mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-16 13:56:56 +07:00
225ffaa820
Prefer struct drm_device based logging over struct device based logging. No functional changes. Cc: Wambui Karuga <wambui.karugax@gmail.com> Reviewed-by: Wambui Karuga <wambui.karugax@gmail.com> Signed-off-by: Jani Nikula <jani.nikula@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20200402114819.17232-13-jani.nikula@intel.com
500 lines
12 KiB
C
500 lines
12 KiB
C
// SPDX-License-Identifier: MIT
|
|
/*
|
|
* Copyright © 2020 Intel Corporation
|
|
*/
|
|
|
|
#include "i915_drv.h"
|
|
#include "intel_dram.h"
|
|
|
|
struct dram_dimm_info {
|
|
u8 size, width, ranks;
|
|
};
|
|
|
|
struct dram_channel_info {
|
|
struct dram_dimm_info dimm_l, dimm_s;
|
|
u8 ranks;
|
|
bool is_16gb_dimm;
|
|
};
|
|
|
|
#define DRAM_TYPE_STR(type) [INTEL_DRAM_ ## type] = #type
|
|
|
|
static const char *intel_dram_type_str(enum intel_dram_type type)
|
|
{
|
|
static const char * const str[] = {
|
|
DRAM_TYPE_STR(UNKNOWN),
|
|
DRAM_TYPE_STR(DDR3),
|
|
DRAM_TYPE_STR(DDR4),
|
|
DRAM_TYPE_STR(LPDDR3),
|
|
DRAM_TYPE_STR(LPDDR4),
|
|
};
|
|
|
|
if (type >= ARRAY_SIZE(str))
|
|
type = INTEL_DRAM_UNKNOWN;
|
|
|
|
return str[type];
|
|
}
|
|
|
|
#undef DRAM_TYPE_STR
|
|
|
|
static int intel_dimm_num_devices(const struct dram_dimm_info *dimm)
|
|
{
|
|
return dimm->ranks * 64 / (dimm->width ?: 1);
|
|
}
|
|
|
|
/* Returns total GB for the whole DIMM */
|
|
static int skl_get_dimm_size(u16 val)
|
|
{
|
|
return val & SKL_DRAM_SIZE_MASK;
|
|
}
|
|
|
|
static int skl_get_dimm_width(u16 val)
|
|
{
|
|
if (skl_get_dimm_size(val) == 0)
|
|
return 0;
|
|
|
|
switch (val & SKL_DRAM_WIDTH_MASK) {
|
|
case SKL_DRAM_WIDTH_X8:
|
|
case SKL_DRAM_WIDTH_X16:
|
|
case SKL_DRAM_WIDTH_X32:
|
|
val = (val & SKL_DRAM_WIDTH_MASK) >> SKL_DRAM_WIDTH_SHIFT;
|
|
return 8 << val;
|
|
default:
|
|
MISSING_CASE(val);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static int skl_get_dimm_ranks(u16 val)
|
|
{
|
|
if (skl_get_dimm_size(val) == 0)
|
|
return 0;
|
|
|
|
val = (val & SKL_DRAM_RANK_MASK) >> SKL_DRAM_RANK_SHIFT;
|
|
|
|
return val + 1;
|
|
}
|
|
|
|
/* Returns total GB for the whole DIMM */
|
|
static int cnl_get_dimm_size(u16 val)
|
|
{
|
|
return (val & CNL_DRAM_SIZE_MASK) / 2;
|
|
}
|
|
|
|
static int cnl_get_dimm_width(u16 val)
|
|
{
|
|
if (cnl_get_dimm_size(val) == 0)
|
|
return 0;
|
|
|
|
switch (val & CNL_DRAM_WIDTH_MASK) {
|
|
case CNL_DRAM_WIDTH_X8:
|
|
case CNL_DRAM_WIDTH_X16:
|
|
case CNL_DRAM_WIDTH_X32:
|
|
val = (val & CNL_DRAM_WIDTH_MASK) >> CNL_DRAM_WIDTH_SHIFT;
|
|
return 8 << val;
|
|
default:
|
|
MISSING_CASE(val);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static int cnl_get_dimm_ranks(u16 val)
|
|
{
|
|
if (cnl_get_dimm_size(val) == 0)
|
|
return 0;
|
|
|
|
val = (val & CNL_DRAM_RANK_MASK) >> CNL_DRAM_RANK_SHIFT;
|
|
|
|
return val + 1;
|
|
}
|
|
|
|
static bool
|
|
skl_is_16gb_dimm(const struct dram_dimm_info *dimm)
|
|
{
|
|
/* Convert total GB to Gb per DRAM device */
|
|
return 8 * dimm->size / (intel_dimm_num_devices(dimm) ?: 1) == 16;
|
|
}
|
|
|
|
static void
|
|
skl_dram_get_dimm_info(struct drm_i915_private *i915,
|
|
struct dram_dimm_info *dimm,
|
|
int channel, char dimm_name, u16 val)
|
|
{
|
|
if (INTEL_GEN(i915) >= 10) {
|
|
dimm->size = cnl_get_dimm_size(val);
|
|
dimm->width = cnl_get_dimm_width(val);
|
|
dimm->ranks = cnl_get_dimm_ranks(val);
|
|
} else {
|
|
dimm->size = skl_get_dimm_size(val);
|
|
dimm->width = skl_get_dimm_width(val);
|
|
dimm->ranks = skl_get_dimm_ranks(val);
|
|
}
|
|
|
|
drm_dbg_kms(&i915->drm,
|
|
"CH%u DIMM %c size: %u GB, width: X%u, ranks: %u, 16Gb DIMMs: %s\n",
|
|
channel, dimm_name, dimm->size, dimm->width, dimm->ranks,
|
|
yesno(skl_is_16gb_dimm(dimm)));
|
|
}
|
|
|
|
static int
|
|
skl_dram_get_channel_info(struct drm_i915_private *i915,
|
|
struct dram_channel_info *ch,
|
|
int channel, u32 val)
|
|
{
|
|
skl_dram_get_dimm_info(i915, &ch->dimm_l,
|
|
channel, 'L', val & 0xffff);
|
|
skl_dram_get_dimm_info(i915, &ch->dimm_s,
|
|
channel, 'S', val >> 16);
|
|
|
|
if (ch->dimm_l.size == 0 && ch->dimm_s.size == 0) {
|
|
drm_dbg_kms(&i915->drm, "CH%u not populated\n", channel);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (ch->dimm_l.ranks == 2 || ch->dimm_s.ranks == 2)
|
|
ch->ranks = 2;
|
|
else if (ch->dimm_l.ranks == 1 && ch->dimm_s.ranks == 1)
|
|
ch->ranks = 2;
|
|
else
|
|
ch->ranks = 1;
|
|
|
|
ch->is_16gb_dimm = skl_is_16gb_dimm(&ch->dimm_l) ||
|
|
skl_is_16gb_dimm(&ch->dimm_s);
|
|
|
|
drm_dbg_kms(&i915->drm, "CH%u ranks: %u, 16Gb DIMMs: %s\n",
|
|
channel, ch->ranks, yesno(ch->is_16gb_dimm));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool
|
|
intel_is_dram_symmetric(const struct dram_channel_info *ch0,
|
|
const struct dram_channel_info *ch1)
|
|
{
|
|
return !memcmp(ch0, ch1, sizeof(*ch0)) &&
|
|
(ch0->dimm_s.size == 0 ||
|
|
!memcmp(&ch0->dimm_l, &ch0->dimm_s, sizeof(ch0->dimm_l)));
|
|
}
|
|
|
|
static int
|
|
skl_dram_get_channels_info(struct drm_i915_private *i915)
|
|
{
|
|
struct dram_info *dram_info = &i915->dram_info;
|
|
struct dram_channel_info ch0 = {}, ch1 = {};
|
|
u32 val;
|
|
int ret;
|
|
|
|
val = intel_uncore_read(&i915->uncore,
|
|
SKL_MAD_DIMM_CH0_0_0_0_MCHBAR_MCMAIN);
|
|
ret = skl_dram_get_channel_info(i915, &ch0, 0, val);
|
|
if (ret == 0)
|
|
dram_info->num_channels++;
|
|
|
|
val = intel_uncore_read(&i915->uncore,
|
|
SKL_MAD_DIMM_CH1_0_0_0_MCHBAR_MCMAIN);
|
|
ret = skl_dram_get_channel_info(i915, &ch1, 1, val);
|
|
if (ret == 0)
|
|
dram_info->num_channels++;
|
|
|
|
if (dram_info->num_channels == 0) {
|
|
drm_info(&i915->drm, "Number of memory channels is zero\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* If any of the channel is single rank channel, worst case output
|
|
* will be same as if single rank memory, so consider single rank
|
|
* memory.
|
|
*/
|
|
if (ch0.ranks == 1 || ch1.ranks == 1)
|
|
dram_info->ranks = 1;
|
|
else
|
|
dram_info->ranks = max(ch0.ranks, ch1.ranks);
|
|
|
|
if (dram_info->ranks == 0) {
|
|
drm_info(&i915->drm, "couldn't get memory rank information\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
dram_info->is_16gb_dimm = ch0.is_16gb_dimm || ch1.is_16gb_dimm;
|
|
|
|
dram_info->symmetric_memory = intel_is_dram_symmetric(&ch0, &ch1);
|
|
|
|
drm_dbg_kms(&i915->drm, "Memory configuration is symmetric? %s\n",
|
|
yesno(dram_info->symmetric_memory));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static enum intel_dram_type
|
|
skl_get_dram_type(struct drm_i915_private *i915)
|
|
{
|
|
u32 val;
|
|
|
|
val = intel_uncore_read(&i915->uncore,
|
|
SKL_MAD_INTER_CHANNEL_0_0_0_MCHBAR_MCMAIN);
|
|
|
|
switch (val & SKL_DRAM_DDR_TYPE_MASK) {
|
|
case SKL_DRAM_DDR_TYPE_DDR3:
|
|
return INTEL_DRAM_DDR3;
|
|
case SKL_DRAM_DDR_TYPE_DDR4:
|
|
return INTEL_DRAM_DDR4;
|
|
case SKL_DRAM_DDR_TYPE_LPDDR3:
|
|
return INTEL_DRAM_LPDDR3;
|
|
case SKL_DRAM_DDR_TYPE_LPDDR4:
|
|
return INTEL_DRAM_LPDDR4;
|
|
default:
|
|
MISSING_CASE(val);
|
|
return INTEL_DRAM_UNKNOWN;
|
|
}
|
|
}
|
|
|
|
static int
|
|
skl_get_dram_info(struct drm_i915_private *i915)
|
|
{
|
|
struct dram_info *dram_info = &i915->dram_info;
|
|
u32 mem_freq_khz, val;
|
|
int ret;
|
|
|
|
dram_info->type = skl_get_dram_type(i915);
|
|
drm_dbg_kms(&i915->drm, "DRAM type: %s\n",
|
|
intel_dram_type_str(dram_info->type));
|
|
|
|
ret = skl_dram_get_channels_info(i915);
|
|
if (ret)
|
|
return ret;
|
|
|
|
val = intel_uncore_read(&i915->uncore,
|
|
SKL_MC_BIOS_DATA_0_0_0_MCHBAR_PCU);
|
|
mem_freq_khz = DIV_ROUND_UP((val & SKL_REQ_DATA_MASK) *
|
|
SKL_MEMORY_FREQ_MULTIPLIER_HZ, 1000);
|
|
|
|
dram_info->bandwidth_kbps = dram_info->num_channels *
|
|
mem_freq_khz * 8;
|
|
|
|
if (dram_info->bandwidth_kbps == 0) {
|
|
drm_info(&i915->drm,
|
|
"Couldn't get system memory bandwidth\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
dram_info->valid = true;
|
|
return 0;
|
|
}
|
|
|
|
/* Returns Gb per DRAM device */
|
|
static int bxt_get_dimm_size(u32 val)
|
|
{
|
|
switch (val & BXT_DRAM_SIZE_MASK) {
|
|
case BXT_DRAM_SIZE_4GBIT:
|
|
return 4;
|
|
case BXT_DRAM_SIZE_6GBIT:
|
|
return 6;
|
|
case BXT_DRAM_SIZE_8GBIT:
|
|
return 8;
|
|
case BXT_DRAM_SIZE_12GBIT:
|
|
return 12;
|
|
case BXT_DRAM_SIZE_16GBIT:
|
|
return 16;
|
|
default:
|
|
MISSING_CASE(val);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static int bxt_get_dimm_width(u32 val)
|
|
{
|
|
if (!bxt_get_dimm_size(val))
|
|
return 0;
|
|
|
|
val = (val & BXT_DRAM_WIDTH_MASK) >> BXT_DRAM_WIDTH_SHIFT;
|
|
|
|
return 8 << val;
|
|
}
|
|
|
|
static int bxt_get_dimm_ranks(u32 val)
|
|
{
|
|
if (!bxt_get_dimm_size(val))
|
|
return 0;
|
|
|
|
switch (val & BXT_DRAM_RANK_MASK) {
|
|
case BXT_DRAM_RANK_SINGLE:
|
|
return 1;
|
|
case BXT_DRAM_RANK_DUAL:
|
|
return 2;
|
|
default:
|
|
MISSING_CASE(val);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static enum intel_dram_type bxt_get_dimm_type(u32 val)
|
|
{
|
|
if (!bxt_get_dimm_size(val))
|
|
return INTEL_DRAM_UNKNOWN;
|
|
|
|
switch (val & BXT_DRAM_TYPE_MASK) {
|
|
case BXT_DRAM_TYPE_DDR3:
|
|
return INTEL_DRAM_DDR3;
|
|
case BXT_DRAM_TYPE_LPDDR3:
|
|
return INTEL_DRAM_LPDDR3;
|
|
case BXT_DRAM_TYPE_DDR4:
|
|
return INTEL_DRAM_DDR4;
|
|
case BXT_DRAM_TYPE_LPDDR4:
|
|
return INTEL_DRAM_LPDDR4;
|
|
default:
|
|
MISSING_CASE(val);
|
|
return INTEL_DRAM_UNKNOWN;
|
|
}
|
|
}
|
|
|
|
static void bxt_get_dimm_info(struct dram_dimm_info *dimm, u32 val)
|
|
{
|
|
dimm->width = bxt_get_dimm_width(val);
|
|
dimm->ranks = bxt_get_dimm_ranks(val);
|
|
|
|
/*
|
|
* Size in register is Gb per DRAM device. Convert to total
|
|
* GB to match the way we report this for non-LP platforms.
|
|
*/
|
|
dimm->size = bxt_get_dimm_size(val) * intel_dimm_num_devices(dimm) / 8;
|
|
}
|
|
|
|
static int bxt_get_dram_info(struct drm_i915_private *i915)
|
|
{
|
|
struct dram_info *dram_info = &i915->dram_info;
|
|
u32 dram_channels;
|
|
u32 mem_freq_khz, val;
|
|
u8 num_active_channels;
|
|
int i;
|
|
|
|
val = intel_uncore_read(&i915->uncore, BXT_P_CR_MC_BIOS_REQ_0_0_0);
|
|
mem_freq_khz = DIV_ROUND_UP((val & BXT_REQ_DATA_MASK) *
|
|
BXT_MEMORY_FREQ_MULTIPLIER_HZ, 1000);
|
|
|
|
dram_channels = val & BXT_DRAM_CHANNEL_ACTIVE_MASK;
|
|
num_active_channels = hweight32(dram_channels);
|
|
|
|
/* Each active bit represents 4-byte channel */
|
|
dram_info->bandwidth_kbps = (mem_freq_khz * num_active_channels * 4);
|
|
|
|
if (dram_info->bandwidth_kbps == 0) {
|
|
drm_info(&i915->drm,
|
|
"Couldn't get system memory bandwidth\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Now read each DUNIT8/9/10/11 to check the rank of each dimms.
|
|
*/
|
|
for (i = BXT_D_CR_DRP0_DUNIT_START; i <= BXT_D_CR_DRP0_DUNIT_END; i++) {
|
|
struct dram_dimm_info dimm;
|
|
enum intel_dram_type type;
|
|
|
|
val = intel_uncore_read(&i915->uncore, BXT_D_CR_DRP0_DUNIT(i));
|
|
if (val == 0xFFFFFFFF)
|
|
continue;
|
|
|
|
dram_info->num_channels++;
|
|
|
|
bxt_get_dimm_info(&dimm, val);
|
|
type = bxt_get_dimm_type(val);
|
|
|
|
drm_WARN_ON(&i915->drm, type != INTEL_DRAM_UNKNOWN &&
|
|
dram_info->type != INTEL_DRAM_UNKNOWN &&
|
|
dram_info->type != type);
|
|
|
|
drm_dbg_kms(&i915->drm,
|
|
"CH%u DIMM size: %u GB, width: X%u, ranks: %u, type: %s\n",
|
|
i - BXT_D_CR_DRP0_DUNIT_START,
|
|
dimm.size, dimm.width, dimm.ranks,
|
|
intel_dram_type_str(type));
|
|
|
|
/*
|
|
* If any of the channel is single rank channel,
|
|
* worst case output will be same as if single rank
|
|
* memory, so consider single rank memory.
|
|
*/
|
|
if (dram_info->ranks == 0)
|
|
dram_info->ranks = dimm.ranks;
|
|
else if (dimm.ranks == 1)
|
|
dram_info->ranks = 1;
|
|
|
|
if (type != INTEL_DRAM_UNKNOWN)
|
|
dram_info->type = type;
|
|
}
|
|
|
|
if (dram_info->type == INTEL_DRAM_UNKNOWN || dram_info->ranks == 0) {
|
|
drm_info(&i915->drm, "couldn't get memory information\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
dram_info->valid = true;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void intel_dram_detect(struct drm_i915_private *i915)
|
|
{
|
|
struct dram_info *dram_info = &i915->dram_info;
|
|
int ret;
|
|
|
|
/*
|
|
* Assume 16Gb DIMMs are present until proven otherwise.
|
|
* This is only used for the level 0 watermark latency
|
|
* w/a which does not apply to bxt/glk.
|
|
*/
|
|
dram_info->is_16gb_dimm = !IS_GEN9_LP(i915);
|
|
|
|
if (INTEL_GEN(i915) < 9 || !HAS_DISPLAY(i915))
|
|
return;
|
|
|
|
if (IS_GEN9_LP(i915))
|
|
ret = bxt_get_dram_info(i915);
|
|
else
|
|
ret = skl_get_dram_info(i915);
|
|
if (ret)
|
|
return;
|
|
|
|
drm_dbg_kms(&i915->drm, "DRAM bandwidth: %u kBps, channels: %u\n",
|
|
dram_info->bandwidth_kbps, dram_info->num_channels);
|
|
|
|
drm_dbg_kms(&i915->drm, "DRAM ranks: %u, 16Gb DIMMs: %s\n",
|
|
dram_info->ranks, yesno(dram_info->is_16gb_dimm));
|
|
}
|
|
|
|
static u32 gen9_edram_size_mb(struct drm_i915_private *i915, u32 cap)
|
|
{
|
|
static const u8 ways[8] = { 4, 8, 12, 16, 16, 16, 16, 16 };
|
|
static const u8 sets[4] = { 1, 1, 2, 2 };
|
|
|
|
return EDRAM_NUM_BANKS(cap) *
|
|
ways[EDRAM_WAYS_IDX(cap)] *
|
|
sets[EDRAM_SETS_IDX(cap)];
|
|
}
|
|
|
|
void intel_dram_edram_detect(struct drm_i915_private *i915)
|
|
{
|
|
u32 edram_cap = 0;
|
|
|
|
if (!(IS_HASWELL(i915) || IS_BROADWELL(i915) || INTEL_GEN(i915) >= 9))
|
|
return;
|
|
|
|
edram_cap = __raw_uncore_read32(&i915->uncore, HSW_EDRAM_CAP);
|
|
|
|
/* NB: We can't write IDICR yet because we don't have gt funcs set up */
|
|
|
|
if (!(edram_cap & EDRAM_ENABLED))
|
|
return;
|
|
|
|
/*
|
|
* The needed capability bits for size calculation are not there with
|
|
* pre gen9 so return 128MB always.
|
|
*/
|
|
if (INTEL_GEN(i915) < 9)
|
|
i915->edram_size_mb = 128;
|
|
else
|
|
i915->edram_size_mb = gen9_edram_size_mb(i915, edram_cap);
|
|
|
|
drm_info(&i915->drm, "Found %uMB of eDRAM\n", i915->edram_size_mb);
|
|
}
|