mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
94fc2e0be0
This patch forbids the use of 2-key 3DES (K1 == K3) in FIPS mode. It also removes a couple of unnecessary key length checks that are already performed by the crypto API. Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
1122 lines
29 KiB
C
1122 lines
29 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/* Copyright (c) 2016-2017 Hisilicon Limited. */
|
|
#include <linux/crypto.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/dmapool.h>
|
|
#include <linux/module.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/slab.h>
|
|
|
|
#include <crypto/aes.h>
|
|
#include <crypto/algapi.h>
|
|
#include <crypto/des.h>
|
|
#include <crypto/skcipher.h>
|
|
#include <crypto/xts.h>
|
|
#include <crypto/internal/skcipher.h>
|
|
|
|
#include "sec_drv.h"
|
|
|
|
#define SEC_MAX_CIPHER_KEY 64
|
|
#define SEC_REQ_LIMIT SZ_32M
|
|
|
|
struct sec_c_alg_cfg {
|
|
unsigned c_alg : 3;
|
|
unsigned c_mode : 3;
|
|
unsigned key_len : 2;
|
|
unsigned c_width : 2;
|
|
};
|
|
|
|
static const struct sec_c_alg_cfg sec_c_alg_cfgs[] = {
|
|
[SEC_C_DES_ECB_64] = {
|
|
.c_alg = SEC_C_ALG_DES,
|
|
.c_mode = SEC_C_MODE_ECB,
|
|
.key_len = SEC_KEY_LEN_DES,
|
|
},
|
|
[SEC_C_DES_CBC_64] = {
|
|
.c_alg = SEC_C_ALG_DES,
|
|
.c_mode = SEC_C_MODE_CBC,
|
|
.key_len = SEC_KEY_LEN_DES,
|
|
},
|
|
[SEC_C_3DES_ECB_192_3KEY] = {
|
|
.c_alg = SEC_C_ALG_3DES,
|
|
.c_mode = SEC_C_MODE_ECB,
|
|
.key_len = SEC_KEY_LEN_3DES_3_KEY,
|
|
},
|
|
[SEC_C_3DES_ECB_192_2KEY] = {
|
|
.c_alg = SEC_C_ALG_3DES,
|
|
.c_mode = SEC_C_MODE_ECB,
|
|
.key_len = SEC_KEY_LEN_3DES_2_KEY,
|
|
},
|
|
[SEC_C_3DES_CBC_192_3KEY] = {
|
|
.c_alg = SEC_C_ALG_3DES,
|
|
.c_mode = SEC_C_MODE_CBC,
|
|
.key_len = SEC_KEY_LEN_3DES_3_KEY,
|
|
},
|
|
[SEC_C_3DES_CBC_192_2KEY] = {
|
|
.c_alg = SEC_C_ALG_3DES,
|
|
.c_mode = SEC_C_MODE_CBC,
|
|
.key_len = SEC_KEY_LEN_3DES_2_KEY,
|
|
},
|
|
[SEC_C_AES_ECB_128] = {
|
|
.c_alg = SEC_C_ALG_AES,
|
|
.c_mode = SEC_C_MODE_ECB,
|
|
.key_len = SEC_KEY_LEN_AES_128,
|
|
},
|
|
[SEC_C_AES_ECB_192] = {
|
|
.c_alg = SEC_C_ALG_AES,
|
|
.c_mode = SEC_C_MODE_ECB,
|
|
.key_len = SEC_KEY_LEN_AES_192,
|
|
},
|
|
[SEC_C_AES_ECB_256] = {
|
|
.c_alg = SEC_C_ALG_AES,
|
|
.c_mode = SEC_C_MODE_ECB,
|
|
.key_len = SEC_KEY_LEN_AES_256,
|
|
},
|
|
[SEC_C_AES_CBC_128] = {
|
|
.c_alg = SEC_C_ALG_AES,
|
|
.c_mode = SEC_C_MODE_CBC,
|
|
.key_len = SEC_KEY_LEN_AES_128,
|
|
},
|
|
[SEC_C_AES_CBC_192] = {
|
|
.c_alg = SEC_C_ALG_AES,
|
|
.c_mode = SEC_C_MODE_CBC,
|
|
.key_len = SEC_KEY_LEN_AES_192,
|
|
},
|
|
[SEC_C_AES_CBC_256] = {
|
|
.c_alg = SEC_C_ALG_AES,
|
|
.c_mode = SEC_C_MODE_CBC,
|
|
.key_len = SEC_KEY_LEN_AES_256,
|
|
},
|
|
[SEC_C_AES_CTR_128] = {
|
|
.c_alg = SEC_C_ALG_AES,
|
|
.c_mode = SEC_C_MODE_CTR,
|
|
.key_len = SEC_KEY_LEN_AES_128,
|
|
},
|
|
[SEC_C_AES_CTR_192] = {
|
|
.c_alg = SEC_C_ALG_AES,
|
|
.c_mode = SEC_C_MODE_CTR,
|
|
.key_len = SEC_KEY_LEN_AES_192,
|
|
},
|
|
[SEC_C_AES_CTR_256] = {
|
|
.c_alg = SEC_C_ALG_AES,
|
|
.c_mode = SEC_C_MODE_CTR,
|
|
.key_len = SEC_KEY_LEN_AES_256,
|
|
},
|
|
[SEC_C_AES_XTS_128] = {
|
|
.c_alg = SEC_C_ALG_AES,
|
|
.c_mode = SEC_C_MODE_XTS,
|
|
.key_len = SEC_KEY_LEN_AES_128,
|
|
},
|
|
[SEC_C_AES_XTS_256] = {
|
|
.c_alg = SEC_C_ALG_AES,
|
|
.c_mode = SEC_C_MODE_XTS,
|
|
.key_len = SEC_KEY_LEN_AES_256,
|
|
},
|
|
[SEC_C_NULL] = {
|
|
},
|
|
};
|
|
|
|
/*
|
|
* Mutex used to ensure safe operation of reference count of
|
|
* alg providers
|
|
*/
|
|
static DEFINE_MUTEX(algs_lock);
|
|
static unsigned int active_devs;
|
|
|
|
static void sec_alg_skcipher_init_template(struct sec_alg_tfm_ctx *ctx,
|
|
struct sec_bd_info *req,
|
|
enum sec_cipher_alg alg)
|
|
{
|
|
const struct sec_c_alg_cfg *cfg = &sec_c_alg_cfgs[alg];
|
|
|
|
memset(req, 0, sizeof(*req));
|
|
req->w0 |= cfg->c_mode << SEC_BD_W0_C_MODE_S;
|
|
req->w1 |= cfg->c_alg << SEC_BD_W1_C_ALG_S;
|
|
req->w3 |= cfg->key_len << SEC_BD_W3_C_KEY_LEN_S;
|
|
req->w0 |= cfg->c_width << SEC_BD_W0_C_WIDTH_S;
|
|
|
|
req->cipher_key_addr_lo = lower_32_bits(ctx->pkey);
|
|
req->cipher_key_addr_hi = upper_32_bits(ctx->pkey);
|
|
}
|
|
|
|
static void sec_alg_skcipher_init_context(struct crypto_skcipher *atfm,
|
|
const u8 *key,
|
|
unsigned int keylen,
|
|
enum sec_cipher_alg alg)
|
|
{
|
|
struct crypto_tfm *tfm = crypto_skcipher_tfm(atfm);
|
|
struct sec_alg_tfm_ctx *ctx = crypto_tfm_ctx(tfm);
|
|
|
|
ctx->cipher_alg = alg;
|
|
memcpy(ctx->key, key, keylen);
|
|
sec_alg_skcipher_init_template(ctx, &ctx->req_template,
|
|
ctx->cipher_alg);
|
|
}
|
|
|
|
static int sec_alloc_and_fill_hw_sgl(struct sec_hw_sgl **sec_sgl,
|
|
dma_addr_t *psec_sgl,
|
|
struct scatterlist *sgl,
|
|
int count,
|
|
struct sec_dev_info *info)
|
|
{
|
|
struct sec_hw_sgl *sgl_current = NULL;
|
|
struct sec_hw_sgl *sgl_next;
|
|
dma_addr_t sgl_next_dma;
|
|
struct scatterlist *sg;
|
|
int ret, sge_index, i;
|
|
|
|
if (!count)
|
|
return -EINVAL;
|
|
|
|
for_each_sg(sgl, sg, count, i) {
|
|
sge_index = i % SEC_MAX_SGE_NUM;
|
|
if (sge_index == 0) {
|
|
sgl_next = dma_pool_zalloc(info->hw_sgl_pool,
|
|
GFP_KERNEL, &sgl_next_dma);
|
|
if (!sgl_next) {
|
|
ret = -ENOMEM;
|
|
goto err_free_hw_sgls;
|
|
}
|
|
|
|
if (!sgl_current) { /* First one */
|
|
*psec_sgl = sgl_next_dma;
|
|
*sec_sgl = sgl_next;
|
|
} else { /* Chained */
|
|
sgl_current->entry_sum_in_sgl = SEC_MAX_SGE_NUM;
|
|
sgl_current->next_sgl = sgl_next_dma;
|
|
sgl_current->next = sgl_next;
|
|
}
|
|
sgl_current = sgl_next;
|
|
}
|
|
sgl_current->sge_entries[sge_index].buf = sg_dma_address(sg);
|
|
sgl_current->sge_entries[sge_index].len = sg_dma_len(sg);
|
|
sgl_current->data_bytes_in_sgl += sg_dma_len(sg);
|
|
}
|
|
sgl_current->entry_sum_in_sgl = count % SEC_MAX_SGE_NUM;
|
|
sgl_current->next_sgl = 0;
|
|
(*sec_sgl)->entry_sum_in_chain = count;
|
|
|
|
return 0;
|
|
|
|
err_free_hw_sgls:
|
|
sgl_current = *sec_sgl;
|
|
while (sgl_current) {
|
|
sgl_next = sgl_current->next;
|
|
dma_pool_free(info->hw_sgl_pool, sgl_current,
|
|
sgl_current->next_sgl);
|
|
sgl_current = sgl_next;
|
|
}
|
|
*psec_sgl = 0;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void sec_free_hw_sgl(struct sec_hw_sgl *hw_sgl,
|
|
dma_addr_t psec_sgl, struct sec_dev_info *info)
|
|
{
|
|
struct sec_hw_sgl *sgl_current, *sgl_next;
|
|
|
|
if (!hw_sgl)
|
|
return;
|
|
sgl_current = hw_sgl;
|
|
while (sgl_current->next) {
|
|
sgl_next = sgl_current->next;
|
|
dma_pool_free(info->hw_sgl_pool, sgl_current,
|
|
sgl_current->next_sgl);
|
|
sgl_current = sgl_next;
|
|
}
|
|
dma_pool_free(info->hw_sgl_pool, hw_sgl, psec_sgl);
|
|
}
|
|
|
|
static int sec_alg_skcipher_setkey(struct crypto_skcipher *tfm,
|
|
const u8 *key, unsigned int keylen,
|
|
enum sec_cipher_alg alg)
|
|
{
|
|
struct sec_alg_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
struct device *dev = ctx->queue->dev_info->dev;
|
|
|
|
mutex_lock(&ctx->lock);
|
|
if (ctx->key) {
|
|
/* rekeying */
|
|
memset(ctx->key, 0, SEC_MAX_CIPHER_KEY);
|
|
} else {
|
|
/* new key */
|
|
ctx->key = dma_alloc_coherent(dev, SEC_MAX_CIPHER_KEY,
|
|
&ctx->pkey, GFP_KERNEL);
|
|
if (!ctx->key) {
|
|
mutex_unlock(&ctx->lock);
|
|
return -ENOMEM;
|
|
}
|
|
}
|
|
mutex_unlock(&ctx->lock);
|
|
sec_alg_skcipher_init_context(tfm, key, keylen, alg);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sec_alg_skcipher_setkey_aes_ecb(struct crypto_skcipher *tfm,
|
|
const u8 *key, unsigned int keylen)
|
|
{
|
|
enum sec_cipher_alg alg;
|
|
|
|
switch (keylen) {
|
|
case AES_KEYSIZE_128:
|
|
alg = SEC_C_AES_ECB_128;
|
|
break;
|
|
case AES_KEYSIZE_192:
|
|
alg = SEC_C_AES_ECB_192;
|
|
break;
|
|
case AES_KEYSIZE_256:
|
|
alg = SEC_C_AES_ECB_256;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
return sec_alg_skcipher_setkey(tfm, key, keylen, alg);
|
|
}
|
|
|
|
static int sec_alg_skcipher_setkey_aes_cbc(struct crypto_skcipher *tfm,
|
|
const u8 *key, unsigned int keylen)
|
|
{
|
|
enum sec_cipher_alg alg;
|
|
|
|
switch (keylen) {
|
|
case AES_KEYSIZE_128:
|
|
alg = SEC_C_AES_CBC_128;
|
|
break;
|
|
case AES_KEYSIZE_192:
|
|
alg = SEC_C_AES_CBC_192;
|
|
break;
|
|
case AES_KEYSIZE_256:
|
|
alg = SEC_C_AES_CBC_256;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
return sec_alg_skcipher_setkey(tfm, key, keylen, alg);
|
|
}
|
|
|
|
static int sec_alg_skcipher_setkey_aes_ctr(struct crypto_skcipher *tfm,
|
|
const u8 *key, unsigned int keylen)
|
|
{
|
|
enum sec_cipher_alg alg;
|
|
|
|
switch (keylen) {
|
|
case AES_KEYSIZE_128:
|
|
alg = SEC_C_AES_CTR_128;
|
|
break;
|
|
case AES_KEYSIZE_192:
|
|
alg = SEC_C_AES_CTR_192;
|
|
break;
|
|
case AES_KEYSIZE_256:
|
|
alg = SEC_C_AES_CTR_256;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
return sec_alg_skcipher_setkey(tfm, key, keylen, alg);
|
|
}
|
|
|
|
static int sec_alg_skcipher_setkey_aes_xts(struct crypto_skcipher *tfm,
|
|
const u8 *key, unsigned int keylen)
|
|
{
|
|
enum sec_cipher_alg alg;
|
|
int ret;
|
|
|
|
ret = xts_verify_key(tfm, key, keylen);
|
|
if (ret)
|
|
return ret;
|
|
|
|
switch (keylen) {
|
|
case AES_KEYSIZE_128 * 2:
|
|
alg = SEC_C_AES_XTS_128;
|
|
break;
|
|
case AES_KEYSIZE_256 * 2:
|
|
alg = SEC_C_AES_XTS_256;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
return sec_alg_skcipher_setkey(tfm, key, keylen, alg);
|
|
}
|
|
|
|
static int sec_alg_skcipher_setkey_des_ecb(struct crypto_skcipher *tfm,
|
|
const u8 *key, unsigned int keylen)
|
|
{
|
|
if (keylen != DES_KEY_SIZE)
|
|
return -EINVAL;
|
|
|
|
return sec_alg_skcipher_setkey(tfm, key, keylen, SEC_C_DES_ECB_64);
|
|
}
|
|
|
|
static int sec_alg_skcipher_setkey_des_cbc(struct crypto_skcipher *tfm,
|
|
const u8 *key, unsigned int keylen)
|
|
{
|
|
if (keylen != DES_KEY_SIZE)
|
|
return -EINVAL;
|
|
|
|
return sec_alg_skcipher_setkey(tfm, key, keylen, SEC_C_DES_CBC_64);
|
|
}
|
|
|
|
static int sec_alg_skcipher_setkey_3des_ecb(struct crypto_skcipher *tfm,
|
|
const u8 *key, unsigned int keylen)
|
|
{
|
|
return unlikely(des3_verify_key(tfm, key)) ?:
|
|
sec_alg_skcipher_setkey(tfm, key, keylen,
|
|
SEC_C_3DES_ECB_192_3KEY);
|
|
}
|
|
|
|
static int sec_alg_skcipher_setkey_3des_cbc(struct crypto_skcipher *tfm,
|
|
const u8 *key, unsigned int keylen)
|
|
{
|
|
return unlikely(des3_verify_key(tfm, key)) ?:
|
|
sec_alg_skcipher_setkey(tfm, key, keylen,
|
|
SEC_C_3DES_CBC_192_3KEY);
|
|
}
|
|
|
|
static void sec_alg_free_el(struct sec_request_el *el,
|
|
struct sec_dev_info *info)
|
|
{
|
|
sec_free_hw_sgl(el->out, el->dma_out, info);
|
|
sec_free_hw_sgl(el->in, el->dma_in, info);
|
|
kfree(el->sgl_in);
|
|
kfree(el->sgl_out);
|
|
kfree(el);
|
|
}
|
|
|
|
/* queuelock must be held */
|
|
static int sec_send_request(struct sec_request *sec_req, struct sec_queue *queue)
|
|
{
|
|
struct sec_request_el *el, *temp;
|
|
int ret = 0;
|
|
|
|
mutex_lock(&sec_req->lock);
|
|
list_for_each_entry_safe(el, temp, &sec_req->elements, head) {
|
|
/*
|
|
* Add to hardware queue only under following circumstances
|
|
* 1) Software and hardware queue empty so no chain dependencies
|
|
* 2) No dependencies as new IV - (check software queue empty
|
|
* to maintain order)
|
|
* 3) No dependencies because the mode does no chaining.
|
|
*
|
|
* In other cases first insert onto the software queue which
|
|
* is then emptied as requests complete
|
|
*/
|
|
if (!queue->havesoftqueue ||
|
|
(kfifo_is_empty(&queue->softqueue) &&
|
|
sec_queue_empty(queue))) {
|
|
ret = sec_queue_send(queue, &el->req, sec_req);
|
|
if (ret == -EAGAIN) {
|
|
/* Wait unti we can send then try again */
|
|
/* DEAD if here - should not happen */
|
|
ret = -EBUSY;
|
|
goto err_unlock;
|
|
}
|
|
} else {
|
|
kfifo_put(&queue->softqueue, el);
|
|
}
|
|
}
|
|
err_unlock:
|
|
mutex_unlock(&sec_req->lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void sec_skcipher_alg_callback(struct sec_bd_info *sec_resp,
|
|
struct crypto_async_request *req_base)
|
|
{
|
|
struct skcipher_request *skreq = container_of(req_base,
|
|
struct skcipher_request,
|
|
base);
|
|
struct sec_request *sec_req = skcipher_request_ctx(skreq);
|
|
struct sec_request *backlog_req;
|
|
struct sec_request_el *sec_req_el, *nextrequest;
|
|
struct sec_alg_tfm_ctx *ctx = sec_req->tfm_ctx;
|
|
struct crypto_skcipher *atfm = crypto_skcipher_reqtfm(skreq);
|
|
struct device *dev = ctx->queue->dev_info->dev;
|
|
int icv_or_skey_en, ret;
|
|
bool done;
|
|
|
|
sec_req_el = list_first_entry(&sec_req->elements, struct sec_request_el,
|
|
head);
|
|
icv_or_skey_en = (sec_resp->w0 & SEC_BD_W0_ICV_OR_SKEY_EN_M) >>
|
|
SEC_BD_W0_ICV_OR_SKEY_EN_S;
|
|
if (sec_resp->w1 & SEC_BD_W1_BD_INVALID || icv_or_skey_en == 3) {
|
|
dev_err(dev, "Got an invalid answer %lu %d\n",
|
|
sec_resp->w1 & SEC_BD_W1_BD_INVALID,
|
|
icv_or_skey_en);
|
|
sec_req->err = -EINVAL;
|
|
/*
|
|
* We need to muddle on to avoid getting stuck with elements
|
|
* on the queue. Error will be reported so requester so
|
|
* it should be able to handle appropriately.
|
|
*/
|
|
}
|
|
|
|
mutex_lock(&ctx->queue->queuelock);
|
|
/* Put the IV in place for chained cases */
|
|
switch (ctx->cipher_alg) {
|
|
case SEC_C_AES_CBC_128:
|
|
case SEC_C_AES_CBC_192:
|
|
case SEC_C_AES_CBC_256:
|
|
if (sec_req_el->req.w0 & SEC_BD_W0_DE)
|
|
sg_pcopy_to_buffer(sec_req_el->sgl_out,
|
|
sg_nents(sec_req_el->sgl_out),
|
|
skreq->iv,
|
|
crypto_skcipher_ivsize(atfm),
|
|
sec_req_el->el_length -
|
|
crypto_skcipher_ivsize(atfm));
|
|
else
|
|
sg_pcopy_to_buffer(sec_req_el->sgl_in,
|
|
sg_nents(sec_req_el->sgl_in),
|
|
skreq->iv,
|
|
crypto_skcipher_ivsize(atfm),
|
|
sec_req_el->el_length -
|
|
crypto_skcipher_ivsize(atfm));
|
|
/* No need to sync to the device as coherent DMA */
|
|
break;
|
|
case SEC_C_AES_CTR_128:
|
|
case SEC_C_AES_CTR_192:
|
|
case SEC_C_AES_CTR_256:
|
|
crypto_inc(skreq->iv, 16);
|
|
break;
|
|
default:
|
|
/* Do not update */
|
|
break;
|
|
}
|
|
|
|
if (ctx->queue->havesoftqueue &&
|
|
!kfifo_is_empty(&ctx->queue->softqueue) &&
|
|
sec_queue_empty(ctx->queue)) {
|
|
ret = kfifo_get(&ctx->queue->softqueue, &nextrequest);
|
|
if (ret <= 0)
|
|
dev_err(dev,
|
|
"Error getting next element from kfifo %d\n",
|
|
ret);
|
|
else
|
|
/* We know there is space so this cannot fail */
|
|
sec_queue_send(ctx->queue, &nextrequest->req,
|
|
nextrequest->sec_req);
|
|
} else if (!list_empty(&ctx->backlog)) {
|
|
/* Need to verify there is room first */
|
|
backlog_req = list_first_entry(&ctx->backlog,
|
|
typeof(*backlog_req),
|
|
backlog_head);
|
|
if (sec_queue_can_enqueue(ctx->queue,
|
|
backlog_req->num_elements) ||
|
|
(ctx->queue->havesoftqueue &&
|
|
kfifo_avail(&ctx->queue->softqueue) >
|
|
backlog_req->num_elements)) {
|
|
sec_send_request(backlog_req, ctx->queue);
|
|
backlog_req->req_base->complete(backlog_req->req_base,
|
|
-EINPROGRESS);
|
|
list_del(&backlog_req->backlog_head);
|
|
}
|
|
}
|
|
mutex_unlock(&ctx->queue->queuelock);
|
|
|
|
mutex_lock(&sec_req->lock);
|
|
list_del(&sec_req_el->head);
|
|
mutex_unlock(&sec_req->lock);
|
|
sec_alg_free_el(sec_req_el, ctx->queue->dev_info);
|
|
|
|
/*
|
|
* Request is done.
|
|
* The dance is needed as the lock is freed in the completion
|
|
*/
|
|
mutex_lock(&sec_req->lock);
|
|
done = list_empty(&sec_req->elements);
|
|
mutex_unlock(&sec_req->lock);
|
|
if (done) {
|
|
if (crypto_skcipher_ivsize(atfm)) {
|
|
dma_unmap_single(dev, sec_req->dma_iv,
|
|
crypto_skcipher_ivsize(atfm),
|
|
DMA_TO_DEVICE);
|
|
}
|
|
dma_unmap_sg(dev, skreq->src, sec_req->len_in,
|
|
DMA_BIDIRECTIONAL);
|
|
if (skreq->src != skreq->dst)
|
|
dma_unmap_sg(dev, skreq->dst, sec_req->len_out,
|
|
DMA_BIDIRECTIONAL);
|
|
skreq->base.complete(&skreq->base, sec_req->err);
|
|
}
|
|
}
|
|
|
|
void sec_alg_callback(struct sec_bd_info *resp, void *shadow)
|
|
{
|
|
struct sec_request *sec_req = shadow;
|
|
|
|
sec_req->cb(resp, sec_req->req_base);
|
|
}
|
|
|
|
static int sec_alg_alloc_and_calc_split_sizes(int length, size_t **split_sizes,
|
|
int *steps)
|
|
{
|
|
size_t *sizes;
|
|
int i;
|
|
|
|
/* Split into suitable sized blocks */
|
|
*steps = roundup(length, SEC_REQ_LIMIT) / SEC_REQ_LIMIT;
|
|
sizes = kcalloc(*steps, sizeof(*sizes), GFP_KERNEL);
|
|
if (!sizes)
|
|
return -ENOMEM;
|
|
|
|
for (i = 0; i < *steps - 1; i++)
|
|
sizes[i] = SEC_REQ_LIMIT;
|
|
sizes[*steps - 1] = length - SEC_REQ_LIMIT * (*steps - 1);
|
|
*split_sizes = sizes;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sec_map_and_split_sg(struct scatterlist *sgl, size_t *split_sizes,
|
|
int steps, struct scatterlist ***splits,
|
|
int **splits_nents,
|
|
int sgl_len_in,
|
|
struct device *dev)
|
|
{
|
|
int ret, count;
|
|
|
|
count = dma_map_sg(dev, sgl, sgl_len_in, DMA_BIDIRECTIONAL);
|
|
if (!count)
|
|
return -EINVAL;
|
|
|
|
*splits = kcalloc(steps, sizeof(struct scatterlist *), GFP_KERNEL);
|
|
if (!*splits) {
|
|
ret = -ENOMEM;
|
|
goto err_unmap_sg;
|
|
}
|
|
*splits_nents = kcalloc(steps, sizeof(int), GFP_KERNEL);
|
|
if (!*splits_nents) {
|
|
ret = -ENOMEM;
|
|
goto err_free_splits;
|
|
}
|
|
|
|
/* output the scatter list before and after this */
|
|
ret = sg_split(sgl, count, 0, steps, split_sizes,
|
|
*splits, *splits_nents, GFP_KERNEL);
|
|
if (ret) {
|
|
ret = -ENOMEM;
|
|
goto err_free_splits_nents;
|
|
}
|
|
|
|
return 0;
|
|
|
|
err_free_splits_nents:
|
|
kfree(*splits_nents);
|
|
err_free_splits:
|
|
kfree(*splits);
|
|
err_unmap_sg:
|
|
dma_unmap_sg(dev, sgl, sgl_len_in, DMA_BIDIRECTIONAL);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Reverses the sec_map_and_split_sg call for messages not yet added to
|
|
* the queues.
|
|
*/
|
|
static void sec_unmap_sg_on_err(struct scatterlist *sgl, int steps,
|
|
struct scatterlist **splits, int *splits_nents,
|
|
int sgl_len_in, struct device *dev)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < steps; i++)
|
|
kfree(splits[i]);
|
|
kfree(splits_nents);
|
|
kfree(splits);
|
|
|
|
dma_unmap_sg(dev, sgl, sgl_len_in, DMA_BIDIRECTIONAL);
|
|
}
|
|
|
|
static struct sec_request_el
|
|
*sec_alg_alloc_and_fill_el(struct sec_bd_info *template, int encrypt,
|
|
int el_size, bool different_dest,
|
|
struct scatterlist *sgl_in, int n_ents_in,
|
|
struct scatterlist *sgl_out, int n_ents_out,
|
|
struct sec_dev_info *info)
|
|
{
|
|
struct sec_request_el *el;
|
|
struct sec_bd_info *req;
|
|
int ret;
|
|
|
|
el = kzalloc(sizeof(*el), GFP_KERNEL);
|
|
if (!el)
|
|
return ERR_PTR(-ENOMEM);
|
|
el->el_length = el_size;
|
|
req = &el->req;
|
|
memcpy(req, template, sizeof(*req));
|
|
|
|
req->w0 &= ~SEC_BD_W0_CIPHER_M;
|
|
if (encrypt)
|
|
req->w0 |= SEC_CIPHER_ENCRYPT << SEC_BD_W0_CIPHER_S;
|
|
else
|
|
req->w0 |= SEC_CIPHER_DECRYPT << SEC_BD_W0_CIPHER_S;
|
|
|
|
req->w0 &= ~SEC_BD_W0_C_GRAN_SIZE_19_16_M;
|
|
req->w0 |= ((el_size >> 16) << SEC_BD_W0_C_GRAN_SIZE_19_16_S) &
|
|
SEC_BD_W0_C_GRAN_SIZE_19_16_M;
|
|
|
|
req->w0 &= ~SEC_BD_W0_C_GRAN_SIZE_21_20_M;
|
|
req->w0 |= ((el_size >> 20) << SEC_BD_W0_C_GRAN_SIZE_21_20_S) &
|
|
SEC_BD_W0_C_GRAN_SIZE_21_20_M;
|
|
|
|
/* Writing whole u32 so no need to take care of masking */
|
|
req->w2 = ((1 << SEC_BD_W2_GRAN_NUM_S) & SEC_BD_W2_GRAN_NUM_M) |
|
|
((el_size << SEC_BD_W2_C_GRAN_SIZE_15_0_S) &
|
|
SEC_BD_W2_C_GRAN_SIZE_15_0_M);
|
|
|
|
req->w3 &= ~SEC_BD_W3_CIPHER_LEN_OFFSET_M;
|
|
req->w1 |= SEC_BD_W1_ADDR_TYPE;
|
|
|
|
el->sgl_in = sgl_in;
|
|
|
|
ret = sec_alloc_and_fill_hw_sgl(&el->in, &el->dma_in, el->sgl_in,
|
|
n_ents_in, info);
|
|
if (ret)
|
|
goto err_free_el;
|
|
|
|
req->data_addr_lo = lower_32_bits(el->dma_in);
|
|
req->data_addr_hi = upper_32_bits(el->dma_in);
|
|
|
|
if (different_dest) {
|
|
el->sgl_out = sgl_out;
|
|
ret = sec_alloc_and_fill_hw_sgl(&el->out, &el->dma_out,
|
|
el->sgl_out,
|
|
n_ents_out, info);
|
|
if (ret)
|
|
goto err_free_hw_sgl_in;
|
|
|
|
req->w0 |= SEC_BD_W0_DE;
|
|
req->cipher_destin_addr_lo = lower_32_bits(el->dma_out);
|
|
req->cipher_destin_addr_hi = upper_32_bits(el->dma_out);
|
|
|
|
} else {
|
|
req->w0 &= ~SEC_BD_W0_DE;
|
|
req->cipher_destin_addr_lo = lower_32_bits(el->dma_in);
|
|
req->cipher_destin_addr_hi = upper_32_bits(el->dma_in);
|
|
}
|
|
|
|
return el;
|
|
|
|
err_free_hw_sgl_in:
|
|
sec_free_hw_sgl(el->in, el->dma_in, info);
|
|
err_free_el:
|
|
kfree(el);
|
|
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
static int sec_alg_skcipher_crypto(struct skcipher_request *skreq,
|
|
bool encrypt)
|
|
{
|
|
struct crypto_skcipher *atfm = crypto_skcipher_reqtfm(skreq);
|
|
struct crypto_tfm *tfm = crypto_skcipher_tfm(atfm);
|
|
struct sec_alg_tfm_ctx *ctx = crypto_tfm_ctx(tfm);
|
|
struct sec_queue *queue = ctx->queue;
|
|
struct sec_request *sec_req = skcipher_request_ctx(skreq);
|
|
struct sec_dev_info *info = queue->dev_info;
|
|
int i, ret, steps;
|
|
size_t *split_sizes;
|
|
struct scatterlist **splits_in;
|
|
struct scatterlist **splits_out = NULL;
|
|
int *splits_in_nents;
|
|
int *splits_out_nents = NULL;
|
|
struct sec_request_el *el, *temp;
|
|
bool split = skreq->src != skreq->dst;
|
|
|
|
mutex_init(&sec_req->lock);
|
|
sec_req->req_base = &skreq->base;
|
|
sec_req->err = 0;
|
|
/* SGL mapping out here to allow us to break it up as necessary */
|
|
sec_req->len_in = sg_nents(skreq->src);
|
|
|
|
ret = sec_alg_alloc_and_calc_split_sizes(skreq->cryptlen, &split_sizes,
|
|
&steps);
|
|
if (ret)
|
|
return ret;
|
|
sec_req->num_elements = steps;
|
|
ret = sec_map_and_split_sg(skreq->src, split_sizes, steps, &splits_in,
|
|
&splits_in_nents, sec_req->len_in,
|
|
info->dev);
|
|
if (ret)
|
|
goto err_free_split_sizes;
|
|
|
|
if (split) {
|
|
sec_req->len_out = sg_nents(skreq->dst);
|
|
ret = sec_map_and_split_sg(skreq->dst, split_sizes, steps,
|
|
&splits_out, &splits_out_nents,
|
|
sec_req->len_out, info->dev);
|
|
if (ret)
|
|
goto err_unmap_in_sg;
|
|
}
|
|
/* Shared info stored in seq_req - applies to all BDs */
|
|
sec_req->tfm_ctx = ctx;
|
|
sec_req->cb = sec_skcipher_alg_callback;
|
|
INIT_LIST_HEAD(&sec_req->elements);
|
|
|
|
/*
|
|
* Future optimization.
|
|
* In the chaining case we can't use a dma pool bounce buffer
|
|
* but in the case where we know there is no chaining we can
|
|
*/
|
|
if (crypto_skcipher_ivsize(atfm)) {
|
|
sec_req->dma_iv = dma_map_single(info->dev, skreq->iv,
|
|
crypto_skcipher_ivsize(atfm),
|
|
DMA_TO_DEVICE);
|
|
if (dma_mapping_error(info->dev, sec_req->dma_iv)) {
|
|
ret = -ENOMEM;
|
|
goto err_unmap_out_sg;
|
|
}
|
|
}
|
|
|
|
/* Set them all up then queue - cleaner error handling. */
|
|
for (i = 0; i < steps; i++) {
|
|
el = sec_alg_alloc_and_fill_el(&ctx->req_template,
|
|
encrypt ? 1 : 0,
|
|
split_sizes[i],
|
|
skreq->src != skreq->dst,
|
|
splits_in[i], splits_in_nents[i],
|
|
split ? splits_out[i] : NULL,
|
|
split ? splits_out_nents[i] : 0,
|
|
info);
|
|
if (IS_ERR(el)) {
|
|
ret = PTR_ERR(el);
|
|
goto err_free_elements;
|
|
}
|
|
el->req.cipher_iv_addr_lo = lower_32_bits(sec_req->dma_iv);
|
|
el->req.cipher_iv_addr_hi = upper_32_bits(sec_req->dma_iv);
|
|
el->sec_req = sec_req;
|
|
list_add_tail(&el->head, &sec_req->elements);
|
|
}
|
|
|
|
/*
|
|
* Only attempt to queue if the whole lot can fit in the queue -
|
|
* we can't successfully cleanup after a partial queing so this
|
|
* must succeed or fail atomically.
|
|
*
|
|
* Big hammer test of both software and hardware queues - could be
|
|
* more refined but this is unlikely to happen so no need.
|
|
*/
|
|
|
|
/* Grab a big lock for a long time to avoid concurrency issues */
|
|
mutex_lock(&queue->queuelock);
|
|
|
|
/*
|
|
* Can go on to queue if we have space in either:
|
|
* 1) The hardware queue and no software queue
|
|
* 2) The software queue
|
|
* AND there is nothing in the backlog. If there is backlog we
|
|
* have to only queue to the backlog queue and return busy.
|
|
*/
|
|
if ((!sec_queue_can_enqueue(queue, steps) &&
|
|
(!queue->havesoftqueue ||
|
|
kfifo_avail(&queue->softqueue) > steps)) ||
|
|
!list_empty(&ctx->backlog)) {
|
|
ret = -EBUSY;
|
|
if ((skreq->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) {
|
|
list_add_tail(&sec_req->backlog_head, &ctx->backlog);
|
|
mutex_unlock(&queue->queuelock);
|
|
goto out;
|
|
}
|
|
|
|
mutex_unlock(&queue->queuelock);
|
|
goto err_free_elements;
|
|
}
|
|
ret = sec_send_request(sec_req, queue);
|
|
mutex_unlock(&queue->queuelock);
|
|
if (ret)
|
|
goto err_free_elements;
|
|
|
|
ret = -EINPROGRESS;
|
|
out:
|
|
/* Cleanup - all elements in pointer arrays have been copied */
|
|
kfree(splits_in_nents);
|
|
kfree(splits_in);
|
|
kfree(splits_out_nents);
|
|
kfree(splits_out);
|
|
kfree(split_sizes);
|
|
return ret;
|
|
|
|
err_free_elements:
|
|
list_for_each_entry_safe(el, temp, &sec_req->elements, head) {
|
|
list_del(&el->head);
|
|
sec_alg_free_el(el, info);
|
|
}
|
|
if (crypto_skcipher_ivsize(atfm))
|
|
dma_unmap_single(info->dev, sec_req->dma_iv,
|
|
crypto_skcipher_ivsize(atfm),
|
|
DMA_BIDIRECTIONAL);
|
|
err_unmap_out_sg:
|
|
if (split)
|
|
sec_unmap_sg_on_err(skreq->dst, steps, splits_out,
|
|
splits_out_nents, sec_req->len_out,
|
|
info->dev);
|
|
err_unmap_in_sg:
|
|
sec_unmap_sg_on_err(skreq->src, steps, splits_in, splits_in_nents,
|
|
sec_req->len_in, info->dev);
|
|
err_free_split_sizes:
|
|
kfree(split_sizes);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int sec_alg_skcipher_encrypt(struct skcipher_request *req)
|
|
{
|
|
return sec_alg_skcipher_crypto(req, true);
|
|
}
|
|
|
|
static int sec_alg_skcipher_decrypt(struct skcipher_request *req)
|
|
{
|
|
return sec_alg_skcipher_crypto(req, false);
|
|
}
|
|
|
|
static int sec_alg_skcipher_init(struct crypto_skcipher *tfm)
|
|
{
|
|
struct sec_alg_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
|
|
mutex_init(&ctx->lock);
|
|
INIT_LIST_HEAD(&ctx->backlog);
|
|
crypto_skcipher_set_reqsize(tfm, sizeof(struct sec_request));
|
|
|
|
ctx->queue = sec_queue_alloc_start_safe();
|
|
if (IS_ERR(ctx->queue))
|
|
return PTR_ERR(ctx->queue);
|
|
|
|
mutex_init(&ctx->queue->queuelock);
|
|
ctx->queue->havesoftqueue = false;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void sec_alg_skcipher_exit(struct crypto_skcipher *tfm)
|
|
{
|
|
struct sec_alg_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
struct device *dev = ctx->queue->dev_info->dev;
|
|
|
|
if (ctx->key) {
|
|
memzero_explicit(ctx->key, SEC_MAX_CIPHER_KEY);
|
|
dma_free_coherent(dev, SEC_MAX_CIPHER_KEY, ctx->key,
|
|
ctx->pkey);
|
|
}
|
|
sec_queue_stop_release(ctx->queue);
|
|
}
|
|
|
|
static int sec_alg_skcipher_init_with_queue(struct crypto_skcipher *tfm)
|
|
{
|
|
struct sec_alg_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
int ret;
|
|
|
|
ret = sec_alg_skcipher_init(tfm);
|
|
if (ret)
|
|
return ret;
|
|
|
|
INIT_KFIFO(ctx->queue->softqueue);
|
|
ret = kfifo_alloc(&ctx->queue->softqueue, 512, GFP_KERNEL);
|
|
if (ret) {
|
|
sec_alg_skcipher_exit(tfm);
|
|
return ret;
|
|
}
|
|
ctx->queue->havesoftqueue = true;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void sec_alg_skcipher_exit_with_queue(struct crypto_skcipher *tfm)
|
|
{
|
|
struct sec_alg_tfm_ctx *ctx = crypto_skcipher_ctx(tfm);
|
|
|
|
kfifo_free(&ctx->queue->softqueue);
|
|
sec_alg_skcipher_exit(tfm);
|
|
}
|
|
|
|
static struct skcipher_alg sec_algs[] = {
|
|
{
|
|
.base = {
|
|
.cra_name = "ecb(aes)",
|
|
.cra_driver_name = "hisi_sec_aes_ecb",
|
|
.cra_priority = 4001,
|
|
.cra_flags = CRYPTO_ALG_ASYNC,
|
|
.cra_blocksize = AES_BLOCK_SIZE,
|
|
.cra_ctxsize = sizeof(struct sec_alg_tfm_ctx),
|
|
.cra_alignmask = 0,
|
|
.cra_module = THIS_MODULE,
|
|
},
|
|
.init = sec_alg_skcipher_init,
|
|
.exit = sec_alg_skcipher_exit,
|
|
.setkey = sec_alg_skcipher_setkey_aes_ecb,
|
|
.decrypt = sec_alg_skcipher_decrypt,
|
|
.encrypt = sec_alg_skcipher_encrypt,
|
|
.min_keysize = AES_MIN_KEY_SIZE,
|
|
.max_keysize = AES_MAX_KEY_SIZE,
|
|
.ivsize = 0,
|
|
}, {
|
|
.base = {
|
|
.cra_name = "cbc(aes)",
|
|
.cra_driver_name = "hisi_sec_aes_cbc",
|
|
.cra_priority = 4001,
|
|
.cra_flags = CRYPTO_ALG_ASYNC,
|
|
.cra_blocksize = AES_BLOCK_SIZE,
|
|
.cra_ctxsize = sizeof(struct sec_alg_tfm_ctx),
|
|
.cra_alignmask = 0,
|
|
.cra_module = THIS_MODULE,
|
|
},
|
|
.init = sec_alg_skcipher_init_with_queue,
|
|
.exit = sec_alg_skcipher_exit_with_queue,
|
|
.setkey = sec_alg_skcipher_setkey_aes_cbc,
|
|
.decrypt = sec_alg_skcipher_decrypt,
|
|
.encrypt = sec_alg_skcipher_encrypt,
|
|
.min_keysize = AES_MIN_KEY_SIZE,
|
|
.max_keysize = AES_MAX_KEY_SIZE,
|
|
.ivsize = AES_BLOCK_SIZE,
|
|
}, {
|
|
.base = {
|
|
.cra_name = "ctr(aes)",
|
|
.cra_driver_name = "hisi_sec_aes_ctr",
|
|
.cra_priority = 4001,
|
|
.cra_flags = CRYPTO_ALG_ASYNC,
|
|
.cra_blocksize = AES_BLOCK_SIZE,
|
|
.cra_ctxsize = sizeof(struct sec_alg_tfm_ctx),
|
|
.cra_alignmask = 0,
|
|
.cra_module = THIS_MODULE,
|
|
},
|
|
.init = sec_alg_skcipher_init_with_queue,
|
|
.exit = sec_alg_skcipher_exit_with_queue,
|
|
.setkey = sec_alg_skcipher_setkey_aes_ctr,
|
|
.decrypt = sec_alg_skcipher_decrypt,
|
|
.encrypt = sec_alg_skcipher_encrypt,
|
|
.min_keysize = AES_MIN_KEY_SIZE,
|
|
.max_keysize = AES_MAX_KEY_SIZE,
|
|
.ivsize = AES_BLOCK_SIZE,
|
|
}, {
|
|
.base = {
|
|
.cra_name = "xts(aes)",
|
|
.cra_driver_name = "hisi_sec_aes_xts",
|
|
.cra_priority = 4001,
|
|
.cra_flags = CRYPTO_ALG_ASYNC,
|
|
.cra_blocksize = AES_BLOCK_SIZE,
|
|
.cra_ctxsize = sizeof(struct sec_alg_tfm_ctx),
|
|
.cra_alignmask = 0,
|
|
.cra_module = THIS_MODULE,
|
|
},
|
|
.init = sec_alg_skcipher_init,
|
|
.exit = sec_alg_skcipher_exit,
|
|
.setkey = sec_alg_skcipher_setkey_aes_xts,
|
|
.decrypt = sec_alg_skcipher_decrypt,
|
|
.encrypt = sec_alg_skcipher_encrypt,
|
|
.min_keysize = 2 * AES_MIN_KEY_SIZE,
|
|
.max_keysize = 2 * AES_MAX_KEY_SIZE,
|
|
.ivsize = AES_BLOCK_SIZE,
|
|
}, {
|
|
/* Unable to find any test vectors so untested */
|
|
.base = {
|
|
.cra_name = "ecb(des)",
|
|
.cra_driver_name = "hisi_sec_des_ecb",
|
|
.cra_priority = 4001,
|
|
.cra_flags = CRYPTO_ALG_ASYNC,
|
|
.cra_blocksize = DES_BLOCK_SIZE,
|
|
.cra_ctxsize = sizeof(struct sec_alg_tfm_ctx),
|
|
.cra_alignmask = 0,
|
|
.cra_module = THIS_MODULE,
|
|
},
|
|
.init = sec_alg_skcipher_init,
|
|
.exit = sec_alg_skcipher_exit,
|
|
.setkey = sec_alg_skcipher_setkey_des_ecb,
|
|
.decrypt = sec_alg_skcipher_decrypt,
|
|
.encrypt = sec_alg_skcipher_encrypt,
|
|
.min_keysize = DES_KEY_SIZE,
|
|
.max_keysize = DES_KEY_SIZE,
|
|
.ivsize = 0,
|
|
}, {
|
|
.base = {
|
|
.cra_name = "cbc(des)",
|
|
.cra_driver_name = "hisi_sec_des_cbc",
|
|
.cra_priority = 4001,
|
|
.cra_flags = CRYPTO_ALG_ASYNC,
|
|
.cra_blocksize = DES_BLOCK_SIZE,
|
|
.cra_ctxsize = sizeof(struct sec_alg_tfm_ctx),
|
|
.cra_alignmask = 0,
|
|
.cra_module = THIS_MODULE,
|
|
},
|
|
.init = sec_alg_skcipher_init_with_queue,
|
|
.exit = sec_alg_skcipher_exit_with_queue,
|
|
.setkey = sec_alg_skcipher_setkey_des_cbc,
|
|
.decrypt = sec_alg_skcipher_decrypt,
|
|
.encrypt = sec_alg_skcipher_encrypt,
|
|
.min_keysize = DES_KEY_SIZE,
|
|
.max_keysize = DES_KEY_SIZE,
|
|
.ivsize = DES_BLOCK_SIZE,
|
|
}, {
|
|
.base = {
|
|
.cra_name = "cbc(des3_ede)",
|
|
.cra_driver_name = "hisi_sec_3des_cbc",
|
|
.cra_priority = 4001,
|
|
.cra_flags = CRYPTO_ALG_ASYNC,
|
|
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
|
|
.cra_ctxsize = sizeof(struct sec_alg_tfm_ctx),
|
|
.cra_alignmask = 0,
|
|
.cra_module = THIS_MODULE,
|
|
},
|
|
.init = sec_alg_skcipher_init_with_queue,
|
|
.exit = sec_alg_skcipher_exit_with_queue,
|
|
.setkey = sec_alg_skcipher_setkey_3des_cbc,
|
|
.decrypt = sec_alg_skcipher_decrypt,
|
|
.encrypt = sec_alg_skcipher_encrypt,
|
|
.min_keysize = DES3_EDE_KEY_SIZE,
|
|
.max_keysize = DES3_EDE_KEY_SIZE,
|
|
.ivsize = DES3_EDE_BLOCK_SIZE,
|
|
}, {
|
|
.base = {
|
|
.cra_name = "ecb(des3_ede)",
|
|
.cra_driver_name = "hisi_sec_3des_ecb",
|
|
.cra_priority = 4001,
|
|
.cra_flags = CRYPTO_ALG_ASYNC,
|
|
.cra_blocksize = DES3_EDE_BLOCK_SIZE,
|
|
.cra_ctxsize = sizeof(struct sec_alg_tfm_ctx),
|
|
.cra_alignmask = 0,
|
|
.cra_module = THIS_MODULE,
|
|
},
|
|
.init = sec_alg_skcipher_init,
|
|
.exit = sec_alg_skcipher_exit,
|
|
.setkey = sec_alg_skcipher_setkey_3des_ecb,
|
|
.decrypt = sec_alg_skcipher_decrypt,
|
|
.encrypt = sec_alg_skcipher_encrypt,
|
|
.min_keysize = DES3_EDE_KEY_SIZE,
|
|
.max_keysize = DES3_EDE_KEY_SIZE,
|
|
.ivsize = 0,
|
|
}
|
|
};
|
|
|
|
int sec_algs_register(void)
|
|
{
|
|
int ret = 0;
|
|
|
|
mutex_lock(&algs_lock);
|
|
if (++active_devs != 1)
|
|
goto unlock;
|
|
|
|
ret = crypto_register_skciphers(sec_algs, ARRAY_SIZE(sec_algs));
|
|
if (ret)
|
|
--active_devs;
|
|
unlock:
|
|
mutex_unlock(&algs_lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
void sec_algs_unregister(void)
|
|
{
|
|
mutex_lock(&algs_lock);
|
|
if (--active_devs != 0)
|
|
goto unlock;
|
|
crypto_unregister_skciphers(sec_algs, ARRAY_SIZE(sec_algs));
|
|
|
|
unlock:
|
|
mutex_unlock(&algs_lock);
|
|
}
|