mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-22 17:35:17 +07:00
7e8dec918e
Adds the multi-precision-integer maths library which was originally taken from GnuPG and ported to the kernel by (among others) David Howells. This version is taken from Fedora kernel 2.6.32-71.14.1.el6. The difference is that checkpatch reported errors and warnings have been fixed. This library is used to implemenet RSA digital signature verification used in IMA/EVM integrity protection subsystem. Due to patch size limitation, the patch is divided into 4 parts. This code is unnecessary for RSA digital signature verification, but for completeness it is included here and can be compiled, if CONFIG_MPILIB_EXTRA is enabled. Signed-off-by: Dmitry Kasatkin <dmitry.kasatkin@intel.com>
188 lines
4.2 KiB
C
188 lines
4.2 KiB
C
/* mpi-inv.c - MPI functions
|
|
* Copyright (C) 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
|
|
*
|
|
* This file is part of GnuPG.
|
|
*
|
|
* GnuPG is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* GnuPG is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
|
|
*/
|
|
|
|
#include "mpi-internal.h"
|
|
|
|
/****************
|
|
* Calculate the multiplicative inverse X of A mod N
|
|
* That is: Find the solution x for
|
|
* 1 = (a*x) mod n
|
|
*/
|
|
int mpi_invm(MPI x, const MPI a, const MPI n)
|
|
{
|
|
/* Extended Euclid's algorithm (See TAOPC Vol II, 4.5.2, Alg X)
|
|
* modified according to Michael Penk's solution for Exercice 35
|
|
* with further enhancement */
|
|
MPI u = NULL, v = NULL;
|
|
MPI u1 = NULL, u2 = NULL, u3 = NULL;
|
|
MPI v1 = NULL, v2 = NULL, v3 = NULL;
|
|
MPI t1 = NULL, t2 = NULL, t3 = NULL;
|
|
unsigned k;
|
|
int sign;
|
|
int odd = 0;
|
|
int rc = -ENOMEM;
|
|
|
|
if (mpi_copy(&u, a) < 0)
|
|
goto cleanup;
|
|
if (mpi_copy(&v, n) < 0)
|
|
goto cleanup;
|
|
|
|
for (k = 0; !mpi_test_bit(u, 0) && !mpi_test_bit(v, 0); k++) {
|
|
if (mpi_rshift(u, u, 1) < 0)
|
|
goto cleanup;
|
|
if (mpi_rshift(v, v, 1) < 0)
|
|
goto cleanup;
|
|
}
|
|
odd = mpi_test_bit(v, 0);
|
|
|
|
u1 = mpi_alloc_set_ui(1);
|
|
if (!u1)
|
|
goto cleanup;
|
|
if (!odd) {
|
|
u2 = mpi_alloc_set_ui(0);
|
|
if (!u2)
|
|
goto cleanup;
|
|
}
|
|
if (mpi_copy(&u3, u) < 0)
|
|
goto cleanup;
|
|
if (mpi_copy(&v1, v) < 0)
|
|
goto cleanup;
|
|
if (!odd) {
|
|
v2 = mpi_alloc(mpi_get_nlimbs(u));
|
|
if (!v2)
|
|
goto cleanup;
|
|
if (mpi_sub(v2, u1, u) < 0)
|
|
goto cleanup; /* U is used as const 1 */
|
|
}
|
|
if (mpi_copy(&v3, v) < 0)
|
|
goto cleanup;
|
|
if (mpi_test_bit(u, 0)) { /* u is odd */
|
|
t1 = mpi_alloc_set_ui(0);
|
|
if (!t1)
|
|
goto cleanup;
|
|
if (!odd) {
|
|
t2 = mpi_alloc_set_ui(1);
|
|
if (!t2)
|
|
goto cleanup;
|
|
t2->sign = 1;
|
|
}
|
|
if (mpi_copy(&t3, v) < 0)
|
|
goto cleanup;
|
|
t3->sign = !t3->sign;
|
|
goto Y4;
|
|
} else {
|
|
t1 = mpi_alloc_set_ui(1);
|
|
if (!t1)
|
|
goto cleanup;
|
|
if (!odd) {
|
|
t2 = mpi_alloc_set_ui(0);
|
|
if (!t2)
|
|
goto cleanup;
|
|
}
|
|
if (mpi_copy(&t3, u) < 0)
|
|
goto cleanup;
|
|
}
|
|
do {
|
|
do {
|
|
if (!odd) {
|
|
if (mpi_test_bit(t1, 0) || mpi_test_bit(t2, 0)) { /* one is odd */
|
|
if (mpi_add(t1, t1, v) < 0)
|
|
goto cleanup;
|
|
if (mpi_sub(t2, t2, u) < 0)
|
|
goto cleanup;
|
|
}
|
|
if (mpi_rshift(t1, t1, 1) < 0)
|
|
goto cleanup;
|
|
if (mpi_rshift(t2, t2, 1) < 0)
|
|
goto cleanup;
|
|
if (mpi_rshift(t3, t3, 1) < 0)
|
|
goto cleanup;
|
|
} else {
|
|
if (mpi_test_bit(t1, 0))
|
|
if (mpi_add(t1, t1, v) < 0)
|
|
goto cleanup;
|
|
if (mpi_rshift(t1, t1, 1) < 0)
|
|
goto cleanup;
|
|
if (mpi_rshift(t3, t3, 1) < 0)
|
|
goto cleanup;
|
|
}
|
|
Y4:
|
|
;
|
|
} while (!mpi_test_bit(t3, 0)); /* while t3 is even */
|
|
|
|
if (!t3->sign) {
|
|
if (mpi_set(u1, t1) < 0)
|
|
goto cleanup;
|
|
if (!odd)
|
|
if (mpi_set(u2, t2) < 0)
|
|
goto cleanup;
|
|
if (mpi_set(u3, t3) < 0)
|
|
goto cleanup;
|
|
} else {
|
|
if (mpi_sub(v1, v, t1) < 0)
|
|
goto cleanup;
|
|
sign = u->sign;
|
|
u->sign = !u->sign;
|
|
if (!odd)
|
|
if (mpi_sub(v2, u, t2) < 0)
|
|
goto cleanup;
|
|
u->sign = sign;
|
|
sign = t3->sign;
|
|
t3->sign = !t3->sign;
|
|
if (mpi_set(v3, t3) < 0)
|
|
goto cleanup;
|
|
t3->sign = sign;
|
|
}
|
|
if (mpi_sub(t1, u1, v1) < 0)
|
|
goto cleanup;
|
|
if (!odd)
|
|
if (mpi_sub(t2, u2, v2) < 0)
|
|
goto cleanup;
|
|
if (mpi_sub(t3, u3, v3) < 0)
|
|
goto cleanup;
|
|
if (t1->sign) {
|
|
if (mpi_add(t1, t1, v) < 0)
|
|
goto cleanup;
|
|
if (!odd)
|
|
if (mpi_sub(t2, t2, u) < 0)
|
|
goto cleanup;
|
|
}
|
|
} while (mpi_cmp_ui(t3, 0)); /* while t3 != 0 */
|
|
/* mpi_lshift( u3, k ); */
|
|
rc = mpi_set(x, u1);
|
|
|
|
cleanup:
|
|
mpi_free(u1);
|
|
mpi_free(v1);
|
|
mpi_free(t1);
|
|
if (!odd) {
|
|
mpi_free(u2);
|
|
mpi_free(v2);
|
|
mpi_free(t2);
|
|
}
|
|
mpi_free(u3);
|
|
mpi_free(v3);
|
|
mpi_free(t3);
|
|
|
|
mpi_free(u);
|
|
mpi_free(v);
|
|
return rc;
|
|
}
|