mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-15 12:26:41 +07:00
bd721ea73e
There was only one use of __initdata_refok and __exit_refok
__init_refok was used 46 times against 82 for __ref.
Those definitions are obsolete since commit 312b1485fb
("Introduce new
section reference annotations tags: __ref, __refdata, __refconst")
This patch removes the following compatibility definitions and replaces
them treewide.
/* compatibility defines */
#define __init_refok __ref
#define __initdata_refok __refdata
#define __exit_refok __ref
I can also provide separate patches if necessary.
(One patch per tree and check in 1 month or 2 to remove old definitions)
[akpm@linux-foundation.org: coding-style fixes]
Link: http://lkml.kernel.org/r/1466796271-3043-1-git-send-email-fabf@skynet.be
Signed-off-by: Fabian Frederick <fabf@skynet.be>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Sam Ravnborg <sam@ravnborg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
813 lines
21 KiB
C
813 lines
21 KiB
C
/*
|
|
* sparse memory mappings.
|
|
*/
|
|
#include <linux/mm.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/mmzone.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/compiler.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/export.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/vmalloc.h>
|
|
|
|
#include "internal.h"
|
|
#include <asm/dma.h>
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/pgtable.h>
|
|
|
|
/*
|
|
* Permanent SPARSEMEM data:
|
|
*
|
|
* 1) mem_section - memory sections, mem_map's for valid memory
|
|
*/
|
|
#ifdef CONFIG_SPARSEMEM_EXTREME
|
|
struct mem_section *mem_section[NR_SECTION_ROOTS]
|
|
____cacheline_internodealigned_in_smp;
|
|
#else
|
|
struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
|
|
____cacheline_internodealigned_in_smp;
|
|
#endif
|
|
EXPORT_SYMBOL(mem_section);
|
|
|
|
#ifdef NODE_NOT_IN_PAGE_FLAGS
|
|
/*
|
|
* If we did not store the node number in the page then we have to
|
|
* do a lookup in the section_to_node_table in order to find which
|
|
* node the page belongs to.
|
|
*/
|
|
#if MAX_NUMNODES <= 256
|
|
static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
|
|
#else
|
|
static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
|
|
#endif
|
|
|
|
int page_to_nid(const struct page *page)
|
|
{
|
|
return section_to_node_table[page_to_section(page)];
|
|
}
|
|
EXPORT_SYMBOL(page_to_nid);
|
|
|
|
static void set_section_nid(unsigned long section_nr, int nid)
|
|
{
|
|
section_to_node_table[section_nr] = nid;
|
|
}
|
|
#else /* !NODE_NOT_IN_PAGE_FLAGS */
|
|
static inline void set_section_nid(unsigned long section_nr, int nid)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_SPARSEMEM_EXTREME
|
|
static noinline struct mem_section __ref *sparse_index_alloc(int nid)
|
|
{
|
|
struct mem_section *section = NULL;
|
|
unsigned long array_size = SECTIONS_PER_ROOT *
|
|
sizeof(struct mem_section);
|
|
|
|
if (slab_is_available()) {
|
|
if (node_state(nid, N_HIGH_MEMORY))
|
|
section = kzalloc_node(array_size, GFP_KERNEL, nid);
|
|
else
|
|
section = kzalloc(array_size, GFP_KERNEL);
|
|
} else {
|
|
section = memblock_virt_alloc_node(array_size, nid);
|
|
}
|
|
|
|
return section;
|
|
}
|
|
|
|
static int __meminit sparse_index_init(unsigned long section_nr, int nid)
|
|
{
|
|
unsigned long root = SECTION_NR_TO_ROOT(section_nr);
|
|
struct mem_section *section;
|
|
|
|
if (mem_section[root])
|
|
return -EEXIST;
|
|
|
|
section = sparse_index_alloc(nid);
|
|
if (!section)
|
|
return -ENOMEM;
|
|
|
|
mem_section[root] = section;
|
|
|
|
return 0;
|
|
}
|
|
#else /* !SPARSEMEM_EXTREME */
|
|
static inline int sparse_index_init(unsigned long section_nr, int nid)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_SPARSEMEM_EXTREME
|
|
int __section_nr(struct mem_section* ms)
|
|
{
|
|
unsigned long root_nr;
|
|
struct mem_section* root;
|
|
|
|
for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
|
|
root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
|
|
if (!root)
|
|
continue;
|
|
|
|
if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
|
|
break;
|
|
}
|
|
|
|
VM_BUG_ON(root_nr == NR_SECTION_ROOTS);
|
|
|
|
return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
|
|
}
|
|
#else
|
|
int __section_nr(struct mem_section* ms)
|
|
{
|
|
return (int)(ms - mem_section[0]);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* During early boot, before section_mem_map is used for an actual
|
|
* mem_map, we use section_mem_map to store the section's NUMA
|
|
* node. This keeps us from having to use another data structure. The
|
|
* node information is cleared just before we store the real mem_map.
|
|
*/
|
|
static inline unsigned long sparse_encode_early_nid(int nid)
|
|
{
|
|
return (nid << SECTION_NID_SHIFT);
|
|
}
|
|
|
|
static inline int sparse_early_nid(struct mem_section *section)
|
|
{
|
|
return (section->section_mem_map >> SECTION_NID_SHIFT);
|
|
}
|
|
|
|
/* Validate the physical addressing limitations of the model */
|
|
void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
|
|
unsigned long *end_pfn)
|
|
{
|
|
unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
|
|
|
|
/*
|
|
* Sanity checks - do not allow an architecture to pass
|
|
* in larger pfns than the maximum scope of sparsemem:
|
|
*/
|
|
if (*start_pfn > max_sparsemem_pfn) {
|
|
mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
|
|
"Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
|
|
*start_pfn, *end_pfn, max_sparsemem_pfn);
|
|
WARN_ON_ONCE(1);
|
|
*start_pfn = max_sparsemem_pfn;
|
|
*end_pfn = max_sparsemem_pfn;
|
|
} else if (*end_pfn > max_sparsemem_pfn) {
|
|
mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
|
|
"End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
|
|
*start_pfn, *end_pfn, max_sparsemem_pfn);
|
|
WARN_ON_ONCE(1);
|
|
*end_pfn = max_sparsemem_pfn;
|
|
}
|
|
}
|
|
|
|
/* Record a memory area against a node. */
|
|
void __init memory_present(int nid, unsigned long start, unsigned long end)
|
|
{
|
|
unsigned long pfn;
|
|
|
|
start &= PAGE_SECTION_MASK;
|
|
mminit_validate_memmodel_limits(&start, &end);
|
|
for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
|
|
unsigned long section = pfn_to_section_nr(pfn);
|
|
struct mem_section *ms;
|
|
|
|
sparse_index_init(section, nid);
|
|
set_section_nid(section, nid);
|
|
|
|
ms = __nr_to_section(section);
|
|
if (!ms->section_mem_map)
|
|
ms->section_mem_map = sparse_encode_early_nid(nid) |
|
|
SECTION_MARKED_PRESENT;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Only used by the i386 NUMA architecures, but relatively
|
|
* generic code.
|
|
*/
|
|
unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
|
|
unsigned long end_pfn)
|
|
{
|
|
unsigned long pfn;
|
|
unsigned long nr_pages = 0;
|
|
|
|
mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
|
|
for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
|
|
if (nid != early_pfn_to_nid(pfn))
|
|
continue;
|
|
|
|
if (pfn_present(pfn))
|
|
nr_pages += PAGES_PER_SECTION;
|
|
}
|
|
|
|
return nr_pages * sizeof(struct page);
|
|
}
|
|
|
|
/*
|
|
* Subtle, we encode the real pfn into the mem_map such that
|
|
* the identity pfn - section_mem_map will return the actual
|
|
* physical page frame number.
|
|
*/
|
|
static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
|
|
{
|
|
return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
|
|
}
|
|
|
|
/*
|
|
* Decode mem_map from the coded memmap
|
|
*/
|
|
struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
|
|
{
|
|
/* mask off the extra low bits of information */
|
|
coded_mem_map &= SECTION_MAP_MASK;
|
|
return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
|
|
}
|
|
|
|
static int __meminit sparse_init_one_section(struct mem_section *ms,
|
|
unsigned long pnum, struct page *mem_map,
|
|
unsigned long *pageblock_bitmap)
|
|
{
|
|
if (!present_section(ms))
|
|
return -EINVAL;
|
|
|
|
ms->section_mem_map &= ~SECTION_MAP_MASK;
|
|
ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
|
|
SECTION_HAS_MEM_MAP;
|
|
ms->pageblock_flags = pageblock_bitmap;
|
|
|
|
return 1;
|
|
}
|
|
|
|
unsigned long usemap_size(void)
|
|
{
|
|
unsigned long size_bytes;
|
|
size_bytes = roundup(SECTION_BLOCKFLAGS_BITS, 8) / 8;
|
|
size_bytes = roundup(size_bytes, sizeof(unsigned long));
|
|
return size_bytes;
|
|
}
|
|
|
|
#ifdef CONFIG_MEMORY_HOTPLUG
|
|
static unsigned long *__kmalloc_section_usemap(void)
|
|
{
|
|
return kmalloc(usemap_size(), GFP_KERNEL);
|
|
}
|
|
#endif /* CONFIG_MEMORY_HOTPLUG */
|
|
|
|
#ifdef CONFIG_MEMORY_HOTREMOVE
|
|
static unsigned long * __init
|
|
sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
|
|
unsigned long size)
|
|
{
|
|
unsigned long goal, limit;
|
|
unsigned long *p;
|
|
int nid;
|
|
/*
|
|
* A page may contain usemaps for other sections preventing the
|
|
* page being freed and making a section unremovable while
|
|
* other sections referencing the usemap remain active. Similarly,
|
|
* a pgdat can prevent a section being removed. If section A
|
|
* contains a pgdat and section B contains the usemap, both
|
|
* sections become inter-dependent. This allocates usemaps
|
|
* from the same section as the pgdat where possible to avoid
|
|
* this problem.
|
|
*/
|
|
goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
|
|
limit = goal + (1UL << PA_SECTION_SHIFT);
|
|
nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
|
|
again:
|
|
p = memblock_virt_alloc_try_nid_nopanic(size,
|
|
SMP_CACHE_BYTES, goal, limit,
|
|
nid);
|
|
if (!p && limit) {
|
|
limit = 0;
|
|
goto again;
|
|
}
|
|
return p;
|
|
}
|
|
|
|
static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
|
|
{
|
|
unsigned long usemap_snr, pgdat_snr;
|
|
static unsigned long old_usemap_snr = NR_MEM_SECTIONS;
|
|
static unsigned long old_pgdat_snr = NR_MEM_SECTIONS;
|
|
struct pglist_data *pgdat = NODE_DATA(nid);
|
|
int usemap_nid;
|
|
|
|
usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
|
|
pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
|
|
if (usemap_snr == pgdat_snr)
|
|
return;
|
|
|
|
if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
|
|
/* skip redundant message */
|
|
return;
|
|
|
|
old_usemap_snr = usemap_snr;
|
|
old_pgdat_snr = pgdat_snr;
|
|
|
|
usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
|
|
if (usemap_nid != nid) {
|
|
pr_info("node %d must be removed before remove section %ld\n",
|
|
nid, usemap_snr);
|
|
return;
|
|
}
|
|
/*
|
|
* There is a circular dependency.
|
|
* Some platforms allow un-removable section because they will just
|
|
* gather other removable sections for dynamic partitioning.
|
|
* Just notify un-removable section's number here.
|
|
*/
|
|
pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
|
|
usemap_snr, pgdat_snr, nid);
|
|
}
|
|
#else
|
|
static unsigned long * __init
|
|
sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
|
|
unsigned long size)
|
|
{
|
|
return memblock_virt_alloc_node_nopanic(size, pgdat->node_id);
|
|
}
|
|
|
|
static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
|
|
{
|
|
}
|
|
#endif /* CONFIG_MEMORY_HOTREMOVE */
|
|
|
|
static void __init sparse_early_usemaps_alloc_node(void *data,
|
|
unsigned long pnum_begin,
|
|
unsigned long pnum_end,
|
|
unsigned long usemap_count, int nodeid)
|
|
{
|
|
void *usemap;
|
|
unsigned long pnum;
|
|
unsigned long **usemap_map = (unsigned long **)data;
|
|
int size = usemap_size();
|
|
|
|
usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid),
|
|
size * usemap_count);
|
|
if (!usemap) {
|
|
pr_warn("%s: allocation failed\n", __func__);
|
|
return;
|
|
}
|
|
|
|
for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
|
|
if (!present_section_nr(pnum))
|
|
continue;
|
|
usemap_map[pnum] = usemap;
|
|
usemap += size;
|
|
check_usemap_section_nr(nodeid, usemap_map[pnum]);
|
|
}
|
|
}
|
|
|
|
#ifndef CONFIG_SPARSEMEM_VMEMMAP
|
|
struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid)
|
|
{
|
|
struct page *map;
|
|
unsigned long size;
|
|
|
|
map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
|
|
if (map)
|
|
return map;
|
|
|
|
size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
|
|
map = memblock_virt_alloc_try_nid(size,
|
|
PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
|
|
BOOTMEM_ALLOC_ACCESSIBLE, nid);
|
|
return map;
|
|
}
|
|
void __init sparse_mem_maps_populate_node(struct page **map_map,
|
|
unsigned long pnum_begin,
|
|
unsigned long pnum_end,
|
|
unsigned long map_count, int nodeid)
|
|
{
|
|
void *map;
|
|
unsigned long pnum;
|
|
unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
|
|
|
|
map = alloc_remap(nodeid, size * map_count);
|
|
if (map) {
|
|
for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
|
|
if (!present_section_nr(pnum))
|
|
continue;
|
|
map_map[pnum] = map;
|
|
map += size;
|
|
}
|
|
return;
|
|
}
|
|
|
|
size = PAGE_ALIGN(size);
|
|
map = memblock_virt_alloc_try_nid(size * map_count,
|
|
PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
|
|
BOOTMEM_ALLOC_ACCESSIBLE, nodeid);
|
|
if (map) {
|
|
for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
|
|
if (!present_section_nr(pnum))
|
|
continue;
|
|
map_map[pnum] = map;
|
|
map += size;
|
|
}
|
|
return;
|
|
}
|
|
|
|
/* fallback */
|
|
for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
|
|
struct mem_section *ms;
|
|
|
|
if (!present_section_nr(pnum))
|
|
continue;
|
|
map_map[pnum] = sparse_mem_map_populate(pnum, nodeid);
|
|
if (map_map[pnum])
|
|
continue;
|
|
ms = __nr_to_section(pnum);
|
|
pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
|
|
__func__);
|
|
ms->section_mem_map = 0;
|
|
}
|
|
}
|
|
#endif /* !CONFIG_SPARSEMEM_VMEMMAP */
|
|
|
|
#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
|
|
static void __init sparse_early_mem_maps_alloc_node(void *data,
|
|
unsigned long pnum_begin,
|
|
unsigned long pnum_end,
|
|
unsigned long map_count, int nodeid)
|
|
{
|
|
struct page **map_map = (struct page **)data;
|
|
sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end,
|
|
map_count, nodeid);
|
|
}
|
|
#else
|
|
static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
|
|
{
|
|
struct page *map;
|
|
struct mem_section *ms = __nr_to_section(pnum);
|
|
int nid = sparse_early_nid(ms);
|
|
|
|
map = sparse_mem_map_populate(pnum, nid);
|
|
if (map)
|
|
return map;
|
|
|
|
pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
|
|
__func__);
|
|
ms->section_mem_map = 0;
|
|
return NULL;
|
|
}
|
|
#endif
|
|
|
|
void __weak __meminit vmemmap_populate_print_last(void)
|
|
{
|
|
}
|
|
|
|
/**
|
|
* alloc_usemap_and_memmap - memory alloction for pageblock flags and vmemmap
|
|
* @map: usemap_map for pageblock flags or mmap_map for vmemmap
|
|
*/
|
|
static void __init alloc_usemap_and_memmap(void (*alloc_func)
|
|
(void *, unsigned long, unsigned long,
|
|
unsigned long, int), void *data)
|
|
{
|
|
unsigned long pnum;
|
|
unsigned long map_count;
|
|
int nodeid_begin = 0;
|
|
unsigned long pnum_begin = 0;
|
|
|
|
for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
|
|
struct mem_section *ms;
|
|
|
|
if (!present_section_nr(pnum))
|
|
continue;
|
|
ms = __nr_to_section(pnum);
|
|
nodeid_begin = sparse_early_nid(ms);
|
|
pnum_begin = pnum;
|
|
break;
|
|
}
|
|
map_count = 1;
|
|
for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) {
|
|
struct mem_section *ms;
|
|
int nodeid;
|
|
|
|
if (!present_section_nr(pnum))
|
|
continue;
|
|
ms = __nr_to_section(pnum);
|
|
nodeid = sparse_early_nid(ms);
|
|
if (nodeid == nodeid_begin) {
|
|
map_count++;
|
|
continue;
|
|
}
|
|
/* ok, we need to take cake of from pnum_begin to pnum - 1*/
|
|
alloc_func(data, pnum_begin, pnum,
|
|
map_count, nodeid_begin);
|
|
/* new start, update count etc*/
|
|
nodeid_begin = nodeid;
|
|
pnum_begin = pnum;
|
|
map_count = 1;
|
|
}
|
|
/* ok, last chunk */
|
|
alloc_func(data, pnum_begin, NR_MEM_SECTIONS,
|
|
map_count, nodeid_begin);
|
|
}
|
|
|
|
/*
|
|
* Allocate the accumulated non-linear sections, allocate a mem_map
|
|
* for each and record the physical to section mapping.
|
|
*/
|
|
void __init sparse_init(void)
|
|
{
|
|
unsigned long pnum;
|
|
struct page *map;
|
|
unsigned long *usemap;
|
|
unsigned long **usemap_map;
|
|
int size;
|
|
#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
|
|
int size2;
|
|
struct page **map_map;
|
|
#endif
|
|
|
|
/* see include/linux/mmzone.h 'struct mem_section' definition */
|
|
BUILD_BUG_ON(!is_power_of_2(sizeof(struct mem_section)));
|
|
|
|
/* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
|
|
set_pageblock_order();
|
|
|
|
/*
|
|
* map is using big page (aka 2M in x86 64 bit)
|
|
* usemap is less one page (aka 24 bytes)
|
|
* so alloc 2M (with 2M align) and 24 bytes in turn will
|
|
* make next 2M slip to one more 2M later.
|
|
* then in big system, the memory will have a lot of holes...
|
|
* here try to allocate 2M pages continuously.
|
|
*
|
|
* powerpc need to call sparse_init_one_section right after each
|
|
* sparse_early_mem_map_alloc, so allocate usemap_map at first.
|
|
*/
|
|
size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
|
|
usemap_map = memblock_virt_alloc(size, 0);
|
|
if (!usemap_map)
|
|
panic("can not allocate usemap_map\n");
|
|
alloc_usemap_and_memmap(sparse_early_usemaps_alloc_node,
|
|
(void *)usemap_map);
|
|
|
|
#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
|
|
size2 = sizeof(struct page *) * NR_MEM_SECTIONS;
|
|
map_map = memblock_virt_alloc(size2, 0);
|
|
if (!map_map)
|
|
panic("can not allocate map_map\n");
|
|
alloc_usemap_and_memmap(sparse_early_mem_maps_alloc_node,
|
|
(void *)map_map);
|
|
#endif
|
|
|
|
for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
|
|
if (!present_section_nr(pnum))
|
|
continue;
|
|
|
|
usemap = usemap_map[pnum];
|
|
if (!usemap)
|
|
continue;
|
|
|
|
#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
|
|
map = map_map[pnum];
|
|
#else
|
|
map = sparse_early_mem_map_alloc(pnum);
|
|
#endif
|
|
if (!map)
|
|
continue;
|
|
|
|
sparse_init_one_section(__nr_to_section(pnum), pnum, map,
|
|
usemap);
|
|
}
|
|
|
|
vmemmap_populate_print_last();
|
|
|
|
#ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
|
|
memblock_free_early(__pa(map_map), size2);
|
|
#endif
|
|
memblock_free_early(__pa(usemap_map), size);
|
|
}
|
|
|
|
#ifdef CONFIG_MEMORY_HOTPLUG
|
|
#ifdef CONFIG_SPARSEMEM_VMEMMAP
|
|
static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid)
|
|
{
|
|
/* This will make the necessary allocations eventually. */
|
|
return sparse_mem_map_populate(pnum, nid);
|
|
}
|
|
static void __kfree_section_memmap(struct page *memmap)
|
|
{
|
|
unsigned long start = (unsigned long)memmap;
|
|
unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
|
|
|
|
vmemmap_free(start, end);
|
|
}
|
|
#ifdef CONFIG_MEMORY_HOTREMOVE
|
|
static void free_map_bootmem(struct page *memmap)
|
|
{
|
|
unsigned long start = (unsigned long)memmap;
|
|
unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
|
|
|
|
vmemmap_free(start, end);
|
|
}
|
|
#endif /* CONFIG_MEMORY_HOTREMOVE */
|
|
#else
|
|
static struct page *__kmalloc_section_memmap(void)
|
|
{
|
|
struct page *page, *ret;
|
|
unsigned long memmap_size = sizeof(struct page) * PAGES_PER_SECTION;
|
|
|
|
page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
|
|
if (page)
|
|
goto got_map_page;
|
|
|
|
ret = vmalloc(memmap_size);
|
|
if (ret)
|
|
goto got_map_ptr;
|
|
|
|
return NULL;
|
|
got_map_page:
|
|
ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
|
|
got_map_ptr:
|
|
|
|
return ret;
|
|
}
|
|
|
|
static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid)
|
|
{
|
|
return __kmalloc_section_memmap();
|
|
}
|
|
|
|
static void __kfree_section_memmap(struct page *memmap)
|
|
{
|
|
if (is_vmalloc_addr(memmap))
|
|
vfree(memmap);
|
|
else
|
|
free_pages((unsigned long)memmap,
|
|
get_order(sizeof(struct page) * PAGES_PER_SECTION));
|
|
}
|
|
|
|
#ifdef CONFIG_MEMORY_HOTREMOVE
|
|
static void free_map_bootmem(struct page *memmap)
|
|
{
|
|
unsigned long maps_section_nr, removing_section_nr, i;
|
|
unsigned long magic, nr_pages;
|
|
struct page *page = virt_to_page(memmap);
|
|
|
|
nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
|
|
>> PAGE_SHIFT;
|
|
|
|
for (i = 0; i < nr_pages; i++, page++) {
|
|
magic = (unsigned long) page->lru.next;
|
|
|
|
BUG_ON(magic == NODE_INFO);
|
|
|
|
maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
|
|
removing_section_nr = page->private;
|
|
|
|
/*
|
|
* When this function is called, the removing section is
|
|
* logical offlined state. This means all pages are isolated
|
|
* from page allocator. If removing section's memmap is placed
|
|
* on the same section, it must not be freed.
|
|
* If it is freed, page allocator may allocate it which will
|
|
* be removed physically soon.
|
|
*/
|
|
if (maps_section_nr != removing_section_nr)
|
|
put_page_bootmem(page);
|
|
}
|
|
}
|
|
#endif /* CONFIG_MEMORY_HOTREMOVE */
|
|
#endif /* CONFIG_SPARSEMEM_VMEMMAP */
|
|
|
|
/*
|
|
* returns the number of sections whose mem_maps were properly
|
|
* set. If this is <=0, then that means that the passed-in
|
|
* map was not consumed and must be freed.
|
|
*/
|
|
int __meminit sparse_add_one_section(struct zone *zone, unsigned long start_pfn)
|
|
{
|
|
unsigned long section_nr = pfn_to_section_nr(start_pfn);
|
|
struct pglist_data *pgdat = zone->zone_pgdat;
|
|
struct mem_section *ms;
|
|
struct page *memmap;
|
|
unsigned long *usemap;
|
|
unsigned long flags;
|
|
int ret;
|
|
|
|
/*
|
|
* no locking for this, because it does its own
|
|
* plus, it does a kmalloc
|
|
*/
|
|
ret = sparse_index_init(section_nr, pgdat->node_id);
|
|
if (ret < 0 && ret != -EEXIST)
|
|
return ret;
|
|
memmap = kmalloc_section_memmap(section_nr, pgdat->node_id);
|
|
if (!memmap)
|
|
return -ENOMEM;
|
|
usemap = __kmalloc_section_usemap();
|
|
if (!usemap) {
|
|
__kfree_section_memmap(memmap);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
pgdat_resize_lock(pgdat, &flags);
|
|
|
|
ms = __pfn_to_section(start_pfn);
|
|
if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
|
|
ret = -EEXIST;
|
|
goto out;
|
|
}
|
|
|
|
memset(memmap, 0, sizeof(struct page) * PAGES_PER_SECTION);
|
|
|
|
ms->section_mem_map |= SECTION_MARKED_PRESENT;
|
|
|
|
ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
|
|
|
|
out:
|
|
pgdat_resize_unlock(pgdat, &flags);
|
|
if (ret <= 0) {
|
|
kfree(usemap);
|
|
__kfree_section_memmap(memmap);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_MEMORY_HOTREMOVE
|
|
#ifdef CONFIG_MEMORY_FAILURE
|
|
static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
|
|
{
|
|
int i;
|
|
|
|
if (!memmap)
|
|
return;
|
|
|
|
for (i = 0; i < nr_pages; i++) {
|
|
if (PageHWPoison(&memmap[i])) {
|
|
atomic_long_sub(1, &num_poisoned_pages);
|
|
ClearPageHWPoison(&memmap[i]);
|
|
}
|
|
}
|
|
}
|
|
#else
|
|
static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
static void free_section_usemap(struct page *memmap, unsigned long *usemap)
|
|
{
|
|
struct page *usemap_page;
|
|
|
|
if (!usemap)
|
|
return;
|
|
|
|
usemap_page = virt_to_page(usemap);
|
|
/*
|
|
* Check to see if allocation came from hot-plug-add
|
|
*/
|
|
if (PageSlab(usemap_page) || PageCompound(usemap_page)) {
|
|
kfree(usemap);
|
|
if (memmap)
|
|
__kfree_section_memmap(memmap);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* The usemap came from bootmem. This is packed with other usemaps
|
|
* on the section which has pgdat at boot time. Just keep it as is now.
|
|
*/
|
|
|
|
if (memmap)
|
|
free_map_bootmem(memmap);
|
|
}
|
|
|
|
void sparse_remove_one_section(struct zone *zone, struct mem_section *ms,
|
|
unsigned long map_offset)
|
|
{
|
|
struct page *memmap = NULL;
|
|
unsigned long *usemap = NULL, flags;
|
|
struct pglist_data *pgdat = zone->zone_pgdat;
|
|
|
|
pgdat_resize_lock(pgdat, &flags);
|
|
if (ms->section_mem_map) {
|
|
usemap = ms->pageblock_flags;
|
|
memmap = sparse_decode_mem_map(ms->section_mem_map,
|
|
__section_nr(ms));
|
|
ms->section_mem_map = 0;
|
|
ms->pageblock_flags = NULL;
|
|
}
|
|
pgdat_resize_unlock(pgdat, &flags);
|
|
|
|
clear_hwpoisoned_pages(memmap + map_offset,
|
|
PAGES_PER_SECTION - map_offset);
|
|
free_section_usemap(memmap, usemap);
|
|
}
|
|
#endif /* CONFIG_MEMORY_HOTREMOVE */
|
|
#endif /* CONFIG_MEMORY_HOTPLUG */
|