linux_dsm_epyc7002/drivers/gpu/drm/amd/powerplay/hwmgr/ppatomfwctrl.c
Kenneth Feng 5d41535c5d drm/amd/powerplay: Enable ACG SS feature
Port the atomfirmware.h and populates the
updated pptable to SMU.With the new parameters
in the new pptable, the ACG SS feature is enabled.

Signed-off-by: Kenneth Feng <kenneth.feng@amd.com>
Reviewed-by: Evan Quan <evan.quan@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
2018-04-03 13:08:43 -05:00

637 lines
22 KiB
C

/*
* Copyright 2016 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include "ppatomfwctrl.h"
#include "atomfirmware.h"
#include "pp_debug.h"
static const union atom_voltage_object_v4 *pp_atomfwctrl_lookup_voltage_type_v4(
const struct atom_voltage_objects_info_v4_1 *voltage_object_info_table,
uint8_t voltage_type, uint8_t voltage_mode)
{
unsigned int size = le16_to_cpu(
voltage_object_info_table->table_header.structuresize);
unsigned int offset =
offsetof(struct atom_voltage_objects_info_v4_1, voltage_object[0]);
unsigned long start = (unsigned long)voltage_object_info_table;
while (offset < size) {
const union atom_voltage_object_v4 *voltage_object =
(const union atom_voltage_object_v4 *)(start + offset);
if (voltage_type == voltage_object->gpio_voltage_obj.header.voltage_type &&
voltage_mode == voltage_object->gpio_voltage_obj.header.voltage_mode)
return voltage_object;
offset += le16_to_cpu(voltage_object->gpio_voltage_obj.header.object_size);
}
return NULL;
}
static struct atom_voltage_objects_info_v4_1 *pp_atomfwctrl_get_voltage_info_table(
struct pp_hwmgr *hwmgr)
{
const void *table_address;
uint16_t idx;
idx = GetIndexIntoMasterDataTable(voltageobject_info);
table_address = cgs_atom_get_data_table(hwmgr->device,
idx, NULL, NULL, NULL);
PP_ASSERT_WITH_CODE(
table_address,
"Error retrieving BIOS Table Address!",
return NULL);
return (struct atom_voltage_objects_info_v4_1 *)table_address;
}
/**
* Returns TRUE if the given voltage type is controlled by GPIO pins.
* voltage_type is one of SET_VOLTAGE_TYPE_ASIC_VDDC, SET_VOLTAGE_TYPE_ASIC_MVDDC, SET_VOLTAGE_TYPE_ASIC_MVDDQ.
* voltage_mode is one of ATOM_SET_VOLTAGE, ATOM_SET_VOLTAGE_PHASE
*/
bool pp_atomfwctrl_is_voltage_controlled_by_gpio_v4(struct pp_hwmgr *hwmgr,
uint8_t voltage_type, uint8_t voltage_mode)
{
struct atom_voltage_objects_info_v4_1 *voltage_info =
(struct atom_voltage_objects_info_v4_1 *)
pp_atomfwctrl_get_voltage_info_table(hwmgr);
bool ret;
/* If we cannot find the table do NOT try to control this voltage. */
PP_ASSERT_WITH_CODE(voltage_info,
"Could not find Voltage Table in BIOS.",
return false);
ret = (pp_atomfwctrl_lookup_voltage_type_v4(voltage_info,
voltage_type, voltage_mode)) ? true : false;
return ret;
}
int pp_atomfwctrl_get_voltage_table_v4(struct pp_hwmgr *hwmgr,
uint8_t voltage_type, uint8_t voltage_mode,
struct pp_atomfwctrl_voltage_table *voltage_table)
{
struct atom_voltage_objects_info_v4_1 *voltage_info =
(struct atom_voltage_objects_info_v4_1 *)
pp_atomfwctrl_get_voltage_info_table(hwmgr);
const union atom_voltage_object_v4 *voltage_object;
unsigned int i;
int result = 0;
PP_ASSERT_WITH_CODE(voltage_info,
"Could not find Voltage Table in BIOS.",
return -1);
voltage_object = pp_atomfwctrl_lookup_voltage_type_v4(voltage_info,
voltage_type, voltage_mode);
if (!voltage_object)
return -1;
voltage_table->count = 0;
if (voltage_mode == VOLTAGE_OBJ_GPIO_LUT) {
PP_ASSERT_WITH_CODE(
(voltage_object->gpio_voltage_obj.gpio_entry_num <=
PP_ATOMFWCTRL_MAX_VOLTAGE_ENTRIES),
"Too many voltage entries!",
result = -1);
if (!result) {
for (i = 0; i < voltage_object->gpio_voltage_obj.
gpio_entry_num; i++) {
voltage_table->entries[i].value =
le16_to_cpu(voltage_object->gpio_voltage_obj.
voltage_gpio_lut[i].voltage_level_mv);
voltage_table->entries[i].smio_low =
le32_to_cpu(voltage_object->gpio_voltage_obj.
voltage_gpio_lut[i].voltage_gpio_reg_val);
}
voltage_table->count =
voltage_object->gpio_voltage_obj.gpio_entry_num;
voltage_table->mask_low =
le32_to_cpu(
voltage_object->gpio_voltage_obj.gpio_mask_val);
voltage_table->phase_delay =
voltage_object->gpio_voltage_obj.phase_delay_us;
}
} else if (voltage_mode == VOLTAGE_OBJ_SVID2) {
voltage_table->psi1_enable =
(voltage_object->svid2_voltage_obj.loadline_psi1 & 0x20) >> 5;
voltage_table->psi0_enable =
voltage_object->svid2_voltage_obj.psi0_enable & 0x1;
voltage_table->max_vid_step =
voltage_object->svid2_voltage_obj.maxvstep;
voltage_table->telemetry_offset =
voltage_object->svid2_voltage_obj.telemetry_offset;
voltage_table->telemetry_slope =
voltage_object->svid2_voltage_obj.telemetry_gain;
} else
PP_ASSERT_WITH_CODE(false,
"Unsupported Voltage Object Mode!",
result = -1);
return result;
}
static struct atom_gpio_pin_lut_v2_1 *pp_atomfwctrl_get_gpio_lookup_table(
struct pp_hwmgr *hwmgr)
{
const void *table_address;
uint16_t idx;
idx = GetIndexIntoMasterDataTable(gpio_pin_lut);
table_address = cgs_atom_get_data_table(hwmgr->device,
idx, NULL, NULL, NULL);
PP_ASSERT_WITH_CODE(table_address,
"Error retrieving BIOS Table Address!",
return NULL);
return (struct atom_gpio_pin_lut_v2_1 *)table_address;
}
static bool pp_atomfwctrl_lookup_gpio_pin(
struct atom_gpio_pin_lut_v2_1 *gpio_lookup_table,
const uint32_t pin_id,
struct pp_atomfwctrl_gpio_pin_assignment *gpio_pin_assignment)
{
unsigned int size = le16_to_cpu(
gpio_lookup_table->table_header.structuresize);
unsigned int offset =
offsetof(struct atom_gpio_pin_lut_v2_1, gpio_pin[0]);
unsigned long start = (unsigned long)gpio_lookup_table;
while (offset < size) {
const struct atom_gpio_pin_assignment *pin_assignment =
(const struct atom_gpio_pin_assignment *)(start + offset);
if (pin_id == pin_assignment->gpio_id) {
gpio_pin_assignment->uc_gpio_pin_bit_shift =
pin_assignment->gpio_bitshift;
gpio_pin_assignment->us_gpio_pin_aindex =
le16_to_cpu(pin_assignment->data_a_reg_index);
return true;
}
offset += offsetof(struct atom_gpio_pin_assignment, gpio_id) + 1;
}
return false;
}
/**
* Returns TRUE if the given pin id find in lookup table.
*/
bool pp_atomfwctrl_get_pp_assign_pin(struct pp_hwmgr *hwmgr,
const uint32_t pin_id,
struct pp_atomfwctrl_gpio_pin_assignment *gpio_pin_assignment)
{
bool ret = false;
struct atom_gpio_pin_lut_v2_1 *gpio_lookup_table =
pp_atomfwctrl_get_gpio_lookup_table(hwmgr);
/* If we cannot find the table do NOT try to control this voltage. */
PP_ASSERT_WITH_CODE(gpio_lookup_table,
"Could not find GPIO lookup Table in BIOS.",
return false);
ret = pp_atomfwctrl_lookup_gpio_pin(gpio_lookup_table,
pin_id, gpio_pin_assignment);
return ret;
}
/**
* Enter to SelfRefresh mode.
* @param hwmgr
*/
int pp_atomfwctrl_enter_self_refresh(struct pp_hwmgr *hwmgr)
{
/* 0 - no action
* 1 - leave power to video memory always on
*/
return 0;
}
/** pp_atomfwctrl_get_gpu_pll_dividers_vega10().
*
* @param hwmgr input parameter: pointer to HwMgr
* @param clock_type input parameter: Clock type: 1 - GFXCLK, 2 - UCLK, 0 - All other clocks
* @param clock_value input parameter: Clock
* @param dividers output parameter:Clock dividers
*/
int pp_atomfwctrl_get_gpu_pll_dividers_vega10(struct pp_hwmgr *hwmgr,
uint32_t clock_type, uint32_t clock_value,
struct pp_atomfwctrl_clock_dividers_soc15 *dividers)
{
struct compute_gpu_clock_input_parameter_v1_8 pll_parameters;
struct compute_gpu_clock_output_parameter_v1_8 *pll_output;
int result;
uint32_t idx;
pll_parameters.gpuclock_10khz = (uint32_t)clock_value;
pll_parameters.gpu_clock_type = clock_type;
idx = GetIndexIntoMasterCmdTable(computegpuclockparam);
result = cgs_atom_exec_cmd_table(hwmgr->device, idx, &pll_parameters);
if (!result) {
pll_output = (struct compute_gpu_clock_output_parameter_v1_8 *)
&pll_parameters;
dividers->ulClock = le32_to_cpu(pll_output->gpuclock_10khz);
dividers->ulDid = le32_to_cpu(pll_output->dfs_did);
dividers->ulPll_fb_mult = le32_to_cpu(pll_output->pll_fb_mult);
dividers->ulPll_ss_fbsmult = le32_to_cpu(pll_output->pll_ss_fbsmult);
dividers->usPll_ss_slew_frac = le16_to_cpu(pll_output->pll_ss_slew_frac);
dividers->ucPll_ss_enable = pll_output->pll_ss_enable;
}
return result;
}
int pp_atomfwctrl_get_avfs_information(struct pp_hwmgr *hwmgr,
struct pp_atomfwctrl_avfs_parameters *param)
{
uint16_t idx;
uint8_t format_revision, content_revision;
struct atom_asic_profiling_info_v4_1 *profile;
struct atom_asic_profiling_info_v4_2 *profile_v4_2;
idx = GetIndexIntoMasterDataTable(asic_profiling_info);
profile = (struct atom_asic_profiling_info_v4_1 *)
cgs_atom_get_data_table(hwmgr->device,
idx, NULL, NULL, NULL);
if (!profile)
return -1;
format_revision = ((struct atom_common_table_header *)profile)->format_revision;
content_revision = ((struct atom_common_table_header *)profile)->content_revision;
if (format_revision == 4 && content_revision == 1) {
param->ulMaxVddc = le32_to_cpu(profile->maxvddc);
param->ulMinVddc = le32_to_cpu(profile->minvddc);
param->ulMeanNsigmaAcontant0 =
le32_to_cpu(profile->avfs_meannsigma_acontant0);
param->ulMeanNsigmaAcontant1 =
le32_to_cpu(profile->avfs_meannsigma_acontant1);
param->ulMeanNsigmaAcontant2 =
le32_to_cpu(profile->avfs_meannsigma_acontant2);
param->usMeanNsigmaDcTolSigma =
le16_to_cpu(profile->avfs_meannsigma_dc_tol_sigma);
param->usMeanNsigmaPlatformMean =
le16_to_cpu(profile->avfs_meannsigma_platform_mean);
param->usMeanNsigmaPlatformSigma =
le16_to_cpu(profile->avfs_meannsigma_platform_sigma);
param->ulGbVdroopTableCksoffA0 =
le32_to_cpu(profile->gb_vdroop_table_cksoff_a0);
param->ulGbVdroopTableCksoffA1 =
le32_to_cpu(profile->gb_vdroop_table_cksoff_a1);
param->ulGbVdroopTableCksoffA2 =
le32_to_cpu(profile->gb_vdroop_table_cksoff_a2);
param->ulGbVdroopTableCksonA0 =
le32_to_cpu(profile->gb_vdroop_table_ckson_a0);
param->ulGbVdroopTableCksonA1 =
le32_to_cpu(profile->gb_vdroop_table_ckson_a1);
param->ulGbVdroopTableCksonA2 =
le32_to_cpu(profile->gb_vdroop_table_ckson_a2);
param->ulGbFuseTableCksoffM1 =
le32_to_cpu(profile->avfsgb_fuse_table_cksoff_m1);
param->ulGbFuseTableCksoffM2 =
le32_to_cpu(profile->avfsgb_fuse_table_cksoff_m2);
param->ulGbFuseTableCksoffB =
le32_to_cpu(profile->avfsgb_fuse_table_cksoff_b);
param->ulGbFuseTableCksonM1 =
le32_to_cpu(profile->avfsgb_fuse_table_ckson_m1);
param->ulGbFuseTableCksonM2 =
le32_to_cpu(profile->avfsgb_fuse_table_ckson_m2);
param->ulGbFuseTableCksonB =
le32_to_cpu(profile->avfsgb_fuse_table_ckson_b);
param->ucEnableGbVdroopTableCkson =
profile->enable_gb_vdroop_table_ckson;
param->ucEnableGbFuseTableCkson =
profile->enable_gb_fuse_table_ckson;
param->usPsmAgeComfactor =
le16_to_cpu(profile->psm_age_comfactor);
param->ulDispclk2GfxclkM1 =
le32_to_cpu(profile->dispclk2gfxclk_a);
param->ulDispclk2GfxclkM2 =
le32_to_cpu(profile->dispclk2gfxclk_b);
param->ulDispclk2GfxclkB =
le32_to_cpu(profile->dispclk2gfxclk_c);
param->ulDcefclk2GfxclkM1 =
le32_to_cpu(profile->dcefclk2gfxclk_a);
param->ulDcefclk2GfxclkM2 =
le32_to_cpu(profile->dcefclk2gfxclk_b);
param->ulDcefclk2GfxclkB =
le32_to_cpu(profile->dcefclk2gfxclk_c);
param->ulPixelclk2GfxclkM1 =
le32_to_cpu(profile->pixclk2gfxclk_a);
param->ulPixelclk2GfxclkM2 =
le32_to_cpu(profile->pixclk2gfxclk_b);
param->ulPixelclk2GfxclkB =
le32_to_cpu(profile->pixclk2gfxclk_c);
param->ulPhyclk2GfxclkM1 =
le32_to_cpu(profile->phyclk2gfxclk_a);
param->ulPhyclk2GfxclkM2 =
le32_to_cpu(profile->phyclk2gfxclk_b);
param->ulPhyclk2GfxclkB =
le32_to_cpu(profile->phyclk2gfxclk_c);
param->ulAcgGbVdroopTableA0 = 0;
param->ulAcgGbVdroopTableA1 = 0;
param->ulAcgGbVdroopTableA2 = 0;
param->ulAcgGbFuseTableM1 = 0;
param->ulAcgGbFuseTableM2 = 0;
param->ulAcgGbFuseTableB = 0;
param->ucAcgEnableGbVdroopTable = 0;
param->ucAcgEnableGbFuseTable = 0;
} else if (format_revision == 4 && content_revision == 2) {
profile_v4_2 = (struct atom_asic_profiling_info_v4_2 *)profile;
param->ulMaxVddc = le32_to_cpu(profile_v4_2->maxvddc);
param->ulMinVddc = le32_to_cpu(profile_v4_2->minvddc);
param->ulMeanNsigmaAcontant0 =
le32_to_cpu(profile_v4_2->avfs_meannsigma_acontant0);
param->ulMeanNsigmaAcontant1 =
le32_to_cpu(profile_v4_2->avfs_meannsigma_acontant1);
param->ulMeanNsigmaAcontant2 =
le32_to_cpu(profile_v4_2->avfs_meannsigma_acontant2);
param->usMeanNsigmaDcTolSigma =
le16_to_cpu(profile_v4_2->avfs_meannsigma_dc_tol_sigma);
param->usMeanNsigmaPlatformMean =
le16_to_cpu(profile_v4_2->avfs_meannsigma_platform_mean);
param->usMeanNsigmaPlatformSigma =
le16_to_cpu(profile_v4_2->avfs_meannsigma_platform_sigma);
param->ulGbVdroopTableCksoffA0 =
le32_to_cpu(profile_v4_2->gb_vdroop_table_cksoff_a0);
param->ulGbVdroopTableCksoffA1 =
le32_to_cpu(profile_v4_2->gb_vdroop_table_cksoff_a1);
param->ulGbVdroopTableCksoffA2 =
le32_to_cpu(profile_v4_2->gb_vdroop_table_cksoff_a2);
param->ulGbVdroopTableCksonA0 =
le32_to_cpu(profile_v4_2->gb_vdroop_table_ckson_a0);
param->ulGbVdroopTableCksonA1 =
le32_to_cpu(profile_v4_2->gb_vdroop_table_ckson_a1);
param->ulGbVdroopTableCksonA2 =
le32_to_cpu(profile_v4_2->gb_vdroop_table_ckson_a2);
param->ulGbFuseTableCksoffM1 =
le32_to_cpu(profile_v4_2->avfsgb_fuse_table_cksoff_m1);
param->ulGbFuseTableCksoffM2 =
le32_to_cpu(profile_v4_2->avfsgb_fuse_table_cksoff_m2);
param->ulGbFuseTableCksoffB =
le32_to_cpu(profile_v4_2->avfsgb_fuse_table_cksoff_b);
param->ulGbFuseTableCksonM1 =
le32_to_cpu(profile_v4_2->avfsgb_fuse_table_ckson_m1);
param->ulGbFuseTableCksonM2 =
le32_to_cpu(profile_v4_2->avfsgb_fuse_table_ckson_m2);
param->ulGbFuseTableCksonB =
le32_to_cpu(profile_v4_2->avfsgb_fuse_table_ckson_b);
param->ucEnableGbVdroopTableCkson =
profile_v4_2->enable_gb_vdroop_table_ckson;
param->ucEnableGbFuseTableCkson =
profile_v4_2->enable_gb_fuse_table_ckson;
param->usPsmAgeComfactor =
le16_to_cpu(profile_v4_2->psm_age_comfactor);
param->ulDispclk2GfxclkM1 =
le32_to_cpu(profile_v4_2->dispclk2gfxclk_a);
param->ulDispclk2GfxclkM2 =
le32_to_cpu(profile_v4_2->dispclk2gfxclk_b);
param->ulDispclk2GfxclkB =
le32_to_cpu(profile_v4_2->dispclk2gfxclk_c);
param->ulDcefclk2GfxclkM1 =
le32_to_cpu(profile_v4_2->dcefclk2gfxclk_a);
param->ulDcefclk2GfxclkM2 =
le32_to_cpu(profile_v4_2->dcefclk2gfxclk_b);
param->ulDcefclk2GfxclkB =
le32_to_cpu(profile_v4_2->dcefclk2gfxclk_c);
param->ulPixelclk2GfxclkM1 =
le32_to_cpu(profile_v4_2->pixclk2gfxclk_a);
param->ulPixelclk2GfxclkM2 =
le32_to_cpu(profile_v4_2->pixclk2gfxclk_b);
param->ulPixelclk2GfxclkB =
le32_to_cpu(profile_v4_2->pixclk2gfxclk_c);
param->ulPhyclk2GfxclkM1 =
le32_to_cpu(profile->phyclk2gfxclk_a);
param->ulPhyclk2GfxclkM2 =
le32_to_cpu(profile_v4_2->phyclk2gfxclk_b);
param->ulPhyclk2GfxclkB =
le32_to_cpu(profile_v4_2->phyclk2gfxclk_c);
param->ulAcgGbVdroopTableA0 = le32_to_cpu(profile_v4_2->acg_gb_vdroop_table_a0);
param->ulAcgGbVdroopTableA1 = le32_to_cpu(profile_v4_2->acg_gb_vdroop_table_a1);
param->ulAcgGbVdroopTableA2 = le32_to_cpu(profile_v4_2->acg_gb_vdroop_table_a2);
param->ulAcgGbFuseTableM1 = le32_to_cpu(profile_v4_2->acg_avfsgb_fuse_table_m1);
param->ulAcgGbFuseTableM2 = le32_to_cpu(profile_v4_2->acg_avfsgb_fuse_table_m2);
param->ulAcgGbFuseTableB = le32_to_cpu(profile_v4_2->acg_avfsgb_fuse_table_b);
param->ucAcgEnableGbVdroopTable = le32_to_cpu(profile_v4_2->enable_acg_gb_vdroop_table);
param->ucAcgEnableGbFuseTable = le32_to_cpu(profile_v4_2->enable_acg_gb_fuse_table);
} else {
pr_info("Invalid VBIOS AVFS ProfilingInfo Revision!\n");
return -EINVAL;
}
return 0;
}
int pp_atomfwctrl_get_gpio_information(struct pp_hwmgr *hwmgr,
struct pp_atomfwctrl_gpio_parameters *param)
{
struct atom_smu_info_v3_1 *info;
uint16_t idx;
idx = GetIndexIntoMasterDataTable(smu_info);
info = (struct atom_smu_info_v3_1 *)
cgs_atom_get_data_table(hwmgr->device,
idx, NULL, NULL, NULL);
if (!info) {
pr_info("Error retrieving BIOS smu_info Table Address!");
return -1;
}
param->ucAcDcGpio = info->ac_dc_gpio_bit;
param->ucAcDcPolarity = info->ac_dc_polarity;
param->ucVR0HotGpio = info->vr0hot_gpio_bit;
param->ucVR0HotPolarity = info->vr0hot_polarity;
param->ucVR1HotGpio = info->vr1hot_gpio_bit;
param->ucVR1HotPolarity = info->vr1hot_polarity;
param->ucFwCtfGpio = info->fw_ctf_gpio_bit;
param->ucFwCtfPolarity = info->fw_ctf_polarity;
return 0;
}
int pp_atomfwctrl__get_clk_information_by_clkid(struct pp_hwmgr *hwmgr, BIOS_CLKID id, uint32_t *frequency)
{
struct atom_get_smu_clock_info_parameters_v3_1 parameters;
struct atom_get_smu_clock_info_output_parameters_v3_1 *output;
uint32_t ix;
parameters.clk_id = id;
parameters.command = GET_SMU_CLOCK_INFO_V3_1_GET_CLOCK_FREQ;
ix = GetIndexIntoMasterCmdTable(getsmuclockinfo);
if (!cgs_atom_exec_cmd_table(hwmgr->device, ix, &parameters)) {
output = (struct atom_get_smu_clock_info_output_parameters_v3_1 *)&parameters;
*frequency = output->atom_smu_outputclkfreq.smu_clock_freq_hz / 10000;
} else {
pr_info("Error execute_table getsmuclockinfo!");
return -1;
}
return 0;
}
int pp_atomfwctrl_get_vbios_bootup_values(struct pp_hwmgr *hwmgr,
struct pp_atomfwctrl_bios_boot_up_values *boot_values)
{
struct atom_firmware_info_v3_1 *info = NULL;
uint16_t ix;
uint32_t frequency = 0;
ix = GetIndexIntoMasterDataTable(firmwareinfo);
info = (struct atom_firmware_info_v3_1 *)
cgs_atom_get_data_table(hwmgr->device,
ix, NULL, NULL, NULL);
if (!info) {
pr_info("Error retrieving BIOS firmwareinfo!");
return -EINVAL;
}
boot_values->ulRevision = info->firmware_revision;
boot_values->ulGfxClk = info->bootup_sclk_in10khz;
boot_values->ulUClk = info->bootup_mclk_in10khz;
boot_values->usVddc = info->bootup_vddc_mv;
boot_values->usVddci = info->bootup_vddci_mv;
boot_values->usMvddc = info->bootup_mvddc_mv;
boot_values->usVddGfx = info->bootup_vddgfx_mv;
boot_values->ucCoolingID = info->coolingsolution_id;
boot_values->ulSocClk = 0;
boot_values->ulDCEFClk = 0;
if (!pp_atomfwctrl__get_clk_information_by_clkid(hwmgr, SMU9_SYSPLL0_SOCCLK_ID, &frequency))
boot_values->ulSocClk = frequency;
if (!pp_atomfwctrl__get_clk_information_by_clkid(hwmgr, SMU9_SYSPLL0_DCEFCLK_ID, &frequency))
boot_values->ulDCEFClk = frequency;
return 0;
}
int pp_atomfwctrl_get_smc_dpm_information(struct pp_hwmgr *hwmgr,
struct pp_atomfwctrl_smc_dpm_parameters *param)
{
struct atom_smc_dpm_info_v4_1 *info;
uint16_t ix;
ix = GetIndexIntoMasterDataTable(smc_dpm_info);
info = (struct atom_smc_dpm_info_v4_1 *)
cgs_atom_get_data_table(hwmgr->device,
ix, NULL, NULL, NULL);
if (!info) {
pr_info("Error retrieving BIOS Table Address!");
return -EINVAL;
}
param->liquid1_i2c_address = info->liquid1_i2c_address;
param->liquid2_i2c_address = info->liquid2_i2c_address;
param->vr_i2c_address = info->vr_i2c_address;
param->plx_i2c_address = info->plx_i2c_address;
param->liquid_i2c_linescl = info->liquid_i2c_linescl;
param->liquid_i2c_linesda = info->liquid_i2c_linesda;
param->vr_i2c_linescl = info->vr_i2c_linescl;
param->vr_i2c_linesda = info->vr_i2c_linesda;
param->plx_i2c_linescl = info->plx_i2c_linescl;
param->plx_i2c_linesda = info->plx_i2c_linesda;
param->vrsensorpresent = info->vrsensorpresent;
param->liquidsensorpresent = info->liquidsensorpresent;
param->maxvoltagestepgfx = info->maxvoltagestepgfx;
param->maxvoltagestepsoc = info->maxvoltagestepsoc;
param->vddgfxvrmapping = info->vddgfxvrmapping;
param->vddsocvrmapping = info->vddsocvrmapping;
param->vddmem0vrmapping = info->vddmem0vrmapping;
param->vddmem1vrmapping = info->vddmem1vrmapping;
param->gfxulvphasesheddingmask = info->gfxulvphasesheddingmask;
param->soculvphasesheddingmask = info->soculvphasesheddingmask;
param->gfxmaxcurrent = info->gfxmaxcurrent;
param->gfxoffset = info->gfxoffset;
param->padding_telemetrygfx = info->padding_telemetrygfx;
param->socmaxcurrent = info->socmaxcurrent;
param->socoffset = info->socoffset;
param->padding_telemetrysoc = info->padding_telemetrysoc;
param->mem0maxcurrent = info->mem0maxcurrent;
param->mem0offset = info->mem0offset;
param->padding_telemetrymem0 = info->padding_telemetrymem0;
param->mem1maxcurrent = info->mem1maxcurrent;
param->mem1offset = info->mem1offset;
param->padding_telemetrymem1 = info->padding_telemetrymem1;
param->acdcgpio = info->acdcgpio;
param->acdcpolarity = info->acdcpolarity;
param->vr0hotgpio = info->vr0hotgpio;
param->vr0hotpolarity = info->vr0hotpolarity;
param->vr1hotgpio = info->vr1hotgpio;
param->vr1hotpolarity = info->vr1hotpolarity;
param->padding1 = info->padding1;
param->padding2 = info->padding2;
param->ledpin0 = info->ledpin0;
param->ledpin1 = info->ledpin1;
param->ledpin2 = info->ledpin2;
param->pllgfxclkspreadenabled = info->pllgfxclkspreadenabled;
param->pllgfxclkspreadpercent = info->pllgfxclkspreadpercent;
param->pllgfxclkspreadfreq = info->pllgfxclkspreadfreq;
param->uclkspreadenabled = info->uclkspreadenabled;
param->uclkspreadpercent = info->uclkspreadpercent;
param->uclkspreadfreq = info->uclkspreadfreq;
param->socclkspreadenabled = info->socclkspreadenabled;
param->socclkspreadpercent = info->socclkspreadpercent;
param->socclkspreadfreq = info->socclkspreadfreq;
param->acggfxclkspreadenabled = info->acggfxclkspreadenabled;
param->acggfxclkspreadpercent = info->acggfxclkspreadpercent;
param->acggfxclkspreadfreq = info->acggfxclkspreadfreq;
return 0;
}