mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
f370e1e2f1
Allow recording the CPU number the event was generated on. RFC: this leaves a u32 as reserved, should we fill in the node_id() there, or leave this open for future extention, as userspace can already easily do the cpu->node mapping if needed. [ Impact: extend perfcounter output record format ] Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Paul Mackerras <paulus@samba.org> Cc: Corey Ashford <cjashfor@linux.vnet.ibm.com> LKML-Reference: <20090508170029.008627711@chello.nl> Signed-off-by: Ingo Molnar <mingo@elte.hu>
3449 lines
80 KiB
C
3449 lines
80 KiB
C
/*
|
|
* Performance counter core code
|
|
*
|
|
* Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
|
|
* Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
|
|
* Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
|
|
* Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
|
|
*
|
|
* For licensing details see kernel-base/COPYING
|
|
*/
|
|
|
|
#include <linux/fs.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/file.h>
|
|
#include <linux/poll.h>
|
|
#include <linux/sysfs.h>
|
|
#include <linux/ptrace.h>
|
|
#include <linux/percpu.h>
|
|
#include <linux/vmstat.h>
|
|
#include <linux/hardirq.h>
|
|
#include <linux/rculist.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/syscalls.h>
|
|
#include <linux/anon_inodes.h>
|
|
#include <linux/kernel_stat.h>
|
|
#include <linux/perf_counter.h>
|
|
#include <linux/dcache.h>
|
|
|
|
#include <asm/irq_regs.h>
|
|
|
|
/*
|
|
* Each CPU has a list of per CPU counters:
|
|
*/
|
|
DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
|
|
|
|
int perf_max_counters __read_mostly = 1;
|
|
static int perf_reserved_percpu __read_mostly;
|
|
static int perf_overcommit __read_mostly = 1;
|
|
|
|
static atomic_t nr_counters __read_mostly;
|
|
static atomic_t nr_mmap_tracking __read_mostly;
|
|
static atomic_t nr_munmap_tracking __read_mostly;
|
|
static atomic_t nr_comm_tracking __read_mostly;
|
|
|
|
int sysctl_perf_counter_priv __read_mostly; /* do we need to be privileged */
|
|
int sysctl_perf_counter_mlock __read_mostly = 128; /* 'free' kb per counter */
|
|
|
|
/*
|
|
* Lock for (sysadmin-configurable) counter reservations:
|
|
*/
|
|
static DEFINE_SPINLOCK(perf_resource_lock);
|
|
|
|
/*
|
|
* Architecture provided APIs - weak aliases:
|
|
*/
|
|
extern __weak const struct pmu *hw_perf_counter_init(struct perf_counter *counter)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
u64 __weak hw_perf_save_disable(void) { return 0; }
|
|
void __weak hw_perf_restore(u64 ctrl) { barrier(); }
|
|
void __weak hw_perf_counter_setup(int cpu) { barrier(); }
|
|
int __weak hw_perf_group_sched_in(struct perf_counter *group_leader,
|
|
struct perf_cpu_context *cpuctx,
|
|
struct perf_counter_context *ctx, int cpu)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
void __weak perf_counter_print_debug(void) { }
|
|
|
|
static void
|
|
list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
|
|
{
|
|
struct perf_counter *group_leader = counter->group_leader;
|
|
|
|
/*
|
|
* Depending on whether it is a standalone or sibling counter,
|
|
* add it straight to the context's counter list, or to the group
|
|
* leader's sibling list:
|
|
*/
|
|
if (group_leader == counter)
|
|
list_add_tail(&counter->list_entry, &ctx->counter_list);
|
|
else {
|
|
list_add_tail(&counter->list_entry, &group_leader->sibling_list);
|
|
group_leader->nr_siblings++;
|
|
}
|
|
|
|
list_add_rcu(&counter->event_entry, &ctx->event_list);
|
|
}
|
|
|
|
static void
|
|
list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
|
|
{
|
|
struct perf_counter *sibling, *tmp;
|
|
|
|
list_del_init(&counter->list_entry);
|
|
list_del_rcu(&counter->event_entry);
|
|
|
|
if (counter->group_leader != counter)
|
|
counter->group_leader->nr_siblings--;
|
|
|
|
/*
|
|
* If this was a group counter with sibling counters then
|
|
* upgrade the siblings to singleton counters by adding them
|
|
* to the context list directly:
|
|
*/
|
|
list_for_each_entry_safe(sibling, tmp,
|
|
&counter->sibling_list, list_entry) {
|
|
|
|
list_move_tail(&sibling->list_entry, &ctx->counter_list);
|
|
sibling->group_leader = sibling;
|
|
}
|
|
}
|
|
|
|
static void
|
|
counter_sched_out(struct perf_counter *counter,
|
|
struct perf_cpu_context *cpuctx,
|
|
struct perf_counter_context *ctx)
|
|
{
|
|
if (counter->state != PERF_COUNTER_STATE_ACTIVE)
|
|
return;
|
|
|
|
counter->state = PERF_COUNTER_STATE_INACTIVE;
|
|
counter->tstamp_stopped = ctx->time;
|
|
counter->pmu->disable(counter);
|
|
counter->oncpu = -1;
|
|
|
|
if (!is_software_counter(counter))
|
|
cpuctx->active_oncpu--;
|
|
ctx->nr_active--;
|
|
if (counter->hw_event.exclusive || !cpuctx->active_oncpu)
|
|
cpuctx->exclusive = 0;
|
|
}
|
|
|
|
static void
|
|
group_sched_out(struct perf_counter *group_counter,
|
|
struct perf_cpu_context *cpuctx,
|
|
struct perf_counter_context *ctx)
|
|
{
|
|
struct perf_counter *counter;
|
|
|
|
if (group_counter->state != PERF_COUNTER_STATE_ACTIVE)
|
|
return;
|
|
|
|
counter_sched_out(group_counter, cpuctx, ctx);
|
|
|
|
/*
|
|
* Schedule out siblings (if any):
|
|
*/
|
|
list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
|
|
counter_sched_out(counter, cpuctx, ctx);
|
|
|
|
if (group_counter->hw_event.exclusive)
|
|
cpuctx->exclusive = 0;
|
|
}
|
|
|
|
/*
|
|
* Cross CPU call to remove a performance counter
|
|
*
|
|
* We disable the counter on the hardware level first. After that we
|
|
* remove it from the context list.
|
|
*/
|
|
static void __perf_counter_remove_from_context(void *info)
|
|
{
|
|
struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
|
|
struct perf_counter *counter = info;
|
|
struct perf_counter_context *ctx = counter->ctx;
|
|
unsigned long flags;
|
|
u64 perf_flags;
|
|
|
|
/*
|
|
* If this is a task context, we need to check whether it is
|
|
* the current task context of this cpu. If not it has been
|
|
* scheduled out before the smp call arrived.
|
|
*/
|
|
if (ctx->task && cpuctx->task_ctx != ctx)
|
|
return;
|
|
|
|
spin_lock_irqsave(&ctx->lock, flags);
|
|
|
|
counter_sched_out(counter, cpuctx, ctx);
|
|
|
|
counter->task = NULL;
|
|
ctx->nr_counters--;
|
|
|
|
/*
|
|
* Protect the list operation against NMI by disabling the
|
|
* counters on a global level. NOP for non NMI based counters.
|
|
*/
|
|
perf_flags = hw_perf_save_disable();
|
|
list_del_counter(counter, ctx);
|
|
hw_perf_restore(perf_flags);
|
|
|
|
if (!ctx->task) {
|
|
/*
|
|
* Allow more per task counters with respect to the
|
|
* reservation:
|
|
*/
|
|
cpuctx->max_pertask =
|
|
min(perf_max_counters - ctx->nr_counters,
|
|
perf_max_counters - perf_reserved_percpu);
|
|
}
|
|
|
|
spin_unlock_irqrestore(&ctx->lock, flags);
|
|
}
|
|
|
|
|
|
/*
|
|
* Remove the counter from a task's (or a CPU's) list of counters.
|
|
*
|
|
* Must be called with counter->mutex and ctx->mutex held.
|
|
*
|
|
* CPU counters are removed with a smp call. For task counters we only
|
|
* call when the task is on a CPU.
|
|
*/
|
|
static void perf_counter_remove_from_context(struct perf_counter *counter)
|
|
{
|
|
struct perf_counter_context *ctx = counter->ctx;
|
|
struct task_struct *task = ctx->task;
|
|
|
|
if (!task) {
|
|
/*
|
|
* Per cpu counters are removed via an smp call and
|
|
* the removal is always sucessful.
|
|
*/
|
|
smp_call_function_single(counter->cpu,
|
|
__perf_counter_remove_from_context,
|
|
counter, 1);
|
|
return;
|
|
}
|
|
|
|
retry:
|
|
task_oncpu_function_call(task, __perf_counter_remove_from_context,
|
|
counter);
|
|
|
|
spin_lock_irq(&ctx->lock);
|
|
/*
|
|
* If the context is active we need to retry the smp call.
|
|
*/
|
|
if (ctx->nr_active && !list_empty(&counter->list_entry)) {
|
|
spin_unlock_irq(&ctx->lock);
|
|
goto retry;
|
|
}
|
|
|
|
/*
|
|
* The lock prevents that this context is scheduled in so we
|
|
* can remove the counter safely, if the call above did not
|
|
* succeed.
|
|
*/
|
|
if (!list_empty(&counter->list_entry)) {
|
|
ctx->nr_counters--;
|
|
list_del_counter(counter, ctx);
|
|
counter->task = NULL;
|
|
}
|
|
spin_unlock_irq(&ctx->lock);
|
|
}
|
|
|
|
static inline u64 perf_clock(void)
|
|
{
|
|
return cpu_clock(smp_processor_id());
|
|
}
|
|
|
|
/*
|
|
* Update the record of the current time in a context.
|
|
*/
|
|
static void update_context_time(struct perf_counter_context *ctx)
|
|
{
|
|
u64 now = perf_clock();
|
|
|
|
ctx->time += now - ctx->timestamp;
|
|
ctx->timestamp = now;
|
|
}
|
|
|
|
/*
|
|
* Update the total_time_enabled and total_time_running fields for a counter.
|
|
*/
|
|
static void update_counter_times(struct perf_counter *counter)
|
|
{
|
|
struct perf_counter_context *ctx = counter->ctx;
|
|
u64 run_end;
|
|
|
|
if (counter->state < PERF_COUNTER_STATE_INACTIVE)
|
|
return;
|
|
|
|
counter->total_time_enabled = ctx->time - counter->tstamp_enabled;
|
|
|
|
if (counter->state == PERF_COUNTER_STATE_INACTIVE)
|
|
run_end = counter->tstamp_stopped;
|
|
else
|
|
run_end = ctx->time;
|
|
|
|
counter->total_time_running = run_end - counter->tstamp_running;
|
|
}
|
|
|
|
/*
|
|
* Update total_time_enabled and total_time_running for all counters in a group.
|
|
*/
|
|
static void update_group_times(struct perf_counter *leader)
|
|
{
|
|
struct perf_counter *counter;
|
|
|
|
update_counter_times(leader);
|
|
list_for_each_entry(counter, &leader->sibling_list, list_entry)
|
|
update_counter_times(counter);
|
|
}
|
|
|
|
/*
|
|
* Cross CPU call to disable a performance counter
|
|
*/
|
|
static void __perf_counter_disable(void *info)
|
|
{
|
|
struct perf_counter *counter = info;
|
|
struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
|
|
struct perf_counter_context *ctx = counter->ctx;
|
|
unsigned long flags;
|
|
|
|
/*
|
|
* If this is a per-task counter, need to check whether this
|
|
* counter's task is the current task on this cpu.
|
|
*/
|
|
if (ctx->task && cpuctx->task_ctx != ctx)
|
|
return;
|
|
|
|
spin_lock_irqsave(&ctx->lock, flags);
|
|
|
|
/*
|
|
* If the counter is on, turn it off.
|
|
* If it is in error state, leave it in error state.
|
|
*/
|
|
if (counter->state >= PERF_COUNTER_STATE_INACTIVE) {
|
|
update_context_time(ctx);
|
|
update_counter_times(counter);
|
|
if (counter == counter->group_leader)
|
|
group_sched_out(counter, cpuctx, ctx);
|
|
else
|
|
counter_sched_out(counter, cpuctx, ctx);
|
|
counter->state = PERF_COUNTER_STATE_OFF;
|
|
}
|
|
|
|
spin_unlock_irqrestore(&ctx->lock, flags);
|
|
}
|
|
|
|
/*
|
|
* Disable a counter.
|
|
*/
|
|
static void perf_counter_disable(struct perf_counter *counter)
|
|
{
|
|
struct perf_counter_context *ctx = counter->ctx;
|
|
struct task_struct *task = ctx->task;
|
|
|
|
if (!task) {
|
|
/*
|
|
* Disable the counter on the cpu that it's on
|
|
*/
|
|
smp_call_function_single(counter->cpu, __perf_counter_disable,
|
|
counter, 1);
|
|
return;
|
|
}
|
|
|
|
retry:
|
|
task_oncpu_function_call(task, __perf_counter_disable, counter);
|
|
|
|
spin_lock_irq(&ctx->lock);
|
|
/*
|
|
* If the counter is still active, we need to retry the cross-call.
|
|
*/
|
|
if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
|
|
spin_unlock_irq(&ctx->lock);
|
|
goto retry;
|
|
}
|
|
|
|
/*
|
|
* Since we have the lock this context can't be scheduled
|
|
* in, so we can change the state safely.
|
|
*/
|
|
if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
|
|
update_counter_times(counter);
|
|
counter->state = PERF_COUNTER_STATE_OFF;
|
|
}
|
|
|
|
spin_unlock_irq(&ctx->lock);
|
|
}
|
|
|
|
static int
|
|
counter_sched_in(struct perf_counter *counter,
|
|
struct perf_cpu_context *cpuctx,
|
|
struct perf_counter_context *ctx,
|
|
int cpu)
|
|
{
|
|
if (counter->state <= PERF_COUNTER_STATE_OFF)
|
|
return 0;
|
|
|
|
counter->state = PERF_COUNTER_STATE_ACTIVE;
|
|
counter->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
|
|
/*
|
|
* The new state must be visible before we turn it on in the hardware:
|
|
*/
|
|
smp_wmb();
|
|
|
|
if (counter->pmu->enable(counter)) {
|
|
counter->state = PERF_COUNTER_STATE_INACTIVE;
|
|
counter->oncpu = -1;
|
|
return -EAGAIN;
|
|
}
|
|
|
|
counter->tstamp_running += ctx->time - counter->tstamp_stopped;
|
|
|
|
if (!is_software_counter(counter))
|
|
cpuctx->active_oncpu++;
|
|
ctx->nr_active++;
|
|
|
|
if (counter->hw_event.exclusive)
|
|
cpuctx->exclusive = 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Return 1 for a group consisting entirely of software counters,
|
|
* 0 if the group contains any hardware counters.
|
|
*/
|
|
static int is_software_only_group(struct perf_counter *leader)
|
|
{
|
|
struct perf_counter *counter;
|
|
|
|
if (!is_software_counter(leader))
|
|
return 0;
|
|
|
|
list_for_each_entry(counter, &leader->sibling_list, list_entry)
|
|
if (!is_software_counter(counter))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Work out whether we can put this counter group on the CPU now.
|
|
*/
|
|
static int group_can_go_on(struct perf_counter *counter,
|
|
struct perf_cpu_context *cpuctx,
|
|
int can_add_hw)
|
|
{
|
|
/*
|
|
* Groups consisting entirely of software counters can always go on.
|
|
*/
|
|
if (is_software_only_group(counter))
|
|
return 1;
|
|
/*
|
|
* If an exclusive group is already on, no other hardware
|
|
* counters can go on.
|
|
*/
|
|
if (cpuctx->exclusive)
|
|
return 0;
|
|
/*
|
|
* If this group is exclusive and there are already
|
|
* counters on the CPU, it can't go on.
|
|
*/
|
|
if (counter->hw_event.exclusive && cpuctx->active_oncpu)
|
|
return 0;
|
|
/*
|
|
* Otherwise, try to add it if all previous groups were able
|
|
* to go on.
|
|
*/
|
|
return can_add_hw;
|
|
}
|
|
|
|
static void add_counter_to_ctx(struct perf_counter *counter,
|
|
struct perf_counter_context *ctx)
|
|
{
|
|
list_add_counter(counter, ctx);
|
|
ctx->nr_counters++;
|
|
counter->prev_state = PERF_COUNTER_STATE_OFF;
|
|
counter->tstamp_enabled = ctx->time;
|
|
counter->tstamp_running = ctx->time;
|
|
counter->tstamp_stopped = ctx->time;
|
|
}
|
|
|
|
/*
|
|
* Cross CPU call to install and enable a performance counter
|
|
*/
|
|
static void __perf_install_in_context(void *info)
|
|
{
|
|
struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
|
|
struct perf_counter *counter = info;
|
|
struct perf_counter_context *ctx = counter->ctx;
|
|
struct perf_counter *leader = counter->group_leader;
|
|
int cpu = smp_processor_id();
|
|
unsigned long flags;
|
|
u64 perf_flags;
|
|
int err;
|
|
|
|
/*
|
|
* If this is a task context, we need to check whether it is
|
|
* the current task context of this cpu. If not it has been
|
|
* scheduled out before the smp call arrived.
|
|
*/
|
|
if (ctx->task && cpuctx->task_ctx != ctx)
|
|
return;
|
|
|
|
spin_lock_irqsave(&ctx->lock, flags);
|
|
update_context_time(ctx);
|
|
|
|
/*
|
|
* Protect the list operation against NMI by disabling the
|
|
* counters on a global level. NOP for non NMI based counters.
|
|
*/
|
|
perf_flags = hw_perf_save_disable();
|
|
|
|
add_counter_to_ctx(counter, ctx);
|
|
|
|
/*
|
|
* Don't put the counter on if it is disabled or if
|
|
* it is in a group and the group isn't on.
|
|
*/
|
|
if (counter->state != PERF_COUNTER_STATE_INACTIVE ||
|
|
(leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE))
|
|
goto unlock;
|
|
|
|
/*
|
|
* An exclusive counter can't go on if there are already active
|
|
* hardware counters, and no hardware counter can go on if there
|
|
* is already an exclusive counter on.
|
|
*/
|
|
if (!group_can_go_on(counter, cpuctx, 1))
|
|
err = -EEXIST;
|
|
else
|
|
err = counter_sched_in(counter, cpuctx, ctx, cpu);
|
|
|
|
if (err) {
|
|
/*
|
|
* This counter couldn't go on. If it is in a group
|
|
* then we have to pull the whole group off.
|
|
* If the counter group is pinned then put it in error state.
|
|
*/
|
|
if (leader != counter)
|
|
group_sched_out(leader, cpuctx, ctx);
|
|
if (leader->hw_event.pinned) {
|
|
update_group_times(leader);
|
|
leader->state = PERF_COUNTER_STATE_ERROR;
|
|
}
|
|
}
|
|
|
|
if (!err && !ctx->task && cpuctx->max_pertask)
|
|
cpuctx->max_pertask--;
|
|
|
|
unlock:
|
|
hw_perf_restore(perf_flags);
|
|
|
|
spin_unlock_irqrestore(&ctx->lock, flags);
|
|
}
|
|
|
|
/*
|
|
* Attach a performance counter to a context
|
|
*
|
|
* First we add the counter to the list with the hardware enable bit
|
|
* in counter->hw_config cleared.
|
|
*
|
|
* If the counter is attached to a task which is on a CPU we use a smp
|
|
* call to enable it in the task context. The task might have been
|
|
* scheduled away, but we check this in the smp call again.
|
|
*
|
|
* Must be called with ctx->mutex held.
|
|
*/
|
|
static void
|
|
perf_install_in_context(struct perf_counter_context *ctx,
|
|
struct perf_counter *counter,
|
|
int cpu)
|
|
{
|
|
struct task_struct *task = ctx->task;
|
|
|
|
if (!task) {
|
|
/*
|
|
* Per cpu counters are installed via an smp call and
|
|
* the install is always sucessful.
|
|
*/
|
|
smp_call_function_single(cpu, __perf_install_in_context,
|
|
counter, 1);
|
|
return;
|
|
}
|
|
|
|
counter->task = task;
|
|
retry:
|
|
task_oncpu_function_call(task, __perf_install_in_context,
|
|
counter);
|
|
|
|
spin_lock_irq(&ctx->lock);
|
|
/*
|
|
* we need to retry the smp call.
|
|
*/
|
|
if (ctx->is_active && list_empty(&counter->list_entry)) {
|
|
spin_unlock_irq(&ctx->lock);
|
|
goto retry;
|
|
}
|
|
|
|
/*
|
|
* The lock prevents that this context is scheduled in so we
|
|
* can add the counter safely, if it the call above did not
|
|
* succeed.
|
|
*/
|
|
if (list_empty(&counter->list_entry))
|
|
add_counter_to_ctx(counter, ctx);
|
|
spin_unlock_irq(&ctx->lock);
|
|
}
|
|
|
|
/*
|
|
* Cross CPU call to enable a performance counter
|
|
*/
|
|
static void __perf_counter_enable(void *info)
|
|
{
|
|
struct perf_counter *counter = info;
|
|
struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
|
|
struct perf_counter_context *ctx = counter->ctx;
|
|
struct perf_counter *leader = counter->group_leader;
|
|
unsigned long flags;
|
|
int err;
|
|
|
|
/*
|
|
* If this is a per-task counter, need to check whether this
|
|
* counter's task is the current task on this cpu.
|
|
*/
|
|
if (ctx->task && cpuctx->task_ctx != ctx)
|
|
return;
|
|
|
|
spin_lock_irqsave(&ctx->lock, flags);
|
|
update_context_time(ctx);
|
|
|
|
counter->prev_state = counter->state;
|
|
if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
|
|
goto unlock;
|
|
counter->state = PERF_COUNTER_STATE_INACTIVE;
|
|
counter->tstamp_enabled = ctx->time - counter->total_time_enabled;
|
|
|
|
/*
|
|
* If the counter is in a group and isn't the group leader,
|
|
* then don't put it on unless the group is on.
|
|
*/
|
|
if (leader != counter && leader->state != PERF_COUNTER_STATE_ACTIVE)
|
|
goto unlock;
|
|
|
|
if (!group_can_go_on(counter, cpuctx, 1))
|
|
err = -EEXIST;
|
|
else
|
|
err = counter_sched_in(counter, cpuctx, ctx,
|
|
smp_processor_id());
|
|
|
|
if (err) {
|
|
/*
|
|
* If this counter can't go on and it's part of a
|
|
* group, then the whole group has to come off.
|
|
*/
|
|
if (leader != counter)
|
|
group_sched_out(leader, cpuctx, ctx);
|
|
if (leader->hw_event.pinned) {
|
|
update_group_times(leader);
|
|
leader->state = PERF_COUNTER_STATE_ERROR;
|
|
}
|
|
}
|
|
|
|
unlock:
|
|
spin_unlock_irqrestore(&ctx->lock, flags);
|
|
}
|
|
|
|
/*
|
|
* Enable a counter.
|
|
*/
|
|
static void perf_counter_enable(struct perf_counter *counter)
|
|
{
|
|
struct perf_counter_context *ctx = counter->ctx;
|
|
struct task_struct *task = ctx->task;
|
|
|
|
if (!task) {
|
|
/*
|
|
* Enable the counter on the cpu that it's on
|
|
*/
|
|
smp_call_function_single(counter->cpu, __perf_counter_enable,
|
|
counter, 1);
|
|
return;
|
|
}
|
|
|
|
spin_lock_irq(&ctx->lock);
|
|
if (counter->state >= PERF_COUNTER_STATE_INACTIVE)
|
|
goto out;
|
|
|
|
/*
|
|
* If the counter is in error state, clear that first.
|
|
* That way, if we see the counter in error state below, we
|
|
* know that it has gone back into error state, as distinct
|
|
* from the task having been scheduled away before the
|
|
* cross-call arrived.
|
|
*/
|
|
if (counter->state == PERF_COUNTER_STATE_ERROR)
|
|
counter->state = PERF_COUNTER_STATE_OFF;
|
|
|
|
retry:
|
|
spin_unlock_irq(&ctx->lock);
|
|
task_oncpu_function_call(task, __perf_counter_enable, counter);
|
|
|
|
spin_lock_irq(&ctx->lock);
|
|
|
|
/*
|
|
* If the context is active and the counter is still off,
|
|
* we need to retry the cross-call.
|
|
*/
|
|
if (ctx->is_active && counter->state == PERF_COUNTER_STATE_OFF)
|
|
goto retry;
|
|
|
|
/*
|
|
* Since we have the lock this context can't be scheduled
|
|
* in, so we can change the state safely.
|
|
*/
|
|
if (counter->state == PERF_COUNTER_STATE_OFF) {
|
|
counter->state = PERF_COUNTER_STATE_INACTIVE;
|
|
counter->tstamp_enabled =
|
|
ctx->time - counter->total_time_enabled;
|
|
}
|
|
out:
|
|
spin_unlock_irq(&ctx->lock);
|
|
}
|
|
|
|
static int perf_counter_refresh(struct perf_counter *counter, int refresh)
|
|
{
|
|
/*
|
|
* not supported on inherited counters
|
|
*/
|
|
if (counter->hw_event.inherit)
|
|
return -EINVAL;
|
|
|
|
atomic_add(refresh, &counter->event_limit);
|
|
perf_counter_enable(counter);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void __perf_counter_sched_out(struct perf_counter_context *ctx,
|
|
struct perf_cpu_context *cpuctx)
|
|
{
|
|
struct perf_counter *counter;
|
|
u64 flags;
|
|
|
|
spin_lock(&ctx->lock);
|
|
ctx->is_active = 0;
|
|
if (likely(!ctx->nr_counters))
|
|
goto out;
|
|
update_context_time(ctx);
|
|
|
|
flags = hw_perf_save_disable();
|
|
if (ctx->nr_active) {
|
|
list_for_each_entry(counter, &ctx->counter_list, list_entry)
|
|
group_sched_out(counter, cpuctx, ctx);
|
|
}
|
|
hw_perf_restore(flags);
|
|
out:
|
|
spin_unlock(&ctx->lock);
|
|
}
|
|
|
|
/*
|
|
* Called from scheduler to remove the counters of the current task,
|
|
* with interrupts disabled.
|
|
*
|
|
* We stop each counter and update the counter value in counter->count.
|
|
*
|
|
* This does not protect us against NMI, but disable()
|
|
* sets the disabled bit in the control field of counter _before_
|
|
* accessing the counter control register. If a NMI hits, then it will
|
|
* not restart the counter.
|
|
*/
|
|
void perf_counter_task_sched_out(struct task_struct *task, int cpu)
|
|
{
|
|
struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
|
|
struct perf_counter_context *ctx = &task->perf_counter_ctx;
|
|
struct pt_regs *regs;
|
|
|
|
if (likely(!cpuctx->task_ctx))
|
|
return;
|
|
|
|
update_context_time(ctx);
|
|
|
|
regs = task_pt_regs(task);
|
|
perf_swcounter_event(PERF_COUNT_CONTEXT_SWITCHES, 1, 1, regs, 0);
|
|
__perf_counter_sched_out(ctx, cpuctx);
|
|
|
|
cpuctx->task_ctx = NULL;
|
|
}
|
|
|
|
static void perf_counter_cpu_sched_out(struct perf_cpu_context *cpuctx)
|
|
{
|
|
__perf_counter_sched_out(&cpuctx->ctx, cpuctx);
|
|
}
|
|
|
|
static int
|
|
group_sched_in(struct perf_counter *group_counter,
|
|
struct perf_cpu_context *cpuctx,
|
|
struct perf_counter_context *ctx,
|
|
int cpu)
|
|
{
|
|
struct perf_counter *counter, *partial_group;
|
|
int ret;
|
|
|
|
if (group_counter->state == PERF_COUNTER_STATE_OFF)
|
|
return 0;
|
|
|
|
ret = hw_perf_group_sched_in(group_counter, cpuctx, ctx, cpu);
|
|
if (ret)
|
|
return ret < 0 ? ret : 0;
|
|
|
|
group_counter->prev_state = group_counter->state;
|
|
if (counter_sched_in(group_counter, cpuctx, ctx, cpu))
|
|
return -EAGAIN;
|
|
|
|
/*
|
|
* Schedule in siblings as one group (if any):
|
|
*/
|
|
list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
|
|
counter->prev_state = counter->state;
|
|
if (counter_sched_in(counter, cpuctx, ctx, cpu)) {
|
|
partial_group = counter;
|
|
goto group_error;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
group_error:
|
|
/*
|
|
* Groups can be scheduled in as one unit only, so undo any
|
|
* partial group before returning:
|
|
*/
|
|
list_for_each_entry(counter, &group_counter->sibling_list, list_entry) {
|
|
if (counter == partial_group)
|
|
break;
|
|
counter_sched_out(counter, cpuctx, ctx);
|
|
}
|
|
counter_sched_out(group_counter, cpuctx, ctx);
|
|
|
|
return -EAGAIN;
|
|
}
|
|
|
|
static void
|
|
__perf_counter_sched_in(struct perf_counter_context *ctx,
|
|
struct perf_cpu_context *cpuctx, int cpu)
|
|
{
|
|
struct perf_counter *counter;
|
|
u64 flags;
|
|
int can_add_hw = 1;
|
|
|
|
spin_lock(&ctx->lock);
|
|
ctx->is_active = 1;
|
|
if (likely(!ctx->nr_counters))
|
|
goto out;
|
|
|
|
ctx->timestamp = perf_clock();
|
|
|
|
flags = hw_perf_save_disable();
|
|
|
|
/*
|
|
* First go through the list and put on any pinned groups
|
|
* in order to give them the best chance of going on.
|
|
*/
|
|
list_for_each_entry(counter, &ctx->counter_list, list_entry) {
|
|
if (counter->state <= PERF_COUNTER_STATE_OFF ||
|
|
!counter->hw_event.pinned)
|
|
continue;
|
|
if (counter->cpu != -1 && counter->cpu != cpu)
|
|
continue;
|
|
|
|
if (group_can_go_on(counter, cpuctx, 1))
|
|
group_sched_in(counter, cpuctx, ctx, cpu);
|
|
|
|
/*
|
|
* If this pinned group hasn't been scheduled,
|
|
* put it in error state.
|
|
*/
|
|
if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
|
|
update_group_times(counter);
|
|
counter->state = PERF_COUNTER_STATE_ERROR;
|
|
}
|
|
}
|
|
|
|
list_for_each_entry(counter, &ctx->counter_list, list_entry) {
|
|
/*
|
|
* Ignore counters in OFF or ERROR state, and
|
|
* ignore pinned counters since we did them already.
|
|
*/
|
|
if (counter->state <= PERF_COUNTER_STATE_OFF ||
|
|
counter->hw_event.pinned)
|
|
continue;
|
|
|
|
/*
|
|
* Listen to the 'cpu' scheduling filter constraint
|
|
* of counters:
|
|
*/
|
|
if (counter->cpu != -1 && counter->cpu != cpu)
|
|
continue;
|
|
|
|
if (group_can_go_on(counter, cpuctx, can_add_hw)) {
|
|
if (group_sched_in(counter, cpuctx, ctx, cpu))
|
|
can_add_hw = 0;
|
|
}
|
|
}
|
|
hw_perf_restore(flags);
|
|
out:
|
|
spin_unlock(&ctx->lock);
|
|
}
|
|
|
|
/*
|
|
* Called from scheduler to add the counters of the current task
|
|
* with interrupts disabled.
|
|
*
|
|
* We restore the counter value and then enable it.
|
|
*
|
|
* This does not protect us against NMI, but enable()
|
|
* sets the enabled bit in the control field of counter _before_
|
|
* accessing the counter control register. If a NMI hits, then it will
|
|
* keep the counter running.
|
|
*/
|
|
void perf_counter_task_sched_in(struct task_struct *task, int cpu)
|
|
{
|
|
struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
|
|
struct perf_counter_context *ctx = &task->perf_counter_ctx;
|
|
|
|
__perf_counter_sched_in(ctx, cpuctx, cpu);
|
|
cpuctx->task_ctx = ctx;
|
|
}
|
|
|
|
static void perf_counter_cpu_sched_in(struct perf_cpu_context *cpuctx, int cpu)
|
|
{
|
|
struct perf_counter_context *ctx = &cpuctx->ctx;
|
|
|
|
__perf_counter_sched_in(ctx, cpuctx, cpu);
|
|
}
|
|
|
|
int perf_counter_task_disable(void)
|
|
{
|
|
struct task_struct *curr = current;
|
|
struct perf_counter_context *ctx = &curr->perf_counter_ctx;
|
|
struct perf_counter *counter;
|
|
unsigned long flags;
|
|
u64 perf_flags;
|
|
int cpu;
|
|
|
|
if (likely(!ctx->nr_counters))
|
|
return 0;
|
|
|
|
local_irq_save(flags);
|
|
cpu = smp_processor_id();
|
|
|
|
perf_counter_task_sched_out(curr, cpu);
|
|
|
|
spin_lock(&ctx->lock);
|
|
|
|
/*
|
|
* Disable all the counters:
|
|
*/
|
|
perf_flags = hw_perf_save_disable();
|
|
|
|
list_for_each_entry(counter, &ctx->counter_list, list_entry) {
|
|
if (counter->state != PERF_COUNTER_STATE_ERROR) {
|
|
update_group_times(counter);
|
|
counter->state = PERF_COUNTER_STATE_OFF;
|
|
}
|
|
}
|
|
|
|
hw_perf_restore(perf_flags);
|
|
|
|
spin_unlock_irqrestore(&ctx->lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int perf_counter_task_enable(void)
|
|
{
|
|
struct task_struct *curr = current;
|
|
struct perf_counter_context *ctx = &curr->perf_counter_ctx;
|
|
struct perf_counter *counter;
|
|
unsigned long flags;
|
|
u64 perf_flags;
|
|
int cpu;
|
|
|
|
if (likely(!ctx->nr_counters))
|
|
return 0;
|
|
|
|
local_irq_save(flags);
|
|
cpu = smp_processor_id();
|
|
|
|
perf_counter_task_sched_out(curr, cpu);
|
|
|
|
spin_lock(&ctx->lock);
|
|
|
|
/*
|
|
* Disable all the counters:
|
|
*/
|
|
perf_flags = hw_perf_save_disable();
|
|
|
|
list_for_each_entry(counter, &ctx->counter_list, list_entry) {
|
|
if (counter->state > PERF_COUNTER_STATE_OFF)
|
|
continue;
|
|
counter->state = PERF_COUNTER_STATE_INACTIVE;
|
|
counter->tstamp_enabled =
|
|
ctx->time - counter->total_time_enabled;
|
|
counter->hw_event.disabled = 0;
|
|
}
|
|
hw_perf_restore(perf_flags);
|
|
|
|
spin_unlock(&ctx->lock);
|
|
|
|
perf_counter_task_sched_in(curr, cpu);
|
|
|
|
local_irq_restore(flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Round-robin a context's counters:
|
|
*/
|
|
static void rotate_ctx(struct perf_counter_context *ctx)
|
|
{
|
|
struct perf_counter *counter;
|
|
u64 perf_flags;
|
|
|
|
if (!ctx->nr_counters)
|
|
return;
|
|
|
|
spin_lock(&ctx->lock);
|
|
/*
|
|
* Rotate the first entry last (works just fine for group counters too):
|
|
*/
|
|
perf_flags = hw_perf_save_disable();
|
|
list_for_each_entry(counter, &ctx->counter_list, list_entry) {
|
|
list_move_tail(&counter->list_entry, &ctx->counter_list);
|
|
break;
|
|
}
|
|
hw_perf_restore(perf_flags);
|
|
|
|
spin_unlock(&ctx->lock);
|
|
}
|
|
|
|
void perf_counter_task_tick(struct task_struct *curr, int cpu)
|
|
{
|
|
struct perf_cpu_context *cpuctx;
|
|
struct perf_counter_context *ctx;
|
|
|
|
if (!atomic_read(&nr_counters))
|
|
return;
|
|
|
|
cpuctx = &per_cpu(perf_cpu_context, cpu);
|
|
ctx = &curr->perf_counter_ctx;
|
|
|
|
perf_counter_cpu_sched_out(cpuctx);
|
|
perf_counter_task_sched_out(curr, cpu);
|
|
|
|
rotate_ctx(&cpuctx->ctx);
|
|
rotate_ctx(ctx);
|
|
|
|
perf_counter_cpu_sched_in(cpuctx, cpu);
|
|
perf_counter_task_sched_in(curr, cpu);
|
|
}
|
|
|
|
/*
|
|
* Cross CPU call to read the hardware counter
|
|
*/
|
|
static void __read(void *info)
|
|
{
|
|
struct perf_counter *counter = info;
|
|
struct perf_counter_context *ctx = counter->ctx;
|
|
unsigned long flags;
|
|
|
|
local_irq_save(flags);
|
|
if (ctx->is_active)
|
|
update_context_time(ctx);
|
|
counter->pmu->read(counter);
|
|
update_counter_times(counter);
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
static u64 perf_counter_read(struct perf_counter *counter)
|
|
{
|
|
/*
|
|
* If counter is enabled and currently active on a CPU, update the
|
|
* value in the counter structure:
|
|
*/
|
|
if (counter->state == PERF_COUNTER_STATE_ACTIVE) {
|
|
smp_call_function_single(counter->oncpu,
|
|
__read, counter, 1);
|
|
} else if (counter->state == PERF_COUNTER_STATE_INACTIVE) {
|
|
update_counter_times(counter);
|
|
}
|
|
|
|
return atomic64_read(&counter->count);
|
|
}
|
|
|
|
static void put_context(struct perf_counter_context *ctx)
|
|
{
|
|
if (ctx->task)
|
|
put_task_struct(ctx->task);
|
|
}
|
|
|
|
static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
|
|
{
|
|
struct perf_cpu_context *cpuctx;
|
|
struct perf_counter_context *ctx;
|
|
struct task_struct *task;
|
|
|
|
/*
|
|
* If cpu is not a wildcard then this is a percpu counter:
|
|
*/
|
|
if (cpu != -1) {
|
|
/* Must be root to operate on a CPU counter: */
|
|
if (sysctl_perf_counter_priv && !capable(CAP_SYS_ADMIN))
|
|
return ERR_PTR(-EACCES);
|
|
|
|
if (cpu < 0 || cpu > num_possible_cpus())
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
/*
|
|
* We could be clever and allow to attach a counter to an
|
|
* offline CPU and activate it when the CPU comes up, but
|
|
* that's for later.
|
|
*/
|
|
if (!cpu_isset(cpu, cpu_online_map))
|
|
return ERR_PTR(-ENODEV);
|
|
|
|
cpuctx = &per_cpu(perf_cpu_context, cpu);
|
|
ctx = &cpuctx->ctx;
|
|
|
|
return ctx;
|
|
}
|
|
|
|
rcu_read_lock();
|
|
if (!pid)
|
|
task = current;
|
|
else
|
|
task = find_task_by_vpid(pid);
|
|
if (task)
|
|
get_task_struct(task);
|
|
rcu_read_unlock();
|
|
|
|
if (!task)
|
|
return ERR_PTR(-ESRCH);
|
|
|
|
ctx = &task->perf_counter_ctx;
|
|
ctx->task = task;
|
|
|
|
/* Reuse ptrace permission checks for now. */
|
|
if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
|
|
put_context(ctx);
|
|
return ERR_PTR(-EACCES);
|
|
}
|
|
|
|
return ctx;
|
|
}
|
|
|
|
static void free_counter_rcu(struct rcu_head *head)
|
|
{
|
|
struct perf_counter *counter;
|
|
|
|
counter = container_of(head, struct perf_counter, rcu_head);
|
|
kfree(counter);
|
|
}
|
|
|
|
static void perf_pending_sync(struct perf_counter *counter);
|
|
|
|
static void free_counter(struct perf_counter *counter)
|
|
{
|
|
perf_pending_sync(counter);
|
|
|
|
atomic_dec(&nr_counters);
|
|
if (counter->hw_event.mmap)
|
|
atomic_dec(&nr_mmap_tracking);
|
|
if (counter->hw_event.munmap)
|
|
atomic_dec(&nr_munmap_tracking);
|
|
if (counter->hw_event.comm)
|
|
atomic_dec(&nr_comm_tracking);
|
|
|
|
if (counter->destroy)
|
|
counter->destroy(counter);
|
|
|
|
call_rcu(&counter->rcu_head, free_counter_rcu);
|
|
}
|
|
|
|
/*
|
|
* Called when the last reference to the file is gone.
|
|
*/
|
|
static int perf_release(struct inode *inode, struct file *file)
|
|
{
|
|
struct perf_counter *counter = file->private_data;
|
|
struct perf_counter_context *ctx = counter->ctx;
|
|
|
|
file->private_data = NULL;
|
|
|
|
mutex_lock(&ctx->mutex);
|
|
mutex_lock(&counter->mutex);
|
|
|
|
perf_counter_remove_from_context(counter);
|
|
|
|
mutex_unlock(&counter->mutex);
|
|
mutex_unlock(&ctx->mutex);
|
|
|
|
free_counter(counter);
|
|
put_context(ctx);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Read the performance counter - simple non blocking version for now
|
|
*/
|
|
static ssize_t
|
|
perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
|
|
{
|
|
u64 values[3];
|
|
int n;
|
|
|
|
/*
|
|
* Return end-of-file for a read on a counter that is in
|
|
* error state (i.e. because it was pinned but it couldn't be
|
|
* scheduled on to the CPU at some point).
|
|
*/
|
|
if (counter->state == PERF_COUNTER_STATE_ERROR)
|
|
return 0;
|
|
|
|
mutex_lock(&counter->mutex);
|
|
values[0] = perf_counter_read(counter);
|
|
n = 1;
|
|
if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
|
|
values[n++] = counter->total_time_enabled +
|
|
atomic64_read(&counter->child_total_time_enabled);
|
|
if (counter->hw_event.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
|
|
values[n++] = counter->total_time_running +
|
|
atomic64_read(&counter->child_total_time_running);
|
|
mutex_unlock(&counter->mutex);
|
|
|
|
if (count < n * sizeof(u64))
|
|
return -EINVAL;
|
|
count = n * sizeof(u64);
|
|
|
|
if (copy_to_user(buf, values, count))
|
|
return -EFAULT;
|
|
|
|
return count;
|
|
}
|
|
|
|
static ssize_t
|
|
perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
|
|
{
|
|
struct perf_counter *counter = file->private_data;
|
|
|
|
return perf_read_hw(counter, buf, count);
|
|
}
|
|
|
|
static unsigned int perf_poll(struct file *file, poll_table *wait)
|
|
{
|
|
struct perf_counter *counter = file->private_data;
|
|
struct perf_mmap_data *data;
|
|
unsigned int events = POLL_HUP;
|
|
|
|
rcu_read_lock();
|
|
data = rcu_dereference(counter->data);
|
|
if (data)
|
|
events = atomic_xchg(&data->poll, 0);
|
|
rcu_read_unlock();
|
|
|
|
poll_wait(file, &counter->waitq, wait);
|
|
|
|
return events;
|
|
}
|
|
|
|
static void perf_counter_reset(struct perf_counter *counter)
|
|
{
|
|
(void)perf_counter_read(counter);
|
|
atomic_set(&counter->count, 0);
|
|
perf_counter_update_userpage(counter);
|
|
}
|
|
|
|
static void perf_counter_for_each_sibling(struct perf_counter *counter,
|
|
void (*func)(struct perf_counter *))
|
|
{
|
|
struct perf_counter_context *ctx = counter->ctx;
|
|
struct perf_counter *sibling;
|
|
|
|
spin_lock_irq(&ctx->lock);
|
|
counter = counter->group_leader;
|
|
|
|
func(counter);
|
|
list_for_each_entry(sibling, &counter->sibling_list, list_entry)
|
|
func(sibling);
|
|
spin_unlock_irq(&ctx->lock);
|
|
}
|
|
|
|
static void perf_counter_for_each_child(struct perf_counter *counter,
|
|
void (*func)(struct perf_counter *))
|
|
{
|
|
struct perf_counter *child;
|
|
|
|
mutex_lock(&counter->mutex);
|
|
func(counter);
|
|
list_for_each_entry(child, &counter->child_list, child_list)
|
|
func(child);
|
|
mutex_unlock(&counter->mutex);
|
|
}
|
|
|
|
static void perf_counter_for_each(struct perf_counter *counter,
|
|
void (*func)(struct perf_counter *))
|
|
{
|
|
struct perf_counter *child;
|
|
|
|
mutex_lock(&counter->mutex);
|
|
perf_counter_for_each_sibling(counter, func);
|
|
list_for_each_entry(child, &counter->child_list, child_list)
|
|
perf_counter_for_each_sibling(child, func);
|
|
mutex_unlock(&counter->mutex);
|
|
}
|
|
|
|
static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
|
|
{
|
|
struct perf_counter *counter = file->private_data;
|
|
void (*func)(struct perf_counter *);
|
|
u32 flags = arg;
|
|
|
|
switch (cmd) {
|
|
case PERF_COUNTER_IOC_ENABLE:
|
|
func = perf_counter_enable;
|
|
break;
|
|
case PERF_COUNTER_IOC_DISABLE:
|
|
func = perf_counter_disable;
|
|
break;
|
|
case PERF_COUNTER_IOC_RESET:
|
|
func = perf_counter_reset;
|
|
break;
|
|
|
|
case PERF_COUNTER_IOC_REFRESH:
|
|
return perf_counter_refresh(counter, arg);
|
|
default:
|
|
return -ENOTTY;
|
|
}
|
|
|
|
if (flags & PERF_IOC_FLAG_GROUP)
|
|
perf_counter_for_each(counter, func);
|
|
else
|
|
perf_counter_for_each_child(counter, func);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Callers need to ensure there can be no nesting of this function, otherwise
|
|
* the seqlock logic goes bad. We can not serialize this because the arch
|
|
* code calls this from NMI context.
|
|
*/
|
|
void perf_counter_update_userpage(struct perf_counter *counter)
|
|
{
|
|
struct perf_mmap_data *data;
|
|
struct perf_counter_mmap_page *userpg;
|
|
|
|
rcu_read_lock();
|
|
data = rcu_dereference(counter->data);
|
|
if (!data)
|
|
goto unlock;
|
|
|
|
userpg = data->user_page;
|
|
|
|
/*
|
|
* Disable preemption so as to not let the corresponding user-space
|
|
* spin too long if we get preempted.
|
|
*/
|
|
preempt_disable();
|
|
++userpg->lock;
|
|
barrier();
|
|
userpg->index = counter->hw.idx;
|
|
userpg->offset = atomic64_read(&counter->count);
|
|
if (counter->state == PERF_COUNTER_STATE_ACTIVE)
|
|
userpg->offset -= atomic64_read(&counter->hw.prev_count);
|
|
|
|
barrier();
|
|
++userpg->lock;
|
|
preempt_enable();
|
|
unlock:
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
|
|
{
|
|
struct perf_counter *counter = vma->vm_file->private_data;
|
|
struct perf_mmap_data *data;
|
|
int ret = VM_FAULT_SIGBUS;
|
|
|
|
rcu_read_lock();
|
|
data = rcu_dereference(counter->data);
|
|
if (!data)
|
|
goto unlock;
|
|
|
|
if (vmf->pgoff == 0) {
|
|
vmf->page = virt_to_page(data->user_page);
|
|
} else {
|
|
int nr = vmf->pgoff - 1;
|
|
|
|
if ((unsigned)nr > data->nr_pages)
|
|
goto unlock;
|
|
|
|
vmf->page = virt_to_page(data->data_pages[nr]);
|
|
}
|
|
get_page(vmf->page);
|
|
ret = 0;
|
|
unlock:
|
|
rcu_read_unlock();
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int perf_mmap_data_alloc(struct perf_counter *counter, int nr_pages)
|
|
{
|
|
struct perf_mmap_data *data;
|
|
unsigned long size;
|
|
int i;
|
|
|
|
WARN_ON(atomic_read(&counter->mmap_count));
|
|
|
|
size = sizeof(struct perf_mmap_data);
|
|
size += nr_pages * sizeof(void *);
|
|
|
|
data = kzalloc(size, GFP_KERNEL);
|
|
if (!data)
|
|
goto fail;
|
|
|
|
data->user_page = (void *)get_zeroed_page(GFP_KERNEL);
|
|
if (!data->user_page)
|
|
goto fail_user_page;
|
|
|
|
for (i = 0; i < nr_pages; i++) {
|
|
data->data_pages[i] = (void *)get_zeroed_page(GFP_KERNEL);
|
|
if (!data->data_pages[i])
|
|
goto fail_data_pages;
|
|
}
|
|
|
|
data->nr_pages = nr_pages;
|
|
atomic_set(&data->lock, -1);
|
|
|
|
rcu_assign_pointer(counter->data, data);
|
|
|
|
return 0;
|
|
|
|
fail_data_pages:
|
|
for (i--; i >= 0; i--)
|
|
free_page((unsigned long)data->data_pages[i]);
|
|
|
|
free_page((unsigned long)data->user_page);
|
|
|
|
fail_user_page:
|
|
kfree(data);
|
|
|
|
fail:
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static void __perf_mmap_data_free(struct rcu_head *rcu_head)
|
|
{
|
|
struct perf_mmap_data *data = container_of(rcu_head,
|
|
struct perf_mmap_data, rcu_head);
|
|
int i;
|
|
|
|
free_page((unsigned long)data->user_page);
|
|
for (i = 0; i < data->nr_pages; i++)
|
|
free_page((unsigned long)data->data_pages[i]);
|
|
kfree(data);
|
|
}
|
|
|
|
static void perf_mmap_data_free(struct perf_counter *counter)
|
|
{
|
|
struct perf_mmap_data *data = counter->data;
|
|
|
|
WARN_ON(atomic_read(&counter->mmap_count));
|
|
|
|
rcu_assign_pointer(counter->data, NULL);
|
|
call_rcu(&data->rcu_head, __perf_mmap_data_free);
|
|
}
|
|
|
|
static void perf_mmap_open(struct vm_area_struct *vma)
|
|
{
|
|
struct perf_counter *counter = vma->vm_file->private_data;
|
|
|
|
atomic_inc(&counter->mmap_count);
|
|
}
|
|
|
|
static void perf_mmap_close(struct vm_area_struct *vma)
|
|
{
|
|
struct perf_counter *counter = vma->vm_file->private_data;
|
|
|
|
if (atomic_dec_and_mutex_lock(&counter->mmap_count,
|
|
&counter->mmap_mutex)) {
|
|
vma->vm_mm->locked_vm -= counter->data->nr_locked;
|
|
perf_mmap_data_free(counter);
|
|
mutex_unlock(&counter->mmap_mutex);
|
|
}
|
|
}
|
|
|
|
static struct vm_operations_struct perf_mmap_vmops = {
|
|
.open = perf_mmap_open,
|
|
.close = perf_mmap_close,
|
|
.fault = perf_mmap_fault,
|
|
};
|
|
|
|
static int perf_mmap(struct file *file, struct vm_area_struct *vma)
|
|
{
|
|
struct perf_counter *counter = file->private_data;
|
|
unsigned long vma_size;
|
|
unsigned long nr_pages;
|
|
unsigned long locked, lock_limit;
|
|
int ret = 0;
|
|
long extra;
|
|
|
|
if (!(vma->vm_flags & VM_SHARED) || (vma->vm_flags & VM_WRITE))
|
|
return -EINVAL;
|
|
|
|
vma_size = vma->vm_end - vma->vm_start;
|
|
nr_pages = (vma_size / PAGE_SIZE) - 1;
|
|
|
|
/*
|
|
* If we have data pages ensure they're a power-of-two number, so we
|
|
* can do bitmasks instead of modulo.
|
|
*/
|
|
if (nr_pages != 0 && !is_power_of_2(nr_pages))
|
|
return -EINVAL;
|
|
|
|
if (vma_size != PAGE_SIZE * (1 + nr_pages))
|
|
return -EINVAL;
|
|
|
|
if (vma->vm_pgoff != 0)
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&counter->mmap_mutex);
|
|
if (atomic_inc_not_zero(&counter->mmap_count)) {
|
|
if (nr_pages != counter->data->nr_pages)
|
|
ret = -EINVAL;
|
|
goto unlock;
|
|
}
|
|
|
|
extra = nr_pages /* + 1 only account the data pages */;
|
|
extra -= sysctl_perf_counter_mlock >> (PAGE_SHIFT - 10);
|
|
if (extra < 0)
|
|
extra = 0;
|
|
|
|
locked = vma->vm_mm->locked_vm + extra;
|
|
|
|
lock_limit = current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur;
|
|
lock_limit >>= PAGE_SHIFT;
|
|
|
|
if ((locked > lock_limit) && !capable(CAP_IPC_LOCK)) {
|
|
ret = -EPERM;
|
|
goto unlock;
|
|
}
|
|
|
|
WARN_ON(counter->data);
|
|
ret = perf_mmap_data_alloc(counter, nr_pages);
|
|
if (ret)
|
|
goto unlock;
|
|
|
|
atomic_set(&counter->mmap_count, 1);
|
|
vma->vm_mm->locked_vm += extra;
|
|
counter->data->nr_locked = extra;
|
|
unlock:
|
|
mutex_unlock(&counter->mmap_mutex);
|
|
|
|
vma->vm_flags &= ~VM_MAYWRITE;
|
|
vma->vm_flags |= VM_RESERVED;
|
|
vma->vm_ops = &perf_mmap_vmops;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int perf_fasync(int fd, struct file *filp, int on)
|
|
{
|
|
struct perf_counter *counter = filp->private_data;
|
|
struct inode *inode = filp->f_path.dentry->d_inode;
|
|
int retval;
|
|
|
|
mutex_lock(&inode->i_mutex);
|
|
retval = fasync_helper(fd, filp, on, &counter->fasync);
|
|
mutex_unlock(&inode->i_mutex);
|
|
|
|
if (retval < 0)
|
|
return retval;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct file_operations perf_fops = {
|
|
.release = perf_release,
|
|
.read = perf_read,
|
|
.poll = perf_poll,
|
|
.unlocked_ioctl = perf_ioctl,
|
|
.compat_ioctl = perf_ioctl,
|
|
.mmap = perf_mmap,
|
|
.fasync = perf_fasync,
|
|
};
|
|
|
|
/*
|
|
* Perf counter wakeup
|
|
*
|
|
* If there's data, ensure we set the poll() state and publish everything
|
|
* to user-space before waking everybody up.
|
|
*/
|
|
|
|
void perf_counter_wakeup(struct perf_counter *counter)
|
|
{
|
|
wake_up_all(&counter->waitq);
|
|
|
|
if (counter->pending_kill) {
|
|
kill_fasync(&counter->fasync, SIGIO, counter->pending_kill);
|
|
counter->pending_kill = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Pending wakeups
|
|
*
|
|
* Handle the case where we need to wakeup up from NMI (or rq->lock) context.
|
|
*
|
|
* The NMI bit means we cannot possibly take locks. Therefore, maintain a
|
|
* single linked list and use cmpxchg() to add entries lockless.
|
|
*/
|
|
|
|
static void perf_pending_counter(struct perf_pending_entry *entry)
|
|
{
|
|
struct perf_counter *counter = container_of(entry,
|
|
struct perf_counter, pending);
|
|
|
|
if (counter->pending_disable) {
|
|
counter->pending_disable = 0;
|
|
perf_counter_disable(counter);
|
|
}
|
|
|
|
if (counter->pending_wakeup) {
|
|
counter->pending_wakeup = 0;
|
|
perf_counter_wakeup(counter);
|
|
}
|
|
}
|
|
|
|
#define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
|
|
|
|
static DEFINE_PER_CPU(struct perf_pending_entry *, perf_pending_head) = {
|
|
PENDING_TAIL,
|
|
};
|
|
|
|
static void perf_pending_queue(struct perf_pending_entry *entry,
|
|
void (*func)(struct perf_pending_entry *))
|
|
{
|
|
struct perf_pending_entry **head;
|
|
|
|
if (cmpxchg(&entry->next, NULL, PENDING_TAIL) != NULL)
|
|
return;
|
|
|
|
entry->func = func;
|
|
|
|
head = &get_cpu_var(perf_pending_head);
|
|
|
|
do {
|
|
entry->next = *head;
|
|
} while (cmpxchg(head, entry->next, entry) != entry->next);
|
|
|
|
set_perf_counter_pending();
|
|
|
|
put_cpu_var(perf_pending_head);
|
|
}
|
|
|
|
static int __perf_pending_run(void)
|
|
{
|
|
struct perf_pending_entry *list;
|
|
int nr = 0;
|
|
|
|
list = xchg(&__get_cpu_var(perf_pending_head), PENDING_TAIL);
|
|
while (list != PENDING_TAIL) {
|
|
void (*func)(struct perf_pending_entry *);
|
|
struct perf_pending_entry *entry = list;
|
|
|
|
list = list->next;
|
|
|
|
func = entry->func;
|
|
entry->next = NULL;
|
|
/*
|
|
* Ensure we observe the unqueue before we issue the wakeup,
|
|
* so that we won't be waiting forever.
|
|
* -- see perf_not_pending().
|
|
*/
|
|
smp_wmb();
|
|
|
|
func(entry);
|
|
nr++;
|
|
}
|
|
|
|
return nr;
|
|
}
|
|
|
|
static inline int perf_not_pending(struct perf_counter *counter)
|
|
{
|
|
/*
|
|
* If we flush on whatever cpu we run, there is a chance we don't
|
|
* need to wait.
|
|
*/
|
|
get_cpu();
|
|
__perf_pending_run();
|
|
put_cpu();
|
|
|
|
/*
|
|
* Ensure we see the proper queue state before going to sleep
|
|
* so that we do not miss the wakeup. -- see perf_pending_handle()
|
|
*/
|
|
smp_rmb();
|
|
return counter->pending.next == NULL;
|
|
}
|
|
|
|
static void perf_pending_sync(struct perf_counter *counter)
|
|
{
|
|
wait_event(counter->waitq, perf_not_pending(counter));
|
|
}
|
|
|
|
void perf_counter_do_pending(void)
|
|
{
|
|
__perf_pending_run();
|
|
}
|
|
|
|
/*
|
|
* Callchain support -- arch specific
|
|
*/
|
|
|
|
__weak struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
|
|
{
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Output
|
|
*/
|
|
|
|
struct perf_output_handle {
|
|
struct perf_counter *counter;
|
|
struct perf_mmap_data *data;
|
|
unsigned int offset;
|
|
unsigned int head;
|
|
int nmi;
|
|
int overflow;
|
|
int locked;
|
|
unsigned long flags;
|
|
};
|
|
|
|
static void perf_output_wakeup(struct perf_output_handle *handle)
|
|
{
|
|
atomic_set(&handle->data->poll, POLL_IN);
|
|
|
|
if (handle->nmi) {
|
|
handle->counter->pending_wakeup = 1;
|
|
perf_pending_queue(&handle->counter->pending,
|
|
perf_pending_counter);
|
|
} else
|
|
perf_counter_wakeup(handle->counter);
|
|
}
|
|
|
|
/*
|
|
* Curious locking construct.
|
|
*
|
|
* We need to ensure a later event doesn't publish a head when a former
|
|
* event isn't done writing. However since we need to deal with NMIs we
|
|
* cannot fully serialize things.
|
|
*
|
|
* What we do is serialize between CPUs so we only have to deal with NMI
|
|
* nesting on a single CPU.
|
|
*
|
|
* We only publish the head (and generate a wakeup) when the outer-most
|
|
* event completes.
|
|
*/
|
|
static void perf_output_lock(struct perf_output_handle *handle)
|
|
{
|
|
struct perf_mmap_data *data = handle->data;
|
|
int cpu;
|
|
|
|
handle->locked = 0;
|
|
|
|
local_irq_save(handle->flags);
|
|
cpu = smp_processor_id();
|
|
|
|
if (in_nmi() && atomic_read(&data->lock) == cpu)
|
|
return;
|
|
|
|
while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
|
|
cpu_relax();
|
|
|
|
handle->locked = 1;
|
|
}
|
|
|
|
static void perf_output_unlock(struct perf_output_handle *handle)
|
|
{
|
|
struct perf_mmap_data *data = handle->data;
|
|
int head, cpu;
|
|
|
|
data->done_head = data->head;
|
|
|
|
if (!handle->locked)
|
|
goto out;
|
|
|
|
again:
|
|
/*
|
|
* The xchg implies a full barrier that ensures all writes are done
|
|
* before we publish the new head, matched by a rmb() in userspace when
|
|
* reading this position.
|
|
*/
|
|
while ((head = atomic_xchg(&data->done_head, 0)))
|
|
data->user_page->data_head = head;
|
|
|
|
/*
|
|
* NMI can happen here, which means we can miss a done_head update.
|
|
*/
|
|
|
|
cpu = atomic_xchg(&data->lock, -1);
|
|
WARN_ON_ONCE(cpu != smp_processor_id());
|
|
|
|
/*
|
|
* Therefore we have to validate we did not indeed do so.
|
|
*/
|
|
if (unlikely(atomic_read(&data->done_head))) {
|
|
/*
|
|
* Since we had it locked, we can lock it again.
|
|
*/
|
|
while (atomic_cmpxchg(&data->lock, -1, cpu) != -1)
|
|
cpu_relax();
|
|
|
|
goto again;
|
|
}
|
|
|
|
if (atomic_xchg(&data->wakeup, 0))
|
|
perf_output_wakeup(handle);
|
|
out:
|
|
local_irq_restore(handle->flags);
|
|
}
|
|
|
|
static int perf_output_begin(struct perf_output_handle *handle,
|
|
struct perf_counter *counter, unsigned int size,
|
|
int nmi, int overflow)
|
|
{
|
|
struct perf_mmap_data *data;
|
|
unsigned int offset, head;
|
|
|
|
/*
|
|
* For inherited counters we send all the output towards the parent.
|
|
*/
|
|
if (counter->parent)
|
|
counter = counter->parent;
|
|
|
|
rcu_read_lock();
|
|
data = rcu_dereference(counter->data);
|
|
if (!data)
|
|
goto out;
|
|
|
|
handle->data = data;
|
|
handle->counter = counter;
|
|
handle->nmi = nmi;
|
|
handle->overflow = overflow;
|
|
|
|
if (!data->nr_pages)
|
|
goto fail;
|
|
|
|
perf_output_lock(handle);
|
|
|
|
do {
|
|
offset = head = atomic_read(&data->head);
|
|
head += size;
|
|
} while (atomic_cmpxchg(&data->head, offset, head) != offset);
|
|
|
|
handle->offset = offset;
|
|
handle->head = head;
|
|
|
|
if ((offset >> PAGE_SHIFT) != (head >> PAGE_SHIFT))
|
|
atomic_set(&data->wakeup, 1);
|
|
|
|
return 0;
|
|
|
|
fail:
|
|
perf_output_wakeup(handle);
|
|
out:
|
|
rcu_read_unlock();
|
|
|
|
return -ENOSPC;
|
|
}
|
|
|
|
static void perf_output_copy(struct perf_output_handle *handle,
|
|
void *buf, unsigned int len)
|
|
{
|
|
unsigned int pages_mask;
|
|
unsigned int offset;
|
|
unsigned int size;
|
|
void **pages;
|
|
|
|
offset = handle->offset;
|
|
pages_mask = handle->data->nr_pages - 1;
|
|
pages = handle->data->data_pages;
|
|
|
|
do {
|
|
unsigned int page_offset;
|
|
int nr;
|
|
|
|
nr = (offset >> PAGE_SHIFT) & pages_mask;
|
|
page_offset = offset & (PAGE_SIZE - 1);
|
|
size = min_t(unsigned int, PAGE_SIZE - page_offset, len);
|
|
|
|
memcpy(pages[nr] + page_offset, buf, size);
|
|
|
|
len -= size;
|
|
buf += size;
|
|
offset += size;
|
|
} while (len);
|
|
|
|
handle->offset = offset;
|
|
|
|
WARN_ON_ONCE(handle->offset > handle->head);
|
|
}
|
|
|
|
#define perf_output_put(handle, x) \
|
|
perf_output_copy((handle), &(x), sizeof(x))
|
|
|
|
static void perf_output_end(struct perf_output_handle *handle)
|
|
{
|
|
struct perf_counter *counter = handle->counter;
|
|
struct perf_mmap_data *data = handle->data;
|
|
|
|
int wakeup_events = counter->hw_event.wakeup_events;
|
|
|
|
if (handle->overflow && wakeup_events) {
|
|
int events = atomic_inc_return(&data->events);
|
|
if (events >= wakeup_events) {
|
|
atomic_sub(wakeup_events, &data->events);
|
|
atomic_set(&data->wakeup, 1);
|
|
}
|
|
}
|
|
|
|
perf_output_unlock(handle);
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
static void perf_counter_output(struct perf_counter *counter,
|
|
int nmi, struct pt_regs *regs, u64 addr)
|
|
{
|
|
int ret;
|
|
u64 record_type = counter->hw_event.record_type;
|
|
struct perf_output_handle handle;
|
|
struct perf_event_header header;
|
|
u64 ip;
|
|
struct {
|
|
u32 pid, tid;
|
|
} tid_entry;
|
|
struct {
|
|
u64 event;
|
|
u64 counter;
|
|
} group_entry;
|
|
struct perf_callchain_entry *callchain = NULL;
|
|
int callchain_size = 0;
|
|
u64 time;
|
|
struct {
|
|
u32 cpu, reserved;
|
|
} cpu_entry;
|
|
|
|
header.type = 0;
|
|
header.size = sizeof(header);
|
|
|
|
header.misc = PERF_EVENT_MISC_OVERFLOW;
|
|
header.misc |= user_mode(regs) ?
|
|
PERF_EVENT_MISC_USER : PERF_EVENT_MISC_KERNEL;
|
|
|
|
if (record_type & PERF_RECORD_IP) {
|
|
ip = instruction_pointer(regs);
|
|
header.type |= PERF_RECORD_IP;
|
|
header.size += sizeof(ip);
|
|
}
|
|
|
|
if (record_type & PERF_RECORD_TID) {
|
|
/* namespace issues */
|
|
tid_entry.pid = current->group_leader->pid;
|
|
tid_entry.tid = current->pid;
|
|
|
|
header.type |= PERF_RECORD_TID;
|
|
header.size += sizeof(tid_entry);
|
|
}
|
|
|
|
if (record_type & PERF_RECORD_TIME) {
|
|
/*
|
|
* Maybe do better on x86 and provide cpu_clock_nmi()
|
|
*/
|
|
time = sched_clock();
|
|
|
|
header.type |= PERF_RECORD_TIME;
|
|
header.size += sizeof(u64);
|
|
}
|
|
|
|
if (record_type & PERF_RECORD_ADDR) {
|
|
header.type |= PERF_RECORD_ADDR;
|
|
header.size += sizeof(u64);
|
|
}
|
|
|
|
if (record_type & PERF_RECORD_CONFIG) {
|
|
header.type |= PERF_RECORD_CONFIG;
|
|
header.size += sizeof(u64);
|
|
}
|
|
|
|
if (record_type & PERF_RECORD_CPU) {
|
|
header.type |= PERF_RECORD_CPU;
|
|
header.size += sizeof(cpu_entry);
|
|
|
|
cpu_entry.cpu = raw_smp_processor_id();
|
|
}
|
|
|
|
if (record_type & PERF_RECORD_GROUP) {
|
|
header.type |= PERF_RECORD_GROUP;
|
|
header.size += sizeof(u64) +
|
|
counter->nr_siblings * sizeof(group_entry);
|
|
}
|
|
|
|
if (record_type & PERF_RECORD_CALLCHAIN) {
|
|
callchain = perf_callchain(regs);
|
|
|
|
if (callchain) {
|
|
callchain_size = (1 + callchain->nr) * sizeof(u64);
|
|
|
|
header.type |= PERF_RECORD_CALLCHAIN;
|
|
header.size += callchain_size;
|
|
}
|
|
}
|
|
|
|
ret = perf_output_begin(&handle, counter, header.size, nmi, 1);
|
|
if (ret)
|
|
return;
|
|
|
|
perf_output_put(&handle, header);
|
|
|
|
if (record_type & PERF_RECORD_IP)
|
|
perf_output_put(&handle, ip);
|
|
|
|
if (record_type & PERF_RECORD_TID)
|
|
perf_output_put(&handle, tid_entry);
|
|
|
|
if (record_type & PERF_RECORD_TIME)
|
|
perf_output_put(&handle, time);
|
|
|
|
if (record_type & PERF_RECORD_ADDR)
|
|
perf_output_put(&handle, addr);
|
|
|
|
if (record_type & PERF_RECORD_CONFIG)
|
|
perf_output_put(&handle, counter->hw_event.config);
|
|
|
|
if (record_type & PERF_RECORD_CPU)
|
|
perf_output_put(&handle, cpu_entry);
|
|
|
|
/*
|
|
* XXX PERF_RECORD_GROUP vs inherited counters seems difficult.
|
|
*/
|
|
if (record_type & PERF_RECORD_GROUP) {
|
|
struct perf_counter *leader, *sub;
|
|
u64 nr = counter->nr_siblings;
|
|
|
|
perf_output_put(&handle, nr);
|
|
|
|
leader = counter->group_leader;
|
|
list_for_each_entry(sub, &leader->sibling_list, list_entry) {
|
|
if (sub != counter)
|
|
sub->pmu->read(sub);
|
|
|
|
group_entry.event = sub->hw_event.config;
|
|
group_entry.counter = atomic64_read(&sub->count);
|
|
|
|
perf_output_put(&handle, group_entry);
|
|
}
|
|
}
|
|
|
|
if (callchain)
|
|
perf_output_copy(&handle, callchain, callchain_size);
|
|
|
|
perf_output_end(&handle);
|
|
}
|
|
|
|
/*
|
|
* comm tracking
|
|
*/
|
|
|
|
struct perf_comm_event {
|
|
struct task_struct *task;
|
|
char *comm;
|
|
int comm_size;
|
|
|
|
struct {
|
|
struct perf_event_header header;
|
|
|
|
u32 pid;
|
|
u32 tid;
|
|
} event;
|
|
};
|
|
|
|
static void perf_counter_comm_output(struct perf_counter *counter,
|
|
struct perf_comm_event *comm_event)
|
|
{
|
|
struct perf_output_handle handle;
|
|
int size = comm_event->event.header.size;
|
|
int ret = perf_output_begin(&handle, counter, size, 0, 0);
|
|
|
|
if (ret)
|
|
return;
|
|
|
|
perf_output_put(&handle, comm_event->event);
|
|
perf_output_copy(&handle, comm_event->comm,
|
|
comm_event->comm_size);
|
|
perf_output_end(&handle);
|
|
}
|
|
|
|
static int perf_counter_comm_match(struct perf_counter *counter,
|
|
struct perf_comm_event *comm_event)
|
|
{
|
|
if (counter->hw_event.comm &&
|
|
comm_event->event.header.type == PERF_EVENT_COMM)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void perf_counter_comm_ctx(struct perf_counter_context *ctx,
|
|
struct perf_comm_event *comm_event)
|
|
{
|
|
struct perf_counter *counter;
|
|
|
|
if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
|
|
return;
|
|
|
|
rcu_read_lock();
|
|
list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
|
|
if (perf_counter_comm_match(counter, comm_event))
|
|
perf_counter_comm_output(counter, comm_event);
|
|
}
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
static void perf_counter_comm_event(struct perf_comm_event *comm_event)
|
|
{
|
|
struct perf_cpu_context *cpuctx;
|
|
unsigned int size;
|
|
char *comm = comm_event->task->comm;
|
|
|
|
size = ALIGN(strlen(comm)+1, sizeof(u64));
|
|
|
|
comm_event->comm = comm;
|
|
comm_event->comm_size = size;
|
|
|
|
comm_event->event.header.size = sizeof(comm_event->event) + size;
|
|
|
|
cpuctx = &get_cpu_var(perf_cpu_context);
|
|
perf_counter_comm_ctx(&cpuctx->ctx, comm_event);
|
|
put_cpu_var(perf_cpu_context);
|
|
|
|
perf_counter_comm_ctx(¤t->perf_counter_ctx, comm_event);
|
|
}
|
|
|
|
void perf_counter_comm(struct task_struct *task)
|
|
{
|
|
struct perf_comm_event comm_event;
|
|
|
|
if (!atomic_read(&nr_comm_tracking))
|
|
return;
|
|
|
|
comm_event = (struct perf_comm_event){
|
|
.task = task,
|
|
.event = {
|
|
.header = { .type = PERF_EVENT_COMM, },
|
|
.pid = task->group_leader->pid,
|
|
.tid = task->pid,
|
|
},
|
|
};
|
|
|
|
perf_counter_comm_event(&comm_event);
|
|
}
|
|
|
|
/*
|
|
* mmap tracking
|
|
*/
|
|
|
|
struct perf_mmap_event {
|
|
struct file *file;
|
|
char *file_name;
|
|
int file_size;
|
|
|
|
struct {
|
|
struct perf_event_header header;
|
|
|
|
u32 pid;
|
|
u32 tid;
|
|
u64 start;
|
|
u64 len;
|
|
u64 pgoff;
|
|
} event;
|
|
};
|
|
|
|
static void perf_counter_mmap_output(struct perf_counter *counter,
|
|
struct perf_mmap_event *mmap_event)
|
|
{
|
|
struct perf_output_handle handle;
|
|
int size = mmap_event->event.header.size;
|
|
int ret = perf_output_begin(&handle, counter, size, 0, 0);
|
|
|
|
if (ret)
|
|
return;
|
|
|
|
perf_output_put(&handle, mmap_event->event);
|
|
perf_output_copy(&handle, mmap_event->file_name,
|
|
mmap_event->file_size);
|
|
perf_output_end(&handle);
|
|
}
|
|
|
|
static int perf_counter_mmap_match(struct perf_counter *counter,
|
|
struct perf_mmap_event *mmap_event)
|
|
{
|
|
if (counter->hw_event.mmap &&
|
|
mmap_event->event.header.type == PERF_EVENT_MMAP)
|
|
return 1;
|
|
|
|
if (counter->hw_event.munmap &&
|
|
mmap_event->event.header.type == PERF_EVENT_MUNMAP)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void perf_counter_mmap_ctx(struct perf_counter_context *ctx,
|
|
struct perf_mmap_event *mmap_event)
|
|
{
|
|
struct perf_counter *counter;
|
|
|
|
if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
|
|
return;
|
|
|
|
rcu_read_lock();
|
|
list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
|
|
if (perf_counter_mmap_match(counter, mmap_event))
|
|
perf_counter_mmap_output(counter, mmap_event);
|
|
}
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
static void perf_counter_mmap_event(struct perf_mmap_event *mmap_event)
|
|
{
|
|
struct perf_cpu_context *cpuctx;
|
|
struct file *file = mmap_event->file;
|
|
unsigned int size;
|
|
char tmp[16];
|
|
char *buf = NULL;
|
|
char *name;
|
|
|
|
if (file) {
|
|
buf = kzalloc(PATH_MAX, GFP_KERNEL);
|
|
if (!buf) {
|
|
name = strncpy(tmp, "//enomem", sizeof(tmp));
|
|
goto got_name;
|
|
}
|
|
name = d_path(&file->f_path, buf, PATH_MAX);
|
|
if (IS_ERR(name)) {
|
|
name = strncpy(tmp, "//toolong", sizeof(tmp));
|
|
goto got_name;
|
|
}
|
|
} else {
|
|
name = strncpy(tmp, "//anon", sizeof(tmp));
|
|
goto got_name;
|
|
}
|
|
|
|
got_name:
|
|
size = ALIGN(strlen(name)+1, sizeof(u64));
|
|
|
|
mmap_event->file_name = name;
|
|
mmap_event->file_size = size;
|
|
|
|
mmap_event->event.header.size = sizeof(mmap_event->event) + size;
|
|
|
|
cpuctx = &get_cpu_var(perf_cpu_context);
|
|
perf_counter_mmap_ctx(&cpuctx->ctx, mmap_event);
|
|
put_cpu_var(perf_cpu_context);
|
|
|
|
perf_counter_mmap_ctx(¤t->perf_counter_ctx, mmap_event);
|
|
|
|
kfree(buf);
|
|
}
|
|
|
|
void perf_counter_mmap(unsigned long addr, unsigned long len,
|
|
unsigned long pgoff, struct file *file)
|
|
{
|
|
struct perf_mmap_event mmap_event;
|
|
|
|
if (!atomic_read(&nr_mmap_tracking))
|
|
return;
|
|
|
|
mmap_event = (struct perf_mmap_event){
|
|
.file = file,
|
|
.event = {
|
|
.header = { .type = PERF_EVENT_MMAP, },
|
|
.pid = current->group_leader->pid,
|
|
.tid = current->pid,
|
|
.start = addr,
|
|
.len = len,
|
|
.pgoff = pgoff,
|
|
},
|
|
};
|
|
|
|
perf_counter_mmap_event(&mmap_event);
|
|
}
|
|
|
|
void perf_counter_munmap(unsigned long addr, unsigned long len,
|
|
unsigned long pgoff, struct file *file)
|
|
{
|
|
struct perf_mmap_event mmap_event;
|
|
|
|
if (!atomic_read(&nr_munmap_tracking))
|
|
return;
|
|
|
|
mmap_event = (struct perf_mmap_event){
|
|
.file = file,
|
|
.event = {
|
|
.header = { .type = PERF_EVENT_MUNMAP, },
|
|
.pid = current->group_leader->pid,
|
|
.tid = current->pid,
|
|
.start = addr,
|
|
.len = len,
|
|
.pgoff = pgoff,
|
|
},
|
|
};
|
|
|
|
perf_counter_mmap_event(&mmap_event);
|
|
}
|
|
|
|
/*
|
|
* Generic counter overflow handling.
|
|
*/
|
|
|
|
int perf_counter_overflow(struct perf_counter *counter,
|
|
int nmi, struct pt_regs *regs, u64 addr)
|
|
{
|
|
int events = atomic_read(&counter->event_limit);
|
|
int ret = 0;
|
|
|
|
/*
|
|
* XXX event_limit might not quite work as expected on inherited
|
|
* counters
|
|
*/
|
|
|
|
counter->pending_kill = POLL_IN;
|
|
if (events && atomic_dec_and_test(&counter->event_limit)) {
|
|
ret = 1;
|
|
counter->pending_kill = POLL_HUP;
|
|
if (nmi) {
|
|
counter->pending_disable = 1;
|
|
perf_pending_queue(&counter->pending,
|
|
perf_pending_counter);
|
|
} else
|
|
perf_counter_disable(counter);
|
|
}
|
|
|
|
perf_counter_output(counter, nmi, regs, addr);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Generic software counter infrastructure
|
|
*/
|
|
|
|
static void perf_swcounter_update(struct perf_counter *counter)
|
|
{
|
|
struct hw_perf_counter *hwc = &counter->hw;
|
|
u64 prev, now;
|
|
s64 delta;
|
|
|
|
again:
|
|
prev = atomic64_read(&hwc->prev_count);
|
|
now = atomic64_read(&hwc->count);
|
|
if (atomic64_cmpxchg(&hwc->prev_count, prev, now) != prev)
|
|
goto again;
|
|
|
|
delta = now - prev;
|
|
|
|
atomic64_add(delta, &counter->count);
|
|
atomic64_sub(delta, &hwc->period_left);
|
|
}
|
|
|
|
static void perf_swcounter_set_period(struct perf_counter *counter)
|
|
{
|
|
struct hw_perf_counter *hwc = &counter->hw;
|
|
s64 left = atomic64_read(&hwc->period_left);
|
|
s64 period = hwc->irq_period;
|
|
|
|
if (unlikely(left <= -period)) {
|
|
left = period;
|
|
atomic64_set(&hwc->period_left, left);
|
|
}
|
|
|
|
if (unlikely(left <= 0)) {
|
|
left += period;
|
|
atomic64_add(period, &hwc->period_left);
|
|
}
|
|
|
|
atomic64_set(&hwc->prev_count, -left);
|
|
atomic64_set(&hwc->count, -left);
|
|
}
|
|
|
|
static enum hrtimer_restart perf_swcounter_hrtimer(struct hrtimer *hrtimer)
|
|
{
|
|
enum hrtimer_restart ret = HRTIMER_RESTART;
|
|
struct perf_counter *counter;
|
|
struct pt_regs *regs;
|
|
|
|
counter = container_of(hrtimer, struct perf_counter, hw.hrtimer);
|
|
counter->pmu->read(counter);
|
|
|
|
regs = get_irq_regs();
|
|
/*
|
|
* In case we exclude kernel IPs or are somehow not in interrupt
|
|
* context, provide the next best thing, the user IP.
|
|
*/
|
|
if ((counter->hw_event.exclude_kernel || !regs) &&
|
|
!counter->hw_event.exclude_user)
|
|
regs = task_pt_regs(current);
|
|
|
|
if (regs) {
|
|
if (perf_counter_overflow(counter, 0, regs, 0))
|
|
ret = HRTIMER_NORESTART;
|
|
}
|
|
|
|
hrtimer_forward_now(hrtimer, ns_to_ktime(counter->hw.irq_period));
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void perf_swcounter_overflow(struct perf_counter *counter,
|
|
int nmi, struct pt_regs *regs, u64 addr)
|
|
{
|
|
perf_swcounter_update(counter);
|
|
perf_swcounter_set_period(counter);
|
|
if (perf_counter_overflow(counter, nmi, regs, addr))
|
|
/* soft-disable the counter */
|
|
;
|
|
|
|
}
|
|
|
|
static int perf_swcounter_match(struct perf_counter *counter,
|
|
enum perf_event_types type,
|
|
u32 event, struct pt_regs *regs)
|
|
{
|
|
if (counter->state != PERF_COUNTER_STATE_ACTIVE)
|
|
return 0;
|
|
|
|
if (perf_event_raw(&counter->hw_event))
|
|
return 0;
|
|
|
|
if (perf_event_type(&counter->hw_event) != type)
|
|
return 0;
|
|
|
|
if (perf_event_id(&counter->hw_event) != event)
|
|
return 0;
|
|
|
|
if (counter->hw_event.exclude_user && user_mode(regs))
|
|
return 0;
|
|
|
|
if (counter->hw_event.exclude_kernel && !user_mode(regs))
|
|
return 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static void perf_swcounter_add(struct perf_counter *counter, u64 nr,
|
|
int nmi, struct pt_regs *regs, u64 addr)
|
|
{
|
|
int neg = atomic64_add_negative(nr, &counter->hw.count);
|
|
if (counter->hw.irq_period && !neg)
|
|
perf_swcounter_overflow(counter, nmi, regs, addr);
|
|
}
|
|
|
|
static void perf_swcounter_ctx_event(struct perf_counter_context *ctx,
|
|
enum perf_event_types type, u32 event,
|
|
u64 nr, int nmi, struct pt_regs *regs,
|
|
u64 addr)
|
|
{
|
|
struct perf_counter *counter;
|
|
|
|
if (system_state != SYSTEM_RUNNING || list_empty(&ctx->event_list))
|
|
return;
|
|
|
|
rcu_read_lock();
|
|
list_for_each_entry_rcu(counter, &ctx->event_list, event_entry) {
|
|
if (perf_swcounter_match(counter, type, event, regs))
|
|
perf_swcounter_add(counter, nr, nmi, regs, addr);
|
|
}
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
static int *perf_swcounter_recursion_context(struct perf_cpu_context *cpuctx)
|
|
{
|
|
if (in_nmi())
|
|
return &cpuctx->recursion[3];
|
|
|
|
if (in_irq())
|
|
return &cpuctx->recursion[2];
|
|
|
|
if (in_softirq())
|
|
return &cpuctx->recursion[1];
|
|
|
|
return &cpuctx->recursion[0];
|
|
}
|
|
|
|
static void __perf_swcounter_event(enum perf_event_types type, u32 event,
|
|
u64 nr, int nmi, struct pt_regs *regs,
|
|
u64 addr)
|
|
{
|
|
struct perf_cpu_context *cpuctx = &get_cpu_var(perf_cpu_context);
|
|
int *recursion = perf_swcounter_recursion_context(cpuctx);
|
|
|
|
if (*recursion)
|
|
goto out;
|
|
|
|
(*recursion)++;
|
|
barrier();
|
|
|
|
perf_swcounter_ctx_event(&cpuctx->ctx, type, event,
|
|
nr, nmi, regs, addr);
|
|
if (cpuctx->task_ctx) {
|
|
perf_swcounter_ctx_event(cpuctx->task_ctx, type, event,
|
|
nr, nmi, regs, addr);
|
|
}
|
|
|
|
barrier();
|
|
(*recursion)--;
|
|
|
|
out:
|
|
put_cpu_var(perf_cpu_context);
|
|
}
|
|
|
|
void
|
|
perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
|
|
{
|
|
__perf_swcounter_event(PERF_TYPE_SOFTWARE, event, nr, nmi, regs, addr);
|
|
}
|
|
|
|
static void perf_swcounter_read(struct perf_counter *counter)
|
|
{
|
|
perf_swcounter_update(counter);
|
|
}
|
|
|
|
static int perf_swcounter_enable(struct perf_counter *counter)
|
|
{
|
|
perf_swcounter_set_period(counter);
|
|
return 0;
|
|
}
|
|
|
|
static void perf_swcounter_disable(struct perf_counter *counter)
|
|
{
|
|
perf_swcounter_update(counter);
|
|
}
|
|
|
|
static const struct pmu perf_ops_generic = {
|
|
.enable = perf_swcounter_enable,
|
|
.disable = perf_swcounter_disable,
|
|
.read = perf_swcounter_read,
|
|
};
|
|
|
|
/*
|
|
* Software counter: cpu wall time clock
|
|
*/
|
|
|
|
static void cpu_clock_perf_counter_update(struct perf_counter *counter)
|
|
{
|
|
int cpu = raw_smp_processor_id();
|
|
s64 prev;
|
|
u64 now;
|
|
|
|
now = cpu_clock(cpu);
|
|
prev = atomic64_read(&counter->hw.prev_count);
|
|
atomic64_set(&counter->hw.prev_count, now);
|
|
atomic64_add(now - prev, &counter->count);
|
|
}
|
|
|
|
static int cpu_clock_perf_counter_enable(struct perf_counter *counter)
|
|
{
|
|
struct hw_perf_counter *hwc = &counter->hw;
|
|
int cpu = raw_smp_processor_id();
|
|
|
|
atomic64_set(&hwc->prev_count, cpu_clock(cpu));
|
|
hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
|
|
hwc->hrtimer.function = perf_swcounter_hrtimer;
|
|
if (hwc->irq_period) {
|
|
__hrtimer_start_range_ns(&hwc->hrtimer,
|
|
ns_to_ktime(hwc->irq_period), 0,
|
|
HRTIMER_MODE_REL, 0);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void cpu_clock_perf_counter_disable(struct perf_counter *counter)
|
|
{
|
|
hrtimer_cancel(&counter->hw.hrtimer);
|
|
cpu_clock_perf_counter_update(counter);
|
|
}
|
|
|
|
static void cpu_clock_perf_counter_read(struct perf_counter *counter)
|
|
{
|
|
cpu_clock_perf_counter_update(counter);
|
|
}
|
|
|
|
static const struct pmu perf_ops_cpu_clock = {
|
|
.enable = cpu_clock_perf_counter_enable,
|
|
.disable = cpu_clock_perf_counter_disable,
|
|
.read = cpu_clock_perf_counter_read,
|
|
};
|
|
|
|
/*
|
|
* Software counter: task time clock
|
|
*/
|
|
|
|
static void task_clock_perf_counter_update(struct perf_counter *counter, u64 now)
|
|
{
|
|
u64 prev;
|
|
s64 delta;
|
|
|
|
prev = atomic64_xchg(&counter->hw.prev_count, now);
|
|
delta = now - prev;
|
|
atomic64_add(delta, &counter->count);
|
|
}
|
|
|
|
static int task_clock_perf_counter_enable(struct perf_counter *counter)
|
|
{
|
|
struct hw_perf_counter *hwc = &counter->hw;
|
|
u64 now;
|
|
|
|
now = counter->ctx->time;
|
|
|
|
atomic64_set(&hwc->prev_count, now);
|
|
hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
|
|
hwc->hrtimer.function = perf_swcounter_hrtimer;
|
|
if (hwc->irq_period) {
|
|
__hrtimer_start_range_ns(&hwc->hrtimer,
|
|
ns_to_ktime(hwc->irq_period), 0,
|
|
HRTIMER_MODE_REL, 0);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void task_clock_perf_counter_disable(struct perf_counter *counter)
|
|
{
|
|
hrtimer_cancel(&counter->hw.hrtimer);
|
|
task_clock_perf_counter_update(counter, counter->ctx->time);
|
|
|
|
}
|
|
|
|
static void task_clock_perf_counter_read(struct perf_counter *counter)
|
|
{
|
|
u64 time;
|
|
|
|
if (!in_nmi()) {
|
|
update_context_time(counter->ctx);
|
|
time = counter->ctx->time;
|
|
} else {
|
|
u64 now = perf_clock();
|
|
u64 delta = now - counter->ctx->timestamp;
|
|
time = counter->ctx->time + delta;
|
|
}
|
|
|
|
task_clock_perf_counter_update(counter, time);
|
|
}
|
|
|
|
static const struct pmu perf_ops_task_clock = {
|
|
.enable = task_clock_perf_counter_enable,
|
|
.disable = task_clock_perf_counter_disable,
|
|
.read = task_clock_perf_counter_read,
|
|
};
|
|
|
|
/*
|
|
* Software counter: cpu migrations
|
|
*/
|
|
|
|
static inline u64 get_cpu_migrations(struct perf_counter *counter)
|
|
{
|
|
struct task_struct *curr = counter->ctx->task;
|
|
|
|
if (curr)
|
|
return curr->se.nr_migrations;
|
|
return cpu_nr_migrations(smp_processor_id());
|
|
}
|
|
|
|
static void cpu_migrations_perf_counter_update(struct perf_counter *counter)
|
|
{
|
|
u64 prev, now;
|
|
s64 delta;
|
|
|
|
prev = atomic64_read(&counter->hw.prev_count);
|
|
now = get_cpu_migrations(counter);
|
|
|
|
atomic64_set(&counter->hw.prev_count, now);
|
|
|
|
delta = now - prev;
|
|
|
|
atomic64_add(delta, &counter->count);
|
|
}
|
|
|
|
static void cpu_migrations_perf_counter_read(struct perf_counter *counter)
|
|
{
|
|
cpu_migrations_perf_counter_update(counter);
|
|
}
|
|
|
|
static int cpu_migrations_perf_counter_enable(struct perf_counter *counter)
|
|
{
|
|
if (counter->prev_state <= PERF_COUNTER_STATE_OFF)
|
|
atomic64_set(&counter->hw.prev_count,
|
|
get_cpu_migrations(counter));
|
|
return 0;
|
|
}
|
|
|
|
static void cpu_migrations_perf_counter_disable(struct perf_counter *counter)
|
|
{
|
|
cpu_migrations_perf_counter_update(counter);
|
|
}
|
|
|
|
static const struct pmu perf_ops_cpu_migrations = {
|
|
.enable = cpu_migrations_perf_counter_enable,
|
|
.disable = cpu_migrations_perf_counter_disable,
|
|
.read = cpu_migrations_perf_counter_read,
|
|
};
|
|
|
|
#ifdef CONFIG_EVENT_PROFILE
|
|
void perf_tpcounter_event(int event_id)
|
|
{
|
|
struct pt_regs *regs = get_irq_regs();
|
|
|
|
if (!regs)
|
|
regs = task_pt_regs(current);
|
|
|
|
__perf_swcounter_event(PERF_TYPE_TRACEPOINT, event_id, 1, 1, regs, 0);
|
|
}
|
|
EXPORT_SYMBOL_GPL(perf_tpcounter_event);
|
|
|
|
extern int ftrace_profile_enable(int);
|
|
extern void ftrace_profile_disable(int);
|
|
|
|
static void tp_perf_counter_destroy(struct perf_counter *counter)
|
|
{
|
|
ftrace_profile_disable(perf_event_id(&counter->hw_event));
|
|
}
|
|
|
|
static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
|
|
{
|
|
int event_id = perf_event_id(&counter->hw_event);
|
|
int ret;
|
|
|
|
ret = ftrace_profile_enable(event_id);
|
|
if (ret)
|
|
return NULL;
|
|
|
|
counter->destroy = tp_perf_counter_destroy;
|
|
counter->hw.irq_period = counter->hw_event.irq_period;
|
|
|
|
return &perf_ops_generic;
|
|
}
|
|
#else
|
|
static const struct pmu *tp_perf_counter_init(struct perf_counter *counter)
|
|
{
|
|
return NULL;
|
|
}
|
|
#endif
|
|
|
|
static const struct pmu *sw_perf_counter_init(struct perf_counter *counter)
|
|
{
|
|
struct perf_counter_hw_event *hw_event = &counter->hw_event;
|
|
const struct pmu *pmu = NULL;
|
|
struct hw_perf_counter *hwc = &counter->hw;
|
|
|
|
/*
|
|
* Software counters (currently) can't in general distinguish
|
|
* between user, kernel and hypervisor events.
|
|
* However, context switches and cpu migrations are considered
|
|
* to be kernel events, and page faults are never hypervisor
|
|
* events.
|
|
*/
|
|
switch (perf_event_id(&counter->hw_event)) {
|
|
case PERF_COUNT_CPU_CLOCK:
|
|
pmu = &perf_ops_cpu_clock;
|
|
|
|
if (hw_event->irq_period && hw_event->irq_period < 10000)
|
|
hw_event->irq_period = 10000;
|
|
break;
|
|
case PERF_COUNT_TASK_CLOCK:
|
|
/*
|
|
* If the user instantiates this as a per-cpu counter,
|
|
* use the cpu_clock counter instead.
|
|
*/
|
|
if (counter->ctx->task)
|
|
pmu = &perf_ops_task_clock;
|
|
else
|
|
pmu = &perf_ops_cpu_clock;
|
|
|
|
if (hw_event->irq_period && hw_event->irq_period < 10000)
|
|
hw_event->irq_period = 10000;
|
|
break;
|
|
case PERF_COUNT_PAGE_FAULTS:
|
|
case PERF_COUNT_PAGE_FAULTS_MIN:
|
|
case PERF_COUNT_PAGE_FAULTS_MAJ:
|
|
case PERF_COUNT_CONTEXT_SWITCHES:
|
|
pmu = &perf_ops_generic;
|
|
break;
|
|
case PERF_COUNT_CPU_MIGRATIONS:
|
|
if (!counter->hw_event.exclude_kernel)
|
|
pmu = &perf_ops_cpu_migrations;
|
|
break;
|
|
}
|
|
|
|
if (pmu)
|
|
hwc->irq_period = hw_event->irq_period;
|
|
|
|
return pmu;
|
|
}
|
|
|
|
/*
|
|
* Allocate and initialize a counter structure
|
|
*/
|
|
static struct perf_counter *
|
|
perf_counter_alloc(struct perf_counter_hw_event *hw_event,
|
|
int cpu,
|
|
struct perf_counter_context *ctx,
|
|
struct perf_counter *group_leader,
|
|
gfp_t gfpflags)
|
|
{
|
|
const struct pmu *pmu;
|
|
struct perf_counter *counter;
|
|
long err;
|
|
|
|
counter = kzalloc(sizeof(*counter), gfpflags);
|
|
if (!counter)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
/*
|
|
* Single counters are their own group leaders, with an
|
|
* empty sibling list:
|
|
*/
|
|
if (!group_leader)
|
|
group_leader = counter;
|
|
|
|
mutex_init(&counter->mutex);
|
|
INIT_LIST_HEAD(&counter->list_entry);
|
|
INIT_LIST_HEAD(&counter->event_entry);
|
|
INIT_LIST_HEAD(&counter->sibling_list);
|
|
init_waitqueue_head(&counter->waitq);
|
|
|
|
mutex_init(&counter->mmap_mutex);
|
|
|
|
INIT_LIST_HEAD(&counter->child_list);
|
|
|
|
counter->cpu = cpu;
|
|
counter->hw_event = *hw_event;
|
|
counter->group_leader = group_leader;
|
|
counter->pmu = NULL;
|
|
counter->ctx = ctx;
|
|
|
|
counter->state = PERF_COUNTER_STATE_INACTIVE;
|
|
if (hw_event->disabled)
|
|
counter->state = PERF_COUNTER_STATE_OFF;
|
|
|
|
pmu = NULL;
|
|
|
|
/*
|
|
* we currently do not support PERF_RECORD_GROUP on inherited counters
|
|
*/
|
|
if (hw_event->inherit && (hw_event->record_type & PERF_RECORD_GROUP))
|
|
goto done;
|
|
|
|
if (perf_event_raw(hw_event)) {
|
|
pmu = hw_perf_counter_init(counter);
|
|
goto done;
|
|
}
|
|
|
|
switch (perf_event_type(hw_event)) {
|
|
case PERF_TYPE_HARDWARE:
|
|
pmu = hw_perf_counter_init(counter);
|
|
break;
|
|
|
|
case PERF_TYPE_SOFTWARE:
|
|
pmu = sw_perf_counter_init(counter);
|
|
break;
|
|
|
|
case PERF_TYPE_TRACEPOINT:
|
|
pmu = tp_perf_counter_init(counter);
|
|
break;
|
|
}
|
|
done:
|
|
err = 0;
|
|
if (!pmu)
|
|
err = -EINVAL;
|
|
else if (IS_ERR(pmu))
|
|
err = PTR_ERR(pmu);
|
|
|
|
if (err) {
|
|
kfree(counter);
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
counter->pmu = pmu;
|
|
|
|
atomic_inc(&nr_counters);
|
|
if (counter->hw_event.mmap)
|
|
atomic_inc(&nr_mmap_tracking);
|
|
if (counter->hw_event.munmap)
|
|
atomic_inc(&nr_munmap_tracking);
|
|
if (counter->hw_event.comm)
|
|
atomic_inc(&nr_comm_tracking);
|
|
|
|
return counter;
|
|
}
|
|
|
|
/**
|
|
* sys_perf_counter_open - open a performance counter, associate it to a task/cpu
|
|
*
|
|
* @hw_event_uptr: event type attributes for monitoring/sampling
|
|
* @pid: target pid
|
|
* @cpu: target cpu
|
|
* @group_fd: group leader counter fd
|
|
*/
|
|
SYSCALL_DEFINE5(perf_counter_open,
|
|
const struct perf_counter_hw_event __user *, hw_event_uptr,
|
|
pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
|
|
{
|
|
struct perf_counter *counter, *group_leader;
|
|
struct perf_counter_hw_event hw_event;
|
|
struct perf_counter_context *ctx;
|
|
struct file *counter_file = NULL;
|
|
struct file *group_file = NULL;
|
|
int fput_needed = 0;
|
|
int fput_needed2 = 0;
|
|
int ret;
|
|
|
|
/* for future expandability... */
|
|
if (flags)
|
|
return -EINVAL;
|
|
|
|
if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
|
|
return -EFAULT;
|
|
|
|
/*
|
|
* Get the target context (task or percpu):
|
|
*/
|
|
ctx = find_get_context(pid, cpu);
|
|
if (IS_ERR(ctx))
|
|
return PTR_ERR(ctx);
|
|
|
|
/*
|
|
* Look up the group leader (we will attach this counter to it):
|
|
*/
|
|
group_leader = NULL;
|
|
if (group_fd != -1) {
|
|
ret = -EINVAL;
|
|
group_file = fget_light(group_fd, &fput_needed);
|
|
if (!group_file)
|
|
goto err_put_context;
|
|
if (group_file->f_op != &perf_fops)
|
|
goto err_put_context;
|
|
|
|
group_leader = group_file->private_data;
|
|
/*
|
|
* Do not allow a recursive hierarchy (this new sibling
|
|
* becoming part of another group-sibling):
|
|
*/
|
|
if (group_leader->group_leader != group_leader)
|
|
goto err_put_context;
|
|
/*
|
|
* Do not allow to attach to a group in a different
|
|
* task or CPU context:
|
|
*/
|
|
if (group_leader->ctx != ctx)
|
|
goto err_put_context;
|
|
/*
|
|
* Only a group leader can be exclusive or pinned
|
|
*/
|
|
if (hw_event.exclusive || hw_event.pinned)
|
|
goto err_put_context;
|
|
}
|
|
|
|
counter = perf_counter_alloc(&hw_event, cpu, ctx, group_leader,
|
|
GFP_KERNEL);
|
|
ret = PTR_ERR(counter);
|
|
if (IS_ERR(counter))
|
|
goto err_put_context;
|
|
|
|
ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
|
|
if (ret < 0)
|
|
goto err_free_put_context;
|
|
|
|
counter_file = fget_light(ret, &fput_needed2);
|
|
if (!counter_file)
|
|
goto err_free_put_context;
|
|
|
|
counter->filp = counter_file;
|
|
mutex_lock(&ctx->mutex);
|
|
perf_install_in_context(ctx, counter, cpu);
|
|
mutex_unlock(&ctx->mutex);
|
|
|
|
fput_light(counter_file, fput_needed2);
|
|
|
|
out_fput:
|
|
fput_light(group_file, fput_needed);
|
|
|
|
return ret;
|
|
|
|
err_free_put_context:
|
|
kfree(counter);
|
|
|
|
err_put_context:
|
|
put_context(ctx);
|
|
|
|
goto out_fput;
|
|
}
|
|
|
|
/*
|
|
* Initialize the perf_counter context in a task_struct:
|
|
*/
|
|
static void
|
|
__perf_counter_init_context(struct perf_counter_context *ctx,
|
|
struct task_struct *task)
|
|
{
|
|
memset(ctx, 0, sizeof(*ctx));
|
|
spin_lock_init(&ctx->lock);
|
|
mutex_init(&ctx->mutex);
|
|
INIT_LIST_HEAD(&ctx->counter_list);
|
|
INIT_LIST_HEAD(&ctx->event_list);
|
|
ctx->task = task;
|
|
}
|
|
|
|
/*
|
|
* inherit a counter from parent task to child task:
|
|
*/
|
|
static struct perf_counter *
|
|
inherit_counter(struct perf_counter *parent_counter,
|
|
struct task_struct *parent,
|
|
struct perf_counter_context *parent_ctx,
|
|
struct task_struct *child,
|
|
struct perf_counter *group_leader,
|
|
struct perf_counter_context *child_ctx)
|
|
{
|
|
struct perf_counter *child_counter;
|
|
|
|
/*
|
|
* Instead of creating recursive hierarchies of counters,
|
|
* we link inherited counters back to the original parent,
|
|
* which has a filp for sure, which we use as the reference
|
|
* count:
|
|
*/
|
|
if (parent_counter->parent)
|
|
parent_counter = parent_counter->parent;
|
|
|
|
child_counter = perf_counter_alloc(&parent_counter->hw_event,
|
|
parent_counter->cpu, child_ctx,
|
|
group_leader, GFP_KERNEL);
|
|
if (IS_ERR(child_counter))
|
|
return child_counter;
|
|
|
|
/*
|
|
* Link it up in the child's context:
|
|
*/
|
|
child_counter->task = child;
|
|
add_counter_to_ctx(child_counter, child_ctx);
|
|
|
|
child_counter->parent = parent_counter;
|
|
/*
|
|
* inherit into child's child as well:
|
|
*/
|
|
child_counter->hw_event.inherit = 1;
|
|
|
|
/*
|
|
* Get a reference to the parent filp - we will fput it
|
|
* when the child counter exits. This is safe to do because
|
|
* we are in the parent and we know that the filp still
|
|
* exists and has a nonzero count:
|
|
*/
|
|
atomic_long_inc(&parent_counter->filp->f_count);
|
|
|
|
/*
|
|
* Link this into the parent counter's child list
|
|
*/
|
|
mutex_lock(&parent_counter->mutex);
|
|
list_add_tail(&child_counter->child_list, &parent_counter->child_list);
|
|
|
|
/*
|
|
* Make the child state follow the state of the parent counter,
|
|
* not its hw_event.disabled bit. We hold the parent's mutex,
|
|
* so we won't race with perf_counter_{en,dis}able_family.
|
|
*/
|
|
if (parent_counter->state >= PERF_COUNTER_STATE_INACTIVE)
|
|
child_counter->state = PERF_COUNTER_STATE_INACTIVE;
|
|
else
|
|
child_counter->state = PERF_COUNTER_STATE_OFF;
|
|
|
|
mutex_unlock(&parent_counter->mutex);
|
|
|
|
return child_counter;
|
|
}
|
|
|
|
static int inherit_group(struct perf_counter *parent_counter,
|
|
struct task_struct *parent,
|
|
struct perf_counter_context *parent_ctx,
|
|
struct task_struct *child,
|
|
struct perf_counter_context *child_ctx)
|
|
{
|
|
struct perf_counter *leader;
|
|
struct perf_counter *sub;
|
|
struct perf_counter *child_ctr;
|
|
|
|
leader = inherit_counter(parent_counter, parent, parent_ctx,
|
|
child, NULL, child_ctx);
|
|
if (IS_ERR(leader))
|
|
return PTR_ERR(leader);
|
|
list_for_each_entry(sub, &parent_counter->sibling_list, list_entry) {
|
|
child_ctr = inherit_counter(sub, parent, parent_ctx,
|
|
child, leader, child_ctx);
|
|
if (IS_ERR(child_ctr))
|
|
return PTR_ERR(child_ctr);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void sync_child_counter(struct perf_counter *child_counter,
|
|
struct perf_counter *parent_counter)
|
|
{
|
|
u64 parent_val, child_val;
|
|
|
|
parent_val = atomic64_read(&parent_counter->count);
|
|
child_val = atomic64_read(&child_counter->count);
|
|
|
|
/*
|
|
* Add back the child's count to the parent's count:
|
|
*/
|
|
atomic64_add(child_val, &parent_counter->count);
|
|
atomic64_add(child_counter->total_time_enabled,
|
|
&parent_counter->child_total_time_enabled);
|
|
atomic64_add(child_counter->total_time_running,
|
|
&parent_counter->child_total_time_running);
|
|
|
|
/*
|
|
* Remove this counter from the parent's list
|
|
*/
|
|
mutex_lock(&parent_counter->mutex);
|
|
list_del_init(&child_counter->child_list);
|
|
mutex_unlock(&parent_counter->mutex);
|
|
|
|
/*
|
|
* Release the parent counter, if this was the last
|
|
* reference to it.
|
|
*/
|
|
fput(parent_counter->filp);
|
|
}
|
|
|
|
static void
|
|
__perf_counter_exit_task(struct task_struct *child,
|
|
struct perf_counter *child_counter,
|
|
struct perf_counter_context *child_ctx)
|
|
{
|
|
struct perf_counter *parent_counter;
|
|
struct perf_counter *sub, *tmp;
|
|
|
|
/*
|
|
* If we do not self-reap then we have to wait for the
|
|
* child task to unschedule (it will happen for sure),
|
|
* so that its counter is at its final count. (This
|
|
* condition triggers rarely - child tasks usually get
|
|
* off their CPU before the parent has a chance to
|
|
* get this far into the reaping action)
|
|
*/
|
|
if (child != current) {
|
|
wait_task_inactive(child, 0);
|
|
list_del_init(&child_counter->list_entry);
|
|
update_counter_times(child_counter);
|
|
} else {
|
|
struct perf_cpu_context *cpuctx;
|
|
unsigned long flags;
|
|
u64 perf_flags;
|
|
|
|
/*
|
|
* Disable and unlink this counter.
|
|
*
|
|
* Be careful about zapping the list - IRQ/NMI context
|
|
* could still be processing it:
|
|
*/
|
|
local_irq_save(flags);
|
|
perf_flags = hw_perf_save_disable();
|
|
|
|
cpuctx = &__get_cpu_var(perf_cpu_context);
|
|
|
|
group_sched_out(child_counter, cpuctx, child_ctx);
|
|
update_counter_times(child_counter);
|
|
|
|
list_del_init(&child_counter->list_entry);
|
|
|
|
child_ctx->nr_counters--;
|
|
|
|
hw_perf_restore(perf_flags);
|
|
local_irq_restore(flags);
|
|
}
|
|
|
|
parent_counter = child_counter->parent;
|
|
/*
|
|
* It can happen that parent exits first, and has counters
|
|
* that are still around due to the child reference. These
|
|
* counters need to be zapped - but otherwise linger.
|
|
*/
|
|
if (parent_counter) {
|
|
sync_child_counter(child_counter, parent_counter);
|
|
list_for_each_entry_safe(sub, tmp, &child_counter->sibling_list,
|
|
list_entry) {
|
|
if (sub->parent) {
|
|
sync_child_counter(sub, sub->parent);
|
|
free_counter(sub);
|
|
}
|
|
}
|
|
free_counter(child_counter);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* When a child task exits, feed back counter values to parent counters.
|
|
*
|
|
* Note: we may be running in child context, but the PID is not hashed
|
|
* anymore so new counters will not be added.
|
|
*/
|
|
void perf_counter_exit_task(struct task_struct *child)
|
|
{
|
|
struct perf_counter *child_counter, *tmp;
|
|
struct perf_counter_context *child_ctx;
|
|
|
|
child_ctx = &child->perf_counter_ctx;
|
|
|
|
if (likely(!child_ctx->nr_counters))
|
|
return;
|
|
|
|
list_for_each_entry_safe(child_counter, tmp, &child_ctx->counter_list,
|
|
list_entry)
|
|
__perf_counter_exit_task(child, child_counter, child_ctx);
|
|
}
|
|
|
|
/*
|
|
* Initialize the perf_counter context in task_struct
|
|
*/
|
|
void perf_counter_init_task(struct task_struct *child)
|
|
{
|
|
struct perf_counter_context *child_ctx, *parent_ctx;
|
|
struct perf_counter *counter;
|
|
struct task_struct *parent = current;
|
|
|
|
child_ctx = &child->perf_counter_ctx;
|
|
parent_ctx = &parent->perf_counter_ctx;
|
|
|
|
__perf_counter_init_context(child_ctx, child);
|
|
|
|
/*
|
|
* This is executed from the parent task context, so inherit
|
|
* counters that have been marked for cloning:
|
|
*/
|
|
|
|
if (likely(!parent_ctx->nr_counters))
|
|
return;
|
|
|
|
/*
|
|
* Lock the parent list. No need to lock the child - not PID
|
|
* hashed yet and not running, so nobody can access it.
|
|
*/
|
|
mutex_lock(&parent_ctx->mutex);
|
|
|
|
/*
|
|
* We dont have to disable NMIs - we are only looking at
|
|
* the list, not manipulating it:
|
|
*/
|
|
list_for_each_entry(counter, &parent_ctx->counter_list, list_entry) {
|
|
if (!counter->hw_event.inherit)
|
|
continue;
|
|
|
|
if (inherit_group(counter, parent,
|
|
parent_ctx, child, child_ctx))
|
|
break;
|
|
}
|
|
|
|
mutex_unlock(&parent_ctx->mutex);
|
|
}
|
|
|
|
static void __cpuinit perf_counter_init_cpu(int cpu)
|
|
{
|
|
struct perf_cpu_context *cpuctx;
|
|
|
|
cpuctx = &per_cpu(perf_cpu_context, cpu);
|
|
__perf_counter_init_context(&cpuctx->ctx, NULL);
|
|
|
|
spin_lock(&perf_resource_lock);
|
|
cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
|
|
spin_unlock(&perf_resource_lock);
|
|
|
|
hw_perf_counter_setup(cpu);
|
|
}
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
static void __perf_counter_exit_cpu(void *info)
|
|
{
|
|
struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
|
|
struct perf_counter_context *ctx = &cpuctx->ctx;
|
|
struct perf_counter *counter, *tmp;
|
|
|
|
list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
|
|
__perf_counter_remove_from_context(counter);
|
|
}
|
|
static void perf_counter_exit_cpu(int cpu)
|
|
{
|
|
struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
|
|
struct perf_counter_context *ctx = &cpuctx->ctx;
|
|
|
|
mutex_lock(&ctx->mutex);
|
|
smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
|
|
mutex_unlock(&ctx->mutex);
|
|
}
|
|
#else
|
|
static inline void perf_counter_exit_cpu(int cpu) { }
|
|
#endif
|
|
|
|
static int __cpuinit
|
|
perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
|
|
{
|
|
unsigned int cpu = (long)hcpu;
|
|
|
|
switch (action) {
|
|
|
|
case CPU_UP_PREPARE:
|
|
case CPU_UP_PREPARE_FROZEN:
|
|
perf_counter_init_cpu(cpu);
|
|
break;
|
|
|
|
case CPU_DOWN_PREPARE:
|
|
case CPU_DOWN_PREPARE_FROZEN:
|
|
perf_counter_exit_cpu(cpu);
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return NOTIFY_OK;
|
|
}
|
|
|
|
static struct notifier_block __cpuinitdata perf_cpu_nb = {
|
|
.notifier_call = perf_cpu_notify,
|
|
};
|
|
|
|
void __init perf_counter_init(void)
|
|
{
|
|
perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
|
|
(void *)(long)smp_processor_id());
|
|
register_cpu_notifier(&perf_cpu_nb);
|
|
}
|
|
|
|
static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
|
|
{
|
|
return sprintf(buf, "%d\n", perf_reserved_percpu);
|
|
}
|
|
|
|
static ssize_t
|
|
perf_set_reserve_percpu(struct sysdev_class *class,
|
|
const char *buf,
|
|
size_t count)
|
|
{
|
|
struct perf_cpu_context *cpuctx;
|
|
unsigned long val;
|
|
int err, cpu, mpt;
|
|
|
|
err = strict_strtoul(buf, 10, &val);
|
|
if (err)
|
|
return err;
|
|
if (val > perf_max_counters)
|
|
return -EINVAL;
|
|
|
|
spin_lock(&perf_resource_lock);
|
|
perf_reserved_percpu = val;
|
|
for_each_online_cpu(cpu) {
|
|
cpuctx = &per_cpu(perf_cpu_context, cpu);
|
|
spin_lock_irq(&cpuctx->ctx.lock);
|
|
mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
|
|
perf_max_counters - perf_reserved_percpu);
|
|
cpuctx->max_pertask = mpt;
|
|
spin_unlock_irq(&cpuctx->ctx.lock);
|
|
}
|
|
spin_unlock(&perf_resource_lock);
|
|
|
|
return count;
|
|
}
|
|
|
|
static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
|
|
{
|
|
return sprintf(buf, "%d\n", perf_overcommit);
|
|
}
|
|
|
|
static ssize_t
|
|
perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
|
|
{
|
|
unsigned long val;
|
|
int err;
|
|
|
|
err = strict_strtoul(buf, 10, &val);
|
|
if (err)
|
|
return err;
|
|
if (val > 1)
|
|
return -EINVAL;
|
|
|
|
spin_lock(&perf_resource_lock);
|
|
perf_overcommit = val;
|
|
spin_unlock(&perf_resource_lock);
|
|
|
|
return count;
|
|
}
|
|
|
|
static SYSDEV_CLASS_ATTR(
|
|
reserve_percpu,
|
|
0644,
|
|
perf_show_reserve_percpu,
|
|
perf_set_reserve_percpu
|
|
);
|
|
|
|
static SYSDEV_CLASS_ATTR(
|
|
overcommit,
|
|
0644,
|
|
perf_show_overcommit,
|
|
perf_set_overcommit
|
|
);
|
|
|
|
static struct attribute *perfclass_attrs[] = {
|
|
&attr_reserve_percpu.attr,
|
|
&attr_overcommit.attr,
|
|
NULL
|
|
};
|
|
|
|
static struct attribute_group perfclass_attr_group = {
|
|
.attrs = perfclass_attrs,
|
|
.name = "perf_counters",
|
|
};
|
|
|
|
static int __init perf_counter_sysfs_init(void)
|
|
{
|
|
return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
|
|
&perfclass_attr_group);
|
|
}
|
|
device_initcall(perf_counter_sysfs_init);
|