linux_dsm_epyc7002/drivers/mtd/nand/raw/stm32_fmc2_nand.c
Miquel Raynal ce8148d7b8 mtd: rawnand: Rename a NAND chip option
NAND controller drivers can set the NAND_USE_BOUNCE_BUFFER flag to a
chip 'option' field. With this flag, the core is responsible of
providing DMA-able buffers.

The current behavior is to not force the use of a bounce buffer when
the core thinks this is not needed. So in the end the name is a bit
misleading, because in theory we will always have a DMA buffer but in
practice it will not always be a bounce buffer.

Rename this flag NAND_USES_DMA to be more accurate.

Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Reviewed-by: Boris Brezillon <boris.brezillon@collabora.com>
Link: https://lore.kernel.org/linux-mtd/20200507105241.14299-4-miquel.raynal@bootlin.com
2020-05-11 09:51:42 +02:00

2112 lines
55 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) STMicroelectronics 2018
* Author: Christophe Kerello <christophe.kerello@st.com>
*/
#include <linux/clk.h>
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/mtd/rawnand.h>
#include <linux/pinctrl/consumer.h>
#include <linux/platform_device.h>
#include <linux/reset.h>
/* Bad block marker length */
#define FMC2_BBM_LEN 2
/* ECC step size */
#define FMC2_ECC_STEP_SIZE 512
/* BCHDSRx registers length */
#define FMC2_BCHDSRS_LEN 20
/* HECCR length */
#define FMC2_HECCR_LEN 4
/* Max requests done for a 8k nand page size */
#define FMC2_MAX_SG 16
/* Max chip enable */
#define FMC2_MAX_CE 2
/* Max ECC buffer length */
#define FMC2_MAX_ECC_BUF_LEN (FMC2_BCHDSRS_LEN * FMC2_MAX_SG)
#define FMC2_TIMEOUT_US 1000
#define FMC2_TIMEOUT_MS 1000
/* Timings */
#define FMC2_THIZ 1
#define FMC2_TIO 8000
#define FMC2_TSYNC 3000
#define FMC2_PCR_TIMING_MASK 0xf
#define FMC2_PMEM_PATT_TIMING_MASK 0xff
/* FMC2 Controller Registers */
#define FMC2_BCR1 0x0
#define FMC2_PCR 0x80
#define FMC2_SR 0x84
#define FMC2_PMEM 0x88
#define FMC2_PATT 0x8c
#define FMC2_HECCR 0x94
#define FMC2_ISR 0x184
#define FMC2_ICR 0x188
#define FMC2_CSQCR 0x200
#define FMC2_CSQCFGR1 0x204
#define FMC2_CSQCFGR2 0x208
#define FMC2_CSQCFGR3 0x20c
#define FMC2_CSQAR1 0x210
#define FMC2_CSQAR2 0x214
#define FMC2_CSQIER 0x220
#define FMC2_CSQISR 0x224
#define FMC2_CSQICR 0x228
#define FMC2_CSQEMSR 0x230
#define FMC2_BCHIER 0x250
#define FMC2_BCHISR 0x254
#define FMC2_BCHICR 0x258
#define FMC2_BCHPBR1 0x260
#define FMC2_BCHPBR2 0x264
#define FMC2_BCHPBR3 0x268
#define FMC2_BCHPBR4 0x26c
#define FMC2_BCHDSR0 0x27c
#define FMC2_BCHDSR1 0x280
#define FMC2_BCHDSR2 0x284
#define FMC2_BCHDSR3 0x288
#define FMC2_BCHDSR4 0x28c
/* Register: FMC2_BCR1 */
#define FMC2_BCR1_FMC2EN BIT(31)
/* Register: FMC2_PCR */
#define FMC2_PCR_PWAITEN BIT(1)
#define FMC2_PCR_PBKEN BIT(2)
#define FMC2_PCR_PWID_MASK GENMASK(5, 4)
#define FMC2_PCR_PWID(x) (((x) & 0x3) << 4)
#define FMC2_PCR_PWID_BUSWIDTH_8 0
#define FMC2_PCR_PWID_BUSWIDTH_16 1
#define FMC2_PCR_ECCEN BIT(6)
#define FMC2_PCR_ECCALG BIT(8)
#define FMC2_PCR_TCLR_MASK GENMASK(12, 9)
#define FMC2_PCR_TCLR(x) (((x) & 0xf) << 9)
#define FMC2_PCR_TCLR_DEFAULT 0xf
#define FMC2_PCR_TAR_MASK GENMASK(16, 13)
#define FMC2_PCR_TAR(x) (((x) & 0xf) << 13)
#define FMC2_PCR_TAR_DEFAULT 0xf
#define FMC2_PCR_ECCSS_MASK GENMASK(19, 17)
#define FMC2_PCR_ECCSS(x) (((x) & 0x7) << 17)
#define FMC2_PCR_ECCSS_512 1
#define FMC2_PCR_ECCSS_2048 3
#define FMC2_PCR_BCHECC BIT(24)
#define FMC2_PCR_WEN BIT(25)
/* Register: FMC2_SR */
#define FMC2_SR_NWRF BIT(6)
/* Register: FMC2_PMEM */
#define FMC2_PMEM_MEMSET(x) (((x) & 0xff) << 0)
#define FMC2_PMEM_MEMWAIT(x) (((x) & 0xff) << 8)
#define FMC2_PMEM_MEMHOLD(x) (((x) & 0xff) << 16)
#define FMC2_PMEM_MEMHIZ(x) (((x) & 0xff) << 24)
#define FMC2_PMEM_DEFAULT 0x0a0a0a0a
/* Register: FMC2_PATT */
#define FMC2_PATT_ATTSET(x) (((x) & 0xff) << 0)
#define FMC2_PATT_ATTWAIT(x) (((x) & 0xff) << 8)
#define FMC2_PATT_ATTHOLD(x) (((x) & 0xff) << 16)
#define FMC2_PATT_ATTHIZ(x) (((x) & 0xff) << 24)
#define FMC2_PATT_DEFAULT 0x0a0a0a0a
/* Register: FMC2_ISR */
#define FMC2_ISR_IHLF BIT(1)
/* Register: FMC2_ICR */
#define FMC2_ICR_CIHLF BIT(1)
/* Register: FMC2_CSQCR */
#define FMC2_CSQCR_CSQSTART BIT(0)
/* Register: FMC2_CSQCFGR1 */
#define FMC2_CSQCFGR1_CMD2EN BIT(1)
#define FMC2_CSQCFGR1_DMADEN BIT(2)
#define FMC2_CSQCFGR1_ACYNBR(x) (((x) & 0x7) << 4)
#define FMC2_CSQCFGR1_CMD1(x) (((x) & 0xff) << 8)
#define FMC2_CSQCFGR1_CMD2(x) (((x) & 0xff) << 16)
#define FMC2_CSQCFGR1_CMD1T BIT(24)
#define FMC2_CSQCFGR1_CMD2T BIT(25)
/* Register: FMC2_CSQCFGR2 */
#define FMC2_CSQCFGR2_SQSDTEN BIT(0)
#define FMC2_CSQCFGR2_RCMD2EN BIT(1)
#define FMC2_CSQCFGR2_DMASEN BIT(2)
#define FMC2_CSQCFGR2_RCMD1(x) (((x) & 0xff) << 8)
#define FMC2_CSQCFGR2_RCMD2(x) (((x) & 0xff) << 16)
#define FMC2_CSQCFGR2_RCMD1T BIT(24)
#define FMC2_CSQCFGR2_RCMD2T BIT(25)
/* Register: FMC2_CSQCFGR3 */
#define FMC2_CSQCFGR3_SNBR(x) (((x) & 0x1f) << 8)
#define FMC2_CSQCFGR3_AC1T BIT(16)
#define FMC2_CSQCFGR3_AC2T BIT(17)
#define FMC2_CSQCFGR3_AC3T BIT(18)
#define FMC2_CSQCFGR3_AC4T BIT(19)
#define FMC2_CSQCFGR3_AC5T BIT(20)
#define FMC2_CSQCFGR3_SDT BIT(21)
#define FMC2_CSQCFGR3_RAC1T BIT(22)
#define FMC2_CSQCFGR3_RAC2T BIT(23)
/* Register: FMC2_CSQCAR1 */
#define FMC2_CSQCAR1_ADDC1(x) (((x) & 0xff) << 0)
#define FMC2_CSQCAR1_ADDC2(x) (((x) & 0xff) << 8)
#define FMC2_CSQCAR1_ADDC3(x) (((x) & 0xff) << 16)
#define FMC2_CSQCAR1_ADDC4(x) (((x) & 0xff) << 24)
/* Register: FMC2_CSQCAR2 */
#define FMC2_CSQCAR2_ADDC5(x) (((x) & 0xff) << 0)
#define FMC2_CSQCAR2_NANDCEN(x) (((x) & 0x3) << 10)
#define FMC2_CSQCAR2_SAO(x) (((x) & 0xffff) << 16)
/* Register: FMC2_CSQIER */
#define FMC2_CSQIER_TCIE BIT(0)
/* Register: FMC2_CSQICR */
#define FMC2_CSQICR_CLEAR_IRQ GENMASK(4, 0)
/* Register: FMC2_CSQEMSR */
#define FMC2_CSQEMSR_SEM GENMASK(15, 0)
/* Register: FMC2_BCHIER */
#define FMC2_BCHIER_DERIE BIT(1)
#define FMC2_BCHIER_EPBRIE BIT(4)
/* Register: FMC2_BCHICR */
#define FMC2_BCHICR_CLEAR_IRQ GENMASK(4, 0)
/* Register: FMC2_BCHDSR0 */
#define FMC2_BCHDSR0_DUE BIT(0)
#define FMC2_BCHDSR0_DEF BIT(1)
#define FMC2_BCHDSR0_DEN_MASK GENMASK(7, 4)
#define FMC2_BCHDSR0_DEN_SHIFT 4
/* Register: FMC2_BCHDSR1 */
#define FMC2_BCHDSR1_EBP1_MASK GENMASK(12, 0)
#define FMC2_BCHDSR1_EBP2_MASK GENMASK(28, 16)
#define FMC2_BCHDSR1_EBP2_SHIFT 16
/* Register: FMC2_BCHDSR2 */
#define FMC2_BCHDSR2_EBP3_MASK GENMASK(12, 0)
#define FMC2_BCHDSR2_EBP4_MASK GENMASK(28, 16)
#define FMC2_BCHDSR2_EBP4_SHIFT 16
/* Register: FMC2_BCHDSR3 */
#define FMC2_BCHDSR3_EBP5_MASK GENMASK(12, 0)
#define FMC2_BCHDSR3_EBP6_MASK GENMASK(28, 16)
#define FMC2_BCHDSR3_EBP6_SHIFT 16
/* Register: FMC2_BCHDSR4 */
#define FMC2_BCHDSR4_EBP7_MASK GENMASK(12, 0)
#define FMC2_BCHDSR4_EBP8_MASK GENMASK(28, 16)
#define FMC2_BCHDSR4_EBP8_SHIFT 16
enum stm32_fmc2_ecc {
FMC2_ECC_HAM = 1,
FMC2_ECC_BCH4 = 4,
FMC2_ECC_BCH8 = 8
};
enum stm32_fmc2_irq_state {
FMC2_IRQ_UNKNOWN = 0,
FMC2_IRQ_BCH,
FMC2_IRQ_SEQ
};
struct stm32_fmc2_timings {
u8 tclr;
u8 tar;
u8 thiz;
u8 twait;
u8 thold_mem;
u8 tset_mem;
u8 thold_att;
u8 tset_att;
};
struct stm32_fmc2_nand {
struct nand_chip chip;
struct stm32_fmc2_timings timings;
int ncs;
int cs_used[FMC2_MAX_CE];
};
static inline struct stm32_fmc2_nand *to_fmc2_nand(struct nand_chip *chip)
{
return container_of(chip, struct stm32_fmc2_nand, chip);
}
struct stm32_fmc2_nfc {
struct nand_controller base;
struct stm32_fmc2_nand nand;
struct device *dev;
void __iomem *io_base;
void __iomem *data_base[FMC2_MAX_CE];
void __iomem *cmd_base[FMC2_MAX_CE];
void __iomem *addr_base[FMC2_MAX_CE];
phys_addr_t io_phys_addr;
phys_addr_t data_phys_addr[FMC2_MAX_CE];
struct clk *clk;
u8 irq_state;
struct dma_chan *dma_tx_ch;
struct dma_chan *dma_rx_ch;
struct dma_chan *dma_ecc_ch;
struct sg_table dma_data_sg;
struct sg_table dma_ecc_sg;
u8 *ecc_buf;
int dma_ecc_len;
struct completion complete;
struct completion dma_data_complete;
struct completion dma_ecc_complete;
u8 cs_assigned;
int cs_sel;
};
static inline struct stm32_fmc2_nfc *to_stm32_nfc(struct nand_controller *base)
{
return container_of(base, struct stm32_fmc2_nfc, base);
}
/* Timings configuration */
static void stm32_fmc2_timings_init(struct nand_chip *chip)
{
struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
struct stm32_fmc2_nand *nand = to_fmc2_nand(chip);
struct stm32_fmc2_timings *timings = &nand->timings;
u32 pcr = readl_relaxed(fmc2->io_base + FMC2_PCR);
u32 pmem, patt;
/* Set tclr/tar timings */
pcr &= ~FMC2_PCR_TCLR_MASK;
pcr |= FMC2_PCR_TCLR(timings->tclr);
pcr &= ~FMC2_PCR_TAR_MASK;
pcr |= FMC2_PCR_TAR(timings->tar);
/* Set tset/twait/thold/thiz timings in common bank */
pmem = FMC2_PMEM_MEMSET(timings->tset_mem);
pmem |= FMC2_PMEM_MEMWAIT(timings->twait);
pmem |= FMC2_PMEM_MEMHOLD(timings->thold_mem);
pmem |= FMC2_PMEM_MEMHIZ(timings->thiz);
/* Set tset/twait/thold/thiz timings in attribut bank */
patt = FMC2_PATT_ATTSET(timings->tset_att);
patt |= FMC2_PATT_ATTWAIT(timings->twait);
patt |= FMC2_PATT_ATTHOLD(timings->thold_att);
patt |= FMC2_PATT_ATTHIZ(timings->thiz);
writel_relaxed(pcr, fmc2->io_base + FMC2_PCR);
writel_relaxed(pmem, fmc2->io_base + FMC2_PMEM);
writel_relaxed(patt, fmc2->io_base + FMC2_PATT);
}
/* Controller configuration */
static void stm32_fmc2_setup(struct nand_chip *chip)
{
struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
u32 pcr = readl_relaxed(fmc2->io_base + FMC2_PCR);
/* Configure ECC algorithm (default configuration is Hamming) */
pcr &= ~FMC2_PCR_ECCALG;
pcr &= ~FMC2_PCR_BCHECC;
if (chip->ecc.strength == FMC2_ECC_BCH8) {
pcr |= FMC2_PCR_ECCALG;
pcr |= FMC2_PCR_BCHECC;
} else if (chip->ecc.strength == FMC2_ECC_BCH4) {
pcr |= FMC2_PCR_ECCALG;
}
/* Set buswidth */
pcr &= ~FMC2_PCR_PWID_MASK;
if (chip->options & NAND_BUSWIDTH_16)
pcr |= FMC2_PCR_PWID(FMC2_PCR_PWID_BUSWIDTH_16);
/* Set ECC sector size */
pcr &= ~FMC2_PCR_ECCSS_MASK;
pcr |= FMC2_PCR_ECCSS(FMC2_PCR_ECCSS_512);
writel_relaxed(pcr, fmc2->io_base + FMC2_PCR);
}
/* Select target */
static int stm32_fmc2_select_chip(struct nand_chip *chip, int chipnr)
{
struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
struct stm32_fmc2_nand *nand = to_fmc2_nand(chip);
struct dma_slave_config dma_cfg;
int ret;
if (nand->cs_used[chipnr] == fmc2->cs_sel)
return 0;
fmc2->cs_sel = nand->cs_used[chipnr];
/* FMC2 setup routine */
stm32_fmc2_setup(chip);
/* Apply timings */
stm32_fmc2_timings_init(chip);
if (fmc2->dma_tx_ch && fmc2->dma_rx_ch) {
memset(&dma_cfg, 0, sizeof(dma_cfg));
dma_cfg.src_addr = fmc2->data_phys_addr[fmc2->cs_sel];
dma_cfg.dst_addr = fmc2->data_phys_addr[fmc2->cs_sel];
dma_cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
dma_cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
dma_cfg.src_maxburst = 32;
dma_cfg.dst_maxburst = 32;
ret = dmaengine_slave_config(fmc2->dma_tx_ch, &dma_cfg);
if (ret) {
dev_err(fmc2->dev, "tx DMA engine slave config failed\n");
return ret;
}
ret = dmaengine_slave_config(fmc2->dma_rx_ch, &dma_cfg);
if (ret) {
dev_err(fmc2->dev, "rx DMA engine slave config failed\n");
return ret;
}
}
if (fmc2->dma_ecc_ch) {
/*
* Hamming: we read HECCR register
* BCH4/BCH8: we read BCHDSRSx registers
*/
memset(&dma_cfg, 0, sizeof(dma_cfg));
dma_cfg.src_addr = fmc2->io_phys_addr;
dma_cfg.src_addr += chip->ecc.strength == FMC2_ECC_HAM ?
FMC2_HECCR : FMC2_BCHDSR0;
dma_cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
ret = dmaengine_slave_config(fmc2->dma_ecc_ch, &dma_cfg);
if (ret) {
dev_err(fmc2->dev, "ECC DMA engine slave config failed\n");
return ret;
}
/* Calculate ECC length needed for one sector */
fmc2->dma_ecc_len = chip->ecc.strength == FMC2_ECC_HAM ?
FMC2_HECCR_LEN : FMC2_BCHDSRS_LEN;
}
return 0;
}
/* Set bus width to 16-bit or 8-bit */
static void stm32_fmc2_set_buswidth_16(struct stm32_fmc2_nfc *fmc2, bool set)
{
u32 pcr = readl_relaxed(fmc2->io_base + FMC2_PCR);
pcr &= ~FMC2_PCR_PWID_MASK;
if (set)
pcr |= FMC2_PCR_PWID(FMC2_PCR_PWID_BUSWIDTH_16);
writel_relaxed(pcr, fmc2->io_base + FMC2_PCR);
}
/* Enable/disable ECC */
static void stm32_fmc2_set_ecc(struct stm32_fmc2_nfc *fmc2, bool enable)
{
u32 pcr = readl(fmc2->io_base + FMC2_PCR);
pcr &= ~FMC2_PCR_ECCEN;
if (enable)
pcr |= FMC2_PCR_ECCEN;
writel(pcr, fmc2->io_base + FMC2_PCR);
}
/* Enable irq sources in case of the sequencer is used */
static inline void stm32_fmc2_enable_seq_irq(struct stm32_fmc2_nfc *fmc2)
{
u32 csqier = readl_relaxed(fmc2->io_base + FMC2_CSQIER);
csqier |= FMC2_CSQIER_TCIE;
fmc2->irq_state = FMC2_IRQ_SEQ;
writel_relaxed(csqier, fmc2->io_base + FMC2_CSQIER);
}
/* Disable irq sources in case of the sequencer is used */
static inline void stm32_fmc2_disable_seq_irq(struct stm32_fmc2_nfc *fmc2)
{
u32 csqier = readl_relaxed(fmc2->io_base + FMC2_CSQIER);
csqier &= ~FMC2_CSQIER_TCIE;
writel_relaxed(csqier, fmc2->io_base + FMC2_CSQIER);
fmc2->irq_state = FMC2_IRQ_UNKNOWN;
}
/* Clear irq sources in case of the sequencer is used */
static inline void stm32_fmc2_clear_seq_irq(struct stm32_fmc2_nfc *fmc2)
{
writel_relaxed(FMC2_CSQICR_CLEAR_IRQ, fmc2->io_base + FMC2_CSQICR);
}
/* Enable irq sources in case of bch is used */
static inline void stm32_fmc2_enable_bch_irq(struct stm32_fmc2_nfc *fmc2,
int mode)
{
u32 bchier = readl_relaxed(fmc2->io_base + FMC2_BCHIER);
if (mode == NAND_ECC_WRITE)
bchier |= FMC2_BCHIER_EPBRIE;
else
bchier |= FMC2_BCHIER_DERIE;
fmc2->irq_state = FMC2_IRQ_BCH;
writel_relaxed(bchier, fmc2->io_base + FMC2_BCHIER);
}
/* Disable irq sources in case of bch is used */
static inline void stm32_fmc2_disable_bch_irq(struct stm32_fmc2_nfc *fmc2)
{
u32 bchier = readl_relaxed(fmc2->io_base + FMC2_BCHIER);
bchier &= ~FMC2_BCHIER_DERIE;
bchier &= ~FMC2_BCHIER_EPBRIE;
writel_relaxed(bchier, fmc2->io_base + FMC2_BCHIER);
fmc2->irq_state = FMC2_IRQ_UNKNOWN;
}
/* Clear irq sources in case of bch is used */
static inline void stm32_fmc2_clear_bch_irq(struct stm32_fmc2_nfc *fmc2)
{
writel_relaxed(FMC2_BCHICR_CLEAR_IRQ, fmc2->io_base + FMC2_BCHICR);
}
/*
* Enable ECC logic and reset syndrome/parity bits previously calculated
* Syndrome/parity bits is cleared by setting the ECCEN bit to 0
*/
static void stm32_fmc2_hwctl(struct nand_chip *chip, int mode)
{
struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
stm32_fmc2_set_ecc(fmc2, false);
if (chip->ecc.strength != FMC2_ECC_HAM) {
u32 pcr = readl_relaxed(fmc2->io_base + FMC2_PCR);
if (mode == NAND_ECC_WRITE)
pcr |= FMC2_PCR_WEN;
else
pcr &= ~FMC2_PCR_WEN;
writel_relaxed(pcr, fmc2->io_base + FMC2_PCR);
reinit_completion(&fmc2->complete);
stm32_fmc2_clear_bch_irq(fmc2);
stm32_fmc2_enable_bch_irq(fmc2, mode);
}
stm32_fmc2_set_ecc(fmc2, true);
}
/*
* ECC Hamming calculation
* ECC is 3 bytes for 512 bytes of data (supports error correction up to
* max of 1-bit)
*/
static inline void stm32_fmc2_ham_set_ecc(const u32 ecc_sta, u8 *ecc)
{
ecc[0] = ecc_sta;
ecc[1] = ecc_sta >> 8;
ecc[2] = ecc_sta >> 16;
}
static int stm32_fmc2_ham_calculate(struct nand_chip *chip, const u8 *data,
u8 *ecc)
{
struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
u32 sr, heccr;
int ret;
ret = readl_relaxed_poll_timeout(fmc2->io_base + FMC2_SR,
sr, sr & FMC2_SR_NWRF, 10,
FMC2_TIMEOUT_MS);
if (ret) {
dev_err(fmc2->dev, "ham timeout\n");
return ret;
}
heccr = readl_relaxed(fmc2->io_base + FMC2_HECCR);
stm32_fmc2_ham_set_ecc(heccr, ecc);
/* Disable ECC */
stm32_fmc2_set_ecc(fmc2, false);
return 0;
}
static int stm32_fmc2_ham_correct(struct nand_chip *chip, u8 *dat,
u8 *read_ecc, u8 *calc_ecc)
{
u8 bit_position = 0, b0, b1, b2;
u32 byte_addr = 0, b;
u32 i, shifting = 1;
/* Indicate which bit and byte is faulty (if any) */
b0 = read_ecc[0] ^ calc_ecc[0];
b1 = read_ecc[1] ^ calc_ecc[1];
b2 = read_ecc[2] ^ calc_ecc[2];
b = b0 | (b1 << 8) | (b2 << 16);
/* No errors */
if (likely(!b))
return 0;
/* Calculate bit position */
for (i = 0; i < 3; i++) {
switch (b % 4) {
case 2:
bit_position += shifting;
case 1:
break;
default:
return -EBADMSG;
}
shifting <<= 1;
b >>= 2;
}
/* Calculate byte position */
shifting = 1;
for (i = 0; i < 9; i++) {
switch (b % 4) {
case 2:
byte_addr += shifting;
case 1:
break;
default:
return -EBADMSG;
}
shifting <<= 1;
b >>= 2;
}
/* Flip the bit */
dat[byte_addr] ^= (1 << bit_position);
return 1;
}
/*
* ECC BCH calculation and correction
* ECC is 7/13 bytes for 512 bytes of data (supports error correction up to
* max of 4-bit/8-bit)
*/
static int stm32_fmc2_bch_calculate(struct nand_chip *chip, const u8 *data,
u8 *ecc)
{
struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
u32 bchpbr;
/* Wait until the BCH code is ready */
if (!wait_for_completion_timeout(&fmc2->complete,
msecs_to_jiffies(FMC2_TIMEOUT_MS))) {
dev_err(fmc2->dev, "bch timeout\n");
stm32_fmc2_disable_bch_irq(fmc2);
return -ETIMEDOUT;
}
/* Read parity bits */
bchpbr = readl_relaxed(fmc2->io_base + FMC2_BCHPBR1);
ecc[0] = bchpbr;
ecc[1] = bchpbr >> 8;
ecc[2] = bchpbr >> 16;
ecc[3] = bchpbr >> 24;
bchpbr = readl_relaxed(fmc2->io_base + FMC2_BCHPBR2);
ecc[4] = bchpbr;
ecc[5] = bchpbr >> 8;
ecc[6] = bchpbr >> 16;
if (chip->ecc.strength == FMC2_ECC_BCH8) {
ecc[7] = bchpbr >> 24;
bchpbr = readl_relaxed(fmc2->io_base + FMC2_BCHPBR3);
ecc[8] = bchpbr;
ecc[9] = bchpbr >> 8;
ecc[10] = bchpbr >> 16;
ecc[11] = bchpbr >> 24;
bchpbr = readl_relaxed(fmc2->io_base + FMC2_BCHPBR4);
ecc[12] = bchpbr;
}
/* Disable ECC */
stm32_fmc2_set_ecc(fmc2, false);
return 0;
}
/* BCH algorithm correction */
static int stm32_fmc2_bch_decode(int eccsize, u8 *dat, u32 *ecc_sta)
{
u32 bchdsr0 = ecc_sta[0];
u32 bchdsr1 = ecc_sta[1];
u32 bchdsr2 = ecc_sta[2];
u32 bchdsr3 = ecc_sta[3];
u32 bchdsr4 = ecc_sta[4];
u16 pos[8];
int i, den;
unsigned int nb_errs = 0;
/* No errors found */
if (likely(!(bchdsr0 & FMC2_BCHDSR0_DEF)))
return 0;
/* Too many errors detected */
if (unlikely(bchdsr0 & FMC2_BCHDSR0_DUE))
return -EBADMSG;
pos[0] = bchdsr1 & FMC2_BCHDSR1_EBP1_MASK;
pos[1] = (bchdsr1 & FMC2_BCHDSR1_EBP2_MASK) >> FMC2_BCHDSR1_EBP2_SHIFT;
pos[2] = bchdsr2 & FMC2_BCHDSR2_EBP3_MASK;
pos[3] = (bchdsr2 & FMC2_BCHDSR2_EBP4_MASK) >> FMC2_BCHDSR2_EBP4_SHIFT;
pos[4] = bchdsr3 & FMC2_BCHDSR3_EBP5_MASK;
pos[5] = (bchdsr3 & FMC2_BCHDSR3_EBP6_MASK) >> FMC2_BCHDSR3_EBP6_SHIFT;
pos[6] = bchdsr4 & FMC2_BCHDSR4_EBP7_MASK;
pos[7] = (bchdsr4 & FMC2_BCHDSR4_EBP8_MASK) >> FMC2_BCHDSR4_EBP8_SHIFT;
den = (bchdsr0 & FMC2_BCHDSR0_DEN_MASK) >> FMC2_BCHDSR0_DEN_SHIFT;
for (i = 0; i < den; i++) {
if (pos[i] < eccsize * 8) {
change_bit(pos[i], (unsigned long *)dat);
nb_errs++;
}
}
return nb_errs;
}
static int stm32_fmc2_bch_correct(struct nand_chip *chip, u8 *dat,
u8 *read_ecc, u8 *calc_ecc)
{
struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
u32 ecc_sta[5];
/* Wait until the decoding error is ready */
if (!wait_for_completion_timeout(&fmc2->complete,
msecs_to_jiffies(FMC2_TIMEOUT_MS))) {
dev_err(fmc2->dev, "bch timeout\n");
stm32_fmc2_disable_bch_irq(fmc2);
return -ETIMEDOUT;
}
ecc_sta[0] = readl_relaxed(fmc2->io_base + FMC2_BCHDSR0);
ecc_sta[1] = readl_relaxed(fmc2->io_base + FMC2_BCHDSR1);
ecc_sta[2] = readl_relaxed(fmc2->io_base + FMC2_BCHDSR2);
ecc_sta[3] = readl_relaxed(fmc2->io_base + FMC2_BCHDSR3);
ecc_sta[4] = readl_relaxed(fmc2->io_base + FMC2_BCHDSR4);
/* Disable ECC */
stm32_fmc2_set_ecc(fmc2, false);
return stm32_fmc2_bch_decode(chip->ecc.size, dat, ecc_sta);
}
static int stm32_fmc2_read_page(struct nand_chip *chip, u8 *buf,
int oob_required, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
int ret, i, s, stat, eccsize = chip->ecc.size;
int eccbytes = chip->ecc.bytes;
int eccsteps = chip->ecc.steps;
int eccstrength = chip->ecc.strength;
u8 *p = buf;
u8 *ecc_calc = chip->ecc.calc_buf;
u8 *ecc_code = chip->ecc.code_buf;
unsigned int max_bitflips = 0;
ret = nand_read_page_op(chip, page, 0, NULL, 0);
if (ret)
return ret;
for (i = mtd->writesize + FMC2_BBM_LEN, s = 0; s < eccsteps;
s++, i += eccbytes, p += eccsize) {
chip->ecc.hwctl(chip, NAND_ECC_READ);
/* Read the nand page sector (512 bytes) */
ret = nand_change_read_column_op(chip, s * eccsize, p,
eccsize, false);
if (ret)
return ret;
/* Read the corresponding ECC bytes */
ret = nand_change_read_column_op(chip, i, ecc_code,
eccbytes, false);
if (ret)
return ret;
/* Correct the data */
stat = chip->ecc.correct(chip, p, ecc_code, ecc_calc);
if (stat == -EBADMSG)
/* Check for empty pages with bitflips */
stat = nand_check_erased_ecc_chunk(p, eccsize,
ecc_code, eccbytes,
NULL, 0,
eccstrength);
if (stat < 0) {
mtd->ecc_stats.failed++;
} else {
mtd->ecc_stats.corrected += stat;
max_bitflips = max_t(unsigned int, max_bitflips, stat);
}
}
/* Read oob */
if (oob_required) {
ret = nand_change_read_column_op(chip, mtd->writesize,
chip->oob_poi, mtd->oobsize,
false);
if (ret)
return ret;
}
return max_bitflips;
}
/* Sequencer read/write configuration */
static void stm32_fmc2_rw_page_init(struct nand_chip *chip, int page,
int raw, bool write_data)
{
struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
struct mtd_info *mtd = nand_to_mtd(chip);
u32 csqcfgr1, csqcfgr2, csqcfgr3;
u32 csqar1, csqar2;
u32 ecc_offset = mtd->writesize + FMC2_BBM_LEN;
u32 pcr = readl_relaxed(fmc2->io_base + FMC2_PCR);
if (write_data)
pcr |= FMC2_PCR_WEN;
else
pcr &= ~FMC2_PCR_WEN;
writel_relaxed(pcr, fmc2->io_base + FMC2_PCR);
/*
* - Set Program Page/Page Read command
* - Enable DMA request data
* - Set timings
*/
csqcfgr1 = FMC2_CSQCFGR1_DMADEN | FMC2_CSQCFGR1_CMD1T;
if (write_data)
csqcfgr1 |= FMC2_CSQCFGR1_CMD1(NAND_CMD_SEQIN);
else
csqcfgr1 |= FMC2_CSQCFGR1_CMD1(NAND_CMD_READ0) |
FMC2_CSQCFGR1_CMD2EN |
FMC2_CSQCFGR1_CMD2(NAND_CMD_READSTART) |
FMC2_CSQCFGR1_CMD2T;
/*
* - Set Random Data Input/Random Data Read command
* - Enable the sequencer to access the Spare data area
* - Enable DMA request status decoding for read
* - Set timings
*/
if (write_data)
csqcfgr2 = FMC2_CSQCFGR2_RCMD1(NAND_CMD_RNDIN);
else
csqcfgr2 = FMC2_CSQCFGR2_RCMD1(NAND_CMD_RNDOUT) |
FMC2_CSQCFGR2_RCMD2EN |
FMC2_CSQCFGR2_RCMD2(NAND_CMD_RNDOUTSTART) |
FMC2_CSQCFGR2_RCMD1T |
FMC2_CSQCFGR2_RCMD2T;
if (!raw) {
csqcfgr2 |= write_data ? 0 : FMC2_CSQCFGR2_DMASEN;
csqcfgr2 |= FMC2_CSQCFGR2_SQSDTEN;
}
/*
* - Set the number of sectors to be written
* - Set timings
*/
csqcfgr3 = FMC2_CSQCFGR3_SNBR(chip->ecc.steps - 1);
if (write_data) {
csqcfgr3 |= FMC2_CSQCFGR3_RAC2T;
if (chip->options & NAND_ROW_ADDR_3)
csqcfgr3 |= FMC2_CSQCFGR3_AC5T;
else
csqcfgr3 |= FMC2_CSQCFGR3_AC4T;
}
/*
* Set the fourth first address cycles
* Byte 1 and byte 2 => column, we start at 0x0
* Byte 3 and byte 4 => page
*/
csqar1 = FMC2_CSQCAR1_ADDC3(page);
csqar1 |= FMC2_CSQCAR1_ADDC4(page >> 8);
/*
* - Set chip enable number
* - Set ECC byte offset in the spare area
* - Calculate the number of address cycles to be issued
* - Set byte 5 of address cycle if needed
*/
csqar2 = FMC2_CSQCAR2_NANDCEN(fmc2->cs_sel);
if (chip->options & NAND_BUSWIDTH_16)
csqar2 |= FMC2_CSQCAR2_SAO(ecc_offset >> 1);
else
csqar2 |= FMC2_CSQCAR2_SAO(ecc_offset);
if (chip->options & NAND_ROW_ADDR_3) {
csqcfgr1 |= FMC2_CSQCFGR1_ACYNBR(5);
csqar2 |= FMC2_CSQCAR2_ADDC5(page >> 16);
} else {
csqcfgr1 |= FMC2_CSQCFGR1_ACYNBR(4);
}
writel_relaxed(csqcfgr1, fmc2->io_base + FMC2_CSQCFGR1);
writel_relaxed(csqcfgr2, fmc2->io_base + FMC2_CSQCFGR2);
writel_relaxed(csqcfgr3, fmc2->io_base + FMC2_CSQCFGR3);
writel_relaxed(csqar1, fmc2->io_base + FMC2_CSQAR1);
writel_relaxed(csqar2, fmc2->io_base + FMC2_CSQAR2);
}
static void stm32_fmc2_dma_callback(void *arg)
{
complete((struct completion *)arg);
}
/* Read/write data from/to a page */
static int stm32_fmc2_xfer(struct nand_chip *chip, const u8 *buf,
int raw, bool write_data)
{
struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
struct dma_async_tx_descriptor *desc_data, *desc_ecc;
struct scatterlist *sg;
struct dma_chan *dma_ch = fmc2->dma_rx_ch;
enum dma_data_direction dma_data_dir = DMA_FROM_DEVICE;
enum dma_transfer_direction dma_transfer_dir = DMA_DEV_TO_MEM;
u32 csqcr = readl_relaxed(fmc2->io_base + FMC2_CSQCR);
int eccsteps = chip->ecc.steps;
int eccsize = chip->ecc.size;
const u8 *p = buf;
int s, ret;
/* Configure DMA data */
if (write_data) {
dma_data_dir = DMA_TO_DEVICE;
dma_transfer_dir = DMA_MEM_TO_DEV;
dma_ch = fmc2->dma_tx_ch;
}
for_each_sg(fmc2->dma_data_sg.sgl, sg, eccsteps, s) {
sg_set_buf(sg, p, eccsize);
p += eccsize;
}
ret = dma_map_sg(fmc2->dev, fmc2->dma_data_sg.sgl,
eccsteps, dma_data_dir);
if (ret < 0)
return ret;
desc_data = dmaengine_prep_slave_sg(dma_ch, fmc2->dma_data_sg.sgl,
eccsteps, dma_transfer_dir,
DMA_PREP_INTERRUPT);
if (!desc_data) {
ret = -ENOMEM;
goto err_unmap_data;
}
reinit_completion(&fmc2->dma_data_complete);
reinit_completion(&fmc2->complete);
desc_data->callback = stm32_fmc2_dma_callback;
desc_data->callback_param = &fmc2->dma_data_complete;
ret = dma_submit_error(dmaengine_submit(desc_data));
if (ret)
goto err_unmap_data;
dma_async_issue_pending(dma_ch);
if (!write_data && !raw) {
/* Configure DMA ECC status */
p = fmc2->ecc_buf;
for_each_sg(fmc2->dma_ecc_sg.sgl, sg, eccsteps, s) {
sg_set_buf(sg, p, fmc2->dma_ecc_len);
p += fmc2->dma_ecc_len;
}
ret = dma_map_sg(fmc2->dev, fmc2->dma_ecc_sg.sgl,
eccsteps, dma_data_dir);
if (ret < 0)
goto err_unmap_data;
desc_ecc = dmaengine_prep_slave_sg(fmc2->dma_ecc_ch,
fmc2->dma_ecc_sg.sgl,
eccsteps, dma_transfer_dir,
DMA_PREP_INTERRUPT);
if (!desc_ecc) {
ret = -ENOMEM;
goto err_unmap_ecc;
}
reinit_completion(&fmc2->dma_ecc_complete);
desc_ecc->callback = stm32_fmc2_dma_callback;
desc_ecc->callback_param = &fmc2->dma_ecc_complete;
ret = dma_submit_error(dmaengine_submit(desc_ecc));
if (ret)
goto err_unmap_ecc;
dma_async_issue_pending(fmc2->dma_ecc_ch);
}
stm32_fmc2_clear_seq_irq(fmc2);
stm32_fmc2_enable_seq_irq(fmc2);
/* Start the transfer */
csqcr |= FMC2_CSQCR_CSQSTART;
writel_relaxed(csqcr, fmc2->io_base + FMC2_CSQCR);
/* Wait end of sequencer transfer */
if (!wait_for_completion_timeout(&fmc2->complete,
msecs_to_jiffies(FMC2_TIMEOUT_MS))) {
dev_err(fmc2->dev, "seq timeout\n");
stm32_fmc2_disable_seq_irq(fmc2);
dmaengine_terminate_all(dma_ch);
if (!write_data && !raw)
dmaengine_terminate_all(fmc2->dma_ecc_ch);
ret = -ETIMEDOUT;
goto err_unmap_ecc;
}
/* Wait DMA data transfer completion */
if (!wait_for_completion_timeout(&fmc2->dma_data_complete,
msecs_to_jiffies(FMC2_TIMEOUT_MS))) {
dev_err(fmc2->dev, "data DMA timeout\n");
dmaengine_terminate_all(dma_ch);
ret = -ETIMEDOUT;
}
/* Wait DMA ECC transfer completion */
if (!write_data && !raw) {
if (!wait_for_completion_timeout(&fmc2->dma_ecc_complete,
msecs_to_jiffies(FMC2_TIMEOUT_MS))) {
dev_err(fmc2->dev, "ECC DMA timeout\n");
dmaengine_terminate_all(fmc2->dma_ecc_ch);
ret = -ETIMEDOUT;
}
}
err_unmap_ecc:
if (!write_data && !raw)
dma_unmap_sg(fmc2->dev, fmc2->dma_ecc_sg.sgl,
eccsteps, dma_data_dir);
err_unmap_data:
dma_unmap_sg(fmc2->dev, fmc2->dma_data_sg.sgl, eccsteps, dma_data_dir);
return ret;
}
static int stm32_fmc2_sequencer_write(struct nand_chip *chip,
const u8 *buf, int oob_required,
int page, int raw)
{
struct mtd_info *mtd = nand_to_mtd(chip);
int ret;
/* Configure the sequencer */
stm32_fmc2_rw_page_init(chip, page, raw, true);
/* Write the page */
ret = stm32_fmc2_xfer(chip, buf, raw, true);
if (ret)
return ret;
/* Write oob */
if (oob_required) {
ret = nand_change_write_column_op(chip, mtd->writesize,
chip->oob_poi, mtd->oobsize,
false);
if (ret)
return ret;
}
return nand_prog_page_end_op(chip);
}
static int stm32_fmc2_sequencer_write_page(struct nand_chip *chip,
const u8 *buf,
int oob_required,
int page)
{
int ret;
/* Select the target */
ret = stm32_fmc2_select_chip(chip, chip->cur_cs);
if (ret)
return ret;
return stm32_fmc2_sequencer_write(chip, buf, oob_required, page, false);
}
static int stm32_fmc2_sequencer_write_page_raw(struct nand_chip *chip,
const u8 *buf,
int oob_required,
int page)
{
int ret;
/* Select the target */
ret = stm32_fmc2_select_chip(chip, chip->cur_cs);
if (ret)
return ret;
return stm32_fmc2_sequencer_write(chip, buf, oob_required, page, true);
}
/* Get a status indicating which sectors have errors */
static inline u16 stm32_fmc2_get_mapping_status(struct stm32_fmc2_nfc *fmc2)
{
u32 csqemsr = readl_relaxed(fmc2->io_base + FMC2_CSQEMSR);
return csqemsr & FMC2_CSQEMSR_SEM;
}
static int stm32_fmc2_sequencer_correct(struct nand_chip *chip, u8 *dat,
u8 *read_ecc, u8 *calc_ecc)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
int eccbytes = chip->ecc.bytes;
int eccsteps = chip->ecc.steps;
int eccstrength = chip->ecc.strength;
int i, s, eccsize = chip->ecc.size;
u32 *ecc_sta = (u32 *)fmc2->ecc_buf;
u16 sta_map = stm32_fmc2_get_mapping_status(fmc2);
unsigned int max_bitflips = 0;
for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, dat += eccsize) {
int stat = 0;
if (eccstrength == FMC2_ECC_HAM) {
/* Ecc_sta = FMC2_HECCR */
if (sta_map & BIT(s)) {
stm32_fmc2_ham_set_ecc(*ecc_sta, &calc_ecc[i]);
stat = stm32_fmc2_ham_correct(chip, dat,
&read_ecc[i],
&calc_ecc[i]);
}
ecc_sta++;
} else {
/*
* Ecc_sta[0] = FMC2_BCHDSR0
* Ecc_sta[1] = FMC2_BCHDSR1
* Ecc_sta[2] = FMC2_BCHDSR2
* Ecc_sta[3] = FMC2_BCHDSR3
* Ecc_sta[4] = FMC2_BCHDSR4
*/
if (sta_map & BIT(s))
stat = stm32_fmc2_bch_decode(eccsize, dat,
ecc_sta);
ecc_sta += 5;
}
if (stat == -EBADMSG)
/* Check for empty pages with bitflips */
stat = nand_check_erased_ecc_chunk(dat, eccsize,
&read_ecc[i],
eccbytes,
NULL, 0,
eccstrength);
if (stat < 0) {
mtd->ecc_stats.failed++;
} else {
mtd->ecc_stats.corrected += stat;
max_bitflips = max_t(unsigned int, max_bitflips, stat);
}
}
return max_bitflips;
}
static int stm32_fmc2_sequencer_read_page(struct nand_chip *chip, u8 *buf,
int oob_required, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
u8 *ecc_calc = chip->ecc.calc_buf;
u8 *ecc_code = chip->ecc.code_buf;
u16 sta_map;
int ret;
/* Select the target */
ret = stm32_fmc2_select_chip(chip, chip->cur_cs);
if (ret)
return ret;
/* Configure the sequencer */
stm32_fmc2_rw_page_init(chip, page, 0, false);
/* Read the page */
ret = stm32_fmc2_xfer(chip, buf, 0, false);
if (ret)
return ret;
sta_map = stm32_fmc2_get_mapping_status(fmc2);
/* Check if errors happen */
if (likely(!sta_map)) {
if (oob_required)
return nand_change_read_column_op(chip, mtd->writesize,
chip->oob_poi,
mtd->oobsize, false);
return 0;
}
/* Read oob */
ret = nand_change_read_column_op(chip, mtd->writesize,
chip->oob_poi, mtd->oobsize, false);
if (ret)
return ret;
ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
chip->ecc.total);
if (ret)
return ret;
/* Correct data */
return chip->ecc.correct(chip, buf, ecc_code, ecc_calc);
}
static int stm32_fmc2_sequencer_read_page_raw(struct nand_chip *chip, u8 *buf,
int oob_required, int page)
{
struct mtd_info *mtd = nand_to_mtd(chip);
int ret;
/* Select the target */
ret = stm32_fmc2_select_chip(chip, chip->cur_cs);
if (ret)
return ret;
/* Configure the sequencer */
stm32_fmc2_rw_page_init(chip, page, 1, false);
/* Read the page */
ret = stm32_fmc2_xfer(chip, buf, 1, false);
if (ret)
return ret;
/* Read oob */
if (oob_required)
return nand_change_read_column_op(chip, mtd->writesize,
chip->oob_poi, mtd->oobsize,
false);
return 0;
}
static irqreturn_t stm32_fmc2_irq(int irq, void *dev_id)
{
struct stm32_fmc2_nfc *fmc2 = (struct stm32_fmc2_nfc *)dev_id;
if (fmc2->irq_state == FMC2_IRQ_SEQ)
/* Sequencer is used */
stm32_fmc2_disable_seq_irq(fmc2);
else if (fmc2->irq_state == FMC2_IRQ_BCH)
/* BCH is used */
stm32_fmc2_disable_bch_irq(fmc2);
complete(&fmc2->complete);
return IRQ_HANDLED;
}
static void stm32_fmc2_read_data(struct nand_chip *chip, void *buf,
unsigned int len, bool force_8bit)
{
struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
void __iomem *io_addr_r = fmc2->data_base[fmc2->cs_sel];
if (force_8bit && chip->options & NAND_BUSWIDTH_16)
/* Reconfigure bus width to 8-bit */
stm32_fmc2_set_buswidth_16(fmc2, false);
if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32))) {
if (!IS_ALIGNED((uintptr_t)buf, sizeof(u16)) && len) {
*(u8 *)buf = readb_relaxed(io_addr_r);
buf += sizeof(u8);
len -= sizeof(u8);
}
if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32)) &&
len >= sizeof(u16)) {
*(u16 *)buf = readw_relaxed(io_addr_r);
buf += sizeof(u16);
len -= sizeof(u16);
}
}
/* Buf is aligned */
while (len >= sizeof(u32)) {
*(u32 *)buf = readl_relaxed(io_addr_r);
buf += sizeof(u32);
len -= sizeof(u32);
}
/* Read remaining bytes */
if (len >= sizeof(u16)) {
*(u16 *)buf = readw_relaxed(io_addr_r);
buf += sizeof(u16);
len -= sizeof(u16);
}
if (len)
*(u8 *)buf = readb_relaxed(io_addr_r);
if (force_8bit && chip->options & NAND_BUSWIDTH_16)
/* Reconfigure bus width to 16-bit */
stm32_fmc2_set_buswidth_16(fmc2, true);
}
static void stm32_fmc2_write_data(struct nand_chip *chip, const void *buf,
unsigned int len, bool force_8bit)
{
struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
void __iomem *io_addr_w = fmc2->data_base[fmc2->cs_sel];
if (force_8bit && chip->options & NAND_BUSWIDTH_16)
/* Reconfigure bus width to 8-bit */
stm32_fmc2_set_buswidth_16(fmc2, false);
if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32))) {
if (!IS_ALIGNED((uintptr_t)buf, sizeof(u16)) && len) {
writeb_relaxed(*(u8 *)buf, io_addr_w);
buf += sizeof(u8);
len -= sizeof(u8);
}
if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32)) &&
len >= sizeof(u16)) {
writew_relaxed(*(u16 *)buf, io_addr_w);
buf += sizeof(u16);
len -= sizeof(u16);
}
}
/* Buf is aligned */
while (len >= sizeof(u32)) {
writel_relaxed(*(u32 *)buf, io_addr_w);
buf += sizeof(u32);
len -= sizeof(u32);
}
/* Write remaining bytes */
if (len >= sizeof(u16)) {
writew_relaxed(*(u16 *)buf, io_addr_w);
buf += sizeof(u16);
len -= sizeof(u16);
}
if (len)
writeb_relaxed(*(u8 *)buf, io_addr_w);
if (force_8bit && chip->options & NAND_BUSWIDTH_16)
/* Reconfigure bus width to 16-bit */
stm32_fmc2_set_buswidth_16(fmc2, true);
}
static int stm32_fmc2_waitrdy(struct nand_chip *chip, unsigned long timeout_ms)
{
struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
const struct nand_sdr_timings *timings;
u32 isr, sr;
/* Check if there is no pending requests to the NAND flash */
if (readl_relaxed_poll_timeout_atomic(fmc2->io_base + FMC2_SR, sr,
sr & FMC2_SR_NWRF, 1,
FMC2_TIMEOUT_US))
dev_warn(fmc2->dev, "Waitrdy timeout\n");
/* Wait tWB before R/B# signal is low */
timings = nand_get_sdr_timings(&chip->data_interface);
ndelay(PSEC_TO_NSEC(timings->tWB_max));
/* R/B# signal is low, clear high level flag */
writel_relaxed(FMC2_ICR_CIHLF, fmc2->io_base + FMC2_ICR);
/* Wait R/B# signal is high */
return readl_relaxed_poll_timeout_atomic(fmc2->io_base + FMC2_ISR,
isr, isr & FMC2_ISR_IHLF,
5, 1000 * timeout_ms);
}
static int stm32_fmc2_exec_op(struct nand_chip *chip,
const struct nand_operation *op,
bool check_only)
{
struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
const struct nand_op_instr *instr = NULL;
unsigned int op_id, i;
int ret;
if (check_only)
return 0;
ret = stm32_fmc2_select_chip(chip, op->cs);
if (ret)
return ret;
for (op_id = 0; op_id < op->ninstrs; op_id++) {
instr = &op->instrs[op_id];
switch (instr->type) {
case NAND_OP_CMD_INSTR:
writeb_relaxed(instr->ctx.cmd.opcode,
fmc2->cmd_base[fmc2->cs_sel]);
break;
case NAND_OP_ADDR_INSTR:
for (i = 0; i < instr->ctx.addr.naddrs; i++)
writeb_relaxed(instr->ctx.addr.addrs[i],
fmc2->addr_base[fmc2->cs_sel]);
break;
case NAND_OP_DATA_IN_INSTR:
stm32_fmc2_read_data(chip, instr->ctx.data.buf.in,
instr->ctx.data.len,
instr->ctx.data.force_8bit);
break;
case NAND_OP_DATA_OUT_INSTR:
stm32_fmc2_write_data(chip, instr->ctx.data.buf.out,
instr->ctx.data.len,
instr->ctx.data.force_8bit);
break;
case NAND_OP_WAITRDY_INSTR:
ret = stm32_fmc2_waitrdy(chip,
instr->ctx.waitrdy.timeout_ms);
break;
}
}
return ret;
}
/* Controller initialization */
static void stm32_fmc2_init(struct stm32_fmc2_nfc *fmc2)
{
u32 pcr = readl_relaxed(fmc2->io_base + FMC2_PCR);
u32 bcr1 = readl_relaxed(fmc2->io_base + FMC2_BCR1);
/* Set CS used to undefined */
fmc2->cs_sel = -1;
/* Enable wait feature and nand flash memory bank */
pcr |= FMC2_PCR_PWAITEN;
pcr |= FMC2_PCR_PBKEN;
/* Set buswidth to 8 bits mode for identification */
pcr &= ~FMC2_PCR_PWID_MASK;
/* ECC logic is disabled */
pcr &= ~FMC2_PCR_ECCEN;
/* Default mode */
pcr &= ~FMC2_PCR_ECCALG;
pcr &= ~FMC2_PCR_BCHECC;
pcr &= ~FMC2_PCR_WEN;
/* Set default ECC sector size */
pcr &= ~FMC2_PCR_ECCSS_MASK;
pcr |= FMC2_PCR_ECCSS(FMC2_PCR_ECCSS_2048);
/* Set default tclr/tar timings */
pcr &= ~FMC2_PCR_TCLR_MASK;
pcr |= FMC2_PCR_TCLR(FMC2_PCR_TCLR_DEFAULT);
pcr &= ~FMC2_PCR_TAR_MASK;
pcr |= FMC2_PCR_TAR(FMC2_PCR_TAR_DEFAULT);
/* Enable FMC2 controller */
bcr1 |= FMC2_BCR1_FMC2EN;
writel_relaxed(bcr1, fmc2->io_base + FMC2_BCR1);
writel_relaxed(pcr, fmc2->io_base + FMC2_PCR);
writel_relaxed(FMC2_PMEM_DEFAULT, fmc2->io_base + FMC2_PMEM);
writel_relaxed(FMC2_PATT_DEFAULT, fmc2->io_base + FMC2_PATT);
}
/* Controller timings */
static void stm32_fmc2_calc_timings(struct nand_chip *chip,
const struct nand_sdr_timings *sdrt)
{
struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
struct stm32_fmc2_nand *nand = to_fmc2_nand(chip);
struct stm32_fmc2_timings *tims = &nand->timings;
unsigned long hclk = clk_get_rate(fmc2->clk);
unsigned long hclkp = NSEC_PER_SEC / (hclk / 1000);
unsigned long timing, tar, tclr, thiz, twait;
unsigned long tset_mem, tset_att, thold_mem, thold_att;
tar = max_t(unsigned long, hclkp, sdrt->tAR_min);
timing = DIV_ROUND_UP(tar, hclkp) - 1;
tims->tar = min_t(unsigned long, timing, FMC2_PCR_TIMING_MASK);
tclr = max_t(unsigned long, hclkp, sdrt->tCLR_min);
timing = DIV_ROUND_UP(tclr, hclkp) - 1;
tims->tclr = min_t(unsigned long, timing, FMC2_PCR_TIMING_MASK);
tims->thiz = FMC2_THIZ;
thiz = (tims->thiz + 1) * hclkp;
/*
* tWAIT > tRP
* tWAIT > tWP
* tWAIT > tREA + tIO
*/
twait = max_t(unsigned long, hclkp, sdrt->tRP_min);
twait = max_t(unsigned long, twait, sdrt->tWP_min);
twait = max_t(unsigned long, twait, sdrt->tREA_max + FMC2_TIO);
timing = DIV_ROUND_UP(twait, hclkp);
tims->twait = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
/*
* tSETUP_MEM > tCS - tWAIT
* tSETUP_MEM > tALS - tWAIT
* tSETUP_MEM > tDS - (tWAIT - tHIZ)
*/
tset_mem = hclkp;
if (sdrt->tCS_min > twait && (tset_mem < sdrt->tCS_min - twait))
tset_mem = sdrt->tCS_min - twait;
if (sdrt->tALS_min > twait && (tset_mem < sdrt->tALS_min - twait))
tset_mem = sdrt->tALS_min - twait;
if (twait > thiz && (sdrt->tDS_min > twait - thiz) &&
(tset_mem < sdrt->tDS_min - (twait - thiz)))
tset_mem = sdrt->tDS_min - (twait - thiz);
timing = DIV_ROUND_UP(tset_mem, hclkp);
tims->tset_mem = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
/*
* tHOLD_MEM > tCH
* tHOLD_MEM > tREH - tSETUP_MEM
* tHOLD_MEM > max(tRC, tWC) - (tSETUP_MEM + tWAIT)
*/
thold_mem = max_t(unsigned long, hclkp, sdrt->tCH_min);
if (sdrt->tREH_min > tset_mem &&
(thold_mem < sdrt->tREH_min - tset_mem))
thold_mem = sdrt->tREH_min - tset_mem;
if ((sdrt->tRC_min > tset_mem + twait) &&
(thold_mem < sdrt->tRC_min - (tset_mem + twait)))
thold_mem = sdrt->tRC_min - (tset_mem + twait);
if ((sdrt->tWC_min > tset_mem + twait) &&
(thold_mem < sdrt->tWC_min - (tset_mem + twait)))
thold_mem = sdrt->tWC_min - (tset_mem + twait);
timing = DIV_ROUND_UP(thold_mem, hclkp);
tims->thold_mem = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
/*
* tSETUP_ATT > tCS - tWAIT
* tSETUP_ATT > tCLS - tWAIT
* tSETUP_ATT > tALS - tWAIT
* tSETUP_ATT > tRHW - tHOLD_MEM
* tSETUP_ATT > tDS - (tWAIT - tHIZ)
*/
tset_att = hclkp;
if (sdrt->tCS_min > twait && (tset_att < sdrt->tCS_min - twait))
tset_att = sdrt->tCS_min - twait;
if (sdrt->tCLS_min > twait && (tset_att < sdrt->tCLS_min - twait))
tset_att = sdrt->tCLS_min - twait;
if (sdrt->tALS_min > twait && (tset_att < sdrt->tALS_min - twait))
tset_att = sdrt->tALS_min - twait;
if (sdrt->tRHW_min > thold_mem &&
(tset_att < sdrt->tRHW_min - thold_mem))
tset_att = sdrt->tRHW_min - thold_mem;
if (twait > thiz && (sdrt->tDS_min > twait - thiz) &&
(tset_att < sdrt->tDS_min - (twait - thiz)))
tset_att = sdrt->tDS_min - (twait - thiz);
timing = DIV_ROUND_UP(tset_att, hclkp);
tims->tset_att = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
/*
* tHOLD_ATT > tALH
* tHOLD_ATT > tCH
* tHOLD_ATT > tCLH
* tHOLD_ATT > tCOH
* tHOLD_ATT > tDH
* tHOLD_ATT > tWB + tIO + tSYNC - tSETUP_MEM
* tHOLD_ATT > tADL - tSETUP_MEM
* tHOLD_ATT > tWH - tSETUP_MEM
* tHOLD_ATT > tWHR - tSETUP_MEM
* tHOLD_ATT > tRC - (tSETUP_ATT + tWAIT)
* tHOLD_ATT > tWC - (tSETUP_ATT + tWAIT)
*/
thold_att = max_t(unsigned long, hclkp, sdrt->tALH_min);
thold_att = max_t(unsigned long, thold_att, sdrt->tCH_min);
thold_att = max_t(unsigned long, thold_att, sdrt->tCLH_min);
thold_att = max_t(unsigned long, thold_att, sdrt->tCOH_min);
thold_att = max_t(unsigned long, thold_att, sdrt->tDH_min);
if ((sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC > tset_mem) &&
(thold_att < sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC - tset_mem))
thold_att = sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC - tset_mem;
if (sdrt->tADL_min > tset_mem &&
(thold_att < sdrt->tADL_min - tset_mem))
thold_att = sdrt->tADL_min - tset_mem;
if (sdrt->tWH_min > tset_mem &&
(thold_att < sdrt->tWH_min - tset_mem))
thold_att = sdrt->tWH_min - tset_mem;
if (sdrt->tWHR_min > tset_mem &&
(thold_att < sdrt->tWHR_min - tset_mem))
thold_att = sdrt->tWHR_min - tset_mem;
if ((sdrt->tRC_min > tset_att + twait) &&
(thold_att < sdrt->tRC_min - (tset_att + twait)))
thold_att = sdrt->tRC_min - (tset_att + twait);
if ((sdrt->tWC_min > tset_att + twait) &&
(thold_att < sdrt->tWC_min - (tset_att + twait)))
thold_att = sdrt->tWC_min - (tset_att + twait);
timing = DIV_ROUND_UP(thold_att, hclkp);
tims->thold_att = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
}
static int stm32_fmc2_setup_interface(struct nand_chip *chip, int chipnr,
const struct nand_data_interface *conf)
{
const struct nand_sdr_timings *sdrt;
sdrt = nand_get_sdr_timings(conf);
if (IS_ERR(sdrt))
return PTR_ERR(sdrt);
if (chipnr == NAND_DATA_IFACE_CHECK_ONLY)
return 0;
stm32_fmc2_calc_timings(chip, sdrt);
/* Apply timings */
stm32_fmc2_timings_init(chip);
return 0;
}
/* DMA configuration */
static int stm32_fmc2_dma_setup(struct stm32_fmc2_nfc *fmc2)
{
int ret = 0;
fmc2->dma_tx_ch = dma_request_chan(fmc2->dev, "tx");
if (IS_ERR(fmc2->dma_tx_ch)) {
ret = PTR_ERR(fmc2->dma_tx_ch);
if (ret != -ENODEV)
dev_err(fmc2->dev,
"failed to request tx DMA channel: %d\n", ret);
fmc2->dma_tx_ch = NULL;
goto err_dma;
}
fmc2->dma_rx_ch = dma_request_chan(fmc2->dev, "rx");
if (IS_ERR(fmc2->dma_rx_ch)) {
ret = PTR_ERR(fmc2->dma_rx_ch);
if (ret != -ENODEV)
dev_err(fmc2->dev,
"failed to request rx DMA channel: %d\n", ret);
fmc2->dma_rx_ch = NULL;
goto err_dma;
}
fmc2->dma_ecc_ch = dma_request_chan(fmc2->dev, "ecc");
if (IS_ERR(fmc2->dma_ecc_ch)) {
ret = PTR_ERR(fmc2->dma_ecc_ch);
if (ret != -ENODEV)
dev_err(fmc2->dev,
"failed to request ecc DMA channel: %d\n", ret);
fmc2->dma_ecc_ch = NULL;
goto err_dma;
}
ret = sg_alloc_table(&fmc2->dma_ecc_sg, FMC2_MAX_SG, GFP_KERNEL);
if (ret)
return ret;
/* Allocate a buffer to store ECC status registers */
fmc2->ecc_buf = devm_kzalloc(fmc2->dev, FMC2_MAX_ECC_BUF_LEN,
GFP_KERNEL);
if (!fmc2->ecc_buf)
return -ENOMEM;
ret = sg_alloc_table(&fmc2->dma_data_sg, FMC2_MAX_SG, GFP_KERNEL);
if (ret)
return ret;
init_completion(&fmc2->dma_data_complete);
init_completion(&fmc2->dma_ecc_complete);
return 0;
err_dma:
if (ret == -ENODEV) {
dev_warn(fmc2->dev,
"DMAs not defined in the DT, polling mode is used\n");
ret = 0;
}
return ret;
}
/* NAND callbacks setup */
static void stm32_fmc2_nand_callbacks_setup(struct nand_chip *chip)
{
struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
/*
* Specific callbacks to read/write a page depending on
* the mode (polling/sequencer) and the algo used (Hamming, BCH).
*/
if (fmc2->dma_tx_ch && fmc2->dma_rx_ch && fmc2->dma_ecc_ch) {
/* DMA => use sequencer mode callbacks */
chip->ecc.correct = stm32_fmc2_sequencer_correct;
chip->ecc.write_page = stm32_fmc2_sequencer_write_page;
chip->ecc.read_page = stm32_fmc2_sequencer_read_page;
chip->ecc.write_page_raw = stm32_fmc2_sequencer_write_page_raw;
chip->ecc.read_page_raw = stm32_fmc2_sequencer_read_page_raw;
} else {
/* No DMA => use polling mode callbacks */
chip->ecc.hwctl = stm32_fmc2_hwctl;
if (chip->ecc.strength == FMC2_ECC_HAM) {
/* Hamming is used */
chip->ecc.calculate = stm32_fmc2_ham_calculate;
chip->ecc.correct = stm32_fmc2_ham_correct;
chip->ecc.options |= NAND_ECC_GENERIC_ERASED_CHECK;
} else {
/* BCH is used */
chip->ecc.calculate = stm32_fmc2_bch_calculate;
chip->ecc.correct = stm32_fmc2_bch_correct;
chip->ecc.read_page = stm32_fmc2_read_page;
}
}
/* Specific configurations depending on the algo used */
if (chip->ecc.strength == FMC2_ECC_HAM)
chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 4 : 3;
else if (chip->ecc.strength == FMC2_ECC_BCH8)
chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 14 : 13;
else
chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 8 : 7;
}
/* FMC2 layout */
static int stm32_fmc2_nand_ooblayout_ecc(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct nand_ecc_ctrl *ecc = &chip->ecc;
if (section)
return -ERANGE;
oobregion->length = ecc->total;
oobregion->offset = FMC2_BBM_LEN;
return 0;
}
static int stm32_fmc2_nand_ooblayout_free(struct mtd_info *mtd, int section,
struct mtd_oob_region *oobregion)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct nand_ecc_ctrl *ecc = &chip->ecc;
if (section)
return -ERANGE;
oobregion->length = mtd->oobsize - ecc->total - FMC2_BBM_LEN;
oobregion->offset = ecc->total + FMC2_BBM_LEN;
return 0;
}
static const struct mtd_ooblayout_ops stm32_fmc2_nand_ooblayout_ops = {
.ecc = stm32_fmc2_nand_ooblayout_ecc,
.free = stm32_fmc2_nand_ooblayout_free,
};
/* FMC2 caps */
static int stm32_fmc2_calc_ecc_bytes(int step_size, int strength)
{
/* Hamming */
if (strength == FMC2_ECC_HAM)
return 4;
/* BCH8 */
if (strength == FMC2_ECC_BCH8)
return 14;
/* BCH4 */
return 8;
}
NAND_ECC_CAPS_SINGLE(stm32_fmc2_ecc_caps, stm32_fmc2_calc_ecc_bytes,
FMC2_ECC_STEP_SIZE,
FMC2_ECC_HAM, FMC2_ECC_BCH4, FMC2_ECC_BCH8);
/* FMC2 controller ops */
static int stm32_fmc2_attach_chip(struct nand_chip *chip)
{
struct stm32_fmc2_nfc *fmc2 = to_stm32_nfc(chip->controller);
struct mtd_info *mtd = nand_to_mtd(chip);
int ret;
/*
* Only NAND_ECC_HW mode is actually supported
* Hamming => ecc.strength = 1
* BCH4 => ecc.strength = 4
* BCH8 => ecc.strength = 8
* ECC sector size = 512
*/
if (chip->ecc.mode != NAND_ECC_HW) {
dev_err(fmc2->dev, "nand_ecc_mode is not well defined in the DT\n");
return -EINVAL;
}
ret = nand_ecc_choose_conf(chip, &stm32_fmc2_ecc_caps,
mtd->oobsize - FMC2_BBM_LEN);
if (ret) {
dev_err(fmc2->dev, "no valid ECC settings set\n");
return ret;
}
if (mtd->writesize / chip->ecc.size > FMC2_MAX_SG) {
dev_err(fmc2->dev, "nand page size is not supported\n");
return -EINVAL;
}
if (chip->bbt_options & NAND_BBT_USE_FLASH)
chip->bbt_options |= NAND_BBT_NO_OOB;
/* NAND callbacks setup */
stm32_fmc2_nand_callbacks_setup(chip);
/* Define ECC layout */
mtd_set_ooblayout(mtd, &stm32_fmc2_nand_ooblayout_ops);
/* Configure bus width to 16-bit */
if (chip->options & NAND_BUSWIDTH_16)
stm32_fmc2_set_buswidth_16(fmc2, true);
return 0;
}
static const struct nand_controller_ops stm32_fmc2_nand_controller_ops = {
.attach_chip = stm32_fmc2_attach_chip,
.exec_op = stm32_fmc2_exec_op,
.setup_data_interface = stm32_fmc2_setup_interface,
};
/* FMC2 probe */
static int stm32_fmc2_parse_child(struct stm32_fmc2_nfc *fmc2,
struct device_node *dn)
{
struct stm32_fmc2_nand *nand = &fmc2->nand;
u32 cs;
int ret, i;
if (!of_get_property(dn, "reg", &nand->ncs))
return -EINVAL;
nand->ncs /= sizeof(u32);
if (!nand->ncs) {
dev_err(fmc2->dev, "invalid reg property size\n");
return -EINVAL;
}
for (i = 0; i < nand->ncs; i++) {
ret = of_property_read_u32_index(dn, "reg", i, &cs);
if (ret) {
dev_err(fmc2->dev, "could not retrieve reg property: %d\n",
ret);
return ret;
}
if (cs > FMC2_MAX_CE) {
dev_err(fmc2->dev, "invalid reg value: %d\n", cs);
return -EINVAL;
}
if (fmc2->cs_assigned & BIT(cs)) {
dev_err(fmc2->dev, "cs already assigned: %d\n", cs);
return -EINVAL;
}
fmc2->cs_assigned |= BIT(cs);
nand->cs_used[i] = cs;
}
nand_set_flash_node(&nand->chip, dn);
return 0;
}
static int stm32_fmc2_parse_dt(struct stm32_fmc2_nfc *fmc2)
{
struct device_node *dn = fmc2->dev->of_node;
struct device_node *child;
int nchips = of_get_child_count(dn);
int ret = 0;
if (!nchips) {
dev_err(fmc2->dev, "NAND chip not defined\n");
return -EINVAL;
}
if (nchips > 1) {
dev_err(fmc2->dev, "too many NAND chips defined\n");
return -EINVAL;
}
for_each_child_of_node(dn, child) {
ret = stm32_fmc2_parse_child(fmc2, child);
if (ret < 0) {
of_node_put(child);
return ret;
}
}
return ret;
}
static int stm32_fmc2_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct reset_control *rstc;
struct stm32_fmc2_nfc *fmc2;
struct stm32_fmc2_nand *nand;
struct resource *res;
struct mtd_info *mtd;
struct nand_chip *chip;
int chip_cs, mem_region, ret, irq;
fmc2 = devm_kzalloc(dev, sizeof(*fmc2), GFP_KERNEL);
if (!fmc2)
return -ENOMEM;
fmc2->dev = dev;
nand_controller_init(&fmc2->base);
fmc2->base.ops = &stm32_fmc2_nand_controller_ops;
ret = stm32_fmc2_parse_dt(fmc2);
if (ret)
return ret;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
fmc2->io_base = devm_ioremap_resource(dev, res);
if (IS_ERR(fmc2->io_base))
return PTR_ERR(fmc2->io_base);
fmc2->io_phys_addr = res->start;
for (chip_cs = 0, mem_region = 1; chip_cs < FMC2_MAX_CE;
chip_cs++, mem_region += 3) {
if (!(fmc2->cs_assigned & BIT(chip_cs)))
continue;
res = platform_get_resource(pdev, IORESOURCE_MEM, mem_region);
fmc2->data_base[chip_cs] = devm_ioremap_resource(dev, res);
if (IS_ERR(fmc2->data_base[chip_cs]))
return PTR_ERR(fmc2->data_base[chip_cs]);
fmc2->data_phys_addr[chip_cs] = res->start;
res = platform_get_resource(pdev, IORESOURCE_MEM,
mem_region + 1);
fmc2->cmd_base[chip_cs] = devm_ioremap_resource(dev, res);
if (IS_ERR(fmc2->cmd_base[chip_cs]))
return PTR_ERR(fmc2->cmd_base[chip_cs]);
res = platform_get_resource(pdev, IORESOURCE_MEM,
mem_region + 2);
fmc2->addr_base[chip_cs] = devm_ioremap_resource(dev, res);
if (IS_ERR(fmc2->addr_base[chip_cs]))
return PTR_ERR(fmc2->addr_base[chip_cs]);
}
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return irq;
ret = devm_request_irq(dev, irq, stm32_fmc2_irq, 0,
dev_name(dev), fmc2);
if (ret) {
dev_err(dev, "failed to request irq\n");
return ret;
}
init_completion(&fmc2->complete);
fmc2->clk = devm_clk_get(dev, NULL);
if (IS_ERR(fmc2->clk))
return PTR_ERR(fmc2->clk);
ret = clk_prepare_enable(fmc2->clk);
if (ret) {
dev_err(dev, "can not enable the clock\n");
return ret;
}
rstc = devm_reset_control_get(dev, NULL);
if (!IS_ERR(rstc)) {
reset_control_assert(rstc);
reset_control_deassert(rstc);
}
/* DMA setup */
ret = stm32_fmc2_dma_setup(fmc2);
if (ret)
return ret;
/* FMC2 init routine */
stm32_fmc2_init(fmc2);
nand = &fmc2->nand;
chip = &nand->chip;
mtd = nand_to_mtd(chip);
mtd->dev.parent = dev;
chip->controller = &fmc2->base;
chip->options |= NAND_BUSWIDTH_AUTO | NAND_NO_SUBPAGE_WRITE |
NAND_USES_DMA;
/* Default ECC settings */
chip->ecc.mode = NAND_ECC_HW;
chip->ecc.size = FMC2_ECC_STEP_SIZE;
chip->ecc.strength = FMC2_ECC_BCH8;
/* Scan to find existence of the device */
ret = nand_scan(chip, nand->ncs);
if (ret)
goto err_scan;
ret = mtd_device_register(mtd, NULL, 0);
if (ret)
goto err_device_register;
platform_set_drvdata(pdev, fmc2);
return 0;
err_device_register:
nand_cleanup(chip);
err_scan:
if (fmc2->dma_ecc_ch)
dma_release_channel(fmc2->dma_ecc_ch);
if (fmc2->dma_tx_ch)
dma_release_channel(fmc2->dma_tx_ch);
if (fmc2->dma_rx_ch)
dma_release_channel(fmc2->dma_rx_ch);
sg_free_table(&fmc2->dma_data_sg);
sg_free_table(&fmc2->dma_ecc_sg);
clk_disable_unprepare(fmc2->clk);
return ret;
}
static int stm32_fmc2_remove(struct platform_device *pdev)
{
struct stm32_fmc2_nfc *fmc2 = platform_get_drvdata(pdev);
struct stm32_fmc2_nand *nand = &fmc2->nand;
nand_release(&nand->chip);
if (fmc2->dma_ecc_ch)
dma_release_channel(fmc2->dma_ecc_ch);
if (fmc2->dma_tx_ch)
dma_release_channel(fmc2->dma_tx_ch);
if (fmc2->dma_rx_ch)
dma_release_channel(fmc2->dma_rx_ch);
sg_free_table(&fmc2->dma_data_sg);
sg_free_table(&fmc2->dma_ecc_sg);
clk_disable_unprepare(fmc2->clk);
return 0;
}
static int __maybe_unused stm32_fmc2_suspend(struct device *dev)
{
struct stm32_fmc2_nfc *fmc2 = dev_get_drvdata(dev);
clk_disable_unprepare(fmc2->clk);
pinctrl_pm_select_sleep_state(dev);
return 0;
}
static int __maybe_unused stm32_fmc2_resume(struct device *dev)
{
struct stm32_fmc2_nfc *fmc2 = dev_get_drvdata(dev);
struct stm32_fmc2_nand *nand = &fmc2->nand;
int chip_cs, ret;
pinctrl_pm_select_default_state(dev);
ret = clk_prepare_enable(fmc2->clk);
if (ret) {
dev_err(dev, "can not enable the clock\n");
return ret;
}
stm32_fmc2_init(fmc2);
for (chip_cs = 0; chip_cs < FMC2_MAX_CE; chip_cs++) {
if (!(fmc2->cs_assigned & BIT(chip_cs)))
continue;
nand_reset(&nand->chip, chip_cs);
}
return 0;
}
static SIMPLE_DEV_PM_OPS(stm32_fmc2_pm_ops, stm32_fmc2_suspend,
stm32_fmc2_resume);
static const struct of_device_id stm32_fmc2_match[] = {
{.compatible = "st,stm32mp15-fmc2"},
{}
};
MODULE_DEVICE_TABLE(of, stm32_fmc2_match);
static struct platform_driver stm32_fmc2_driver = {
.probe = stm32_fmc2_probe,
.remove = stm32_fmc2_remove,
.driver = {
.name = "stm32_fmc2_nand",
.of_match_table = stm32_fmc2_match,
.pm = &stm32_fmc2_pm_ops,
},
};
module_platform_driver(stm32_fmc2_driver);
MODULE_ALIAS("platform:stm32_fmc2_nand");
MODULE_AUTHOR("Christophe Kerello <christophe.kerello@st.com>");
MODULE_DESCRIPTION("STMicroelectronics STM32 FMC2 nand driver");
MODULE_LICENSE("GPL v2");