mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-22 19:24:27 +07:00
bec7a4bbec
INT_PWM1 is already a bitmask, not the bit number, so shifting by INT_PWM1 is incorrect. Signed-off-by: Nickolai Zeldovich <nickolai@csail.mit.edu> Signed-off-by: Dmitry Torokhov <dmitry.torokhov@gmail.com>
862 lines
22 KiB
C
862 lines
22 KiB
C
/*
|
|
* drivers/i2c/chips/lm8323.c
|
|
*
|
|
* Copyright (C) 2007-2009 Nokia Corporation
|
|
*
|
|
* Written by Daniel Stone <daniel.stone@nokia.com>
|
|
* Timo O. Karjalainen <timo.o.karjalainen@nokia.com>
|
|
*
|
|
* Updated by Felipe Balbi <felipe.balbi@nokia.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation (version 2 of the License only).
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/i2c.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/input.h>
|
|
#include <linux/leds.h>
|
|
#include <linux/pm.h>
|
|
#include <linux/i2c/lm8323.h>
|
|
#include <linux/slab.h>
|
|
|
|
/* Commands to send to the chip. */
|
|
#define LM8323_CMD_READ_ID 0x80 /* Read chip ID. */
|
|
#define LM8323_CMD_WRITE_CFG 0x81 /* Set configuration item. */
|
|
#define LM8323_CMD_READ_INT 0x82 /* Get interrupt status. */
|
|
#define LM8323_CMD_RESET 0x83 /* Reset, same as external one */
|
|
#define LM8323_CMD_WRITE_PORT_SEL 0x85 /* Set GPIO in/out. */
|
|
#define LM8323_CMD_WRITE_PORT_STATE 0x86 /* Set GPIO pullup. */
|
|
#define LM8323_CMD_READ_PORT_SEL 0x87 /* Get GPIO in/out. */
|
|
#define LM8323_CMD_READ_PORT_STATE 0x88 /* Get GPIO pullup. */
|
|
#define LM8323_CMD_READ_FIFO 0x89 /* Read byte from FIFO. */
|
|
#define LM8323_CMD_RPT_READ_FIFO 0x8a /* Read FIFO (no increment). */
|
|
#define LM8323_CMD_SET_ACTIVE 0x8b /* Set active time. */
|
|
#define LM8323_CMD_READ_ERR 0x8c /* Get error status. */
|
|
#define LM8323_CMD_READ_ROTATOR 0x8e /* Read rotator status. */
|
|
#define LM8323_CMD_SET_DEBOUNCE 0x8f /* Set debouncing time. */
|
|
#define LM8323_CMD_SET_KEY_SIZE 0x90 /* Set keypad size. */
|
|
#define LM8323_CMD_READ_KEY_SIZE 0x91 /* Get keypad size. */
|
|
#define LM8323_CMD_READ_CFG 0x92 /* Get configuration item. */
|
|
#define LM8323_CMD_WRITE_CLOCK 0x93 /* Set clock config. */
|
|
#define LM8323_CMD_READ_CLOCK 0x94 /* Get clock config. */
|
|
#define LM8323_CMD_PWM_WRITE 0x95 /* Write PWM script. */
|
|
#define LM8323_CMD_START_PWM 0x96 /* Start PWM engine. */
|
|
#define LM8323_CMD_STOP_PWM 0x97 /* Stop PWM engine. */
|
|
|
|
/* Interrupt status. */
|
|
#define INT_KEYPAD 0x01 /* Key event. */
|
|
#define INT_ROTATOR 0x02 /* Rotator event. */
|
|
#define INT_ERROR 0x08 /* Error: use CMD_READ_ERR. */
|
|
#define INT_NOINIT 0x10 /* Lost configuration. */
|
|
#define INT_PWM1 0x20 /* PWM1 stopped. */
|
|
#define INT_PWM2 0x40 /* PWM2 stopped. */
|
|
#define INT_PWM3 0x80 /* PWM3 stopped. */
|
|
|
|
/* Errors (signalled by INT_ERROR, read with CMD_READ_ERR). */
|
|
#define ERR_BADPAR 0x01 /* Bad parameter. */
|
|
#define ERR_CMDUNK 0x02 /* Unknown command. */
|
|
#define ERR_KEYOVR 0x04 /* Too many keys pressed. */
|
|
#define ERR_FIFOOVER 0x40 /* FIFO overflow. */
|
|
|
|
/* Configuration keys (CMD_{WRITE,READ}_CFG). */
|
|
#define CFG_MUX1SEL 0x01 /* Select MUX1_OUT input. */
|
|
#define CFG_MUX1EN 0x02 /* Enable MUX1_OUT. */
|
|
#define CFG_MUX2SEL 0x04 /* Select MUX2_OUT input. */
|
|
#define CFG_MUX2EN 0x08 /* Enable MUX2_OUT. */
|
|
#define CFG_PSIZE 0x20 /* Package size (must be 0). */
|
|
#define CFG_ROTEN 0x40 /* Enable rotator. */
|
|
|
|
/* Clock settings (CMD_{WRITE,READ}_CLOCK). */
|
|
#define CLK_RCPWM_INTERNAL 0x00
|
|
#define CLK_RCPWM_EXTERNAL 0x03
|
|
#define CLK_SLOWCLKEN 0x08 /* Enable 32.768kHz clock. */
|
|
#define CLK_SLOWCLKOUT 0x40 /* Enable slow pulse output. */
|
|
|
|
/* The possible addresses corresponding to CONFIG1 and CONFIG2 pin wirings. */
|
|
#define LM8323_I2C_ADDR00 (0x84 >> 1) /* 1000 010x */
|
|
#define LM8323_I2C_ADDR01 (0x86 >> 1) /* 1000 011x */
|
|
#define LM8323_I2C_ADDR10 (0x88 >> 1) /* 1000 100x */
|
|
#define LM8323_I2C_ADDR11 (0x8A >> 1) /* 1000 101x */
|
|
|
|
/* Key event fifo length */
|
|
#define LM8323_FIFO_LEN 15
|
|
|
|
/* Commands for PWM engine; feed in with PWM_WRITE. */
|
|
/* Load ramp counter from duty cycle field (range 0 - 0xff). */
|
|
#define PWM_SET(v) (0x4000 | ((v) & 0xff))
|
|
/* Go to start of script. */
|
|
#define PWM_GOTOSTART 0x0000
|
|
/*
|
|
* Stop engine (generates interrupt). If reset is 1, clear the program
|
|
* counter, else leave it.
|
|
*/
|
|
#define PWM_END(reset) (0xc000 | (!!(reset) << 11))
|
|
/*
|
|
* Ramp. If s is 1, divide clock by 512, else divide clock by 16.
|
|
* Take t clock scales (up to 63) per step, for n steps (up to 126).
|
|
* If u is set, ramp up, else ramp down.
|
|
*/
|
|
#define PWM_RAMP(s, t, n, u) ((!!(s) << 14) | ((t) & 0x3f) << 8 | \
|
|
((n) & 0x7f) | ((u) ? 0 : 0x80))
|
|
/*
|
|
* Loop (i.e. jump back to pos) for a given number of iterations (up to 63).
|
|
* If cnt is zero, execute until PWM_END is encountered.
|
|
*/
|
|
#define PWM_LOOP(cnt, pos) (0xa000 | (((cnt) & 0x3f) << 7) | \
|
|
((pos) & 0x3f))
|
|
/*
|
|
* Wait for trigger. Argument is a mask of channels, shifted by the channel
|
|
* number, e.g. 0xa for channels 3 and 1. Note that channels are numbered
|
|
* from 1, not 0.
|
|
*/
|
|
#define PWM_WAIT_TRIG(chans) (0xe000 | (((chans) & 0x7) << 6))
|
|
/* Send trigger. Argument is same as PWM_WAIT_TRIG. */
|
|
#define PWM_SEND_TRIG(chans) (0xe000 | ((chans) & 0x7))
|
|
|
|
struct lm8323_pwm {
|
|
int id;
|
|
int fade_time;
|
|
int brightness;
|
|
int desired_brightness;
|
|
bool enabled;
|
|
bool running;
|
|
/* pwm lock */
|
|
struct mutex lock;
|
|
struct work_struct work;
|
|
struct led_classdev cdev;
|
|
struct lm8323_chip *chip;
|
|
};
|
|
|
|
struct lm8323_chip {
|
|
/* device lock */
|
|
struct mutex lock;
|
|
struct i2c_client *client;
|
|
struct input_dev *idev;
|
|
bool kp_enabled;
|
|
bool pm_suspend;
|
|
unsigned keys_down;
|
|
char phys[32];
|
|
unsigned short keymap[LM8323_KEYMAP_SIZE];
|
|
int size_x;
|
|
int size_y;
|
|
int debounce_time;
|
|
int active_time;
|
|
struct lm8323_pwm pwm[LM8323_NUM_PWMS];
|
|
};
|
|
|
|
#define client_to_lm8323(c) container_of(c, struct lm8323_chip, client)
|
|
#define dev_to_lm8323(d) container_of(d, struct lm8323_chip, client->dev)
|
|
#define cdev_to_pwm(c) container_of(c, struct lm8323_pwm, cdev)
|
|
#define work_to_pwm(w) container_of(w, struct lm8323_pwm, work)
|
|
|
|
#define LM8323_MAX_DATA 8
|
|
|
|
/*
|
|
* To write, we just access the chip's address in write mode, and dump the
|
|
* command and data out on the bus. The command byte and data are taken as
|
|
* sequential u8s out of varargs, to a maximum of LM8323_MAX_DATA.
|
|
*/
|
|
static int lm8323_write(struct lm8323_chip *lm, int len, ...)
|
|
{
|
|
int ret, i;
|
|
va_list ap;
|
|
u8 data[LM8323_MAX_DATA];
|
|
|
|
va_start(ap, len);
|
|
|
|
if (unlikely(len > LM8323_MAX_DATA)) {
|
|
dev_err(&lm->client->dev, "tried to send %d bytes\n", len);
|
|
va_end(ap);
|
|
return 0;
|
|
}
|
|
|
|
for (i = 0; i < len; i++)
|
|
data[i] = va_arg(ap, int);
|
|
|
|
va_end(ap);
|
|
|
|
/*
|
|
* If the host is asleep while we send the data, we can get a NACK
|
|
* back while it wakes up, so try again, once.
|
|
*/
|
|
ret = i2c_master_send(lm->client, data, len);
|
|
if (unlikely(ret == -EREMOTEIO))
|
|
ret = i2c_master_send(lm->client, data, len);
|
|
if (unlikely(ret != len))
|
|
dev_err(&lm->client->dev, "sent %d bytes of %d total\n",
|
|
len, ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* To read, we first send the command byte to the chip and end the transaction,
|
|
* then access the chip in read mode, at which point it will send the data.
|
|
*/
|
|
static int lm8323_read(struct lm8323_chip *lm, u8 cmd, u8 *buf, int len)
|
|
{
|
|
int ret;
|
|
|
|
/*
|
|
* If the host is asleep while we send the byte, we can get a NACK
|
|
* back while it wakes up, so try again, once.
|
|
*/
|
|
ret = i2c_master_send(lm->client, &cmd, 1);
|
|
if (unlikely(ret == -EREMOTEIO))
|
|
ret = i2c_master_send(lm->client, &cmd, 1);
|
|
if (unlikely(ret != 1)) {
|
|
dev_err(&lm->client->dev, "sending read cmd 0x%02x failed\n",
|
|
cmd);
|
|
return 0;
|
|
}
|
|
|
|
ret = i2c_master_recv(lm->client, buf, len);
|
|
if (unlikely(ret != len))
|
|
dev_err(&lm->client->dev, "wanted %d bytes, got %d\n",
|
|
len, ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Set the chip active time (idle time before it enters halt).
|
|
*/
|
|
static void lm8323_set_active_time(struct lm8323_chip *lm, int time)
|
|
{
|
|
lm8323_write(lm, 2, LM8323_CMD_SET_ACTIVE, time >> 2);
|
|
}
|
|
|
|
/*
|
|
* The signals are AT-style: the low 7 bits are the keycode, and the top
|
|
* bit indicates the state (1 for down, 0 for up).
|
|
*/
|
|
static inline u8 lm8323_whichkey(u8 event)
|
|
{
|
|
return event & 0x7f;
|
|
}
|
|
|
|
static inline int lm8323_ispress(u8 event)
|
|
{
|
|
return (event & 0x80) ? 1 : 0;
|
|
}
|
|
|
|
static void process_keys(struct lm8323_chip *lm)
|
|
{
|
|
u8 event;
|
|
u8 key_fifo[LM8323_FIFO_LEN + 1];
|
|
int old_keys_down = lm->keys_down;
|
|
int ret;
|
|
int i = 0;
|
|
|
|
/*
|
|
* Read all key events from the FIFO at once. Next READ_FIFO clears the
|
|
* FIFO even if we didn't read all events previously.
|
|
*/
|
|
ret = lm8323_read(lm, LM8323_CMD_READ_FIFO, key_fifo, LM8323_FIFO_LEN);
|
|
|
|
if (ret < 0) {
|
|
dev_err(&lm->client->dev, "Failed reading fifo \n");
|
|
return;
|
|
}
|
|
key_fifo[ret] = 0;
|
|
|
|
while ((event = key_fifo[i++])) {
|
|
u8 key = lm8323_whichkey(event);
|
|
int isdown = lm8323_ispress(event);
|
|
unsigned short keycode = lm->keymap[key];
|
|
|
|
dev_vdbg(&lm->client->dev, "key 0x%02x %s\n",
|
|
key, isdown ? "down" : "up");
|
|
|
|
if (lm->kp_enabled) {
|
|
input_event(lm->idev, EV_MSC, MSC_SCAN, key);
|
|
input_report_key(lm->idev, keycode, isdown);
|
|
input_sync(lm->idev);
|
|
}
|
|
|
|
if (isdown)
|
|
lm->keys_down++;
|
|
else
|
|
lm->keys_down--;
|
|
}
|
|
|
|
/*
|
|
* Errata: We need to ensure that the chip never enters halt mode
|
|
* during a keypress, so set active time to 0. When it's released,
|
|
* we can enter halt again, so set the active time back to normal.
|
|
*/
|
|
if (!old_keys_down && lm->keys_down)
|
|
lm8323_set_active_time(lm, 0);
|
|
if (old_keys_down && !lm->keys_down)
|
|
lm8323_set_active_time(lm, lm->active_time);
|
|
}
|
|
|
|
static void lm8323_process_error(struct lm8323_chip *lm)
|
|
{
|
|
u8 error;
|
|
|
|
if (lm8323_read(lm, LM8323_CMD_READ_ERR, &error, 1) == 1) {
|
|
if (error & ERR_FIFOOVER)
|
|
dev_vdbg(&lm->client->dev, "fifo overflow!\n");
|
|
if (error & ERR_KEYOVR)
|
|
dev_vdbg(&lm->client->dev,
|
|
"more than two keys pressed\n");
|
|
if (error & ERR_CMDUNK)
|
|
dev_vdbg(&lm->client->dev,
|
|
"unknown command submitted\n");
|
|
if (error & ERR_BADPAR)
|
|
dev_vdbg(&lm->client->dev, "bad command parameter\n");
|
|
}
|
|
}
|
|
|
|
static void lm8323_reset(struct lm8323_chip *lm)
|
|
{
|
|
/* The docs say we must pass 0xAA as the data byte. */
|
|
lm8323_write(lm, 2, LM8323_CMD_RESET, 0xAA);
|
|
}
|
|
|
|
static int lm8323_configure(struct lm8323_chip *lm)
|
|
{
|
|
int keysize = (lm->size_x << 4) | lm->size_y;
|
|
int clock = (CLK_SLOWCLKEN | CLK_RCPWM_EXTERNAL);
|
|
int debounce = lm->debounce_time >> 2;
|
|
int active = lm->active_time >> 2;
|
|
|
|
/*
|
|
* Active time must be greater than the debounce time: if it's
|
|
* a close-run thing, give ourselves a 12ms buffer.
|
|
*/
|
|
if (debounce >= active)
|
|
active = debounce + 3;
|
|
|
|
lm8323_write(lm, 2, LM8323_CMD_WRITE_CFG, 0);
|
|
lm8323_write(lm, 2, LM8323_CMD_WRITE_CLOCK, clock);
|
|
lm8323_write(lm, 2, LM8323_CMD_SET_KEY_SIZE, keysize);
|
|
lm8323_set_active_time(lm, lm->active_time);
|
|
lm8323_write(lm, 2, LM8323_CMD_SET_DEBOUNCE, debounce);
|
|
lm8323_write(lm, 3, LM8323_CMD_WRITE_PORT_STATE, 0xff, 0xff);
|
|
lm8323_write(lm, 3, LM8323_CMD_WRITE_PORT_SEL, 0, 0);
|
|
|
|
/*
|
|
* Not much we can do about errors at this point, so just hope
|
|
* for the best.
|
|
*/
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void pwm_done(struct lm8323_pwm *pwm)
|
|
{
|
|
mutex_lock(&pwm->lock);
|
|
pwm->running = false;
|
|
if (pwm->desired_brightness != pwm->brightness)
|
|
schedule_work(&pwm->work);
|
|
mutex_unlock(&pwm->lock);
|
|
}
|
|
|
|
/*
|
|
* Bottom half: handle the interrupt by posting key events, or dealing with
|
|
* errors appropriately.
|
|
*/
|
|
static irqreturn_t lm8323_irq(int irq, void *_lm)
|
|
{
|
|
struct lm8323_chip *lm = _lm;
|
|
u8 ints;
|
|
int i;
|
|
|
|
mutex_lock(&lm->lock);
|
|
|
|
while ((lm8323_read(lm, LM8323_CMD_READ_INT, &ints, 1) == 1) && ints) {
|
|
if (likely(ints & INT_KEYPAD))
|
|
process_keys(lm);
|
|
if (ints & INT_ROTATOR) {
|
|
/* We don't currently support the rotator. */
|
|
dev_vdbg(&lm->client->dev, "rotator fired\n");
|
|
}
|
|
if (ints & INT_ERROR) {
|
|
dev_vdbg(&lm->client->dev, "error!\n");
|
|
lm8323_process_error(lm);
|
|
}
|
|
if (ints & INT_NOINIT) {
|
|
dev_err(&lm->client->dev, "chip lost config; "
|
|
"reinitialising\n");
|
|
lm8323_configure(lm);
|
|
}
|
|
for (i = 0; i < LM8323_NUM_PWMS; i++) {
|
|
if (ints & (INT_PWM1 << i)) {
|
|
dev_vdbg(&lm->client->dev,
|
|
"pwm%d engine completed\n", i);
|
|
pwm_done(&lm->pwm[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
mutex_unlock(&lm->lock);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/*
|
|
* Read the chip ID.
|
|
*/
|
|
static int lm8323_read_id(struct lm8323_chip *lm, u8 *buf)
|
|
{
|
|
int bytes;
|
|
|
|
bytes = lm8323_read(lm, LM8323_CMD_READ_ID, buf, 2);
|
|
if (unlikely(bytes != 2))
|
|
return -EIO;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void lm8323_write_pwm_one(struct lm8323_pwm *pwm, int pos, u16 cmd)
|
|
{
|
|
lm8323_write(pwm->chip, 4, LM8323_CMD_PWM_WRITE, (pos << 2) | pwm->id,
|
|
(cmd & 0xff00) >> 8, cmd & 0x00ff);
|
|
}
|
|
|
|
/*
|
|
* Write a script into a given PWM engine, concluding with PWM_END.
|
|
* If 'kill' is nonzero, the engine will be shut down at the end
|
|
* of the script, producing a zero output. Otherwise the engine
|
|
* will be kept running at the final PWM level indefinitely.
|
|
*/
|
|
static void lm8323_write_pwm(struct lm8323_pwm *pwm, int kill,
|
|
int len, const u16 *cmds)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < len; i++)
|
|
lm8323_write_pwm_one(pwm, i, cmds[i]);
|
|
|
|
lm8323_write_pwm_one(pwm, i++, PWM_END(kill));
|
|
lm8323_write(pwm->chip, 2, LM8323_CMD_START_PWM, pwm->id);
|
|
pwm->running = true;
|
|
}
|
|
|
|
static void lm8323_pwm_work(struct work_struct *work)
|
|
{
|
|
struct lm8323_pwm *pwm = work_to_pwm(work);
|
|
int div512, perstep, steps, hz, up, kill;
|
|
u16 pwm_cmds[3];
|
|
int num_cmds = 0;
|
|
|
|
mutex_lock(&pwm->lock);
|
|
|
|
/*
|
|
* Do nothing if we're already at the requested level,
|
|
* or previous setting is not yet complete. In the latter
|
|
* case we will be called again when the previous PWM script
|
|
* finishes.
|
|
*/
|
|
if (pwm->running || pwm->desired_brightness == pwm->brightness)
|
|
goto out;
|
|
|
|
kill = (pwm->desired_brightness == 0);
|
|
up = (pwm->desired_brightness > pwm->brightness);
|
|
steps = abs(pwm->desired_brightness - pwm->brightness);
|
|
|
|
/*
|
|
* Convert time (in ms) into a divisor (512 or 16 on a refclk of
|
|
* 32768Hz), and number of ticks per step.
|
|
*/
|
|
if ((pwm->fade_time / steps) > (32768 / 512)) {
|
|
div512 = 1;
|
|
hz = 32768 / 512;
|
|
} else {
|
|
div512 = 0;
|
|
hz = 32768 / 16;
|
|
}
|
|
|
|
perstep = (hz * pwm->fade_time) / (steps * 1000);
|
|
|
|
if (perstep == 0)
|
|
perstep = 1;
|
|
else if (perstep > 63)
|
|
perstep = 63;
|
|
|
|
while (steps) {
|
|
int s;
|
|
|
|
s = min(126, steps);
|
|
pwm_cmds[num_cmds++] = PWM_RAMP(div512, perstep, s, up);
|
|
steps -= s;
|
|
}
|
|
|
|
lm8323_write_pwm(pwm, kill, num_cmds, pwm_cmds);
|
|
pwm->brightness = pwm->desired_brightness;
|
|
|
|
out:
|
|
mutex_unlock(&pwm->lock);
|
|
}
|
|
|
|
static void lm8323_pwm_set_brightness(struct led_classdev *led_cdev,
|
|
enum led_brightness brightness)
|
|
{
|
|
struct lm8323_pwm *pwm = cdev_to_pwm(led_cdev);
|
|
struct lm8323_chip *lm = pwm->chip;
|
|
|
|
mutex_lock(&pwm->lock);
|
|
pwm->desired_brightness = brightness;
|
|
mutex_unlock(&pwm->lock);
|
|
|
|
if (in_interrupt()) {
|
|
schedule_work(&pwm->work);
|
|
} else {
|
|
/*
|
|
* Schedule PWM work as usual unless we are going into suspend
|
|
*/
|
|
mutex_lock(&lm->lock);
|
|
if (likely(!lm->pm_suspend))
|
|
schedule_work(&pwm->work);
|
|
else
|
|
lm8323_pwm_work(&pwm->work);
|
|
mutex_unlock(&lm->lock);
|
|
}
|
|
}
|
|
|
|
static ssize_t lm8323_pwm_show_time(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct led_classdev *led_cdev = dev_get_drvdata(dev);
|
|
struct lm8323_pwm *pwm = cdev_to_pwm(led_cdev);
|
|
|
|
return sprintf(buf, "%d\n", pwm->fade_time);
|
|
}
|
|
|
|
static ssize_t lm8323_pwm_store_time(struct device *dev,
|
|
struct device_attribute *attr, const char *buf, size_t len)
|
|
{
|
|
struct led_classdev *led_cdev = dev_get_drvdata(dev);
|
|
struct lm8323_pwm *pwm = cdev_to_pwm(led_cdev);
|
|
int ret, time;
|
|
|
|
ret = kstrtoint(buf, 10, &time);
|
|
/* Numbers only, please. */
|
|
if (ret)
|
|
return ret;
|
|
|
|
pwm->fade_time = time;
|
|
|
|
return strlen(buf);
|
|
}
|
|
static DEVICE_ATTR(time, 0644, lm8323_pwm_show_time, lm8323_pwm_store_time);
|
|
|
|
static int init_pwm(struct lm8323_chip *lm, int id, struct device *dev,
|
|
const char *name)
|
|
{
|
|
struct lm8323_pwm *pwm;
|
|
|
|
BUG_ON(id > 3);
|
|
|
|
pwm = &lm->pwm[id - 1];
|
|
|
|
pwm->id = id;
|
|
pwm->fade_time = 0;
|
|
pwm->brightness = 0;
|
|
pwm->desired_brightness = 0;
|
|
pwm->running = false;
|
|
pwm->enabled = false;
|
|
INIT_WORK(&pwm->work, lm8323_pwm_work);
|
|
mutex_init(&pwm->lock);
|
|
pwm->chip = lm;
|
|
|
|
if (name) {
|
|
pwm->cdev.name = name;
|
|
pwm->cdev.brightness_set = lm8323_pwm_set_brightness;
|
|
if (led_classdev_register(dev, &pwm->cdev) < 0) {
|
|
dev_err(dev, "couldn't register PWM %d\n", id);
|
|
return -1;
|
|
}
|
|
if (device_create_file(pwm->cdev.dev,
|
|
&dev_attr_time) < 0) {
|
|
dev_err(dev, "couldn't register time attribute\n");
|
|
led_classdev_unregister(&pwm->cdev);
|
|
return -1;
|
|
}
|
|
pwm->enabled = true;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct i2c_driver lm8323_i2c_driver;
|
|
|
|
static ssize_t lm8323_show_disable(struct device *dev,
|
|
struct device_attribute *attr, char *buf)
|
|
{
|
|
struct lm8323_chip *lm = dev_get_drvdata(dev);
|
|
|
|
return sprintf(buf, "%u\n", !lm->kp_enabled);
|
|
}
|
|
|
|
static ssize_t lm8323_set_disable(struct device *dev,
|
|
struct device_attribute *attr,
|
|
const char *buf, size_t count)
|
|
{
|
|
struct lm8323_chip *lm = dev_get_drvdata(dev);
|
|
int ret;
|
|
unsigned int i;
|
|
|
|
ret = kstrtouint(buf, 10, &i);
|
|
|
|
mutex_lock(&lm->lock);
|
|
lm->kp_enabled = !i;
|
|
mutex_unlock(&lm->lock);
|
|
|
|
return count;
|
|
}
|
|
static DEVICE_ATTR(disable_kp, 0644, lm8323_show_disable, lm8323_set_disable);
|
|
|
|
static int lm8323_probe(struct i2c_client *client,
|
|
const struct i2c_device_id *id)
|
|
{
|
|
struct lm8323_platform_data *pdata = client->dev.platform_data;
|
|
struct input_dev *idev;
|
|
struct lm8323_chip *lm;
|
|
int pwm;
|
|
int i, err;
|
|
unsigned long tmo;
|
|
u8 data[2];
|
|
|
|
if (!pdata || !pdata->size_x || !pdata->size_y) {
|
|
dev_err(&client->dev, "missing platform_data\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (pdata->size_x > 8) {
|
|
dev_err(&client->dev, "invalid x size %d specified\n",
|
|
pdata->size_x);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (pdata->size_y > 12) {
|
|
dev_err(&client->dev, "invalid y size %d specified\n",
|
|
pdata->size_y);
|
|
return -EINVAL;
|
|
}
|
|
|
|
lm = kzalloc(sizeof *lm, GFP_KERNEL);
|
|
idev = input_allocate_device();
|
|
if (!lm || !idev) {
|
|
err = -ENOMEM;
|
|
goto fail1;
|
|
}
|
|
|
|
lm->client = client;
|
|
lm->idev = idev;
|
|
mutex_init(&lm->lock);
|
|
|
|
lm->size_x = pdata->size_x;
|
|
lm->size_y = pdata->size_y;
|
|
dev_vdbg(&client->dev, "Keypad size: %d x %d\n",
|
|
lm->size_x, lm->size_y);
|
|
|
|
lm->debounce_time = pdata->debounce_time;
|
|
lm->active_time = pdata->active_time;
|
|
|
|
lm8323_reset(lm);
|
|
|
|
/* Nothing's set up to service the IRQ yet, so just spin for max.
|
|
* 100ms until we can configure. */
|
|
tmo = jiffies + msecs_to_jiffies(100);
|
|
while (lm8323_read(lm, LM8323_CMD_READ_INT, data, 1) == 1) {
|
|
if (data[0] & INT_NOINIT)
|
|
break;
|
|
|
|
if (time_after(jiffies, tmo)) {
|
|
dev_err(&client->dev,
|
|
"timeout waiting for initialisation\n");
|
|
break;
|
|
}
|
|
|
|
msleep(1);
|
|
}
|
|
|
|
lm8323_configure(lm);
|
|
|
|
/* If a true probe check the device */
|
|
if (lm8323_read_id(lm, data) != 0) {
|
|
dev_err(&client->dev, "device not found\n");
|
|
err = -ENODEV;
|
|
goto fail1;
|
|
}
|
|
|
|
for (pwm = 0; pwm < LM8323_NUM_PWMS; pwm++) {
|
|
err = init_pwm(lm, pwm + 1, &client->dev,
|
|
pdata->pwm_names[pwm]);
|
|
if (err < 0)
|
|
goto fail2;
|
|
}
|
|
|
|
lm->kp_enabled = true;
|
|
err = device_create_file(&client->dev, &dev_attr_disable_kp);
|
|
if (err < 0)
|
|
goto fail2;
|
|
|
|
idev->name = pdata->name ? : "LM8323 keypad";
|
|
snprintf(lm->phys, sizeof(lm->phys),
|
|
"%s/input-kp", dev_name(&client->dev));
|
|
idev->phys = lm->phys;
|
|
|
|
idev->evbit[0] = BIT(EV_KEY) | BIT(EV_MSC);
|
|
__set_bit(MSC_SCAN, idev->mscbit);
|
|
for (i = 0; i < LM8323_KEYMAP_SIZE; i++) {
|
|
__set_bit(pdata->keymap[i], idev->keybit);
|
|
lm->keymap[i] = pdata->keymap[i];
|
|
}
|
|
__clear_bit(KEY_RESERVED, idev->keybit);
|
|
|
|
if (pdata->repeat)
|
|
__set_bit(EV_REP, idev->evbit);
|
|
|
|
err = input_register_device(idev);
|
|
if (err) {
|
|
dev_dbg(&client->dev, "error registering input device\n");
|
|
goto fail3;
|
|
}
|
|
|
|
err = request_threaded_irq(client->irq, NULL, lm8323_irq,
|
|
IRQF_TRIGGER_LOW|IRQF_ONESHOT, "lm8323", lm);
|
|
if (err) {
|
|
dev_err(&client->dev, "could not get IRQ %d\n", client->irq);
|
|
goto fail4;
|
|
}
|
|
|
|
i2c_set_clientdata(client, lm);
|
|
|
|
device_init_wakeup(&client->dev, 1);
|
|
enable_irq_wake(client->irq);
|
|
|
|
return 0;
|
|
|
|
fail4:
|
|
input_unregister_device(idev);
|
|
idev = NULL;
|
|
fail3:
|
|
device_remove_file(&client->dev, &dev_attr_disable_kp);
|
|
fail2:
|
|
while (--pwm >= 0)
|
|
if (lm->pwm[pwm].enabled) {
|
|
device_remove_file(lm->pwm[pwm].cdev.dev,
|
|
&dev_attr_time);
|
|
led_classdev_unregister(&lm->pwm[pwm].cdev);
|
|
}
|
|
fail1:
|
|
input_free_device(idev);
|
|
kfree(lm);
|
|
return err;
|
|
}
|
|
|
|
static int lm8323_remove(struct i2c_client *client)
|
|
{
|
|
struct lm8323_chip *lm = i2c_get_clientdata(client);
|
|
int i;
|
|
|
|
disable_irq_wake(client->irq);
|
|
free_irq(client->irq, lm);
|
|
|
|
input_unregister_device(lm->idev);
|
|
|
|
device_remove_file(&lm->client->dev, &dev_attr_disable_kp);
|
|
|
|
for (i = 0; i < 3; i++)
|
|
if (lm->pwm[i].enabled) {
|
|
device_remove_file(lm->pwm[i].cdev.dev, &dev_attr_time);
|
|
led_classdev_unregister(&lm->pwm[i].cdev);
|
|
}
|
|
|
|
kfree(lm);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_PM_SLEEP
|
|
/*
|
|
* We don't need to explicitly suspend the chip, as it already switches off
|
|
* when there's no activity.
|
|
*/
|
|
static int lm8323_suspend(struct device *dev)
|
|
{
|
|
struct i2c_client *client = to_i2c_client(dev);
|
|
struct lm8323_chip *lm = i2c_get_clientdata(client);
|
|
int i;
|
|
|
|
irq_set_irq_wake(client->irq, 0);
|
|
disable_irq(client->irq);
|
|
|
|
mutex_lock(&lm->lock);
|
|
lm->pm_suspend = true;
|
|
mutex_unlock(&lm->lock);
|
|
|
|
for (i = 0; i < 3; i++)
|
|
if (lm->pwm[i].enabled)
|
|
led_classdev_suspend(&lm->pwm[i].cdev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int lm8323_resume(struct device *dev)
|
|
{
|
|
struct i2c_client *client = to_i2c_client(dev);
|
|
struct lm8323_chip *lm = i2c_get_clientdata(client);
|
|
int i;
|
|
|
|
mutex_lock(&lm->lock);
|
|
lm->pm_suspend = false;
|
|
mutex_unlock(&lm->lock);
|
|
|
|
for (i = 0; i < 3; i++)
|
|
if (lm->pwm[i].enabled)
|
|
led_classdev_resume(&lm->pwm[i].cdev);
|
|
|
|
enable_irq(client->irq);
|
|
irq_set_irq_wake(client->irq, 1);
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
static SIMPLE_DEV_PM_OPS(lm8323_pm_ops, lm8323_suspend, lm8323_resume);
|
|
|
|
static const struct i2c_device_id lm8323_id[] = {
|
|
{ "lm8323", 0 },
|
|
{ }
|
|
};
|
|
|
|
static struct i2c_driver lm8323_i2c_driver = {
|
|
.driver = {
|
|
.name = "lm8323",
|
|
.pm = &lm8323_pm_ops,
|
|
},
|
|
.probe = lm8323_probe,
|
|
.remove = lm8323_remove,
|
|
.id_table = lm8323_id,
|
|
};
|
|
MODULE_DEVICE_TABLE(i2c, lm8323_id);
|
|
|
|
module_i2c_driver(lm8323_i2c_driver);
|
|
|
|
MODULE_AUTHOR("Timo O. Karjalainen <timo.o.karjalainen@nokia.com>");
|
|
MODULE_AUTHOR("Daniel Stone");
|
|
MODULE_AUTHOR("Felipe Balbi <felipe.balbi@nokia.com>");
|
|
MODULE_DESCRIPTION("LM8323 keypad driver");
|
|
MODULE_LICENSE("GPL");
|
|
|