linux_dsm_epyc7002/sound/core/memalloc.c
Takashi Iwai 2ba8c15c73 [ALSA] Removed unneeded page-reserve
Modules: Memalloc module

Removed unneeded page-reservation.

Signed-off-by: Takashi Iwai <tiwai@suse.de>
2006-03-22 10:28:12 +01:00

652 lines
17 KiB
C

/*
* Copyright (c) by Jaroslav Kysela <perex@suse.cz>
* Takashi Iwai <tiwai@suse.de>
*
* Generic memory allocators
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
#include <linux/config.h>
#include <linux/module.h>
#include <linux/proc_fs.h>
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include <linux/mm.h>
#include <asm/uaccess.h>
#include <linux/dma-mapping.h>
#include <linux/moduleparam.h>
#include <linux/mutex.h>
#include <sound/memalloc.h>
#ifdef CONFIG_SBUS
#include <asm/sbus.h>
#endif
MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>, Jaroslav Kysela <perex@suse.cz>");
MODULE_DESCRIPTION("Memory allocator for ALSA system.");
MODULE_LICENSE("GPL");
/*
*/
void *snd_malloc_sgbuf_pages(struct device *device,
size_t size, struct snd_dma_buffer *dmab,
size_t *res_size);
int snd_free_sgbuf_pages(struct snd_dma_buffer *dmab);
/*
*/
static DEFINE_MUTEX(list_mutex);
static LIST_HEAD(mem_list_head);
/* buffer preservation list */
struct snd_mem_list {
struct snd_dma_buffer buffer;
unsigned int id;
struct list_head list;
};
/* id for pre-allocated buffers */
#define SNDRV_DMA_DEVICE_UNUSED (unsigned int)-1
#ifdef CONFIG_SND_DEBUG
#define __ASTRING__(x) #x
#define snd_assert(expr, args...) do {\
if (!(expr)) {\
printk(KERN_ERR "snd-malloc: BUG? (%s) (called from %p)\n", __ASTRING__(expr), __builtin_return_address(0));\
args;\
}\
} while (0)
#else
#define snd_assert(expr, args...) /**/
#endif
/*
* Hacks
*/
#if defined(__i386__)
/*
* A hack to allocate large buffers via dma_alloc_coherent()
*
* since dma_alloc_coherent always tries GFP_DMA when the requested
* pci memory region is below 32bit, it happens quite often that even
* 2 order of pages cannot be allocated.
*
* so in the following, we allocate at first without dma_mask, so that
* allocation will be done without GFP_DMA. if the area doesn't match
* with the requested region, then realloate with the original dma_mask
* again.
*
* Really, we want to move this type of thing into dma_alloc_coherent()
* so dma_mask doesn't have to be messed with.
*/
static void *snd_dma_hack_alloc_coherent(struct device *dev, size_t size,
dma_addr_t *dma_handle,
gfp_t flags)
{
void *ret;
u64 dma_mask, coherent_dma_mask;
if (dev == NULL || !dev->dma_mask)
return dma_alloc_coherent(dev, size, dma_handle, flags);
dma_mask = *dev->dma_mask;
coherent_dma_mask = dev->coherent_dma_mask;
*dev->dma_mask = 0xffffffff; /* do without masking */
dev->coherent_dma_mask = 0xffffffff; /* do without masking */
ret = dma_alloc_coherent(dev, size, dma_handle, flags);
*dev->dma_mask = dma_mask; /* restore */
dev->coherent_dma_mask = coherent_dma_mask; /* restore */
if (ret) {
/* obtained address is out of range? */
if (((unsigned long)*dma_handle + size - 1) & ~dma_mask) {
/* reallocate with the proper mask */
dma_free_coherent(dev, size, ret, *dma_handle);
ret = dma_alloc_coherent(dev, size, dma_handle, flags);
}
} else {
/* wish to success now with the proper mask... */
if (dma_mask != 0xffffffffUL) {
/* allocation with GFP_ATOMIC to avoid the long stall */
flags &= ~GFP_KERNEL;
flags |= GFP_ATOMIC;
ret = dma_alloc_coherent(dev, size, dma_handle, flags);
}
}
return ret;
}
/* redefine dma_alloc_coherent for some architectures */
#undef dma_alloc_coherent
#define dma_alloc_coherent snd_dma_hack_alloc_coherent
#endif /* arch */
/*
*
* Generic memory allocators
*
*/
static long snd_allocated_pages; /* holding the number of allocated pages */
static inline void inc_snd_pages(int order)
{
snd_allocated_pages += 1 << order;
}
static inline void dec_snd_pages(int order)
{
snd_allocated_pages -= 1 << order;
}
/**
* snd_malloc_pages - allocate pages with the given size
* @size: the size to allocate in bytes
* @gfp_flags: the allocation conditions, GFP_XXX
*
* Allocates the physically contiguous pages with the given size.
*
* Returns the pointer of the buffer, or NULL if no enoguh memory.
*/
void *snd_malloc_pages(size_t size, gfp_t gfp_flags)
{
int pg;
void *res;
snd_assert(size > 0, return NULL);
snd_assert(gfp_flags != 0, return NULL);
gfp_flags |= __GFP_COMP; /* compound page lets parts be mapped */
pg = get_order(size);
if ((res = (void *) __get_free_pages(gfp_flags, pg)) != NULL)
inc_snd_pages(pg);
return res;
}
/**
* snd_free_pages - release the pages
* @ptr: the buffer pointer to release
* @size: the allocated buffer size
*
* Releases the buffer allocated via snd_malloc_pages().
*/
void snd_free_pages(void *ptr, size_t size)
{
int pg;
if (ptr == NULL)
return;
pg = get_order(size);
dec_snd_pages(pg);
free_pages((unsigned long) ptr, pg);
}
/*
*
* Bus-specific memory allocators
*
*/
/* allocate the coherent DMA pages */
static void *snd_malloc_dev_pages(struct device *dev, size_t size, dma_addr_t *dma)
{
int pg;
void *res;
gfp_t gfp_flags;
snd_assert(size > 0, return NULL);
snd_assert(dma != NULL, return NULL);
pg = get_order(size);
gfp_flags = GFP_KERNEL
| __GFP_COMP /* compound page lets parts be mapped */
| __GFP_NORETRY /* don't trigger OOM-killer */
| __GFP_NOWARN; /* no stack trace print - this call is non-critical */
res = dma_alloc_coherent(dev, PAGE_SIZE << pg, dma, gfp_flags);
if (res != NULL)
inc_snd_pages(pg);
return res;
}
/* free the coherent DMA pages */
static void snd_free_dev_pages(struct device *dev, size_t size, void *ptr,
dma_addr_t dma)
{
int pg;
if (ptr == NULL)
return;
pg = get_order(size);
dec_snd_pages(pg);
dma_free_coherent(dev, PAGE_SIZE << pg, ptr, dma);
}
#ifdef CONFIG_SBUS
static void *snd_malloc_sbus_pages(struct device *dev, size_t size,
dma_addr_t *dma_addr)
{
struct sbus_dev *sdev = (struct sbus_dev *)dev;
int pg;
void *res;
snd_assert(size > 0, return NULL);
snd_assert(dma_addr != NULL, return NULL);
pg = get_order(size);
res = sbus_alloc_consistent(sdev, PAGE_SIZE * (1 << pg), dma_addr);
if (res != NULL)
inc_snd_pages(pg);
return res;
}
static void snd_free_sbus_pages(struct device *dev, size_t size,
void *ptr, dma_addr_t dma_addr)
{
struct sbus_dev *sdev = (struct sbus_dev *)dev;
int pg;
if (ptr == NULL)
return;
pg = get_order(size);
dec_snd_pages(pg);
sbus_free_consistent(sdev, PAGE_SIZE * (1 << pg), ptr, dma_addr);
}
#endif /* CONFIG_SBUS */
/*
*
* ALSA generic memory management
*
*/
/**
* snd_dma_alloc_pages - allocate the buffer area according to the given type
* @type: the DMA buffer type
* @device: the device pointer
* @size: the buffer size to allocate
* @dmab: buffer allocation record to store the allocated data
*
* Calls the memory-allocator function for the corresponding
* buffer type.
*
* Returns zero if the buffer with the given size is allocated successfuly,
* other a negative value at error.
*/
int snd_dma_alloc_pages(int type, struct device *device, size_t size,
struct snd_dma_buffer *dmab)
{
snd_assert(size > 0, return -ENXIO);
snd_assert(dmab != NULL, return -ENXIO);
dmab->dev.type = type;
dmab->dev.dev = device;
dmab->bytes = 0;
switch (type) {
case SNDRV_DMA_TYPE_CONTINUOUS:
dmab->area = snd_malloc_pages(size, (unsigned long)device);
dmab->addr = 0;
break;
#ifdef CONFIG_SBUS
case SNDRV_DMA_TYPE_SBUS:
dmab->area = snd_malloc_sbus_pages(device, size, &dmab->addr);
break;
#endif
case SNDRV_DMA_TYPE_DEV:
dmab->area = snd_malloc_dev_pages(device, size, &dmab->addr);
break;
case SNDRV_DMA_TYPE_DEV_SG:
snd_malloc_sgbuf_pages(device, size, dmab, NULL);
break;
default:
printk(KERN_ERR "snd-malloc: invalid device type %d\n", type);
dmab->area = NULL;
dmab->addr = 0;
return -ENXIO;
}
if (! dmab->area)
return -ENOMEM;
dmab->bytes = size;
return 0;
}
/**
* snd_dma_alloc_pages_fallback - allocate the buffer area according to the given type with fallback
* @type: the DMA buffer type
* @device: the device pointer
* @size: the buffer size to allocate
* @dmab: buffer allocation record to store the allocated data
*
* Calls the memory-allocator function for the corresponding
* buffer type. When no space is left, this function reduces the size and
* tries to allocate again. The size actually allocated is stored in
* res_size argument.
*
* Returns zero if the buffer with the given size is allocated successfuly,
* other a negative value at error.
*/
int snd_dma_alloc_pages_fallback(int type, struct device *device, size_t size,
struct snd_dma_buffer *dmab)
{
int err;
snd_assert(size > 0, return -ENXIO);
snd_assert(dmab != NULL, return -ENXIO);
while ((err = snd_dma_alloc_pages(type, device, size, dmab)) < 0) {
if (err != -ENOMEM)
return err;
size >>= 1;
if (size <= PAGE_SIZE)
return -ENOMEM;
}
if (! dmab->area)
return -ENOMEM;
return 0;
}
/**
* snd_dma_free_pages - release the allocated buffer
* @dmab: the buffer allocation record to release
*
* Releases the allocated buffer via snd_dma_alloc_pages().
*/
void snd_dma_free_pages(struct snd_dma_buffer *dmab)
{
switch (dmab->dev.type) {
case SNDRV_DMA_TYPE_CONTINUOUS:
snd_free_pages(dmab->area, dmab->bytes);
break;
#ifdef CONFIG_SBUS
case SNDRV_DMA_TYPE_SBUS:
snd_free_sbus_pages(dmab->dev.dev, dmab->bytes, dmab->area, dmab->addr);
break;
#endif
case SNDRV_DMA_TYPE_DEV:
snd_free_dev_pages(dmab->dev.dev, dmab->bytes, dmab->area, dmab->addr);
break;
case SNDRV_DMA_TYPE_DEV_SG:
snd_free_sgbuf_pages(dmab);
break;
default:
printk(KERN_ERR "snd-malloc: invalid device type %d\n", dmab->dev.type);
}
}
/**
* snd_dma_get_reserved - get the reserved buffer for the given device
* @dmab: the buffer allocation record to store
* @id: the buffer id
*
* Looks for the reserved-buffer list and re-uses if the same buffer
* is found in the list. When the buffer is found, it's removed from the free list.
*
* Returns the size of buffer if the buffer is found, or zero if not found.
*/
size_t snd_dma_get_reserved_buf(struct snd_dma_buffer *dmab, unsigned int id)
{
struct list_head *p;
struct snd_mem_list *mem;
snd_assert(dmab, return 0);
mutex_lock(&list_mutex);
list_for_each(p, &mem_list_head) {
mem = list_entry(p, struct snd_mem_list, list);
if (mem->id == id &&
(mem->buffer.dev.dev == NULL || dmab->dev.dev == NULL ||
! memcmp(&mem->buffer.dev, &dmab->dev, sizeof(dmab->dev)))) {
struct device *dev = dmab->dev.dev;
list_del(p);
*dmab = mem->buffer;
if (dmab->dev.dev == NULL)
dmab->dev.dev = dev;
kfree(mem);
mutex_unlock(&list_mutex);
return dmab->bytes;
}
}
mutex_unlock(&list_mutex);
return 0;
}
/**
* snd_dma_reserve_buf - reserve the buffer
* @dmab: the buffer to reserve
* @id: the buffer id
*
* Reserves the given buffer as a reserved buffer.
*
* Returns zero if successful, or a negative code at error.
*/
int snd_dma_reserve_buf(struct snd_dma_buffer *dmab, unsigned int id)
{
struct snd_mem_list *mem;
snd_assert(dmab, return -EINVAL);
mem = kmalloc(sizeof(*mem), GFP_KERNEL);
if (! mem)
return -ENOMEM;
mutex_lock(&list_mutex);
mem->buffer = *dmab;
mem->id = id;
list_add_tail(&mem->list, &mem_list_head);
mutex_unlock(&list_mutex);
return 0;
}
/*
* purge all reserved buffers
*/
static void free_all_reserved_pages(void)
{
struct list_head *p;
struct snd_mem_list *mem;
mutex_lock(&list_mutex);
while (! list_empty(&mem_list_head)) {
p = mem_list_head.next;
mem = list_entry(p, struct snd_mem_list, list);
list_del(p);
snd_dma_free_pages(&mem->buffer);
kfree(mem);
}
mutex_unlock(&list_mutex);
}
#ifdef CONFIG_PROC_FS
/*
* proc file interface
*/
#define SND_MEM_PROC_FILE "driver/snd-page-alloc"
static struct proc_dir_entry *snd_mem_proc;
static int snd_mem_proc_read(char *page, char **start, off_t off,
int count, int *eof, void *data)
{
int len = 0;
long pages = snd_allocated_pages >> (PAGE_SHIFT-12);
struct list_head *p;
struct snd_mem_list *mem;
int devno;
static char *types[] = { "UNKNOWN", "CONT", "DEV", "DEV-SG", "SBUS" };
mutex_lock(&list_mutex);
len += snprintf(page + len, count - len,
"pages : %li bytes (%li pages per %likB)\n",
pages * PAGE_SIZE, pages, PAGE_SIZE / 1024);
devno = 0;
list_for_each(p, &mem_list_head) {
mem = list_entry(p, struct snd_mem_list, list);
devno++;
len += snprintf(page + len, count - len,
"buffer %d : ID %08x : type %s\n",
devno, mem->id, types[mem->buffer.dev.type]);
len += snprintf(page + len, count - len,
" addr = 0x%lx, size = %d bytes\n",
(unsigned long)mem->buffer.addr, (int)mem->buffer.bytes);
}
mutex_unlock(&list_mutex);
return len;
}
/* FIXME: for pci only - other bus? */
#ifdef CONFIG_PCI
#define gettoken(bufp) strsep(bufp, " \t\n")
static int snd_mem_proc_write(struct file *file, const char __user *buffer,
unsigned long count, void *data)
{
char buf[128];
char *token, *p;
if (count > ARRAY_SIZE(buf) - 1)
count = ARRAY_SIZE(buf) - 1;
if (copy_from_user(buf, buffer, count))
return -EFAULT;
buf[ARRAY_SIZE(buf) - 1] = '\0';
p = buf;
token = gettoken(&p);
if (! token || *token == '#')
return (int)count;
if (strcmp(token, "add") == 0) {
char *endp;
int vendor, device, size, buffers;
long mask;
int i, alloced;
struct pci_dev *pci;
if ((token = gettoken(&p)) == NULL ||
(vendor = simple_strtol(token, NULL, 0)) <= 0 ||
(token = gettoken(&p)) == NULL ||
(device = simple_strtol(token, NULL, 0)) <= 0 ||
(token = gettoken(&p)) == NULL ||
(mask = simple_strtol(token, NULL, 0)) < 0 ||
(token = gettoken(&p)) == NULL ||
(size = memparse(token, &endp)) < 64*1024 ||
size > 16*1024*1024 /* too big */ ||
(token = gettoken(&p)) == NULL ||
(buffers = simple_strtol(token, NULL, 0)) <= 0 ||
buffers > 4) {
printk(KERN_ERR "snd-page-alloc: invalid proc write format\n");
return (int)count;
}
vendor &= 0xffff;
device &= 0xffff;
alloced = 0;
pci = NULL;
while ((pci = pci_get_device(vendor, device, pci)) != NULL) {
if (mask > 0 && mask < 0xffffffff) {
if (pci_set_dma_mask(pci, mask) < 0 ||
pci_set_consistent_dma_mask(pci, mask) < 0) {
printk(KERN_ERR "snd-page-alloc: cannot set DMA mask %lx for pci %04x:%04x\n", mask, vendor, device);
return (int)count;
}
}
for (i = 0; i < buffers; i++) {
struct snd_dma_buffer dmab;
memset(&dmab, 0, sizeof(dmab));
if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, snd_dma_pci_data(pci),
size, &dmab) < 0) {
printk(KERN_ERR "snd-page-alloc: cannot allocate buffer pages (size = %d)\n", size);
pci_dev_put(pci);
return (int)count;
}
snd_dma_reserve_buf(&dmab, snd_dma_pci_buf_id(pci));
}
alloced++;
}
if (! alloced) {
for (i = 0; i < buffers; i++) {
struct snd_dma_buffer dmab;
memset(&dmab, 0, sizeof(dmab));
/* FIXME: We can allocate only in ZONE_DMA
* without a device pointer!
*/
if (snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, NULL,
size, &dmab) < 0) {
printk(KERN_ERR "snd-page-alloc: cannot allocate buffer pages (size = %d)\n", size);
break;
}
snd_dma_reserve_buf(&dmab, (unsigned int)((vendor << 16) | device));
}
}
} else if (strcmp(token, "erase") == 0)
/* FIXME: need for releasing each buffer chunk? */
free_all_reserved_pages();
else
printk(KERN_ERR "snd-page-alloc: invalid proc cmd\n");
return (int)count;
}
#endif /* CONFIG_PCI */
#endif /* CONFIG_PROC_FS */
/*
* module entry
*/
static int __init snd_mem_init(void)
{
#ifdef CONFIG_PROC_FS
snd_mem_proc = create_proc_entry(SND_MEM_PROC_FILE, 0644, NULL);
if (snd_mem_proc) {
snd_mem_proc->read_proc = snd_mem_proc_read;
#ifdef CONFIG_PCI
snd_mem_proc->write_proc = snd_mem_proc_write;
#endif
}
#endif
return 0;
}
static void __exit snd_mem_exit(void)
{
remove_proc_entry(SND_MEM_PROC_FILE, NULL);
free_all_reserved_pages();
if (snd_allocated_pages > 0)
printk(KERN_ERR "snd-malloc: Memory leak? pages not freed = %li\n", snd_allocated_pages);
}
module_init(snd_mem_init)
module_exit(snd_mem_exit)
/*
* exports
*/
EXPORT_SYMBOL(snd_dma_alloc_pages);
EXPORT_SYMBOL(snd_dma_alloc_pages_fallback);
EXPORT_SYMBOL(snd_dma_free_pages);
EXPORT_SYMBOL(snd_dma_get_reserved_buf);
EXPORT_SYMBOL(snd_dma_reserve_buf);
EXPORT_SYMBOL(snd_malloc_pages);
EXPORT_SYMBOL(snd_free_pages);