control = &svm->vmcb->control;
|
|
struct vmcb_save_area *save = &svm->vmcb->save;
|
|
|
|
pr_err("VMCB Control Area:\n");
|
|
pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
|
|
pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
|
|
pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
|
|
pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
|
|
pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
|
|
pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
|
|
pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
|
|
pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
|
|
pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
|
|
pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
|
|
pr_err("%-20s%d\n", "asid:", control->asid);
|
|
pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
|
|
pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
|
|
pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
|
|
pr_err("%-20s%08x\n", "int_state:", control->int_state);
|
|
pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
|
|
pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
|
|
pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
|
|
pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
|
|
pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
|
|
pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
|
|
pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
|
|
pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
|
|
pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
|
|
pr_err("%-20s%lld\n", "lbr_ctl:", control->lbr_ctl);
|
|
pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
|
|
pr_err("VMCB State Save Area:\n");
|
|
pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
|
|
"es:",
|
|
save->es.selector, save->es.attrib,
|
|
save->es.limit, save->es.base);
|
|
pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
|
|
"cs:",
|
|
save->cs.selector, save->cs.attrib,
|
|
save->cs.limit, save->cs.base);
|
|
pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
|
|
"ss:",
|
|
save->ss.selector, save->ss.attrib,
|
|
save->ss.limit, save->ss.base);
|
|
pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
|
|
"ds:",
|
|
save->ds.selector, save->ds.attrib,
|
|
save->ds.limit, save->ds.base);
|
|
pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
|
|
"fs:",
|
|
save->fs.selector, save->fs.attrib,
|
|
save->fs.limit, save->fs.base);
|
|
pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
|
|
"gs:",
|
|
save->gs.selector, save->gs.attrib,
|
|
save->gs.limit, save->gs.base);
|
|
pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
|
|
"gdtr:",
|
|
save->gdtr.selector, save->gdtr.attrib,
|
|
save->gdtr.limit, save->gdtr.base);
|
|
pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
|
|
"ldtr:",
|
|
save->ldtr.selector, save->ldtr.attrib,
|
|
save->ldtr.limit, save->ldtr.base);
|
|
pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
|
|
"idtr:",
|
|
save->idtr.selector, save->idtr.attrib,
|
|
save->idtr.limit, save->idtr.base);
|
|
pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
|
|
"tr:",
|
|
save->tr.selector, save->tr.attrib,
|
|
save->tr.limit, save->tr.base);
|
|
pr_err("cpl: %d efer: %016llx\n",
|
|
save->cpl, save->efer);
|
|
pr_err("%-15s %016llx %-13s %016llx\n",
|
|
"cr0:", save->cr0, "cr2:", save->cr2);
|
|
pr_err("%-15s %016llx %-13s %016llx\n",
|
|
"cr3:", save->cr3, "cr4:", save->cr4);
|
|
pr_err("%-15s %016llx %-13s %016llx\n",
|
|
"dr6:", save->dr6, "dr7:", save->dr7);
|
|
pr_err("%-15s %016llx %-13s %016llx\n",
|
|
"rip:", save->rip, "rflags:", save->rflags);
|
|
pr_err("%-15s %016llx %-13s %016llx\n",
|
|
"rsp:", save->rsp, "rax:", save->rax);
|
|
pr_err("%-15s %016llx %-13s %016llx\n",
|
|
"star:", save->star, "lstar:", save->lstar);
|
|
pr_err("%-15s %016llx %-13s %016llx\n",
|
|
"cstar:", save->cstar, "sfmask:", save->sfmask);
|
|
pr_err("%-15s %016llx %-13s %016llx\n",
|
|
"kernel_gs_base:", save->kernel_gs_base,
|
|
"sysenter_cs:", save->sysenter_cs);
|
|
pr_err("%-15s %016llx %-13s %016llx\n",
|
|
"sysenter_esp:", save->sysenter_esp,
|
|
"sysenter_eip:", save->sysenter_eip);
|
|
pr_err("%-15s %016llx %-13s %016llx\n",
|
|
"gpat:", save->g_pat, "dbgctl:", save->dbgctl);
|
|
pr_err("%-15s %016llx %-13s %016llx\n",
|
|
"br_from:", save->br_from, "br_to:", save->br_to);
|
|
pr_err("%-15s %016llx %-13s %016llx\n",
|
|
"excp_from:", save->last_excp_from,
|
|
"excp_to:", save->last_excp_to);
|
|
}
|
|
|
|
static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
|
|
{
|
|
struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
|
|
|
|
*info1 = control->exit_info_1;
|
|
*info2 = control->exit_info_2;
|
|
}
|
|
|
|
static int handle_exit(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
struct kvm_run *kvm_run = vcpu->run;
|
|
u32 exit_code = svm->vmcb->control.exit_code;
|
|
|
|
if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
|
|
vcpu->arch.cr0 = svm->vmcb->save.cr0;
|
|
if (npt_enabled)
|
|
vcpu->arch.cr3 = svm->vmcb->save.cr3;
|
|
|
|
if (unlikely(svm->nested.exit_required)) {
|
|
nested_svm_vmexit(svm);
|
|
svm->nested.exit_required = false;
|
|
|
|
return 1;
|
|
}
|
|
|
|
if (is_guest_mode(vcpu)) {
|
|
int vmexit;
|
|
|
|
trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
|
|
svm->vmcb->control.exit_info_1,
|
|
svm->vmcb->control.exit_info_2,
|
|
svm->vmcb->control.exit_int_info,
|
|
svm->vmcb->control.exit_int_info_err,
|
|
KVM_ISA_SVM);
|
|
|
|
vmexit = nested_svm_exit_special(svm);
|
|
|
|
if (vmexit == NESTED_EXIT_CONTINUE)
|
|
vmexit = nested_svm_exit_handled(svm);
|
|
|
|
if (vmexit == NESTED_EXIT_DONE)
|
|
return 1;
|
|
}
|
|
|
|
svm_complete_interrupts(svm);
|
|
|
|
if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
|
|
kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
|
|
kvm_run->fail_entry.hardware_entry_failure_reason
|
|
= svm->vmcb->control.exit_code;
|
|
pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
|
|
dump_vmcb(vcpu);
|
|
return 0;
|
|
}
|
|
|
|
if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
|
|
exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
|
|
exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
|
|
exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
|
|
printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
|
|
"exit_code 0x%x\n",
|
|
__func__, svm->vmcb->control.exit_int_info,
|
|
exit_code);
|
|
|
|
if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
|
|
|| !svm_exit_handlers[exit_code]) {
|
|
kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
|
|
kvm_run->hw.hardware_exit_reason = exit_code;
|
|
return 0;
|
|
}
|
|
|
|
return svm_exit_handlers[exit_code](svm);
|
|
}
|
|
|
|
static void reload_tss(struct kvm_vcpu *vcpu)
|
|
{
|
|
int cpu = raw_smp_processor_id();
|
|
|
|
struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
|
|
sd->tss_desc->type = 9; /* available 32/64-bit TSS */
|
|
load_TR_desc();
|
|
}
|
|
|
|
static void pre_svm_run(struct vcpu_svm *svm)
|
|
{
|
|
int cpu = raw_smp_processor_id();
|
|
|
|
struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
|
|
|
|
/* FIXME: handle wraparound of asid_generation */
|
|
if (svm->asid_generation != sd->asid_generation)
|
|
new_asid(svm, sd);
|
|
}
|
|
|
|
static void svm_inject_nmi(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
|
|
vcpu->arch.hflags |= HF_NMI_MASK;
|
|
set_intercept(svm, INTERCEPT_IRET);
|
|
++vcpu->stat.nmi_injections;
|
|
}
|
|
|
|
static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
|
|
{
|
|
struct vmcb_control_area *control;
|
|
|
|
control = &svm->vmcb->control;
|
|
control->int_vector = irq;
|
|
control->int_ctl &= ~V_INTR_PRIO_MASK;
|
|
control->int_ctl |= V_IRQ_MASK |
|
|
((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
|
|
mark_dirty(svm->vmcb, VMCB_INTR);
|
|
}
|
|
|
|
static void svm_set_irq(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
BUG_ON(!(gif_set(svm)));
|
|
|
|
trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
|
|
++vcpu->stat.irq_injections;
|
|
|
|
svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
|
|
SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
|
|
}
|
|
|
|
static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
|
|
return;
|
|
|
|
clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
|
|
|
|
if (irr == -1)
|
|
return;
|
|
|
|
if (tpr >= irr)
|
|
set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
|
|
}
|
|
|
|
static void svm_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
|
|
{
|
|
return;
|
|
}
|
|
|
|
static int svm_vm_has_apicv(struct kvm *kvm)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
|
|
{
|
|
return;
|
|
}
|
|
|
|
static void svm_hwapic_isr_update(struct kvm *kvm, int isr)
|
|
{
|
|
return;
|
|
}
|
|
|
|
static void svm_sync_pir_to_irr(struct kvm_vcpu *vcpu)
|
|
{
|
|
return;
|
|
}
|
|
|
|
static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
struct vmcb *vmcb = svm->vmcb;
|
|
int ret;
|
|
ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
|
|
!(svm->vcpu.arch.hflags & HF_NMI_MASK);
|
|
ret = ret && gif_set(svm) && nested_svm_nmi(svm);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
|
|
}
|
|
|
|
static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
if (masked) {
|
|
svm->vcpu.arch.hflags |= HF_NMI_MASK;
|
|
set_intercept(svm, INTERCEPT_IRET);
|
|
} else {
|
|
svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
|
|
clr_intercept(svm, INTERCEPT_IRET);
|
|
}
|
|
}
|
|
|
|
static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
struct vmcb *vmcb = svm->vmcb;
|
|
int ret;
|
|
|
|
if (!gif_set(svm) ||
|
|
(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
|
|
return 0;
|
|
|
|
ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
|
|
|
|
if (is_guest_mode(vcpu))
|
|
return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void enable_irq_window(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
/*
|
|
* In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
|
|
* 1, because that's a separate STGI/VMRUN intercept. The next time we
|
|
* get that intercept, this function will be called again though and
|
|
* we'll get the vintr intercept.
|
|
*/
|
|
if (gif_set(svm) && nested_svm_intr(svm)) {
|
|
svm_set_vintr(svm);
|
|
svm_inject_irq(svm, 0x0);
|
|
}
|
|
}
|
|
|
|
static void enable_nmi_window(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
|
|
== HF_NMI_MASK)
|
|
return; /* IRET will cause a vm exit */
|
|
|
|
/*
|
|
* Something prevents NMI from been injected. Single step over possible
|
|
* problem (IRET or exception injection or interrupt shadow)
|
|
*/
|
|
svm->nmi_singlestep = true;
|
|
svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
|
|
update_db_bp_intercept(vcpu);
|
|
}
|
|
|
|
static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static void svm_flush_tlb(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
|
|
svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
|
|
else
|
|
svm->asid_generation--;
|
|
}
|
|
|
|
static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
|
|
{
|
|
}
|
|
|
|
static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
|
|
return;
|
|
|
|
if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
|
|
int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
|
|
kvm_set_cr8(vcpu, cr8);
|
|
}
|
|
}
|
|
|
|
static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
u64 cr8;
|
|
|
|
if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
|
|
return;
|
|
|
|
cr8 = kvm_get_cr8(vcpu);
|
|
svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
|
|
svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
|
|
}
|
|
|
|
static void svm_complete_interrupts(struct vcpu_svm *svm)
|
|
{
|
|
u8 vector;
|
|
int type;
|
|
u32 exitintinfo = svm->vmcb->control.exit_int_info;
|
|
unsigned int3_injected = svm->int3_injected;
|
|
|
|
svm->int3_injected = 0;
|
|
|
|
/*
|
|
* If we've made progress since setting HF_IRET_MASK, we've
|
|
* executed an IRET and can allow NMI injection.
|
|
*/
|
|
if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
|
|
&& kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
|
|
svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
|
|
kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
|
|
}
|
|
|
|
svm->vcpu.arch.nmi_injected = false;
|
|
kvm_clear_exception_queue(&svm->vcpu);
|
|
kvm_clear_interrupt_queue(&svm->vcpu);
|
|
|
|
if (!(exitintinfo & SVM_EXITINTINFO_VALID))
|
|
return;
|
|
|
|
kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
|
|
|
|
vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
|
|
type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
|
|
|
|
switch (type) {
|
|
case SVM_EXITINTINFO_TYPE_NMI:
|
|
svm->vcpu.arch.nmi_injected = true;
|
|
break;
|
|
case SVM_EXITINTINFO_TYPE_EXEPT:
|
|
/*
|
|
* In case of software exceptions, do not reinject the vector,
|
|
* but re-execute the instruction instead. Rewind RIP first
|
|
* if we emulated INT3 before.
|
|
*/
|
|
if (kvm_exception_is_soft(vector)) {
|
|
if (vector == BP_VECTOR && int3_injected &&
|
|
kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
|
|
kvm_rip_write(&svm->vcpu,
|
|
kvm_rip_read(&svm->vcpu) -
|
|
int3_injected);
|
|
break;
|
|
}
|
|
if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
|
|
u32 err = svm->vmcb->control.exit_int_info_err;
|
|
kvm_requeue_exception_e(&svm->vcpu, vector, err);
|
|
|
|
} else
|
|
kvm_requeue_exception(&svm->vcpu, vector);
|
|
break;
|
|
case SVM_EXITINTINFO_TYPE_INTR:
|
|
kvm_queue_interrupt(&svm->vcpu, vector, false);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void svm_cancel_injection(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
struct vmcb_control_area *control = &svm->vmcb->control;
|
|
|
|
control->exit_int_info = control->event_inj;
|
|
control->exit_int_info_err = control->event_inj_err;
|
|
control->event_inj = 0;
|
|
svm_complete_interrupts(svm);
|
|
}
|
|
|
|
static void svm_vcpu_run(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
|
|
svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
|
|
svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
|
|
|
|
/*
|
|
* A vmexit emulation is required before the vcpu can be executed
|
|
* again.
|
|
*/
|
|
if (unlikely(svm->nested.exit_required))
|
|
return;
|
|
|
|
pre_svm_run(svm);
|
|
|
|
sync_lapic_to_cr8(vcpu);
|
|
|
|
svm->vmcb->save.cr2 = vcpu->arch.cr2;
|
|
|
|
clgi();
|
|
|
|
local_irq_enable();
|
|
|
|
asm volatile (
|
|
"push %%" _ASM_BP "; \n\t"
|
|
"mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t"
|
|
"mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t"
|
|
"mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t"
|
|
"mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t"
|
|
"mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t"
|
|
"mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t"
|
|
#ifdef CONFIG_X86_64
|
|
"mov %c[r8](%[svm]), %%r8 \n\t"
|
|
"mov %c[r9](%[svm]), %%r9 \n\t"
|
|
"mov %c[r10](%[svm]), %%r10 \n\t"
|
|
"mov %c[r11](%[svm]), %%r11 \n\t"
|
|
"mov %c[r12](%[svm]), %%r12 \n\t"
|
|
"mov %c[r13](%[svm]), %%r13 \n\t"
|
|
"mov %c[r14](%[svm]), %%r14 \n\t"
|
|
"mov %c[r15](%[svm]), %%r15 \n\t"
|
|
#endif
|
|
|
|
/* Enter guest mode */
|
|
"push %%" _ASM_AX " \n\t"
|
|
"mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t"
|
|
__ex(SVM_VMLOAD) "\n\t"
|
|
__ex(SVM_VMRUN) "\n\t"
|
|
__ex(SVM_VMSAVE) "\n\t"
|
|
"pop %%" _ASM_AX " \n\t"
|
|
|
|
/* Save guest registers, load host registers */
|
|
"mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t"
|
|
"mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t"
|
|
"mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t"
|
|
"mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t"
|
|
"mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t"
|
|
"mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t"
|
|
#ifdef CONFIG_X86_64
|
|
"mov %%r8, %c[r8](%[svm]) \n\t"
|
|
"mov %%r9, %c[r9](%[svm]) \n\t"
|
|
"mov %%r10, %c[r10](%[svm]) \n\t"
|
|
"mov %%r11, %c[r11](%[svm]) \n\t"
|
|
"mov %%r12, %c[r12](%[svm]) \n\t"
|
|
"mov %%r13, %c[r13](%[svm]) \n\t"
|
|
"mov %%r14, %c[r14](%[svm]) \n\t"
|
|
"mov %%r15, %c[r15](%[svm]) \n\t"
|
|
#endif
|
|
"pop %%" _ASM_BP
|
|
:
|
|
: [svm]"a"(svm),
|
|
[vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
|
|
[rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
|
|
[rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
|
|
[rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
|
|
[rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
|
|
[rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
|
|
[rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
|
|
#ifdef CONFIG_X86_64
|
|
, [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
|
|
[r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
|
|
[r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
|
|
[r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
|
|
[r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
|
|
[r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
|
|
[r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
|
|
[r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
|
|
#endif
|
|
: "cc", "memory"
|
|
#ifdef CONFIG_X86_64
|
|
, "rbx", "rcx", "rdx", "rsi", "rdi"
|
|
, "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
|
|
#else
|
|
, "ebx", "ecx", "edx", "esi", "edi"
|
|
#endif
|
|
);
|
|
|
|
#ifdef CONFIG_X86_64
|
|
wrmsrl(MSR_GS_BASE, svm->host.gs_base);
|
|
#else
|
|
loadsegment(fs, svm->host.fs);
|
|
#ifndef CONFIG_X86_32_LAZY_GS
|
|
loadsegment(gs, svm->host.gs);
|
|
#endif
|
|
#endif
|
|
|
|
reload_tss(vcpu);
|
|
|
|
local_irq_disable();
|
|
|
|
vcpu->arch.cr2 = svm->vmcb->save.cr2;
|
|
vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
|
|
vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
|
|
vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
|
|
|
|
trace_kvm_exit(svm->vmcb->control.exit_code, vcpu, KVM_ISA_SVM);
|
|
|
|
if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
|
|
kvm_before_handle_nmi(&svm->vcpu);
|
|
|
|
stgi();
|
|
|
|
/* Any pending NMI will happen here */
|
|
|
|
if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
|
|
kvm_after_handle_nmi(&svm->vcpu);
|
|
|
|
sync_cr8_to_lapic(vcpu);
|
|
|
|
svm->next_rip = 0;
|
|
|
|
svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
|
|
|
|
/* if exit due to PF check for async PF */
|
|
if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
|
|
svm->apf_reason = kvm_read_and_reset_pf_reason();
|
|
|
|
if (npt_enabled) {
|
|
vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
|
|
vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
|
|
}
|
|
|
|
/*
|
|
* We need to handle MC intercepts here before the vcpu has a chance to
|
|
* change the physical cpu
|
|
*/
|
|
if (unlikely(svm->vmcb->control.exit_code ==
|
|
SVM_EXIT_EXCP_BASE + MC_VECTOR))
|
|
svm_handle_mce(svm);
|
|
|
|
mark_all_clean(svm->vmcb);
|
|
}
|
|
|
|
static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
svm->vmcb->save.cr3 = root;
|
|
mark_dirty(svm->vmcb, VMCB_CR);
|
|
svm_flush_tlb(vcpu);
|
|
}
|
|
|
|
static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
svm->vmcb->control.nested_cr3 = root;
|
|
mark_dirty(svm->vmcb, VMCB_NPT);
|
|
|
|
/* Also sync guest cr3 here in case we live migrate */
|
|
svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
|
|
mark_dirty(svm->vmcb, VMCB_CR);
|
|
|
|
svm_flush_tlb(vcpu);
|
|
}
|
|
|
|
static int is_disabled(void)
|
|
{
|
|
u64 vm_cr;
|
|
|
|
rdmsrl(MSR_VM_CR, vm_cr);
|
|
if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
|
|
{
|
|
/*
|
|
* Patch in the VMMCALL instruction:
|
|
*/
|
|
hypercall[0] = 0x0f;
|
|
hypercall[1] = 0x01;
|
|
hypercall[2] = 0xd9;
|
|
}
|
|
|
|
static void svm_check_processor_compat(void *rtn)
|
|
{
|
|
*(int *)rtn = 0;
|
|
}
|
|
|
|
static bool svm_cpu_has_accelerated_tpr(void)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static void svm_cpuid_update(struct kvm_vcpu *vcpu)
|
|
{
|
|
}
|
|
|
|
static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
|
|
{
|
|
switch (func) {
|
|
case 0x80000001:
|
|
if (nested)
|
|
entry->ecx |= (1 << 2); /* Set SVM bit */
|
|
break;
|
|
case 0x8000000A:
|
|
entry->eax = 1; /* SVM revision 1 */
|
|
entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
|
|
ASID emulation to nested SVM */
|
|
entry->ecx = 0; /* Reserved */
|
|
entry->edx = 0; /* Per default do not support any
|
|
additional features */
|
|
|
|
/* Support next_rip if host supports it */
|
|
if (boot_cpu_has(X86_FEATURE_NRIPS))
|
|
entry->edx |= SVM_FEATURE_NRIP;
|
|
|
|
/* Support NPT for the guest if enabled */
|
|
if (npt_enabled)
|
|
entry->edx |= SVM_FEATURE_NPT;
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
static int svm_get_lpage_level(void)
|
|
{
|
|
return PT_PDPE_LEVEL;
|
|
}
|
|
|
|
static bool svm_rdtscp_supported(void)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
static bool svm_invpcid_supported(void)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
static bool svm_mpx_supported(void)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
static bool svm_has_wbinvd_exit(void)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
static void svm_fpu_deactivate(struct kvm_vcpu *vcpu)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
|
|
set_exception_intercept(svm, NM_VECTOR);
|
|
update_cr0_intercept(svm);
|
|
}
|
|
|
|
#define PRE_EX(exit) { .exit_code = (exit), \
|
|
.stage = X86_ICPT_PRE_EXCEPT, }
|
|
#define POST_EX(exit) { .exit_code = (exit), \
|
|
.stage = X86_ICPT_POST_EXCEPT, }
|
|
#define POST_MEM(exit) { .exit_code = (exit), \
|
|
.stage = X86_ICPT_POST_MEMACCESS, }
|
|
|
|
static const struct __x86_intercept {
|
|
u32 exit_code;
|
|
enum x86_intercept_stage stage;
|
|
} x86_intercept_map[] = {
|
|
[x86_intercept_cr_read] = POST_EX(SVM_EXIT_READ_CR0),
|
|
[x86_intercept_cr_write] = POST_EX(SVM_EXIT_WRITE_CR0),
|
|
[x86_intercept_clts] = POST_EX(SVM_EXIT_WRITE_CR0),
|
|
[x86_intercept_lmsw] = POST_EX(SVM_EXIT_WRITE_CR0),
|
|
[x86_intercept_smsw] = POST_EX(SVM_EXIT_READ_CR0),
|
|
[x86_intercept_dr_read] = POST_EX(SVM_EXIT_READ_DR0),
|
|
[x86_intercept_dr_write] = POST_EX(SVM_EXIT_WRITE_DR0),
|
|
[x86_intercept_sldt] = POST_EX(SVM_EXIT_LDTR_READ),
|
|
[x86_intercept_str] = POST_EX(SVM_EXIT_TR_READ),
|
|
[x86_intercept_lldt] = POST_EX(SVM_EXIT_LDTR_WRITE),
|
|
[x86_intercept_ltr] = POST_EX(SVM_EXIT_TR_WRITE),
|
|
[x86_intercept_sgdt] = POST_EX(SVM_EXIT_GDTR_READ),
|
|
[x86_intercept_sidt] = POST_EX(SVM_EXIT_IDTR_READ),
|
|
[x86_intercept_lgdt] = POST_EX(SVM_EXIT_GDTR_WRITE),
|
|
[x86_intercept_lidt] = POST_EX(SVM_EXIT_IDTR_WRITE),
|
|
[x86_intercept_vmrun] = POST_EX(SVM_EXIT_VMRUN),
|
|
[x86_intercept_vmmcall] = POST_EX(SVM_EXIT_VMMCALL),
|
|
[x86_intercept_vmload] = POST_EX(SVM_EXIT_VMLOAD),
|
|
[x86_intercept_vmsave] = POST_EX(SVM_EXIT_VMSAVE),
|
|
[x86_intercept_stgi] = POST_EX(SVM_EXIT_STGI),
|
|
[x86_intercept_clgi] = POST_EX(SVM_EXIT_CLGI),
|
|
[x86_intercept_skinit] = POST_EX(SVM_EXIT_SKINIT),
|
|
[x86_intercept_invlpga] = POST_EX(SVM_EXIT_INVLPGA),
|
|
[x86_intercept_rdtscp] = POST_EX(SVM_EXIT_RDTSCP),
|
|
[x86_intercept_monitor] = POST_MEM(SVM_EXIT_MONITOR),
|
|
[x86_intercept_mwait] = POST_EX(SVM_EXIT_MWAIT),
|
|
[x86_intercept_invlpg] = POST_EX(SVM_EXIT_INVLPG),
|
|
[x86_intercept_invd] = POST_EX(SVM_EXIT_INVD),
|
|
[x86_intercept_wbinvd] = POST_EX(SVM_EXIT_WBINVD),
|
|
[x86_intercept_wrmsr] = POST_EX(SVM_EXIT_MSR),
|
|
[x86_intercept_rdtsc] = POST_EX(SVM_EXIT_RDTSC),
|
|
[x86_intercept_rdmsr] = POST_EX(SVM_EXIT_MSR),
|
|
[x86_intercept_rdpmc] = POST_EX(SVM_EXIT_RDPMC),
|
|
[x86_intercept_cpuid] = PRE_EX(SVM_EXIT_CPUID),
|
|
[x86_intercept_rsm] = PRE_EX(SVM_EXIT_RSM),
|
|
[x86_intercept_pause] = PRE_EX(SVM_EXIT_PAUSE),
|
|
[x86_intercept_pushf] = PRE_EX(SVM_EXIT_PUSHF),
|
|
[x86_intercept_popf] = PRE_EX(SVM_EXIT_POPF),
|
|
[x86_intercept_intn] = PRE_EX(SVM_EXIT_SWINT),
|
|
[x86_intercept_iret] = PRE_EX(SVM_EXIT_IRET),
|
|
[x86_intercept_icebp] = PRE_EX(SVM_EXIT_ICEBP),
|
|
[x86_intercept_hlt] = POST_EX(SVM_EXIT_HLT),
|
|
[x86_intercept_in] = POST_EX(SVM_EXIT_IOIO),
|
|
[x86_intercept_ins] = POST_EX(SVM_EXIT_IOIO),
|
|
[x86_intercept_out] = POST_EX(SVM_EXIT_IOIO),
|
|
[x86_intercept_outs] = POST_EX(SVM_EXIT_IOIO),
|
|
};
|
|
|
|
#undef PRE_EX
|
|
#undef POST_EX
|
|
#undef POST_MEM
|
|
|
|
static int svm_check_intercept(struct kvm_vcpu *vcpu,
|
|
struct x86_instruction_info *info,
|
|
enum x86_intercept_stage stage)
|
|
{
|
|
struct vcpu_svm *svm = to_svm(vcpu);
|
|
int vmexit, ret = X86EMUL_CONTINUE;
|
|
struct __x86_intercept icpt_info;
|
|
struct vmcb *vmcb = svm->vmcb;
|
|
|
|
if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
|
|
goto out;
|
|
|
|
icpt_info = x86_intercept_map[info->intercept];
|
|
|
|
if (stage != icpt_info.stage)
|
|
goto out;
|
|
|
|
switch (icpt_info.exit_code) {
|
|
case SVM_EXIT_READ_CR0:
|
|
if (info->intercept == x86_intercept_cr_read)
|
|
icpt_info.exit_code += info->modrm_reg;
|
|
break;
|
|
case SVM_EXIT_WRITE_CR0: {
|
|
unsigned long cr0, val;
|
|
u64 intercept;
|
|
|
|
if (info->intercept == x86_intercept_cr_write)
|
|
icpt_info.exit_code += info->modrm_reg;
|
|
|
|
if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0 ||
|
|
info->intercept == x86_intercept_clts)
|
|
break;
|
|
|
|
intercept = svm->nested.intercept;
|
|
|
|
if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
|
|
break;
|
|
|
|
cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
|
|
val = info->src_val & ~SVM_CR0_SELECTIVE_MASK;
|
|
|
|
if (info->intercept == x86_intercept_lmsw) {
|
|
cr0 &= 0xfUL;
|
|
val &= 0xfUL;
|
|
/* lmsw can't clear PE - catch this here */
|
|
if (cr0 & X86_CR0_PE)
|
|
val |= X86_CR0_PE;
|
|
}
|
|
|
|
if (cr0 ^ val)
|
|
icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
|
|
|
|
break;
|
|
}
|
|
case SVM_EXIT_READ_DR0:
|
|
case SVM_EXIT_WRITE_DR0:
|
|
icpt_info.exit_code += info->modrm_reg;
|
|
break;
|
|
case SVM_EXIT_MSR:
|
|
if (info->intercept == x86_intercept_wrmsr)
|
|
vmcb->control.exit_info_1 = 1;
|
|
else
|
|
vmcb->control.exit_info_1 = 0;
|
|
break;
|
|
case SVM_EXIT_PAUSE:
|
|
/*
|
|
* We get this for NOP only, but pause
|
|
* is rep not, check this here
|
|
*/
|
|
if (info->rep_prefix != REPE_PREFIX)
|
|
goto out;
|
|
case SVM_EXIT_IOIO: {
|
|
u64 exit_info;
|
|
u32 bytes;
|
|
|
|
if (info->intercept == x86_intercept_in ||
|
|
info->intercept == x86_intercept_ins) {
|
|
exit_info = ((info->src_val & 0xffff) << 16) |
|
|
SVM_IOIO_TYPE_MASK;
|
|
bytes = info->dst_bytes;
|
|
} else {
|
|
exit_info = (info->dst_val & 0xffff) << 16;
|
|
bytes = info->src_bytes;
|
|
}
|
|
|
|
if (info->intercept == x86_intercept_outs ||
|
|
info->intercept == x86_intercept_ins)
|
|
exit_info |= SVM_IOIO_STR_MASK;
|
|
|
|
if (info->rep_prefix)
|
|
exit_info |= SVM_IOIO_REP_MASK;
|
|
|
|
bytes = min(bytes, 4u);
|
|
|
|
exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
|
|
|
|
exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
|
|
|
|
vmcb->control.exit_info_1 = exit_info;
|
|
vmcb->control.exit_info_2 = info->next_rip;
|
|
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
|
|
vmcb->control.next_rip = info->next_rip;
|
|
vmcb->control.exit_code = icpt_info.exit_code;
|
|
vmexit = nested_svm_exit_handled(svm);
|
|
|
|
ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
|
|
: X86EMUL_CONTINUE;
|
|
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static void svm_handle_external_intr(struct kvm_vcpu *vcpu)
|
|
{
|
|
local_irq_enable();
|
|
}
|
|
|
|
static void svm_sched_in(struct kvm_vcpu *vcpu, int cpu)
|
|
{
|
|
}
|
|
|
|
static struct kvm_x86_ops svm_x86_ops = {
|
|
.cpu_has_kvm_support = has_svm,
|
|
.disabled_by_bios = is_disabled,
|
|
.hardware_setup = svm_hardware_setup,
|
|
.hardware_unsetup = svm_hardware_unsetup,
|
|
.check_processor_compatibility = svm_check_processor_compat,
|
|
.hardware_enable = svm_hardware_enable,
|
|
.hardware_disable = svm_hardware_disable,
|
|
.cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
|
|
|
|
.vcpu_create = svm_create_vcpu,
|
|
.vcpu_free = svm_free_vcpu,
|
|
.vcpu_reset = svm_vcpu_reset,
|
|
|
|
.prepare_guest_switch = svm_prepare_guest_switch,
|
|
.vcpu_load = svm_vcpu_load,
|
|
.vcpu_put = svm_vcpu_put,
|
|
|
|
.update_db_bp_intercept = update_db_bp_intercept,
|
|
.get_msr = svm_get_msr,
|
|
.set_msr = svm_set_msr,
|
|
.get_segment_base = svm_get_segment_base,
|
|
.get_segment = svm_get_segment,
|
|
.set_segment = svm_set_segment,
|
|
.get_cpl = svm_get_cpl,
|
|
.get_cs_db_l_bits = kvm_get_cs_db_l_bits,
|
|
.decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
|
|
.decache_cr3 = svm_decache_cr3,
|
|
.decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
|
|
.set_cr0 = svm_set_cr0,
|
|
.set_cr3 = svm_set_cr3,
|
|
.set_cr4 = svm_set_cr4,
|
|
.set_efer = svm_set_efer,
|
|
.get_idt = svm_get_idt,
|
|
.set_idt = svm_set_idt,
|
|
.get_gdt = svm_get_gdt,
|
|
.set_gdt = svm_set_gdt,
|
|
.get_dr6 = svm_get_dr6,
|
|
.set_dr6 = svm_set_dr6,
|
|
.set_dr7 = svm_set_dr7,
|
|
.sync_dirty_debug_regs = svm_sync_dirty_debug_regs,
|
|
.cache_reg = svm_cache_reg,
|
|
.get_rflags = svm_get_rflags,
|
|
.set_rflags = svm_set_rflags,
|
|
.fpu_deactivate = svm_fpu_deactivate,
|
|
|
|
.tlb_flush = svm_flush_tlb,
|
|
|
|
.run = svm_vcpu_run,
|
|
.handle_exit = handle_exit,
|
|
.skip_emulated_instruction = skip_emulated_instruction,
|
|
.set_interrupt_shadow = svm_set_interrupt_shadow,
|
|
.get_interrupt_shadow = svm_get_interrupt_shadow,
|
|
.patch_hypercall = svm_patch_hypercall,
|
|
.set_irq = svm_set_irq,
|
|
.set_nmi = svm_inject_nmi,
|
|
.queue_exception = svm_queue_exception,
|
|
.cancel_injection = svm_cancel_injection,
|
|
.interrupt_allowed = svm_interrupt_allowed,
|
|
.nmi_allowed = svm_nmi_allowed,
|
|
.get_nmi_mask = svm_get_nmi_mask,
|
|
.set_nmi_mask = svm_set_nmi_mask,
|
|
.enable_nmi_window = enable_nmi_window,
|
|
.enable_irq_window = enable_irq_window,
|
|
.update_cr8_intercept = update_cr8_intercept,
|
|
.set_virtual_x2apic_mode = svm_set_virtual_x2apic_mode,
|
|
.vm_has_apicv = svm_vm_has_apicv,
|
|
.load_eoi_exitmap = svm_load_eoi_exitmap,
|
|
.hwapic_isr_update = svm_hwapic_isr_update,
|
|
.sync_pir_to_irr = svm_sync_pir_to_irr,
|
|
|
|
.set_tss_addr = svm_set_tss_addr,
|
|
.get_tdp_level = get_npt_level,
|
|
.get_mt_mask = svm_get_mt_mask,
|
|
|
|
.get_exit_info = svm_get_exit_info,
|
|
|
|
.get_lpage_level = svm_get_lpage_level,
|
|
|
|
.cpuid_update = svm_cpuid_update,
|
|
|
|
.rdtscp_supported = svm_rdtscp_supported,
|
|
.invpcid_supported = svm_invpcid_supported,
|
|
.mpx_supported = svm_mpx_supported,
|
|
|
|
.set_supported_cpuid = svm_set_supported_cpuid,
|
|
|
|
.has_wbinvd_exit = svm_has_wbinvd_exit,
|
|
|
|
.set_tsc_khz = svm_set_tsc_khz,
|
|
.read_tsc_offset = svm_read_tsc_offset,
|
|
.write_tsc_offset = svm_write_tsc_offset,
|
|
.adjust_tsc_offset = svm_adjust_tsc_offset,
|
|
.compute_tsc_offset = svm_compute_tsc_offset,
|
|
.read_l1_tsc = svm_read_l1_tsc,
|
|
|
|
.set_tdp_cr3 = set_tdp_cr3,
|
|
|
|
.check_intercept = svm_check_intercept,
|
|
.handle_external_intr = svm_handle_external_intr,
|
|
|
|
.sched_in = svm_sched_in,
|
|
};
|
|
|
|
static int __init svm_init(void)
|
|
{
|
|
return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
|
|
__alignof__(struct vcpu_svm), THIS_MODULE);
|
|
}
|
|
|
|
static void __exit svm_exit(void)
|
|
{
|
|
kvm_exit();
|
|
}
|
|
|
|
module_init(svm_init)
|
|
module_exit(svm_exit)
|