mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-25 15:19:44 +07:00
615d6e8756
This patch is a continuation of efforts trying to optimize find_vma(), avoiding potentially expensive rbtree walks to locate a vma upon faults. The original approach (https://lkml.org/lkml/2013/11/1/410), where the largest vma was also cached, ended up being too specific and random, thus further comparison with other approaches were needed. There are two things to consider when dealing with this, the cache hit rate and the latency of find_vma(). Improving the hit-rate does not necessarily translate in finding the vma any faster, as the overhead of any fancy caching schemes can be too high to consider. We currently cache the last used vma for the whole address space, which provides a nice optimization, reducing the total cycles in find_vma() by up to 250%, for workloads with good locality. On the other hand, this simple scheme is pretty much useless for workloads with poor locality. Analyzing ebizzy runs shows that, no matter how many threads are running, the mmap_cache hit rate is less than 2%, and in many situations below 1%. The proposed approach is to replace this scheme with a small per-thread cache, maximizing hit rates at a very low maintenance cost. Invalidations are performed by simply bumping up a 32-bit sequence number. The only expensive operation is in the rare case of a seq number overflow, where all caches that share the same address space are flushed. Upon a miss, the proposed replacement policy is based on the page number that contains the virtual address in question. Concretely, the following results are seen on an 80 core, 8 socket x86-64 box: 1) System bootup: Most programs are single threaded, so the per-thread scheme does improve ~50% hit rate by just adding a few more slots to the cache. +----------------+----------+------------------+ | caching scheme | hit-rate | cycles (billion) | +----------------+----------+------------------+ | baseline | 50.61% | 19.90 | | patched | 73.45% | 13.58 | +----------------+----------+------------------+ 2) Kernel build: This one is already pretty good with the current approach as we're dealing with good locality. +----------------+----------+------------------+ | caching scheme | hit-rate | cycles (billion) | +----------------+----------+------------------+ | baseline | 75.28% | 11.03 | | patched | 88.09% | 9.31 | +----------------+----------+------------------+ 3) Oracle 11g Data Mining (4k pages): Similar to the kernel build workload. +----------------+----------+------------------+ | caching scheme | hit-rate | cycles (billion) | +----------------+----------+------------------+ | baseline | 70.66% | 17.14 | | patched | 91.15% | 12.57 | +----------------+----------+------------------+ 4) Ebizzy: There's a fair amount of variation from run to run, but this approach always shows nearly perfect hit rates, while baseline is just about non-existent. The amounts of cycles can fluctuate between anywhere from ~60 to ~116 for the baseline scheme, but this approach reduces it considerably. For instance, with 80 threads: +----------------+----------+------------------+ | caching scheme | hit-rate | cycles (billion) | +----------------+----------+------------------+ | baseline | 1.06% | 91.54 | | patched | 99.97% | 14.18 | +----------------+----------+------------------+ [akpm@linux-foundation.org: fix nommu build, per Davidlohr] [akpm@linux-foundation.org: document vmacache_valid() logic] [akpm@linux-foundation.org: attempt to untangle header files] [akpm@linux-foundation.org: add vmacache_find() BUG_ON] [hughd@google.com: add vmacache_valid_mm() (from Oleg)] [akpm@linux-foundation.org: coding-style fixes] [akpm@linux-foundation.org: adjust and enhance comments] Signed-off-by: Davidlohr Bueso <davidlohr@hp.com> Reviewed-by: Rik van Riel <riel@redhat.com> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Reviewed-by: Michel Lespinasse <walken@google.com> Cc: Oleg Nesterov <oleg@redhat.com> Tested-by: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
1537 lines
38 KiB
C
1537 lines
38 KiB
C
#include <linux/mm.h>
|
|
#include <linux/vmacache.h>
|
|
#include <linux/hugetlb.h>
|
|
#include <linux/huge_mm.h>
|
|
#include <linux/mount.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/mempolicy.h>
|
|
#include <linux/rmap.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/swapops.h>
|
|
#include <linux/mmu_notifier.h>
|
|
|
|
#include <asm/elf.h>
|
|
#include <asm/uaccess.h>
|
|
#include <asm/tlbflush.h>
|
|
#include "internal.h"
|
|
|
|
void task_mem(struct seq_file *m, struct mm_struct *mm)
|
|
{
|
|
unsigned long data, text, lib, swap;
|
|
unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
|
|
|
|
/*
|
|
* Note: to minimize their overhead, mm maintains hiwater_vm and
|
|
* hiwater_rss only when about to *lower* total_vm or rss. Any
|
|
* collector of these hiwater stats must therefore get total_vm
|
|
* and rss too, which will usually be the higher. Barriers? not
|
|
* worth the effort, such snapshots can always be inconsistent.
|
|
*/
|
|
hiwater_vm = total_vm = mm->total_vm;
|
|
if (hiwater_vm < mm->hiwater_vm)
|
|
hiwater_vm = mm->hiwater_vm;
|
|
hiwater_rss = total_rss = get_mm_rss(mm);
|
|
if (hiwater_rss < mm->hiwater_rss)
|
|
hiwater_rss = mm->hiwater_rss;
|
|
|
|
data = mm->total_vm - mm->shared_vm - mm->stack_vm;
|
|
text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
|
|
lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
|
|
swap = get_mm_counter(mm, MM_SWAPENTS);
|
|
seq_printf(m,
|
|
"VmPeak:\t%8lu kB\n"
|
|
"VmSize:\t%8lu kB\n"
|
|
"VmLck:\t%8lu kB\n"
|
|
"VmPin:\t%8lu kB\n"
|
|
"VmHWM:\t%8lu kB\n"
|
|
"VmRSS:\t%8lu kB\n"
|
|
"VmData:\t%8lu kB\n"
|
|
"VmStk:\t%8lu kB\n"
|
|
"VmExe:\t%8lu kB\n"
|
|
"VmLib:\t%8lu kB\n"
|
|
"VmPTE:\t%8lu kB\n"
|
|
"VmSwap:\t%8lu kB\n",
|
|
hiwater_vm << (PAGE_SHIFT-10),
|
|
total_vm << (PAGE_SHIFT-10),
|
|
mm->locked_vm << (PAGE_SHIFT-10),
|
|
mm->pinned_vm << (PAGE_SHIFT-10),
|
|
hiwater_rss << (PAGE_SHIFT-10),
|
|
total_rss << (PAGE_SHIFT-10),
|
|
data << (PAGE_SHIFT-10),
|
|
mm->stack_vm << (PAGE_SHIFT-10), text, lib,
|
|
(PTRS_PER_PTE * sizeof(pte_t) *
|
|
atomic_long_read(&mm->nr_ptes)) >> 10,
|
|
swap << (PAGE_SHIFT-10));
|
|
}
|
|
|
|
unsigned long task_vsize(struct mm_struct *mm)
|
|
{
|
|
return PAGE_SIZE * mm->total_vm;
|
|
}
|
|
|
|
unsigned long task_statm(struct mm_struct *mm,
|
|
unsigned long *shared, unsigned long *text,
|
|
unsigned long *data, unsigned long *resident)
|
|
{
|
|
*shared = get_mm_counter(mm, MM_FILEPAGES);
|
|
*text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
|
|
>> PAGE_SHIFT;
|
|
*data = mm->total_vm - mm->shared_vm;
|
|
*resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
|
|
return mm->total_vm;
|
|
}
|
|
|
|
#ifdef CONFIG_NUMA
|
|
/*
|
|
* These functions are for numa_maps but called in generic **maps seq_file
|
|
* ->start(), ->stop() ops.
|
|
*
|
|
* numa_maps scans all vmas under mmap_sem and checks their mempolicy.
|
|
* Each mempolicy object is controlled by reference counting. The problem here
|
|
* is how to avoid accessing dead mempolicy object.
|
|
*
|
|
* Because we're holding mmap_sem while reading seq_file, it's safe to access
|
|
* each vma's mempolicy, no vma objects will never drop refs to mempolicy.
|
|
*
|
|
* A task's mempolicy (task->mempolicy) has different behavior. task->mempolicy
|
|
* is set and replaced under mmap_sem but unrefed and cleared under task_lock().
|
|
* So, without task_lock(), we cannot trust get_vma_policy() because we cannot
|
|
* gurantee the task never exits under us. But taking task_lock() around
|
|
* get_vma_plicy() causes lock order problem.
|
|
*
|
|
* To access task->mempolicy without lock, we hold a reference count of an
|
|
* object pointed by task->mempolicy and remember it. This will guarantee
|
|
* that task->mempolicy points to an alive object or NULL in numa_maps accesses.
|
|
*/
|
|
static void hold_task_mempolicy(struct proc_maps_private *priv)
|
|
{
|
|
struct task_struct *task = priv->task;
|
|
|
|
task_lock(task);
|
|
priv->task_mempolicy = task->mempolicy;
|
|
mpol_get(priv->task_mempolicy);
|
|
task_unlock(task);
|
|
}
|
|
static void release_task_mempolicy(struct proc_maps_private *priv)
|
|
{
|
|
mpol_put(priv->task_mempolicy);
|
|
}
|
|
#else
|
|
static void hold_task_mempolicy(struct proc_maps_private *priv)
|
|
{
|
|
}
|
|
static void release_task_mempolicy(struct proc_maps_private *priv)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
static void vma_stop(struct proc_maps_private *priv, struct vm_area_struct *vma)
|
|
{
|
|
if (vma && vma != priv->tail_vma) {
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
release_task_mempolicy(priv);
|
|
up_read(&mm->mmap_sem);
|
|
mmput(mm);
|
|
}
|
|
}
|
|
|
|
static void *m_start(struct seq_file *m, loff_t *pos)
|
|
{
|
|
struct proc_maps_private *priv = m->private;
|
|
unsigned long last_addr = m->version;
|
|
struct mm_struct *mm;
|
|
struct vm_area_struct *vma, *tail_vma = NULL;
|
|
loff_t l = *pos;
|
|
|
|
/* Clear the per syscall fields in priv */
|
|
priv->task = NULL;
|
|
priv->tail_vma = NULL;
|
|
|
|
/*
|
|
* We remember last_addr rather than next_addr to hit with
|
|
* vmacache most of the time. We have zero last_addr at
|
|
* the beginning and also after lseek. We will have -1 last_addr
|
|
* after the end of the vmas.
|
|
*/
|
|
|
|
if (last_addr == -1UL)
|
|
return NULL;
|
|
|
|
priv->task = get_pid_task(priv->pid, PIDTYPE_PID);
|
|
if (!priv->task)
|
|
return ERR_PTR(-ESRCH);
|
|
|
|
mm = mm_access(priv->task, PTRACE_MODE_READ);
|
|
if (!mm || IS_ERR(mm))
|
|
return mm;
|
|
down_read(&mm->mmap_sem);
|
|
|
|
tail_vma = get_gate_vma(priv->task->mm);
|
|
priv->tail_vma = tail_vma;
|
|
hold_task_mempolicy(priv);
|
|
/* Start with last addr hint */
|
|
vma = find_vma(mm, last_addr);
|
|
if (last_addr && vma) {
|
|
vma = vma->vm_next;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Check the vma index is within the range and do
|
|
* sequential scan until m_index.
|
|
*/
|
|
vma = NULL;
|
|
if ((unsigned long)l < mm->map_count) {
|
|
vma = mm->mmap;
|
|
while (l-- && vma)
|
|
vma = vma->vm_next;
|
|
goto out;
|
|
}
|
|
|
|
if (l != mm->map_count)
|
|
tail_vma = NULL; /* After gate vma */
|
|
|
|
out:
|
|
if (vma)
|
|
return vma;
|
|
|
|
release_task_mempolicy(priv);
|
|
/* End of vmas has been reached */
|
|
m->version = (tail_vma != NULL)? 0: -1UL;
|
|
up_read(&mm->mmap_sem);
|
|
mmput(mm);
|
|
return tail_vma;
|
|
}
|
|
|
|
static void *m_next(struct seq_file *m, void *v, loff_t *pos)
|
|
{
|
|
struct proc_maps_private *priv = m->private;
|
|
struct vm_area_struct *vma = v;
|
|
struct vm_area_struct *tail_vma = priv->tail_vma;
|
|
|
|
(*pos)++;
|
|
if (vma && (vma != tail_vma) && vma->vm_next)
|
|
return vma->vm_next;
|
|
vma_stop(priv, vma);
|
|
return (vma != tail_vma)? tail_vma: NULL;
|
|
}
|
|
|
|
static void m_stop(struct seq_file *m, void *v)
|
|
{
|
|
struct proc_maps_private *priv = m->private;
|
|
struct vm_area_struct *vma = v;
|
|
|
|
if (!IS_ERR(vma))
|
|
vma_stop(priv, vma);
|
|
if (priv->task)
|
|
put_task_struct(priv->task);
|
|
}
|
|
|
|
static int do_maps_open(struct inode *inode, struct file *file,
|
|
const struct seq_operations *ops)
|
|
{
|
|
struct proc_maps_private *priv;
|
|
int ret = -ENOMEM;
|
|
priv = kzalloc(sizeof(*priv), GFP_KERNEL);
|
|
if (priv) {
|
|
priv->pid = proc_pid(inode);
|
|
ret = seq_open(file, ops);
|
|
if (!ret) {
|
|
struct seq_file *m = file->private_data;
|
|
m->private = priv;
|
|
} else {
|
|
kfree(priv);
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static void
|
|
show_map_vma(struct seq_file *m, struct vm_area_struct *vma, int is_pid)
|
|
{
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
struct file *file = vma->vm_file;
|
|
struct proc_maps_private *priv = m->private;
|
|
struct task_struct *task = priv->task;
|
|
vm_flags_t flags = vma->vm_flags;
|
|
unsigned long ino = 0;
|
|
unsigned long long pgoff = 0;
|
|
unsigned long start, end;
|
|
dev_t dev = 0;
|
|
const char *name = NULL;
|
|
|
|
if (file) {
|
|
struct inode *inode = file_inode(vma->vm_file);
|
|
dev = inode->i_sb->s_dev;
|
|
ino = inode->i_ino;
|
|
pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
|
|
}
|
|
|
|
/* We don't show the stack guard page in /proc/maps */
|
|
start = vma->vm_start;
|
|
if (stack_guard_page_start(vma, start))
|
|
start += PAGE_SIZE;
|
|
end = vma->vm_end;
|
|
if (stack_guard_page_end(vma, end))
|
|
end -= PAGE_SIZE;
|
|
|
|
seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
|
|
seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu ",
|
|
start,
|
|
end,
|
|
flags & VM_READ ? 'r' : '-',
|
|
flags & VM_WRITE ? 'w' : '-',
|
|
flags & VM_EXEC ? 'x' : '-',
|
|
flags & VM_MAYSHARE ? 's' : 'p',
|
|
pgoff,
|
|
MAJOR(dev), MINOR(dev), ino);
|
|
|
|
/*
|
|
* Print the dentry name for named mappings, and a
|
|
* special [heap] marker for the heap:
|
|
*/
|
|
if (file) {
|
|
seq_pad(m, ' ');
|
|
seq_path(m, &file->f_path, "\n");
|
|
goto done;
|
|
}
|
|
|
|
name = arch_vma_name(vma);
|
|
if (!name) {
|
|
pid_t tid;
|
|
|
|
if (!mm) {
|
|
name = "[vdso]";
|
|
goto done;
|
|
}
|
|
|
|
if (vma->vm_start <= mm->brk &&
|
|
vma->vm_end >= mm->start_brk) {
|
|
name = "[heap]";
|
|
goto done;
|
|
}
|
|
|
|
tid = vm_is_stack(task, vma, is_pid);
|
|
|
|
if (tid != 0) {
|
|
/*
|
|
* Thread stack in /proc/PID/task/TID/maps or
|
|
* the main process stack.
|
|
*/
|
|
if (!is_pid || (vma->vm_start <= mm->start_stack &&
|
|
vma->vm_end >= mm->start_stack)) {
|
|
name = "[stack]";
|
|
} else {
|
|
/* Thread stack in /proc/PID/maps */
|
|
seq_pad(m, ' ');
|
|
seq_printf(m, "[stack:%d]", tid);
|
|
}
|
|
}
|
|
}
|
|
|
|
done:
|
|
if (name) {
|
|
seq_pad(m, ' ');
|
|
seq_puts(m, name);
|
|
}
|
|
seq_putc(m, '\n');
|
|
}
|
|
|
|
static int show_map(struct seq_file *m, void *v, int is_pid)
|
|
{
|
|
struct vm_area_struct *vma = v;
|
|
struct proc_maps_private *priv = m->private;
|
|
struct task_struct *task = priv->task;
|
|
|
|
show_map_vma(m, vma, is_pid);
|
|
|
|
if (m->count < m->size) /* vma is copied successfully */
|
|
m->version = (vma != get_gate_vma(task->mm))
|
|
? vma->vm_start : 0;
|
|
return 0;
|
|
}
|
|
|
|
static int show_pid_map(struct seq_file *m, void *v)
|
|
{
|
|
return show_map(m, v, 1);
|
|
}
|
|
|
|
static int show_tid_map(struct seq_file *m, void *v)
|
|
{
|
|
return show_map(m, v, 0);
|
|
}
|
|
|
|
static const struct seq_operations proc_pid_maps_op = {
|
|
.start = m_start,
|
|
.next = m_next,
|
|
.stop = m_stop,
|
|
.show = show_pid_map
|
|
};
|
|
|
|
static const struct seq_operations proc_tid_maps_op = {
|
|
.start = m_start,
|
|
.next = m_next,
|
|
.stop = m_stop,
|
|
.show = show_tid_map
|
|
};
|
|
|
|
static int pid_maps_open(struct inode *inode, struct file *file)
|
|
{
|
|
return do_maps_open(inode, file, &proc_pid_maps_op);
|
|
}
|
|
|
|
static int tid_maps_open(struct inode *inode, struct file *file)
|
|
{
|
|
return do_maps_open(inode, file, &proc_tid_maps_op);
|
|
}
|
|
|
|
const struct file_operations proc_pid_maps_operations = {
|
|
.open = pid_maps_open,
|
|
.read = seq_read,
|
|
.llseek = seq_lseek,
|
|
.release = seq_release_private,
|
|
};
|
|
|
|
const struct file_operations proc_tid_maps_operations = {
|
|
.open = tid_maps_open,
|
|
.read = seq_read,
|
|
.llseek = seq_lseek,
|
|
.release = seq_release_private,
|
|
};
|
|
|
|
/*
|
|
* Proportional Set Size(PSS): my share of RSS.
|
|
*
|
|
* PSS of a process is the count of pages it has in memory, where each
|
|
* page is divided by the number of processes sharing it. So if a
|
|
* process has 1000 pages all to itself, and 1000 shared with one other
|
|
* process, its PSS will be 1500.
|
|
*
|
|
* To keep (accumulated) division errors low, we adopt a 64bit
|
|
* fixed-point pss counter to minimize division errors. So (pss >>
|
|
* PSS_SHIFT) would be the real byte count.
|
|
*
|
|
* A shift of 12 before division means (assuming 4K page size):
|
|
* - 1M 3-user-pages add up to 8KB errors;
|
|
* - supports mapcount up to 2^24, or 16M;
|
|
* - supports PSS up to 2^52 bytes, or 4PB.
|
|
*/
|
|
#define PSS_SHIFT 12
|
|
|
|
#ifdef CONFIG_PROC_PAGE_MONITOR
|
|
struct mem_size_stats {
|
|
struct vm_area_struct *vma;
|
|
unsigned long resident;
|
|
unsigned long shared_clean;
|
|
unsigned long shared_dirty;
|
|
unsigned long private_clean;
|
|
unsigned long private_dirty;
|
|
unsigned long referenced;
|
|
unsigned long anonymous;
|
|
unsigned long anonymous_thp;
|
|
unsigned long swap;
|
|
unsigned long nonlinear;
|
|
u64 pss;
|
|
};
|
|
|
|
|
|
static void smaps_pte_entry(pte_t ptent, unsigned long addr,
|
|
unsigned long ptent_size, struct mm_walk *walk)
|
|
{
|
|
struct mem_size_stats *mss = walk->private;
|
|
struct vm_area_struct *vma = mss->vma;
|
|
pgoff_t pgoff = linear_page_index(vma, addr);
|
|
struct page *page = NULL;
|
|
int mapcount;
|
|
|
|
if (pte_present(ptent)) {
|
|
page = vm_normal_page(vma, addr, ptent);
|
|
} else if (is_swap_pte(ptent)) {
|
|
swp_entry_t swpent = pte_to_swp_entry(ptent);
|
|
|
|
if (!non_swap_entry(swpent))
|
|
mss->swap += ptent_size;
|
|
else if (is_migration_entry(swpent))
|
|
page = migration_entry_to_page(swpent);
|
|
} else if (pte_file(ptent)) {
|
|
if (pte_to_pgoff(ptent) != pgoff)
|
|
mss->nonlinear += ptent_size;
|
|
}
|
|
|
|
if (!page)
|
|
return;
|
|
|
|
if (PageAnon(page))
|
|
mss->anonymous += ptent_size;
|
|
|
|
if (page->index != pgoff)
|
|
mss->nonlinear += ptent_size;
|
|
|
|
mss->resident += ptent_size;
|
|
/* Accumulate the size in pages that have been accessed. */
|
|
if (pte_young(ptent) || PageReferenced(page))
|
|
mss->referenced += ptent_size;
|
|
mapcount = page_mapcount(page);
|
|
if (mapcount >= 2) {
|
|
if (pte_dirty(ptent) || PageDirty(page))
|
|
mss->shared_dirty += ptent_size;
|
|
else
|
|
mss->shared_clean += ptent_size;
|
|
mss->pss += (ptent_size << PSS_SHIFT) / mapcount;
|
|
} else {
|
|
if (pte_dirty(ptent) || PageDirty(page))
|
|
mss->private_dirty += ptent_size;
|
|
else
|
|
mss->private_clean += ptent_size;
|
|
mss->pss += (ptent_size << PSS_SHIFT);
|
|
}
|
|
}
|
|
|
|
static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
|
|
struct mm_walk *walk)
|
|
{
|
|
struct mem_size_stats *mss = walk->private;
|
|
struct vm_area_struct *vma = mss->vma;
|
|
pte_t *pte;
|
|
spinlock_t *ptl;
|
|
|
|
if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
|
|
smaps_pte_entry(*(pte_t *)pmd, addr, HPAGE_PMD_SIZE, walk);
|
|
spin_unlock(ptl);
|
|
mss->anonymous_thp += HPAGE_PMD_SIZE;
|
|
return 0;
|
|
}
|
|
|
|
if (pmd_trans_unstable(pmd))
|
|
return 0;
|
|
/*
|
|
* The mmap_sem held all the way back in m_start() is what
|
|
* keeps khugepaged out of here and from collapsing things
|
|
* in here.
|
|
*/
|
|
pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
|
|
for (; addr != end; pte++, addr += PAGE_SIZE)
|
|
smaps_pte_entry(*pte, addr, PAGE_SIZE, walk);
|
|
pte_unmap_unlock(pte - 1, ptl);
|
|
cond_resched();
|
|
return 0;
|
|
}
|
|
|
|
static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
|
|
{
|
|
/*
|
|
* Don't forget to update Documentation/ on changes.
|
|
*/
|
|
static const char mnemonics[BITS_PER_LONG][2] = {
|
|
/*
|
|
* In case if we meet a flag we don't know about.
|
|
*/
|
|
[0 ... (BITS_PER_LONG-1)] = "??",
|
|
|
|
[ilog2(VM_READ)] = "rd",
|
|
[ilog2(VM_WRITE)] = "wr",
|
|
[ilog2(VM_EXEC)] = "ex",
|
|
[ilog2(VM_SHARED)] = "sh",
|
|
[ilog2(VM_MAYREAD)] = "mr",
|
|
[ilog2(VM_MAYWRITE)] = "mw",
|
|
[ilog2(VM_MAYEXEC)] = "me",
|
|
[ilog2(VM_MAYSHARE)] = "ms",
|
|
[ilog2(VM_GROWSDOWN)] = "gd",
|
|
[ilog2(VM_PFNMAP)] = "pf",
|
|
[ilog2(VM_DENYWRITE)] = "dw",
|
|
[ilog2(VM_LOCKED)] = "lo",
|
|
[ilog2(VM_IO)] = "io",
|
|
[ilog2(VM_SEQ_READ)] = "sr",
|
|
[ilog2(VM_RAND_READ)] = "rr",
|
|
[ilog2(VM_DONTCOPY)] = "dc",
|
|
[ilog2(VM_DONTEXPAND)] = "de",
|
|
[ilog2(VM_ACCOUNT)] = "ac",
|
|
[ilog2(VM_NORESERVE)] = "nr",
|
|
[ilog2(VM_HUGETLB)] = "ht",
|
|
[ilog2(VM_NONLINEAR)] = "nl",
|
|
[ilog2(VM_ARCH_1)] = "ar",
|
|
[ilog2(VM_DONTDUMP)] = "dd",
|
|
#ifdef CONFIG_MEM_SOFT_DIRTY
|
|
[ilog2(VM_SOFTDIRTY)] = "sd",
|
|
#endif
|
|
[ilog2(VM_MIXEDMAP)] = "mm",
|
|
[ilog2(VM_HUGEPAGE)] = "hg",
|
|
[ilog2(VM_NOHUGEPAGE)] = "nh",
|
|
[ilog2(VM_MERGEABLE)] = "mg",
|
|
};
|
|
size_t i;
|
|
|
|
seq_puts(m, "VmFlags: ");
|
|
for (i = 0; i < BITS_PER_LONG; i++) {
|
|
if (vma->vm_flags & (1UL << i)) {
|
|
seq_printf(m, "%c%c ",
|
|
mnemonics[i][0], mnemonics[i][1]);
|
|
}
|
|
}
|
|
seq_putc(m, '\n');
|
|
}
|
|
|
|
static int show_smap(struct seq_file *m, void *v, int is_pid)
|
|
{
|
|
struct proc_maps_private *priv = m->private;
|
|
struct task_struct *task = priv->task;
|
|
struct vm_area_struct *vma = v;
|
|
struct mem_size_stats mss;
|
|
struct mm_walk smaps_walk = {
|
|
.pmd_entry = smaps_pte_range,
|
|
.mm = vma->vm_mm,
|
|
.private = &mss,
|
|
};
|
|
|
|
memset(&mss, 0, sizeof mss);
|
|
mss.vma = vma;
|
|
/* mmap_sem is held in m_start */
|
|
if (vma->vm_mm && !is_vm_hugetlb_page(vma))
|
|
walk_page_range(vma->vm_start, vma->vm_end, &smaps_walk);
|
|
|
|
show_map_vma(m, vma, is_pid);
|
|
|
|
seq_printf(m,
|
|
"Size: %8lu kB\n"
|
|
"Rss: %8lu kB\n"
|
|
"Pss: %8lu kB\n"
|
|
"Shared_Clean: %8lu kB\n"
|
|
"Shared_Dirty: %8lu kB\n"
|
|
"Private_Clean: %8lu kB\n"
|
|
"Private_Dirty: %8lu kB\n"
|
|
"Referenced: %8lu kB\n"
|
|
"Anonymous: %8lu kB\n"
|
|
"AnonHugePages: %8lu kB\n"
|
|
"Swap: %8lu kB\n"
|
|
"KernelPageSize: %8lu kB\n"
|
|
"MMUPageSize: %8lu kB\n"
|
|
"Locked: %8lu kB\n",
|
|
(vma->vm_end - vma->vm_start) >> 10,
|
|
mss.resident >> 10,
|
|
(unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
|
|
mss.shared_clean >> 10,
|
|
mss.shared_dirty >> 10,
|
|
mss.private_clean >> 10,
|
|
mss.private_dirty >> 10,
|
|
mss.referenced >> 10,
|
|
mss.anonymous >> 10,
|
|
mss.anonymous_thp >> 10,
|
|
mss.swap >> 10,
|
|
vma_kernel_pagesize(vma) >> 10,
|
|
vma_mmu_pagesize(vma) >> 10,
|
|
(vma->vm_flags & VM_LOCKED) ?
|
|
(unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
|
|
|
|
if (vma->vm_flags & VM_NONLINEAR)
|
|
seq_printf(m, "Nonlinear: %8lu kB\n",
|
|
mss.nonlinear >> 10);
|
|
|
|
show_smap_vma_flags(m, vma);
|
|
|
|
if (m->count < m->size) /* vma is copied successfully */
|
|
m->version = (vma != get_gate_vma(task->mm))
|
|
? vma->vm_start : 0;
|
|
return 0;
|
|
}
|
|
|
|
static int show_pid_smap(struct seq_file *m, void *v)
|
|
{
|
|
return show_smap(m, v, 1);
|
|
}
|
|
|
|
static int show_tid_smap(struct seq_file *m, void *v)
|
|
{
|
|
return show_smap(m, v, 0);
|
|
}
|
|
|
|
static const struct seq_operations proc_pid_smaps_op = {
|
|
.start = m_start,
|
|
.next = m_next,
|
|
.stop = m_stop,
|
|
.show = show_pid_smap
|
|
};
|
|
|
|
static const struct seq_operations proc_tid_smaps_op = {
|
|
.start = m_start,
|
|
.next = m_next,
|
|
.stop = m_stop,
|
|
.show = show_tid_smap
|
|
};
|
|
|
|
static int pid_smaps_open(struct inode *inode, struct file *file)
|
|
{
|
|
return do_maps_open(inode, file, &proc_pid_smaps_op);
|
|
}
|
|
|
|
static int tid_smaps_open(struct inode *inode, struct file *file)
|
|
{
|
|
return do_maps_open(inode, file, &proc_tid_smaps_op);
|
|
}
|
|
|
|
const struct file_operations proc_pid_smaps_operations = {
|
|
.open = pid_smaps_open,
|
|
.read = seq_read,
|
|
.llseek = seq_lseek,
|
|
.release = seq_release_private,
|
|
};
|
|
|
|
const struct file_operations proc_tid_smaps_operations = {
|
|
.open = tid_smaps_open,
|
|
.read = seq_read,
|
|
.llseek = seq_lseek,
|
|
.release = seq_release_private,
|
|
};
|
|
|
|
/*
|
|
* We do not want to have constant page-shift bits sitting in
|
|
* pagemap entries and are about to reuse them some time soon.
|
|
*
|
|
* Here's the "migration strategy":
|
|
* 1. when the system boots these bits remain what they are,
|
|
* but a warning about future change is printed in log;
|
|
* 2. once anyone clears soft-dirty bits via clear_refs file,
|
|
* these flag is set to denote, that user is aware of the
|
|
* new API and those page-shift bits change their meaning.
|
|
* The respective warning is printed in dmesg;
|
|
* 3. In a couple of releases we will remove all the mentions
|
|
* of page-shift in pagemap entries.
|
|
*/
|
|
|
|
static bool soft_dirty_cleared __read_mostly;
|
|
|
|
enum clear_refs_types {
|
|
CLEAR_REFS_ALL = 1,
|
|
CLEAR_REFS_ANON,
|
|
CLEAR_REFS_MAPPED,
|
|
CLEAR_REFS_SOFT_DIRTY,
|
|
CLEAR_REFS_LAST,
|
|
};
|
|
|
|
struct clear_refs_private {
|
|
struct vm_area_struct *vma;
|
|
enum clear_refs_types type;
|
|
};
|
|
|
|
static inline void clear_soft_dirty(struct vm_area_struct *vma,
|
|
unsigned long addr, pte_t *pte)
|
|
{
|
|
#ifdef CONFIG_MEM_SOFT_DIRTY
|
|
/*
|
|
* The soft-dirty tracker uses #PF-s to catch writes
|
|
* to pages, so write-protect the pte as well. See the
|
|
* Documentation/vm/soft-dirty.txt for full description
|
|
* of how soft-dirty works.
|
|
*/
|
|
pte_t ptent = *pte;
|
|
|
|
if (pte_present(ptent)) {
|
|
ptent = pte_wrprotect(ptent);
|
|
ptent = pte_clear_flags(ptent, _PAGE_SOFT_DIRTY);
|
|
} else if (is_swap_pte(ptent)) {
|
|
ptent = pte_swp_clear_soft_dirty(ptent);
|
|
} else if (pte_file(ptent)) {
|
|
ptent = pte_file_clear_soft_dirty(ptent);
|
|
}
|
|
|
|
if (vma->vm_flags & VM_SOFTDIRTY)
|
|
vma->vm_flags &= ~VM_SOFTDIRTY;
|
|
|
|
set_pte_at(vma->vm_mm, addr, pte, ptent);
|
|
#endif
|
|
}
|
|
|
|
static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
|
|
unsigned long end, struct mm_walk *walk)
|
|
{
|
|
struct clear_refs_private *cp = walk->private;
|
|
struct vm_area_struct *vma = cp->vma;
|
|
pte_t *pte, ptent;
|
|
spinlock_t *ptl;
|
|
struct page *page;
|
|
|
|
split_huge_page_pmd(vma, addr, pmd);
|
|
if (pmd_trans_unstable(pmd))
|
|
return 0;
|
|
|
|
pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
|
|
for (; addr != end; pte++, addr += PAGE_SIZE) {
|
|
ptent = *pte;
|
|
|
|
if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
|
|
clear_soft_dirty(vma, addr, pte);
|
|
continue;
|
|
}
|
|
|
|
if (!pte_present(ptent))
|
|
continue;
|
|
|
|
page = vm_normal_page(vma, addr, ptent);
|
|
if (!page)
|
|
continue;
|
|
|
|
/* Clear accessed and referenced bits. */
|
|
ptep_test_and_clear_young(vma, addr, pte);
|
|
ClearPageReferenced(page);
|
|
}
|
|
pte_unmap_unlock(pte - 1, ptl);
|
|
cond_resched();
|
|
return 0;
|
|
}
|
|
|
|
static ssize_t clear_refs_write(struct file *file, const char __user *buf,
|
|
size_t count, loff_t *ppos)
|
|
{
|
|
struct task_struct *task;
|
|
char buffer[PROC_NUMBUF];
|
|
struct mm_struct *mm;
|
|
struct vm_area_struct *vma;
|
|
enum clear_refs_types type;
|
|
int itype;
|
|
int rv;
|
|
|
|
memset(buffer, 0, sizeof(buffer));
|
|
if (count > sizeof(buffer) - 1)
|
|
count = sizeof(buffer) - 1;
|
|
if (copy_from_user(buffer, buf, count))
|
|
return -EFAULT;
|
|
rv = kstrtoint(strstrip(buffer), 10, &itype);
|
|
if (rv < 0)
|
|
return rv;
|
|
type = (enum clear_refs_types)itype;
|
|
if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
|
|
return -EINVAL;
|
|
|
|
if (type == CLEAR_REFS_SOFT_DIRTY) {
|
|
soft_dirty_cleared = true;
|
|
pr_warn_once("The pagemap bits 55-60 has changed their meaning! "
|
|
"See the linux/Documentation/vm/pagemap.txt for details.\n");
|
|
}
|
|
|
|
task = get_proc_task(file_inode(file));
|
|
if (!task)
|
|
return -ESRCH;
|
|
mm = get_task_mm(task);
|
|
if (mm) {
|
|
struct clear_refs_private cp = {
|
|
.type = type,
|
|
};
|
|
struct mm_walk clear_refs_walk = {
|
|
.pmd_entry = clear_refs_pte_range,
|
|
.mm = mm,
|
|
.private = &cp,
|
|
};
|
|
down_read(&mm->mmap_sem);
|
|
if (type == CLEAR_REFS_SOFT_DIRTY)
|
|
mmu_notifier_invalidate_range_start(mm, 0, -1);
|
|
for (vma = mm->mmap; vma; vma = vma->vm_next) {
|
|
cp.vma = vma;
|
|
if (is_vm_hugetlb_page(vma))
|
|
continue;
|
|
/*
|
|
* Writing 1 to /proc/pid/clear_refs affects all pages.
|
|
*
|
|
* Writing 2 to /proc/pid/clear_refs only affects
|
|
* Anonymous pages.
|
|
*
|
|
* Writing 3 to /proc/pid/clear_refs only affects file
|
|
* mapped pages.
|
|
*/
|
|
if (type == CLEAR_REFS_ANON && vma->vm_file)
|
|
continue;
|
|
if (type == CLEAR_REFS_MAPPED && !vma->vm_file)
|
|
continue;
|
|
walk_page_range(vma->vm_start, vma->vm_end,
|
|
&clear_refs_walk);
|
|
}
|
|
if (type == CLEAR_REFS_SOFT_DIRTY)
|
|
mmu_notifier_invalidate_range_end(mm, 0, -1);
|
|
flush_tlb_mm(mm);
|
|
up_read(&mm->mmap_sem);
|
|
mmput(mm);
|
|
}
|
|
put_task_struct(task);
|
|
|
|
return count;
|
|
}
|
|
|
|
const struct file_operations proc_clear_refs_operations = {
|
|
.write = clear_refs_write,
|
|
.llseek = noop_llseek,
|
|
};
|
|
|
|
typedef struct {
|
|
u64 pme;
|
|
} pagemap_entry_t;
|
|
|
|
struct pagemapread {
|
|
int pos, len; /* units: PM_ENTRY_BYTES, not bytes */
|
|
pagemap_entry_t *buffer;
|
|
bool v2;
|
|
};
|
|
|
|
#define PAGEMAP_WALK_SIZE (PMD_SIZE)
|
|
#define PAGEMAP_WALK_MASK (PMD_MASK)
|
|
|
|
#define PM_ENTRY_BYTES sizeof(pagemap_entry_t)
|
|
#define PM_STATUS_BITS 3
|
|
#define PM_STATUS_OFFSET (64 - PM_STATUS_BITS)
|
|
#define PM_STATUS_MASK (((1LL << PM_STATUS_BITS) - 1) << PM_STATUS_OFFSET)
|
|
#define PM_STATUS(nr) (((nr) << PM_STATUS_OFFSET) & PM_STATUS_MASK)
|
|
#define PM_PSHIFT_BITS 6
|
|
#define PM_PSHIFT_OFFSET (PM_STATUS_OFFSET - PM_PSHIFT_BITS)
|
|
#define PM_PSHIFT_MASK (((1LL << PM_PSHIFT_BITS) - 1) << PM_PSHIFT_OFFSET)
|
|
#define __PM_PSHIFT(x) (((u64) (x) << PM_PSHIFT_OFFSET) & PM_PSHIFT_MASK)
|
|
#define PM_PFRAME_MASK ((1LL << PM_PSHIFT_OFFSET) - 1)
|
|
#define PM_PFRAME(x) ((x) & PM_PFRAME_MASK)
|
|
/* in "new" pagemap pshift bits are occupied with more status bits */
|
|
#define PM_STATUS2(v2, x) (__PM_PSHIFT(v2 ? x : PAGE_SHIFT))
|
|
|
|
#define __PM_SOFT_DIRTY (1LL)
|
|
#define PM_PRESENT PM_STATUS(4LL)
|
|
#define PM_SWAP PM_STATUS(2LL)
|
|
#define PM_FILE PM_STATUS(1LL)
|
|
#define PM_NOT_PRESENT(v2) PM_STATUS2(v2, 0)
|
|
#define PM_END_OF_BUFFER 1
|
|
|
|
static inline pagemap_entry_t make_pme(u64 val)
|
|
{
|
|
return (pagemap_entry_t) { .pme = val };
|
|
}
|
|
|
|
static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
|
|
struct pagemapread *pm)
|
|
{
|
|
pm->buffer[pm->pos++] = *pme;
|
|
if (pm->pos >= pm->len)
|
|
return PM_END_OF_BUFFER;
|
|
return 0;
|
|
}
|
|
|
|
static int pagemap_pte_hole(unsigned long start, unsigned long end,
|
|
struct mm_walk *walk)
|
|
{
|
|
struct pagemapread *pm = walk->private;
|
|
unsigned long addr;
|
|
int err = 0;
|
|
pagemap_entry_t pme = make_pme(PM_NOT_PRESENT(pm->v2));
|
|
|
|
for (addr = start; addr < end; addr += PAGE_SIZE) {
|
|
err = add_to_pagemap(addr, &pme, pm);
|
|
if (err)
|
|
break;
|
|
}
|
|
return err;
|
|
}
|
|
|
|
static void pte_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
|
|
struct vm_area_struct *vma, unsigned long addr, pte_t pte)
|
|
{
|
|
u64 frame, flags;
|
|
struct page *page = NULL;
|
|
int flags2 = 0;
|
|
|
|
if (pte_present(pte)) {
|
|
frame = pte_pfn(pte);
|
|
flags = PM_PRESENT;
|
|
page = vm_normal_page(vma, addr, pte);
|
|
if (pte_soft_dirty(pte))
|
|
flags2 |= __PM_SOFT_DIRTY;
|
|
} else if (is_swap_pte(pte)) {
|
|
swp_entry_t entry;
|
|
if (pte_swp_soft_dirty(pte))
|
|
flags2 |= __PM_SOFT_DIRTY;
|
|
entry = pte_to_swp_entry(pte);
|
|
frame = swp_type(entry) |
|
|
(swp_offset(entry) << MAX_SWAPFILES_SHIFT);
|
|
flags = PM_SWAP;
|
|
if (is_migration_entry(entry))
|
|
page = migration_entry_to_page(entry);
|
|
} else {
|
|
if (vma->vm_flags & VM_SOFTDIRTY)
|
|
flags2 |= __PM_SOFT_DIRTY;
|
|
*pme = make_pme(PM_NOT_PRESENT(pm->v2) | PM_STATUS2(pm->v2, flags2));
|
|
return;
|
|
}
|
|
|
|
if (page && !PageAnon(page))
|
|
flags |= PM_FILE;
|
|
if ((vma->vm_flags & VM_SOFTDIRTY))
|
|
flags2 |= __PM_SOFT_DIRTY;
|
|
|
|
*pme = make_pme(PM_PFRAME(frame) | PM_STATUS2(pm->v2, flags2) | flags);
|
|
}
|
|
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
static void thp_pmd_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
|
|
pmd_t pmd, int offset, int pmd_flags2)
|
|
{
|
|
/*
|
|
* Currently pmd for thp is always present because thp can not be
|
|
* swapped-out, migrated, or HWPOISONed (split in such cases instead.)
|
|
* This if-check is just to prepare for future implementation.
|
|
*/
|
|
if (pmd_present(pmd))
|
|
*pme = make_pme(PM_PFRAME(pmd_pfn(pmd) + offset)
|
|
| PM_STATUS2(pm->v2, pmd_flags2) | PM_PRESENT);
|
|
else
|
|
*pme = make_pme(PM_NOT_PRESENT(pm->v2) | PM_STATUS2(pm->v2, pmd_flags2));
|
|
}
|
|
#else
|
|
static inline void thp_pmd_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
|
|
pmd_t pmd, int offset, int pmd_flags2)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
static int pagemap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
|
|
struct mm_walk *walk)
|
|
{
|
|
struct vm_area_struct *vma;
|
|
struct pagemapread *pm = walk->private;
|
|
spinlock_t *ptl;
|
|
pte_t *pte;
|
|
int err = 0;
|
|
pagemap_entry_t pme = make_pme(PM_NOT_PRESENT(pm->v2));
|
|
|
|
/* find the first VMA at or above 'addr' */
|
|
vma = find_vma(walk->mm, addr);
|
|
if (vma && pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
|
|
int pmd_flags2;
|
|
|
|
if ((vma->vm_flags & VM_SOFTDIRTY) || pmd_soft_dirty(*pmd))
|
|
pmd_flags2 = __PM_SOFT_DIRTY;
|
|
else
|
|
pmd_flags2 = 0;
|
|
|
|
for (; addr != end; addr += PAGE_SIZE) {
|
|
unsigned long offset;
|
|
|
|
offset = (addr & ~PAGEMAP_WALK_MASK) >>
|
|
PAGE_SHIFT;
|
|
thp_pmd_to_pagemap_entry(&pme, pm, *pmd, offset, pmd_flags2);
|
|
err = add_to_pagemap(addr, &pme, pm);
|
|
if (err)
|
|
break;
|
|
}
|
|
spin_unlock(ptl);
|
|
return err;
|
|
}
|
|
|
|
if (pmd_trans_unstable(pmd))
|
|
return 0;
|
|
for (; addr != end; addr += PAGE_SIZE) {
|
|
int flags2;
|
|
|
|
/* check to see if we've left 'vma' behind
|
|
* and need a new, higher one */
|
|
if (vma && (addr >= vma->vm_end)) {
|
|
vma = find_vma(walk->mm, addr);
|
|
if (vma && (vma->vm_flags & VM_SOFTDIRTY))
|
|
flags2 = __PM_SOFT_DIRTY;
|
|
else
|
|
flags2 = 0;
|
|
pme = make_pme(PM_NOT_PRESENT(pm->v2) | PM_STATUS2(pm->v2, flags2));
|
|
}
|
|
|
|
/* check that 'vma' actually covers this address,
|
|
* and that it isn't a huge page vma */
|
|
if (vma && (vma->vm_start <= addr) &&
|
|
!is_vm_hugetlb_page(vma)) {
|
|
pte = pte_offset_map(pmd, addr);
|
|
pte_to_pagemap_entry(&pme, pm, vma, addr, *pte);
|
|
/* unmap before userspace copy */
|
|
pte_unmap(pte);
|
|
}
|
|
err = add_to_pagemap(addr, &pme, pm);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
cond_resched();
|
|
|
|
return err;
|
|
}
|
|
|
|
#ifdef CONFIG_HUGETLB_PAGE
|
|
static void huge_pte_to_pagemap_entry(pagemap_entry_t *pme, struct pagemapread *pm,
|
|
pte_t pte, int offset, int flags2)
|
|
{
|
|
if (pte_present(pte))
|
|
*pme = make_pme(PM_PFRAME(pte_pfn(pte) + offset) |
|
|
PM_STATUS2(pm->v2, flags2) |
|
|
PM_PRESENT);
|
|
else
|
|
*pme = make_pme(PM_NOT_PRESENT(pm->v2) |
|
|
PM_STATUS2(pm->v2, flags2));
|
|
}
|
|
|
|
/* This function walks within one hugetlb entry in the single call */
|
|
static int pagemap_hugetlb_range(pte_t *pte, unsigned long hmask,
|
|
unsigned long addr, unsigned long end,
|
|
struct mm_walk *walk)
|
|
{
|
|
struct pagemapread *pm = walk->private;
|
|
struct vm_area_struct *vma;
|
|
int err = 0;
|
|
int flags2;
|
|
pagemap_entry_t pme;
|
|
|
|
vma = find_vma(walk->mm, addr);
|
|
WARN_ON_ONCE(!vma);
|
|
|
|
if (vma && (vma->vm_flags & VM_SOFTDIRTY))
|
|
flags2 = __PM_SOFT_DIRTY;
|
|
else
|
|
flags2 = 0;
|
|
|
|
for (; addr != end; addr += PAGE_SIZE) {
|
|
int offset = (addr & ~hmask) >> PAGE_SHIFT;
|
|
huge_pte_to_pagemap_entry(&pme, pm, *pte, offset, flags2);
|
|
err = add_to_pagemap(addr, &pme, pm);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
cond_resched();
|
|
|
|
return err;
|
|
}
|
|
#endif /* HUGETLB_PAGE */
|
|
|
|
/*
|
|
* /proc/pid/pagemap - an array mapping virtual pages to pfns
|
|
*
|
|
* For each page in the address space, this file contains one 64-bit entry
|
|
* consisting of the following:
|
|
*
|
|
* Bits 0-54 page frame number (PFN) if present
|
|
* Bits 0-4 swap type if swapped
|
|
* Bits 5-54 swap offset if swapped
|
|
* Bits 55-60 page shift (page size = 1<<page shift)
|
|
* Bit 61 page is file-page or shared-anon
|
|
* Bit 62 page swapped
|
|
* Bit 63 page present
|
|
*
|
|
* If the page is not present but in swap, then the PFN contains an
|
|
* encoding of the swap file number and the page's offset into the
|
|
* swap. Unmapped pages return a null PFN. This allows determining
|
|
* precisely which pages are mapped (or in swap) and comparing mapped
|
|
* pages between processes.
|
|
*
|
|
* Efficient users of this interface will use /proc/pid/maps to
|
|
* determine which areas of memory are actually mapped and llseek to
|
|
* skip over unmapped regions.
|
|
*/
|
|
static ssize_t pagemap_read(struct file *file, char __user *buf,
|
|
size_t count, loff_t *ppos)
|
|
{
|
|
struct task_struct *task = get_proc_task(file_inode(file));
|
|
struct mm_struct *mm;
|
|
struct pagemapread pm;
|
|
int ret = -ESRCH;
|
|
struct mm_walk pagemap_walk = {};
|
|
unsigned long src;
|
|
unsigned long svpfn;
|
|
unsigned long start_vaddr;
|
|
unsigned long end_vaddr;
|
|
int copied = 0;
|
|
|
|
if (!task)
|
|
goto out;
|
|
|
|
ret = -EINVAL;
|
|
/* file position must be aligned */
|
|
if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
|
|
goto out_task;
|
|
|
|
ret = 0;
|
|
if (!count)
|
|
goto out_task;
|
|
|
|
pm.v2 = soft_dirty_cleared;
|
|
pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
|
|
pm.buffer = kmalloc(pm.len * PM_ENTRY_BYTES, GFP_TEMPORARY);
|
|
ret = -ENOMEM;
|
|
if (!pm.buffer)
|
|
goto out_task;
|
|
|
|
mm = mm_access(task, PTRACE_MODE_READ);
|
|
ret = PTR_ERR(mm);
|
|
if (!mm || IS_ERR(mm))
|
|
goto out_free;
|
|
|
|
pagemap_walk.pmd_entry = pagemap_pte_range;
|
|
pagemap_walk.pte_hole = pagemap_pte_hole;
|
|
#ifdef CONFIG_HUGETLB_PAGE
|
|
pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
|
|
#endif
|
|
pagemap_walk.mm = mm;
|
|
pagemap_walk.private = ±
|
|
|
|
src = *ppos;
|
|
svpfn = src / PM_ENTRY_BYTES;
|
|
start_vaddr = svpfn << PAGE_SHIFT;
|
|
end_vaddr = TASK_SIZE_OF(task);
|
|
|
|
/* watch out for wraparound */
|
|
if (svpfn > TASK_SIZE_OF(task) >> PAGE_SHIFT)
|
|
start_vaddr = end_vaddr;
|
|
|
|
/*
|
|
* The odds are that this will stop walking way
|
|
* before end_vaddr, because the length of the
|
|
* user buffer is tracked in "pm", and the walk
|
|
* will stop when we hit the end of the buffer.
|
|
*/
|
|
ret = 0;
|
|
while (count && (start_vaddr < end_vaddr)) {
|
|
int len;
|
|
unsigned long end;
|
|
|
|
pm.pos = 0;
|
|
end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
|
|
/* overflow ? */
|
|
if (end < start_vaddr || end > end_vaddr)
|
|
end = end_vaddr;
|
|
down_read(&mm->mmap_sem);
|
|
ret = walk_page_range(start_vaddr, end, &pagemap_walk);
|
|
up_read(&mm->mmap_sem);
|
|
start_vaddr = end;
|
|
|
|
len = min(count, PM_ENTRY_BYTES * pm.pos);
|
|
if (copy_to_user(buf, pm.buffer, len)) {
|
|
ret = -EFAULT;
|
|
goto out_mm;
|
|
}
|
|
copied += len;
|
|
buf += len;
|
|
count -= len;
|
|
}
|
|
*ppos += copied;
|
|
if (!ret || ret == PM_END_OF_BUFFER)
|
|
ret = copied;
|
|
|
|
out_mm:
|
|
mmput(mm);
|
|
out_free:
|
|
kfree(pm.buffer);
|
|
out_task:
|
|
put_task_struct(task);
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
static int pagemap_open(struct inode *inode, struct file *file)
|
|
{
|
|
pr_warn_once("Bits 55-60 of /proc/PID/pagemap entries are about "
|
|
"to stop being page-shift some time soon. See the "
|
|
"linux/Documentation/vm/pagemap.txt for details.\n");
|
|
return 0;
|
|
}
|
|
|
|
const struct file_operations proc_pagemap_operations = {
|
|
.llseek = mem_lseek, /* borrow this */
|
|
.read = pagemap_read,
|
|
.open = pagemap_open,
|
|
};
|
|
#endif /* CONFIG_PROC_PAGE_MONITOR */
|
|
|
|
#ifdef CONFIG_NUMA
|
|
|
|
struct numa_maps {
|
|
struct vm_area_struct *vma;
|
|
unsigned long pages;
|
|
unsigned long anon;
|
|
unsigned long active;
|
|
unsigned long writeback;
|
|
unsigned long mapcount_max;
|
|
unsigned long dirty;
|
|
unsigned long swapcache;
|
|
unsigned long node[MAX_NUMNODES];
|
|
};
|
|
|
|
struct numa_maps_private {
|
|
struct proc_maps_private proc_maps;
|
|
struct numa_maps md;
|
|
};
|
|
|
|
static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
|
|
unsigned long nr_pages)
|
|
{
|
|
int count = page_mapcount(page);
|
|
|
|
md->pages += nr_pages;
|
|
if (pte_dirty || PageDirty(page))
|
|
md->dirty += nr_pages;
|
|
|
|
if (PageSwapCache(page))
|
|
md->swapcache += nr_pages;
|
|
|
|
if (PageActive(page) || PageUnevictable(page))
|
|
md->active += nr_pages;
|
|
|
|
if (PageWriteback(page))
|
|
md->writeback += nr_pages;
|
|
|
|
if (PageAnon(page))
|
|
md->anon += nr_pages;
|
|
|
|
if (count > md->mapcount_max)
|
|
md->mapcount_max = count;
|
|
|
|
md->node[page_to_nid(page)] += nr_pages;
|
|
}
|
|
|
|
static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
|
|
unsigned long addr)
|
|
{
|
|
struct page *page;
|
|
int nid;
|
|
|
|
if (!pte_present(pte))
|
|
return NULL;
|
|
|
|
page = vm_normal_page(vma, addr, pte);
|
|
if (!page)
|
|
return NULL;
|
|
|
|
if (PageReserved(page))
|
|
return NULL;
|
|
|
|
nid = page_to_nid(page);
|
|
if (!node_isset(nid, node_states[N_MEMORY]))
|
|
return NULL;
|
|
|
|
return page;
|
|
}
|
|
|
|
static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
|
|
unsigned long end, struct mm_walk *walk)
|
|
{
|
|
struct numa_maps *md;
|
|
spinlock_t *ptl;
|
|
pte_t *orig_pte;
|
|
pte_t *pte;
|
|
|
|
md = walk->private;
|
|
|
|
if (pmd_trans_huge_lock(pmd, md->vma, &ptl) == 1) {
|
|
pte_t huge_pte = *(pte_t *)pmd;
|
|
struct page *page;
|
|
|
|
page = can_gather_numa_stats(huge_pte, md->vma, addr);
|
|
if (page)
|
|
gather_stats(page, md, pte_dirty(huge_pte),
|
|
HPAGE_PMD_SIZE/PAGE_SIZE);
|
|
spin_unlock(ptl);
|
|
return 0;
|
|
}
|
|
|
|
if (pmd_trans_unstable(pmd))
|
|
return 0;
|
|
orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
|
|
do {
|
|
struct page *page = can_gather_numa_stats(*pte, md->vma, addr);
|
|
if (!page)
|
|
continue;
|
|
gather_stats(page, md, pte_dirty(*pte), 1);
|
|
|
|
} while (pte++, addr += PAGE_SIZE, addr != end);
|
|
pte_unmap_unlock(orig_pte, ptl);
|
|
return 0;
|
|
}
|
|
#ifdef CONFIG_HUGETLB_PAGE
|
|
static int gather_hugetbl_stats(pte_t *pte, unsigned long hmask,
|
|
unsigned long addr, unsigned long end, struct mm_walk *walk)
|
|
{
|
|
struct numa_maps *md;
|
|
struct page *page;
|
|
|
|
if (pte_none(*pte))
|
|
return 0;
|
|
|
|
page = pte_page(*pte);
|
|
if (!page)
|
|
return 0;
|
|
|
|
md = walk->private;
|
|
gather_stats(page, md, pte_dirty(*pte), 1);
|
|
return 0;
|
|
}
|
|
|
|
#else
|
|
static int gather_hugetbl_stats(pte_t *pte, unsigned long hmask,
|
|
unsigned long addr, unsigned long end, struct mm_walk *walk)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Display pages allocated per node and memory policy via /proc.
|
|
*/
|
|
static int show_numa_map(struct seq_file *m, void *v, int is_pid)
|
|
{
|
|
struct numa_maps_private *numa_priv = m->private;
|
|
struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
|
|
struct vm_area_struct *vma = v;
|
|
struct numa_maps *md = &numa_priv->md;
|
|
struct file *file = vma->vm_file;
|
|
struct task_struct *task = proc_priv->task;
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
struct mm_walk walk = {};
|
|
struct mempolicy *pol;
|
|
char buffer[64];
|
|
int nid;
|
|
|
|
if (!mm)
|
|
return 0;
|
|
|
|
/* Ensure we start with an empty set of numa_maps statistics. */
|
|
memset(md, 0, sizeof(*md));
|
|
|
|
md->vma = vma;
|
|
|
|
walk.hugetlb_entry = gather_hugetbl_stats;
|
|
walk.pmd_entry = gather_pte_stats;
|
|
walk.private = md;
|
|
walk.mm = mm;
|
|
|
|
pol = get_vma_policy(task, vma, vma->vm_start);
|
|
mpol_to_str(buffer, sizeof(buffer), pol);
|
|
mpol_cond_put(pol);
|
|
|
|
seq_printf(m, "%08lx %s", vma->vm_start, buffer);
|
|
|
|
if (file) {
|
|
seq_printf(m, " file=");
|
|
seq_path(m, &file->f_path, "\n\t= ");
|
|
} else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
|
|
seq_printf(m, " heap");
|
|
} else {
|
|
pid_t tid = vm_is_stack(task, vma, is_pid);
|
|
if (tid != 0) {
|
|
/*
|
|
* Thread stack in /proc/PID/task/TID/maps or
|
|
* the main process stack.
|
|
*/
|
|
if (!is_pid || (vma->vm_start <= mm->start_stack &&
|
|
vma->vm_end >= mm->start_stack))
|
|
seq_printf(m, " stack");
|
|
else
|
|
seq_printf(m, " stack:%d", tid);
|
|
}
|
|
}
|
|
|
|
if (is_vm_hugetlb_page(vma))
|
|
seq_printf(m, " huge");
|
|
|
|
walk_page_range(vma->vm_start, vma->vm_end, &walk);
|
|
|
|
if (!md->pages)
|
|
goto out;
|
|
|
|
if (md->anon)
|
|
seq_printf(m, " anon=%lu", md->anon);
|
|
|
|
if (md->dirty)
|
|
seq_printf(m, " dirty=%lu", md->dirty);
|
|
|
|
if (md->pages != md->anon && md->pages != md->dirty)
|
|
seq_printf(m, " mapped=%lu", md->pages);
|
|
|
|
if (md->mapcount_max > 1)
|
|
seq_printf(m, " mapmax=%lu", md->mapcount_max);
|
|
|
|
if (md->swapcache)
|
|
seq_printf(m, " swapcache=%lu", md->swapcache);
|
|
|
|
if (md->active < md->pages && !is_vm_hugetlb_page(vma))
|
|
seq_printf(m, " active=%lu", md->active);
|
|
|
|
if (md->writeback)
|
|
seq_printf(m, " writeback=%lu", md->writeback);
|
|
|
|
for_each_node_state(nid, N_MEMORY)
|
|
if (md->node[nid])
|
|
seq_printf(m, " N%d=%lu", nid, md->node[nid]);
|
|
out:
|
|
seq_putc(m, '\n');
|
|
|
|
if (m->count < m->size)
|
|
m->version = (vma != proc_priv->tail_vma) ? vma->vm_start : 0;
|
|
return 0;
|
|
}
|
|
|
|
static int show_pid_numa_map(struct seq_file *m, void *v)
|
|
{
|
|
return show_numa_map(m, v, 1);
|
|
}
|
|
|
|
static int show_tid_numa_map(struct seq_file *m, void *v)
|
|
{
|
|
return show_numa_map(m, v, 0);
|
|
}
|
|
|
|
static const struct seq_operations proc_pid_numa_maps_op = {
|
|
.start = m_start,
|
|
.next = m_next,
|
|
.stop = m_stop,
|
|
.show = show_pid_numa_map,
|
|
};
|
|
|
|
static const struct seq_operations proc_tid_numa_maps_op = {
|
|
.start = m_start,
|
|
.next = m_next,
|
|
.stop = m_stop,
|
|
.show = show_tid_numa_map,
|
|
};
|
|
|
|
static int numa_maps_open(struct inode *inode, struct file *file,
|
|
const struct seq_operations *ops)
|
|
{
|
|
struct numa_maps_private *priv;
|
|
int ret = -ENOMEM;
|
|
priv = kzalloc(sizeof(*priv), GFP_KERNEL);
|
|
if (priv) {
|
|
priv->proc_maps.pid = proc_pid(inode);
|
|
ret = seq_open(file, ops);
|
|
if (!ret) {
|
|
struct seq_file *m = file->private_data;
|
|
m->private = priv;
|
|
} else {
|
|
kfree(priv);
|
|
}
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int pid_numa_maps_open(struct inode *inode, struct file *file)
|
|
{
|
|
return numa_maps_open(inode, file, &proc_pid_numa_maps_op);
|
|
}
|
|
|
|
static int tid_numa_maps_open(struct inode *inode, struct file *file)
|
|
{
|
|
return numa_maps_open(inode, file, &proc_tid_numa_maps_op);
|
|
}
|
|
|
|
const struct file_operations proc_pid_numa_maps_operations = {
|
|
.open = pid_numa_maps_open,
|
|
.read = seq_read,
|
|
.llseek = seq_lseek,
|
|
.release = seq_release_private,
|
|
};
|
|
|
|
const struct file_operations proc_tid_numa_maps_operations = {
|
|
.open = tid_numa_maps_open,
|
|
.read = seq_read,
|
|
.llseek = seq_lseek,
|
|
.release = seq_release_private,
|
|
};
|
|
#endif /* CONFIG_NUMA */
|