mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-27 17:31:48 +07:00
47933ad41a
A number of situations currently require the heavyweight smp_mb(), even though there is no need to order prior stores against later loads. Many architectures have much cheaper ways to handle these situations, but the Linux kernel currently has no portable way to make use of them. This commit therefore supplies smp_load_acquire() and smp_store_release() to remedy this situation. The new smp_load_acquire() primitive orders the specified load against any subsequent reads or writes, while the new smp_store_release() primitive orders the specifed store against any prior reads or writes. These primitives allow array-based circular FIFOs to be implemented without an smp_mb(), and also allow a theoretical hole in rcu_assign_pointer() to be closed at no additional expense on most architectures. In addition, the RCU experience transitioning from explicit smp_read_barrier_depends() and smp_wmb() to rcu_dereference() and rcu_assign_pointer(), respectively resulted in substantial improvements in readability. It therefore seems likely that replacing other explicit barriers with smp_load_acquire() and smp_store_release() will provide similar benefits. It appears that roughly half of the explicit barriers in core kernel code might be so replaced. [Changelog by PaulMck] Reviewed-by: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Acked-by: Will Deacon <will.deacon@arm.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@polymtl.ca> Cc: Michael Ellerman <michael@ellerman.id.au> Cc: Michael Neuling <mikey@neuling.org> Cc: Russell King <linux@arm.linux.org.uk> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Victor Kaplansky <VICTORK@il.ibm.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Oleg Nesterov <oleg@redhat.com> Link: http://lkml.kernel.org/r/20131213150640.908486364@infradead.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
158 lines
4.4 KiB
C
158 lines
4.4 KiB
C
#ifndef _ASM_X86_BARRIER_H
|
|
#define _ASM_X86_BARRIER_H
|
|
|
|
#include <asm/alternative.h>
|
|
#include <asm/nops.h>
|
|
|
|
/*
|
|
* Force strict CPU ordering.
|
|
* And yes, this is required on UP too when we're talking
|
|
* to devices.
|
|
*/
|
|
|
|
#ifdef CONFIG_X86_32
|
|
/*
|
|
* Some non-Intel clones support out of order store. wmb() ceases to be a
|
|
* nop for these.
|
|
*/
|
|
#define mb() alternative("lock; addl $0,0(%%esp)", "mfence", X86_FEATURE_XMM2)
|
|
#define rmb() alternative("lock; addl $0,0(%%esp)", "lfence", X86_FEATURE_XMM2)
|
|
#define wmb() alternative("lock; addl $0,0(%%esp)", "sfence", X86_FEATURE_XMM)
|
|
#else
|
|
#define mb() asm volatile("mfence":::"memory")
|
|
#define rmb() asm volatile("lfence":::"memory")
|
|
#define wmb() asm volatile("sfence" ::: "memory")
|
|
#endif
|
|
|
|
/**
|
|
* read_barrier_depends - Flush all pending reads that subsequents reads
|
|
* depend on.
|
|
*
|
|
* No data-dependent reads from memory-like regions are ever reordered
|
|
* over this barrier. All reads preceding this primitive are guaranteed
|
|
* to access memory (but not necessarily other CPUs' caches) before any
|
|
* reads following this primitive that depend on the data return by
|
|
* any of the preceding reads. This primitive is much lighter weight than
|
|
* rmb() on most CPUs, and is never heavier weight than is
|
|
* rmb().
|
|
*
|
|
* These ordering constraints are respected by both the local CPU
|
|
* and the compiler.
|
|
*
|
|
* Ordering is not guaranteed by anything other than these primitives,
|
|
* not even by data dependencies. See the documentation for
|
|
* memory_barrier() for examples and URLs to more information.
|
|
*
|
|
* For example, the following code would force ordering (the initial
|
|
* value of "a" is zero, "b" is one, and "p" is "&a"):
|
|
*
|
|
* <programlisting>
|
|
* CPU 0 CPU 1
|
|
*
|
|
* b = 2;
|
|
* memory_barrier();
|
|
* p = &b; q = p;
|
|
* read_barrier_depends();
|
|
* d = *q;
|
|
* </programlisting>
|
|
*
|
|
* because the read of "*q" depends on the read of "p" and these
|
|
* two reads are separated by a read_barrier_depends(). However,
|
|
* the following code, with the same initial values for "a" and "b":
|
|
*
|
|
* <programlisting>
|
|
* CPU 0 CPU 1
|
|
*
|
|
* a = 2;
|
|
* memory_barrier();
|
|
* b = 3; y = b;
|
|
* read_barrier_depends();
|
|
* x = a;
|
|
* </programlisting>
|
|
*
|
|
* does not enforce ordering, since there is no data dependency between
|
|
* the read of "a" and the read of "b". Therefore, on some CPUs, such
|
|
* as Alpha, "y" could be set to 3 and "x" to 0. Use rmb()
|
|
* in cases like this where there are no data dependencies.
|
|
**/
|
|
|
|
#define read_barrier_depends() do { } while (0)
|
|
|
|
#ifdef CONFIG_SMP
|
|
#define smp_mb() mb()
|
|
#ifdef CONFIG_X86_PPRO_FENCE
|
|
# define smp_rmb() rmb()
|
|
#else
|
|
# define smp_rmb() barrier()
|
|
#endif
|
|
#ifdef CONFIG_X86_OOSTORE
|
|
# define smp_wmb() wmb()
|
|
#else
|
|
# define smp_wmb() barrier()
|
|
#endif
|
|
#define smp_read_barrier_depends() read_barrier_depends()
|
|
#define set_mb(var, value) do { (void)xchg(&var, value); } while (0)
|
|
#else /* !SMP */
|
|
#define smp_mb() barrier()
|
|
#define smp_rmb() barrier()
|
|
#define smp_wmb() barrier()
|
|
#define smp_read_barrier_depends() do { } while (0)
|
|
#define set_mb(var, value) do { var = value; barrier(); } while (0)
|
|
#endif /* SMP */
|
|
|
|
#if defined(CONFIG_X86_OOSTORE) || defined(CONFIG_X86_PPRO_FENCE)
|
|
|
|
/*
|
|
* For either of these options x86 doesn't have a strong TSO memory
|
|
* model and we should fall back to full barriers.
|
|
*/
|
|
|
|
#define smp_store_release(p, v) \
|
|
do { \
|
|
compiletime_assert_atomic_type(*p); \
|
|
smp_mb(); \
|
|
ACCESS_ONCE(*p) = (v); \
|
|
} while (0)
|
|
|
|
#define smp_load_acquire(p) \
|
|
({ \
|
|
typeof(*p) ___p1 = ACCESS_ONCE(*p); \
|
|
compiletime_assert_atomic_type(*p); \
|
|
smp_mb(); \
|
|
___p1; \
|
|
})
|
|
|
|
#else /* regular x86 TSO memory ordering */
|
|
|
|
#define smp_store_release(p, v) \
|
|
do { \
|
|
compiletime_assert_atomic_type(*p); \
|
|
barrier(); \
|
|
ACCESS_ONCE(*p) = (v); \
|
|
} while (0)
|
|
|
|
#define smp_load_acquire(p) \
|
|
({ \
|
|
typeof(*p) ___p1 = ACCESS_ONCE(*p); \
|
|
compiletime_assert_atomic_type(*p); \
|
|
barrier(); \
|
|
___p1; \
|
|
})
|
|
|
|
#endif
|
|
|
|
/*
|
|
* Stop RDTSC speculation. This is needed when you need to use RDTSC
|
|
* (or get_cycles or vread that possibly accesses the TSC) in a defined
|
|
* code region.
|
|
*
|
|
* (Could use an alternative three way for this if there was one.)
|
|
*/
|
|
static __always_inline void rdtsc_barrier(void)
|
|
{
|
|
alternative(ASM_NOP3, "mfence", X86_FEATURE_MFENCE_RDTSC);
|
|
alternative(ASM_NOP3, "lfence", X86_FEATURE_LFENCE_RDTSC);
|
|
}
|
|
|
|
#endif /* _ASM_X86_BARRIER_H */
|