mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-27 01:39:20 +07:00
6c8a53c9e6
Pull perf changes from Ingo Molnar: "Core kernel changes: - One of the more interesting features in this cycle is the ability to attach eBPF programs (user-defined, sandboxed bytecode executed by the kernel) to kprobes. This allows user-defined instrumentation on a live kernel image that can never crash, hang or interfere with the kernel negatively. (Right now it's limited to root-only, but in the future we might allow unprivileged use as well.) (Alexei Starovoitov) - Another non-trivial feature is per event clockid support: this allows, amongst other things, the selection of different clock sources for event timestamps traced via perf. This feature is sought by people who'd like to merge perf generated events with external events that were measured with different clocks: - cluster wide profiling - for system wide tracing with user-space events, - JIT profiling events etc. Matching perf tooling support is added as well, available via the -k, --clockid <clockid> parameter to perf record et al. (Peter Zijlstra) Hardware enablement kernel changes: - x86 Intel Processor Trace (PT) support: which is a hardware tracer on steroids, available on Broadwell CPUs. The hardware trace stream is directly output into the user-space ring-buffer, using the 'AUX' data format extension that was added to the perf core to support hardware constraints such as the necessity to have the tracing buffer physically contiguous. This patch-set was developed for two years and this is the result. A simple way to make use of this is to use BTS tracing, the PT driver emulates BTS output - available via the 'intel_bts' PMU. More explicit PT specific tooling support is in the works as well - will probably be ready by 4.2. (Alexander Shishkin, Peter Zijlstra) - x86 Intel Cache QoS Monitoring (CQM) support: this is a hardware feature of Intel Xeon CPUs that allows the measurement and allocation/partitioning of caches to individual workloads. These kernel changes expose the measurement side as a new PMU driver, which exposes various QoS related PMU events. (The partitioning change is work in progress and is planned to be merged as a cgroup extension.) (Matt Fleming, Peter Zijlstra; CPU feature detection by Peter P Waskiewicz Jr) - x86 Intel Haswell LBR call stack support: this is a new Haswell feature that allows the hardware recording of call chains, plus tooling support. To activate this feature you have to enable it via the new 'lbr' call-graph recording option: perf record --call-graph lbr perf report or: perf top --call-graph lbr This hardware feature is a lot faster than stack walk or dwarf based unwinding, but has some limitations: - It reuses the current LBR facility, so LBR call stack and branch record can not be enabled at the same time. - It is only available for user-space callchains. (Yan, Zheng) - x86 Intel Broadwell CPU support and various event constraints and event table fixes for earlier models. (Andi Kleen) - x86 Intel HT CPUs event scheduling workarounds. This is a complex CPU bug affecting the SNB,IVB,HSW families that results in counter value corruption. The mitigation code is automatically enabled and is transparent. (Maria Dimakopoulou, Stephane Eranian) The perf tooling side had a ton of changes in this cycle as well, so I'm only able to list the user visible changes here, in addition to the tooling changes outlined above: User visible changes affecting all tools: - Improve support of compressed kernel modules (Jiri Olsa) - Save DSO loading errno to better report errors (Arnaldo Carvalho de Melo) - Bash completion for subcommands (Yunlong Song) - Add 'I' event modifier for perf_event_attr.exclude_idle bit (Jiri Olsa) - Support missing -f to override perf.data file ownership. (Yunlong Song) - Show the first event with an invalid filter (David Ahern, Arnaldo Carvalho de Melo) User visible changes in individual tools: 'perf data': New tool for converting perf.data to other formats, initially for the CTF (Common Trace Format) from LTTng (Jiri Olsa, Sebastian Siewior) 'perf diff': Add --kallsyms option (David Ahern) 'perf list': Allow listing events with 'tracepoint' prefix (Yunlong Song) Sort the output of the command (Yunlong Song) 'perf kmem': Respect -i option (Jiri Olsa) Print big numbers using thousands' group (Namhyung Kim) Allow -v option (Namhyung Kim) Fix alignment of slab result table (Namhyung Kim) 'perf probe': Support multiple probes on different binaries on the same command line (Masami Hiramatsu) Support unnamed union/structure members data collection. (Masami Hiramatsu) Check kprobes blacklist when adding new events. (Masami Hiramatsu) 'perf record': Teach 'perf record' about perf_event_attr.clockid (Peter Zijlstra) Support recording running/enabled time (Andi Kleen) 'perf sched': Improve the performance of 'perf sched replay' on high CPU core count machines (Yunlong Song) 'perf report' and 'perf top': Allow annotating entries in callchains in the hists browser (Arnaldo Carvalho de Melo) Indicate which callchain entries are annotated in the TUI hists browser (Arnaldo Carvalho de Melo) Add pid/tid filtering to 'report' and 'script' commands (David Ahern) Consider PERF_RECORD_ events with cpumode == 0 in 'perf top', removing one cause of long term memory usage buildup, i.e. not processing PERF_RECORD_EXIT events (Arnaldo Carvalho de Melo) 'perf stat': Report unsupported events properly (Suzuki K. Poulose) Output running time and run/enabled ratio in CSV mode (Andi Kleen) 'perf trace': Handle legacy syscalls tracepoints (David Ahern, Arnaldo Carvalho de Melo) Only insert blank duration bracket when tracing syscalls (Arnaldo Carvalho de Melo) Filter out the trace pid when no threads are specified (Arnaldo Carvalho de Melo) Dump stack on segfaults (Arnaldo Carvalho de Melo) No need to explicitely enable evsels for workload started from perf, let it be enabled via perf_event_attr.enable_on_exec, removing some events that take place in the 'perf trace' before a workload is really started by it. (Arnaldo Carvalho de Melo) Allow mixing with tracepoints and suppressing plain syscalls. (Arnaldo Carvalho de Melo) There's also been a ton of infrastructure work done, such as the split-out of perf's build system into tools/build/ and other changes - see the shortlog and changelog for details" * 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (358 commits) perf/x86/intel/pt: Clean up the control flow in pt_pmu_hw_init() perf evlist: Fix type for references to data_head/tail perf probe: Check the orphaned -x option perf probe: Support multiple probes on different binaries perf buildid-list: Fix segfault when show DSOs with hits perf tools: Fix cross-endian analysis perf tools: Fix error path to do closedir() when synthesizing threads perf tools: Fix synthesizing fork_event.ppid for non-main thread perf tools: Add 'I' event modifier for exclude_idle bit perf report: Don't call map__kmap if map is NULL. perf tests: Fix attr tests perf probe: Fix ARM 32 building error perf tools: Merge all perf_event_attr print functions perf record: Add clockid parameter perf sched replay: Use replay_repeat to calculate the runavg of cpu usage instead of the default value 10 perf sched replay: Support using -f to override perf.data file ownership perf sched replay: Fix the EMFILE error caused by the limitation of the maximum open files perf sched replay: Handle the dead halt of sem_wait when create_tasks() fails for any task perf sched replay: Fix the segmentation fault problem caused by pr_err in threads perf sched replay: Realloc the memory of pid_to_task stepwise to adapt to the different pid_max configurations ...
642 lines
20 KiB
Plaintext
642 lines
20 KiB
Plaintext
#
|
|
# Architectures that offer an FUNCTION_TRACER implementation should
|
|
# select HAVE_FUNCTION_TRACER:
|
|
#
|
|
|
|
config USER_STACKTRACE_SUPPORT
|
|
bool
|
|
|
|
config NOP_TRACER
|
|
bool
|
|
|
|
config HAVE_FTRACE_NMI_ENTER
|
|
bool
|
|
help
|
|
See Documentation/trace/ftrace-design.txt
|
|
|
|
config HAVE_FUNCTION_TRACER
|
|
bool
|
|
help
|
|
See Documentation/trace/ftrace-design.txt
|
|
|
|
config HAVE_FUNCTION_GRAPH_TRACER
|
|
bool
|
|
help
|
|
See Documentation/trace/ftrace-design.txt
|
|
|
|
config HAVE_FUNCTION_GRAPH_FP_TEST
|
|
bool
|
|
help
|
|
See Documentation/trace/ftrace-design.txt
|
|
|
|
config HAVE_DYNAMIC_FTRACE
|
|
bool
|
|
help
|
|
See Documentation/trace/ftrace-design.txt
|
|
|
|
config HAVE_DYNAMIC_FTRACE_WITH_REGS
|
|
bool
|
|
|
|
config HAVE_FTRACE_MCOUNT_RECORD
|
|
bool
|
|
help
|
|
See Documentation/trace/ftrace-design.txt
|
|
|
|
config HAVE_SYSCALL_TRACEPOINTS
|
|
bool
|
|
help
|
|
See Documentation/trace/ftrace-design.txt
|
|
|
|
config HAVE_FENTRY
|
|
bool
|
|
help
|
|
Arch supports the gcc options -pg with -mfentry
|
|
|
|
config HAVE_C_RECORDMCOUNT
|
|
bool
|
|
help
|
|
C version of recordmcount available?
|
|
|
|
config TRACER_MAX_TRACE
|
|
bool
|
|
|
|
config TRACE_CLOCK
|
|
bool
|
|
|
|
config RING_BUFFER
|
|
bool
|
|
select TRACE_CLOCK
|
|
select IRQ_WORK
|
|
|
|
config FTRACE_NMI_ENTER
|
|
bool
|
|
depends on HAVE_FTRACE_NMI_ENTER
|
|
default y
|
|
|
|
config EVENT_TRACING
|
|
select CONTEXT_SWITCH_TRACER
|
|
bool
|
|
|
|
config CONTEXT_SWITCH_TRACER
|
|
bool
|
|
|
|
config RING_BUFFER_ALLOW_SWAP
|
|
bool
|
|
help
|
|
Allow the use of ring_buffer_swap_cpu.
|
|
Adds a very slight overhead to tracing when enabled.
|
|
|
|
# All tracer options should select GENERIC_TRACER. For those options that are
|
|
# enabled by all tracers (context switch and event tracer) they select TRACING.
|
|
# This allows those options to appear when no other tracer is selected. But the
|
|
# options do not appear when something else selects it. We need the two options
|
|
# GENERIC_TRACER and TRACING to avoid circular dependencies to accomplish the
|
|
# hiding of the automatic options.
|
|
|
|
config TRACING
|
|
bool
|
|
select DEBUG_FS
|
|
select RING_BUFFER
|
|
select STACKTRACE if STACKTRACE_SUPPORT
|
|
select TRACEPOINTS
|
|
select NOP_TRACER
|
|
select BINARY_PRINTF
|
|
select EVENT_TRACING
|
|
select TRACE_CLOCK
|
|
|
|
config GENERIC_TRACER
|
|
bool
|
|
select TRACING
|
|
|
|
#
|
|
# Minimum requirements an architecture has to meet for us to
|
|
# be able to offer generic tracing facilities:
|
|
#
|
|
config TRACING_SUPPORT
|
|
bool
|
|
# PPC32 has no irqflags tracing support, but it can use most of the
|
|
# tracers anyway, they were tested to build and work. Note that new
|
|
# exceptions to this list aren't welcomed, better implement the
|
|
# irqflags tracing for your architecture.
|
|
depends on TRACE_IRQFLAGS_SUPPORT || PPC32
|
|
depends on STACKTRACE_SUPPORT
|
|
default y
|
|
|
|
if TRACING_SUPPORT
|
|
|
|
menuconfig FTRACE
|
|
bool "Tracers"
|
|
default y if DEBUG_KERNEL
|
|
help
|
|
Enable the kernel tracing infrastructure.
|
|
|
|
if FTRACE
|
|
|
|
config FUNCTION_TRACER
|
|
bool "Kernel Function Tracer"
|
|
depends on HAVE_FUNCTION_TRACER
|
|
select KALLSYMS
|
|
select GENERIC_TRACER
|
|
select CONTEXT_SWITCH_TRACER
|
|
help
|
|
Enable the kernel to trace every kernel function. This is done
|
|
by using a compiler feature to insert a small, 5-byte No-Operation
|
|
instruction at the beginning of every kernel function, which NOP
|
|
sequence is then dynamically patched into a tracer call when
|
|
tracing is enabled by the administrator. If it's runtime disabled
|
|
(the bootup default), then the overhead of the instructions is very
|
|
small and not measurable even in micro-benchmarks.
|
|
|
|
config FUNCTION_GRAPH_TRACER
|
|
bool "Kernel Function Graph Tracer"
|
|
depends on HAVE_FUNCTION_GRAPH_TRACER
|
|
depends on FUNCTION_TRACER
|
|
depends on !X86_32 || !CC_OPTIMIZE_FOR_SIZE
|
|
default y
|
|
help
|
|
Enable the kernel to trace a function at both its return
|
|
and its entry.
|
|
Its first purpose is to trace the duration of functions and
|
|
draw a call graph for each thread with some information like
|
|
the return value. This is done by setting the current return
|
|
address on the current task structure into a stack of calls.
|
|
|
|
|
|
config IRQSOFF_TRACER
|
|
bool "Interrupts-off Latency Tracer"
|
|
default n
|
|
depends on TRACE_IRQFLAGS_SUPPORT
|
|
depends on !ARCH_USES_GETTIMEOFFSET
|
|
select TRACE_IRQFLAGS
|
|
select GENERIC_TRACER
|
|
select TRACER_MAX_TRACE
|
|
select RING_BUFFER_ALLOW_SWAP
|
|
select TRACER_SNAPSHOT
|
|
select TRACER_SNAPSHOT_PER_CPU_SWAP
|
|
help
|
|
This option measures the time spent in irqs-off critical
|
|
sections, with microsecond accuracy.
|
|
|
|
The default measurement method is a maximum search, which is
|
|
disabled by default and can be runtime (re-)started
|
|
via:
|
|
|
|
echo 0 > /sys/kernel/debug/tracing/tracing_max_latency
|
|
|
|
(Note that kernel size and overhead increase with this option
|
|
enabled. This option and the preempt-off timing option can be
|
|
used together or separately.)
|
|
|
|
config PREEMPT_TRACER
|
|
bool "Preemption-off Latency Tracer"
|
|
default n
|
|
depends on !ARCH_USES_GETTIMEOFFSET
|
|
depends on PREEMPT
|
|
select GENERIC_TRACER
|
|
select TRACER_MAX_TRACE
|
|
select RING_BUFFER_ALLOW_SWAP
|
|
select TRACER_SNAPSHOT
|
|
select TRACER_SNAPSHOT_PER_CPU_SWAP
|
|
help
|
|
This option measures the time spent in preemption-off critical
|
|
sections, with microsecond accuracy.
|
|
|
|
The default measurement method is a maximum search, which is
|
|
disabled by default and can be runtime (re-)started
|
|
via:
|
|
|
|
echo 0 > /sys/kernel/debug/tracing/tracing_max_latency
|
|
|
|
(Note that kernel size and overhead increase with this option
|
|
enabled. This option and the irqs-off timing option can be
|
|
used together or separately.)
|
|
|
|
config SCHED_TRACER
|
|
bool "Scheduling Latency Tracer"
|
|
select GENERIC_TRACER
|
|
select CONTEXT_SWITCH_TRACER
|
|
select TRACER_MAX_TRACE
|
|
select TRACER_SNAPSHOT
|
|
help
|
|
This tracer tracks the latency of the highest priority task
|
|
to be scheduled in, starting from the point it has woken up.
|
|
|
|
config ENABLE_DEFAULT_TRACERS
|
|
bool "Trace process context switches and events"
|
|
depends on !GENERIC_TRACER
|
|
select TRACING
|
|
help
|
|
This tracer hooks to various trace points in the kernel,
|
|
allowing the user to pick and choose which trace point they
|
|
want to trace. It also includes the sched_switch tracer plugin.
|
|
|
|
config FTRACE_SYSCALLS
|
|
bool "Trace syscalls"
|
|
depends on HAVE_SYSCALL_TRACEPOINTS
|
|
select GENERIC_TRACER
|
|
select KALLSYMS
|
|
help
|
|
Basic tracer to catch the syscall entry and exit events.
|
|
|
|
config TRACER_SNAPSHOT
|
|
bool "Create a snapshot trace buffer"
|
|
select TRACER_MAX_TRACE
|
|
help
|
|
Allow tracing users to take snapshot of the current buffer using the
|
|
ftrace interface, e.g.:
|
|
|
|
echo 1 > /sys/kernel/debug/tracing/snapshot
|
|
cat snapshot
|
|
|
|
config TRACER_SNAPSHOT_PER_CPU_SWAP
|
|
bool "Allow snapshot to swap per CPU"
|
|
depends on TRACER_SNAPSHOT
|
|
select RING_BUFFER_ALLOW_SWAP
|
|
help
|
|
Allow doing a snapshot of a single CPU buffer instead of a
|
|
full swap (all buffers). If this is set, then the following is
|
|
allowed:
|
|
|
|
echo 1 > /sys/kernel/debug/tracing/per_cpu/cpu2/snapshot
|
|
|
|
After which, only the tracing buffer for CPU 2 was swapped with
|
|
the main tracing buffer, and the other CPU buffers remain the same.
|
|
|
|
When this is enabled, this adds a little more overhead to the
|
|
trace recording, as it needs to add some checks to synchronize
|
|
recording with swaps. But this does not affect the performance
|
|
of the overall system. This is enabled by default when the preempt
|
|
or irq latency tracers are enabled, as those need to swap as well
|
|
and already adds the overhead (plus a lot more).
|
|
|
|
config TRACE_BRANCH_PROFILING
|
|
bool
|
|
select GENERIC_TRACER
|
|
|
|
choice
|
|
prompt "Branch Profiling"
|
|
default BRANCH_PROFILE_NONE
|
|
help
|
|
The branch profiling is a software profiler. It will add hooks
|
|
into the C conditionals to test which path a branch takes.
|
|
|
|
The likely/unlikely profiler only looks at the conditions that
|
|
are annotated with a likely or unlikely macro.
|
|
|
|
The "all branch" profiler will profile every if-statement in the
|
|
kernel. This profiler will also enable the likely/unlikely
|
|
profiler.
|
|
|
|
Either of the above profilers adds a bit of overhead to the system.
|
|
If unsure, choose "No branch profiling".
|
|
|
|
config BRANCH_PROFILE_NONE
|
|
bool "No branch profiling"
|
|
help
|
|
No branch profiling. Branch profiling adds a bit of overhead.
|
|
Only enable it if you want to analyse the branching behavior.
|
|
Otherwise keep it disabled.
|
|
|
|
config PROFILE_ANNOTATED_BRANCHES
|
|
bool "Trace likely/unlikely profiler"
|
|
select TRACE_BRANCH_PROFILING
|
|
help
|
|
This tracer profiles all likely and unlikely macros
|
|
in the kernel. It will display the results in:
|
|
|
|
/sys/kernel/debug/tracing/trace_stat/branch_annotated
|
|
|
|
Note: this will add a significant overhead; only turn this
|
|
on if you need to profile the system's use of these macros.
|
|
|
|
config PROFILE_ALL_BRANCHES
|
|
bool "Profile all if conditionals"
|
|
select TRACE_BRANCH_PROFILING
|
|
help
|
|
This tracer profiles all branch conditions. Every if ()
|
|
taken in the kernel is recorded whether it hit or miss.
|
|
The results will be displayed in:
|
|
|
|
/sys/kernel/debug/tracing/trace_stat/branch_all
|
|
|
|
This option also enables the likely/unlikely profiler.
|
|
|
|
This configuration, when enabled, will impose a great overhead
|
|
on the system. This should only be enabled when the system
|
|
is to be analyzed in much detail.
|
|
endchoice
|
|
|
|
config TRACING_BRANCHES
|
|
bool
|
|
help
|
|
Selected by tracers that will trace the likely and unlikely
|
|
conditions. This prevents the tracers themselves from being
|
|
profiled. Profiling the tracing infrastructure can only happen
|
|
when the likelys and unlikelys are not being traced.
|
|
|
|
config BRANCH_TRACER
|
|
bool "Trace likely/unlikely instances"
|
|
depends on TRACE_BRANCH_PROFILING
|
|
select TRACING_BRANCHES
|
|
help
|
|
This traces the events of likely and unlikely condition
|
|
calls in the kernel. The difference between this and the
|
|
"Trace likely/unlikely profiler" is that this is not a
|
|
histogram of the callers, but actually places the calling
|
|
events into a running trace buffer to see when and where the
|
|
events happened, as well as their results.
|
|
|
|
Say N if unsure.
|
|
|
|
config STACK_TRACER
|
|
bool "Trace max stack"
|
|
depends on HAVE_FUNCTION_TRACER
|
|
select FUNCTION_TRACER
|
|
select STACKTRACE
|
|
select KALLSYMS
|
|
help
|
|
This special tracer records the maximum stack footprint of the
|
|
kernel and displays it in /sys/kernel/debug/tracing/stack_trace.
|
|
|
|
This tracer works by hooking into every function call that the
|
|
kernel executes, and keeping a maximum stack depth value and
|
|
stack-trace saved. If this is configured with DYNAMIC_FTRACE
|
|
then it will not have any overhead while the stack tracer
|
|
is disabled.
|
|
|
|
To enable the stack tracer on bootup, pass in 'stacktrace'
|
|
on the kernel command line.
|
|
|
|
The stack tracer can also be enabled or disabled via the
|
|
sysctl kernel.stack_tracer_enabled
|
|
|
|
Say N if unsure.
|
|
|
|
config BLK_DEV_IO_TRACE
|
|
bool "Support for tracing block IO actions"
|
|
depends on SYSFS
|
|
depends on BLOCK
|
|
select RELAY
|
|
select DEBUG_FS
|
|
select TRACEPOINTS
|
|
select GENERIC_TRACER
|
|
select STACKTRACE
|
|
help
|
|
Say Y here if you want to be able to trace the block layer actions
|
|
on a given queue. Tracing allows you to see any traffic happening
|
|
on a block device queue. For more information (and the userspace
|
|
support tools needed), fetch the blktrace tools from:
|
|
|
|
git://git.kernel.dk/blktrace.git
|
|
|
|
Tracing also is possible using the ftrace interface, e.g.:
|
|
|
|
echo 1 > /sys/block/sda/sda1/trace/enable
|
|
echo blk > /sys/kernel/debug/tracing/current_tracer
|
|
cat /sys/kernel/debug/tracing/trace_pipe
|
|
|
|
If unsure, say N.
|
|
|
|
config KPROBE_EVENT
|
|
depends on KPROBES
|
|
depends on HAVE_REGS_AND_STACK_ACCESS_API
|
|
bool "Enable kprobes-based dynamic events"
|
|
select TRACING
|
|
select PROBE_EVENTS
|
|
default y
|
|
help
|
|
This allows the user to add tracing events (similar to tracepoints)
|
|
on the fly via the ftrace interface. See
|
|
Documentation/trace/kprobetrace.txt for more details.
|
|
|
|
Those events can be inserted wherever kprobes can probe, and record
|
|
various register and memory values.
|
|
|
|
This option is also required by perf-probe subcommand of perf tools.
|
|
If you want to use perf tools, this option is strongly recommended.
|
|
|
|
config UPROBE_EVENT
|
|
bool "Enable uprobes-based dynamic events"
|
|
depends on ARCH_SUPPORTS_UPROBES
|
|
depends on MMU
|
|
depends on PERF_EVENTS
|
|
select UPROBES
|
|
select PROBE_EVENTS
|
|
select TRACING
|
|
default n
|
|
help
|
|
This allows the user to add tracing events on top of userspace
|
|
dynamic events (similar to tracepoints) on the fly via the trace
|
|
events interface. Those events can be inserted wherever uprobes
|
|
can probe, and record various registers.
|
|
This option is required if you plan to use perf-probe subcommand
|
|
of perf tools on user space applications.
|
|
|
|
config BPF_EVENTS
|
|
depends on BPF_SYSCALL
|
|
depends on KPROBE_EVENT
|
|
bool
|
|
default y
|
|
help
|
|
This allows the user to attach BPF programs to kprobe events.
|
|
|
|
config PROBE_EVENTS
|
|
def_bool n
|
|
|
|
config DYNAMIC_FTRACE
|
|
bool "enable/disable function tracing dynamically"
|
|
depends on FUNCTION_TRACER
|
|
depends on HAVE_DYNAMIC_FTRACE
|
|
default y
|
|
help
|
|
This option will modify all the calls to function tracing
|
|
dynamically (will patch them out of the binary image and
|
|
replace them with a No-Op instruction) on boot up. During
|
|
compile time, a table is made of all the locations that ftrace
|
|
can function trace, and this table is linked into the kernel
|
|
image. When this is enabled, functions can be individually
|
|
enabled, and the functions not enabled will not affect
|
|
performance of the system.
|
|
|
|
See the files in /sys/kernel/debug/tracing:
|
|
available_filter_functions
|
|
set_ftrace_filter
|
|
set_ftrace_notrace
|
|
|
|
This way a CONFIG_FUNCTION_TRACER kernel is slightly larger, but
|
|
otherwise has native performance as long as no tracing is active.
|
|
|
|
config DYNAMIC_FTRACE_WITH_REGS
|
|
def_bool y
|
|
depends on DYNAMIC_FTRACE
|
|
depends on HAVE_DYNAMIC_FTRACE_WITH_REGS
|
|
|
|
config FUNCTION_PROFILER
|
|
bool "Kernel function profiler"
|
|
depends on FUNCTION_TRACER
|
|
default n
|
|
help
|
|
This option enables the kernel function profiler. A file is created
|
|
in debugfs called function_profile_enabled which defaults to zero.
|
|
When a 1 is echoed into this file profiling begins, and when a
|
|
zero is entered, profiling stops. A "functions" file is created in
|
|
the trace_stats directory; this file shows the list of functions that
|
|
have been hit and their counters.
|
|
|
|
If in doubt, say N.
|
|
|
|
config FTRACE_MCOUNT_RECORD
|
|
def_bool y
|
|
depends on DYNAMIC_FTRACE
|
|
depends on HAVE_FTRACE_MCOUNT_RECORD
|
|
|
|
config FTRACE_SELFTEST
|
|
bool
|
|
|
|
config FTRACE_STARTUP_TEST
|
|
bool "Perform a startup test on ftrace"
|
|
depends on GENERIC_TRACER
|
|
select FTRACE_SELFTEST
|
|
help
|
|
This option performs a series of startup tests on ftrace. On bootup
|
|
a series of tests are made to verify that the tracer is
|
|
functioning properly. It will do tests on all the configured
|
|
tracers of ftrace.
|
|
|
|
config EVENT_TRACE_TEST_SYSCALLS
|
|
bool "Run selftest on syscall events"
|
|
depends on FTRACE_STARTUP_TEST
|
|
help
|
|
This option will also enable testing every syscall event.
|
|
It only enables the event and disables it and runs various loads
|
|
with the event enabled. This adds a bit more time for kernel boot
|
|
up since it runs this on every system call defined.
|
|
|
|
TBD - enable a way to actually call the syscalls as we test their
|
|
events
|
|
|
|
config MMIOTRACE
|
|
bool "Memory mapped IO tracing"
|
|
depends on HAVE_MMIOTRACE_SUPPORT && PCI
|
|
select GENERIC_TRACER
|
|
help
|
|
Mmiotrace traces Memory Mapped I/O access and is meant for
|
|
debugging and reverse engineering. It is called from the ioremap
|
|
implementation and works via page faults. Tracing is disabled by
|
|
default and can be enabled at run-time.
|
|
|
|
See Documentation/trace/mmiotrace.txt.
|
|
If you are not helping to develop drivers, say N.
|
|
|
|
config MMIOTRACE_TEST
|
|
tristate "Test module for mmiotrace"
|
|
depends on MMIOTRACE && m
|
|
help
|
|
This is a dumb module for testing mmiotrace. It is very dangerous
|
|
as it will write garbage to IO memory starting at a given address.
|
|
However, it should be safe to use on e.g. unused portion of VRAM.
|
|
|
|
Say N, unless you absolutely know what you are doing.
|
|
|
|
config TRACEPOINT_BENCHMARK
|
|
bool "Add tracepoint that benchmarks tracepoints"
|
|
help
|
|
This option creates the tracepoint "benchmark:benchmark_event".
|
|
When the tracepoint is enabled, it kicks off a kernel thread that
|
|
goes into an infinite loop (calling cond_sched() to let other tasks
|
|
run), and calls the tracepoint. Each iteration will record the time
|
|
it took to write to the tracepoint and the next iteration that
|
|
data will be passed to the tracepoint itself. That is, the tracepoint
|
|
will report the time it took to do the previous tracepoint.
|
|
The string written to the tracepoint is a static string of 128 bytes
|
|
to keep the time the same. The initial string is simply a write of
|
|
"START". The second string records the cold cache time of the first
|
|
write which is not added to the rest of the calculations.
|
|
|
|
As it is a tight loop, it benchmarks as hot cache. That's fine because
|
|
we care most about hot paths that are probably in cache already.
|
|
|
|
An example of the output:
|
|
|
|
START
|
|
first=3672 [COLD CACHED]
|
|
last=632 first=3672 max=632 min=632 avg=316 std=446 std^2=199712
|
|
last=278 first=3672 max=632 min=278 avg=303 std=316 std^2=100337
|
|
last=277 first=3672 max=632 min=277 avg=296 std=258 std^2=67064
|
|
last=273 first=3672 max=632 min=273 avg=292 std=224 std^2=50411
|
|
last=273 first=3672 max=632 min=273 avg=288 std=200 std^2=40389
|
|
last=281 first=3672 max=632 min=273 avg=287 std=183 std^2=33666
|
|
|
|
|
|
config RING_BUFFER_BENCHMARK
|
|
tristate "Ring buffer benchmark stress tester"
|
|
depends on RING_BUFFER
|
|
help
|
|
This option creates a test to stress the ring buffer and benchmark it.
|
|
It creates its own ring buffer such that it will not interfere with
|
|
any other users of the ring buffer (such as ftrace). It then creates
|
|
a producer and consumer that will run for 10 seconds and sleep for
|
|
10 seconds. Each interval it will print out the number of events
|
|
it recorded and give a rough estimate of how long each iteration took.
|
|
|
|
It does not disable interrupts or raise its priority, so it may be
|
|
affected by processes that are running.
|
|
|
|
If unsure, say N.
|
|
|
|
config RING_BUFFER_STARTUP_TEST
|
|
bool "Ring buffer startup self test"
|
|
depends on RING_BUFFER
|
|
help
|
|
Run a simple self test on the ring buffer on boot up. Late in the
|
|
kernel boot sequence, the test will start that kicks off
|
|
a thread per cpu. Each thread will write various size events
|
|
into the ring buffer. Another thread is created to send IPIs
|
|
to each of the threads, where the IPI handler will also write
|
|
to the ring buffer, to test/stress the nesting ability.
|
|
If any anomalies are discovered, a warning will be displayed
|
|
and all ring buffers will be disabled.
|
|
|
|
The test runs for 10 seconds. This will slow your boot time
|
|
by at least 10 more seconds.
|
|
|
|
At the end of the test, statics and more checks are done.
|
|
It will output the stats of each per cpu buffer. What
|
|
was written, the sizes, what was read, what was lost, and
|
|
other similar details.
|
|
|
|
If unsure, say N
|
|
|
|
config TRACE_ENUM_MAP_FILE
|
|
bool "Show enum mappings for trace events"
|
|
depends on TRACING
|
|
help
|
|
The "print fmt" of the trace events will show the enum names instead
|
|
of their values. This can cause problems for user space tools that
|
|
use this string to parse the raw data as user space does not know
|
|
how to convert the string to its value.
|
|
|
|
To fix this, there's a special macro in the kernel that can be used
|
|
to convert the enum into its value. If this macro is used, then the
|
|
print fmt strings will have the enums converted to their values.
|
|
|
|
If something does not get converted properly, this option can be
|
|
used to show what enums the kernel tried to convert.
|
|
|
|
This option is for debugging the enum conversions. A file is created
|
|
in the tracing directory called "enum_map" that will show the enum
|
|
names matched with their values and what trace event system they
|
|
belong too.
|
|
|
|
Normally, the mapping of the strings to values will be freed after
|
|
boot up or module load. With this option, they will not be freed, as
|
|
they are needed for the "enum_map" file. Enabling this option will
|
|
increase the memory footprint of the running kernel.
|
|
|
|
If unsure, say N
|
|
|
|
endif # FTRACE
|
|
|
|
endif # TRACING_SUPPORT
|
|
|