linux_dsm_epyc7002/drivers/media/video/pxa_camera.c
Andreas Bombe dab7e3106d V4L/DVB: V4L2: Replace loops for finding max buffers in VIDIOC_REQBUFS callbacks
Due to obvious copy and paste coding a number of video capture drivers
which implement a limit on the buffer memory decremented the user
supplied buffer count in a while loop until it reaches an acceptable
value.

This is a silly thing to do when the maximum value can be directly
computed.

Signed-off-by: Andreas Bombe <aeb@debian.org>
Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
2010-05-19 12:57:13 -03:00

1851 lines
51 KiB
C

/*
* V4L2 Driver for PXA camera host
*
* Copyright (C) 2006, Sascha Hauer, Pengutronix
* Copyright (C) 2008, Guennadi Liakhovetski <kernel@pengutronix.de>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/io.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/errno.h>
#include <linux/fs.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/moduleparam.h>
#include <linux/time.h>
#include <linux/version.h>
#include <linux/device.h>
#include <linux/platform_device.h>
#include <linux/clk.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <media/v4l2-common.h>
#include <media/v4l2-dev.h>
#include <media/videobuf-dma-sg.h>
#include <media/soc_camera.h>
#include <media/soc_mediabus.h>
#include <linux/videodev2.h>
#include <mach/dma.h>
#include <mach/camera.h>
#define PXA_CAM_VERSION_CODE KERNEL_VERSION(0, 0, 5)
#define PXA_CAM_DRV_NAME "pxa27x-camera"
/* Camera Interface */
#define CICR0 0x0000
#define CICR1 0x0004
#define CICR2 0x0008
#define CICR3 0x000C
#define CICR4 0x0010
#define CISR 0x0014
#define CIFR 0x0018
#define CITOR 0x001C
#define CIBR0 0x0028
#define CIBR1 0x0030
#define CIBR2 0x0038
#define CICR0_DMAEN (1 << 31) /* DMA request enable */
#define CICR0_PAR_EN (1 << 30) /* Parity enable */
#define CICR0_SL_CAP_EN (1 << 29) /* Capture enable for slave mode */
#define CICR0_ENB (1 << 28) /* Camera interface enable */
#define CICR0_DIS (1 << 27) /* Camera interface disable */
#define CICR0_SIM (0x7 << 24) /* Sensor interface mode mask */
#define CICR0_TOM (1 << 9) /* Time-out mask */
#define CICR0_RDAVM (1 << 8) /* Receive-data-available mask */
#define CICR0_FEM (1 << 7) /* FIFO-empty mask */
#define CICR0_EOLM (1 << 6) /* End-of-line mask */
#define CICR0_PERRM (1 << 5) /* Parity-error mask */
#define CICR0_QDM (1 << 4) /* Quick-disable mask */
#define CICR0_CDM (1 << 3) /* Disable-done mask */
#define CICR0_SOFM (1 << 2) /* Start-of-frame mask */
#define CICR0_EOFM (1 << 1) /* End-of-frame mask */
#define CICR0_FOM (1 << 0) /* FIFO-overrun mask */
#define CICR1_TBIT (1 << 31) /* Transparency bit */
#define CICR1_RGBT_CONV (0x3 << 29) /* RGBT conversion mask */
#define CICR1_PPL (0x7ff << 15) /* Pixels per line mask */
#define CICR1_RGB_CONV (0x7 << 12) /* RGB conversion mask */
#define CICR1_RGB_F (1 << 11) /* RGB format */
#define CICR1_YCBCR_F (1 << 10) /* YCbCr format */
#define CICR1_RGB_BPP (0x7 << 7) /* RGB bis per pixel mask */
#define CICR1_RAW_BPP (0x3 << 5) /* Raw bis per pixel mask */
#define CICR1_COLOR_SP (0x3 << 3) /* Color space mask */
#define CICR1_DW (0x7 << 0) /* Data width mask */
#define CICR2_BLW (0xff << 24) /* Beginning-of-line pixel clock
wait count mask */
#define CICR2_ELW (0xff << 16) /* End-of-line pixel clock
wait count mask */
#define CICR2_HSW (0x3f << 10) /* Horizontal sync pulse width mask */
#define CICR2_BFPW (0x3f << 3) /* Beginning-of-frame pixel clock
wait count mask */
#define CICR2_FSW (0x7 << 0) /* Frame stabilization
wait count mask */
#define CICR3_BFW (0xff << 24) /* Beginning-of-frame line clock
wait count mask */
#define CICR3_EFW (0xff << 16) /* End-of-frame line clock
wait count mask */
#define CICR3_VSW (0x3f << 10) /* Vertical sync pulse width mask */
#define CICR3_BFPW (0x3f << 3) /* Beginning-of-frame pixel clock
wait count mask */
#define CICR3_LPF (0x7ff << 0) /* Lines per frame mask */
#define CICR4_MCLK_DLY (0x3 << 24) /* MCLK Data Capture Delay mask */
#define CICR4_PCLK_EN (1 << 23) /* Pixel clock enable */
#define CICR4_PCP (1 << 22) /* Pixel clock polarity */
#define CICR4_HSP (1 << 21) /* Horizontal sync polarity */
#define CICR4_VSP (1 << 20) /* Vertical sync polarity */
#define CICR4_MCLK_EN (1 << 19) /* MCLK enable */
#define CICR4_FR_RATE (0x7 << 8) /* Frame rate mask */
#define CICR4_DIV (0xff << 0) /* Clock divisor mask */
#define CISR_FTO (1 << 15) /* FIFO time-out */
#define CISR_RDAV_2 (1 << 14) /* Channel 2 receive data available */
#define CISR_RDAV_1 (1 << 13) /* Channel 1 receive data available */
#define CISR_RDAV_0 (1 << 12) /* Channel 0 receive data available */
#define CISR_FEMPTY_2 (1 << 11) /* Channel 2 FIFO empty */
#define CISR_FEMPTY_1 (1 << 10) /* Channel 1 FIFO empty */
#define CISR_FEMPTY_0 (1 << 9) /* Channel 0 FIFO empty */
#define CISR_EOL (1 << 8) /* End of line */
#define CISR_PAR_ERR (1 << 7) /* Parity error */
#define CISR_CQD (1 << 6) /* Camera interface quick disable */
#define CISR_CDD (1 << 5) /* Camera interface disable done */
#define CISR_SOF (1 << 4) /* Start of frame */
#define CISR_EOF (1 << 3) /* End of frame */
#define CISR_IFO_2 (1 << 2) /* FIFO overrun for Channel 2 */
#define CISR_IFO_1 (1 << 1) /* FIFO overrun for Channel 1 */
#define CISR_IFO_0 (1 << 0) /* FIFO overrun for Channel 0 */
#define CIFR_FLVL2 (0x7f << 23) /* FIFO 2 level mask */
#define CIFR_FLVL1 (0x7f << 16) /* FIFO 1 level mask */
#define CIFR_FLVL0 (0xff << 8) /* FIFO 0 level mask */
#define CIFR_THL_0 (0x3 << 4) /* Threshold Level for Channel 0 FIFO */
#define CIFR_RESET_F (1 << 3) /* Reset input FIFOs */
#define CIFR_FEN2 (1 << 2) /* FIFO enable for channel 2 */
#define CIFR_FEN1 (1 << 1) /* FIFO enable for channel 1 */
#define CIFR_FEN0 (1 << 0) /* FIFO enable for channel 0 */
#define CICR0_SIM_MP (0 << 24)
#define CICR0_SIM_SP (1 << 24)
#define CICR0_SIM_MS (2 << 24)
#define CICR0_SIM_EP (3 << 24)
#define CICR0_SIM_ES (4 << 24)
#define CICR1_DW_VAL(x) ((x) & CICR1_DW) /* Data bus width */
#define CICR1_PPL_VAL(x) (((x) << 15) & CICR1_PPL) /* Pixels per line */
#define CICR1_COLOR_SP_VAL(x) (((x) << 3) & CICR1_COLOR_SP) /* color space */
#define CICR1_RGB_BPP_VAL(x) (((x) << 7) & CICR1_RGB_BPP) /* bpp for rgb */
#define CICR1_RGBT_CONV_VAL(x) (((x) << 29) & CICR1_RGBT_CONV) /* rgbt conv */
#define CICR2_BLW_VAL(x) (((x) << 24) & CICR2_BLW) /* Beginning-of-line pixel clock wait count */
#define CICR2_ELW_VAL(x) (((x) << 16) & CICR2_ELW) /* End-of-line pixel clock wait count */
#define CICR2_HSW_VAL(x) (((x) << 10) & CICR2_HSW) /* Horizontal sync pulse width */
#define CICR2_BFPW_VAL(x) (((x) << 3) & CICR2_BFPW) /* Beginning-of-frame pixel clock wait count */
#define CICR2_FSW_VAL(x) (((x) << 0) & CICR2_FSW) /* Frame stabilization wait count */
#define CICR3_BFW_VAL(x) (((x) << 24) & CICR3_BFW) /* Beginning-of-frame line clock wait count */
#define CICR3_EFW_VAL(x) (((x) << 16) & CICR3_EFW) /* End-of-frame line clock wait count */
#define CICR3_VSW_VAL(x) (((x) << 11) & CICR3_VSW) /* Vertical sync pulse width */
#define CICR3_LPF_VAL(x) (((x) << 0) & CICR3_LPF) /* Lines per frame */
#define CICR0_IRQ_MASK (CICR0_TOM | CICR0_RDAVM | CICR0_FEM | CICR0_EOLM | \
CICR0_PERRM | CICR0_QDM | CICR0_CDM | CICR0_SOFM | \
CICR0_EOFM | CICR0_FOM)
/*
* Structures
*/
enum pxa_camera_active_dma {
DMA_Y = 0x1,
DMA_U = 0x2,
DMA_V = 0x4,
};
/* descriptor needed for the PXA DMA engine */
struct pxa_cam_dma {
dma_addr_t sg_dma;
struct pxa_dma_desc *sg_cpu;
size_t sg_size;
int sglen;
};
/* buffer for one video frame */
struct pxa_buffer {
/* common v4l buffer stuff -- must be first */
struct videobuf_buffer vb;
enum v4l2_mbus_pixelcode code;
/* our descriptor lists for Y, U and V channels */
struct pxa_cam_dma dmas[3];
int inwork;
enum pxa_camera_active_dma active_dma;
};
struct pxa_camera_dev {
struct soc_camera_host soc_host;
/*
* PXA27x is only supposed to handle one camera on its Quick Capture
* interface. If anyone ever builds hardware to enable more than
* one camera, they will have to modify this driver too
*/
struct soc_camera_device *icd;
struct clk *clk;
unsigned int irq;
void __iomem *base;
int channels;
unsigned int dma_chans[3];
struct pxacamera_platform_data *pdata;
struct resource *res;
unsigned long platform_flags;
unsigned long ciclk;
unsigned long mclk;
u32 mclk_divisor;
struct list_head capture;
spinlock_t lock;
struct pxa_buffer *active;
struct pxa_dma_desc *sg_tail[3];
u32 save_cicr[5];
};
struct pxa_cam {
unsigned long flags;
};
static const char *pxa_cam_driver_description = "PXA_Camera";
static unsigned int vid_limit = 16; /* Video memory limit, in Mb */
/*
* Videobuf operations
*/
static int pxa_videobuf_setup(struct videobuf_queue *vq, unsigned int *count,
unsigned int *size)
{
struct soc_camera_device *icd = vq->priv_data;
int bytes_per_line = soc_mbus_bytes_per_line(icd->user_width,
icd->current_fmt->host_fmt);
if (bytes_per_line < 0)
return bytes_per_line;
dev_dbg(icd->dev.parent, "count=%d, size=%d\n", *count, *size);
*size = bytes_per_line * icd->user_height;
if (0 == *count)
*count = 32;
if (*size * *count > vid_limit * 1024 * 1024)
*count = (vid_limit * 1024 * 1024) / *size;
return 0;
}
static void free_buffer(struct videobuf_queue *vq, struct pxa_buffer *buf)
{
struct soc_camera_device *icd = vq->priv_data;
struct soc_camera_host *ici = to_soc_camera_host(icd->dev.parent);
struct videobuf_dmabuf *dma = videobuf_to_dma(&buf->vb);
int i;
BUG_ON(in_interrupt());
dev_dbg(icd->dev.parent, "%s (vb=0x%p) 0x%08lx %d\n", __func__,
&buf->vb, buf->vb.baddr, buf->vb.bsize);
/*
* This waits until this buffer is out of danger, i.e., until it is no
* longer in STATE_QUEUED or STATE_ACTIVE
*/
videobuf_waiton(&buf->vb, 0, 0);
videobuf_dma_unmap(vq, dma);
videobuf_dma_free(dma);
for (i = 0; i < ARRAY_SIZE(buf->dmas); i++) {
if (buf->dmas[i].sg_cpu)
dma_free_coherent(ici->v4l2_dev.dev,
buf->dmas[i].sg_size,
buf->dmas[i].sg_cpu,
buf->dmas[i].sg_dma);
buf->dmas[i].sg_cpu = NULL;
}
buf->vb.state = VIDEOBUF_NEEDS_INIT;
}
static int calculate_dma_sglen(struct scatterlist *sglist, int sglen,
int sg_first_ofs, int size)
{
int i, offset, dma_len, xfer_len;
struct scatterlist *sg;
offset = sg_first_ofs;
for_each_sg(sglist, sg, sglen, i) {
dma_len = sg_dma_len(sg);
/* PXA27x Developer's Manual 27.4.4.1: round up to 8 bytes */
xfer_len = roundup(min(dma_len - offset, size), 8);
size = max(0, size - xfer_len);
offset = 0;
if (size == 0)
break;
}
BUG_ON(size != 0);
return i + 1;
}
/**
* pxa_init_dma_channel - init dma descriptors
* @pcdev: pxa camera device
* @buf: pxa buffer to find pxa dma channel
* @dma: dma video buffer
* @channel: dma channel (0 => 'Y', 1 => 'U', 2 => 'V')
* @cibr: camera Receive Buffer Register
* @size: bytes to transfer
* @sg_first: first element of sg_list
* @sg_first_ofs: offset in first element of sg_list
*
* Prepares the pxa dma descriptors to transfer one camera channel.
* Beware sg_first and sg_first_ofs are both input and output parameters.
*
* Returns 0 or -ENOMEM if no coherent memory is available
*/
static int pxa_init_dma_channel(struct pxa_camera_dev *pcdev,
struct pxa_buffer *buf,
struct videobuf_dmabuf *dma, int channel,
int cibr, int size,
struct scatterlist **sg_first, int *sg_first_ofs)
{
struct pxa_cam_dma *pxa_dma = &buf->dmas[channel];
struct device *dev = pcdev->soc_host.v4l2_dev.dev;
struct scatterlist *sg;
int i, offset, sglen;
int dma_len = 0, xfer_len = 0;
if (pxa_dma->sg_cpu)
dma_free_coherent(dev, pxa_dma->sg_size,
pxa_dma->sg_cpu, pxa_dma->sg_dma);
sglen = calculate_dma_sglen(*sg_first, dma->sglen,
*sg_first_ofs, size);
pxa_dma->sg_size = (sglen + 1) * sizeof(struct pxa_dma_desc);
pxa_dma->sg_cpu = dma_alloc_coherent(dev, pxa_dma->sg_size,
&pxa_dma->sg_dma, GFP_KERNEL);
if (!pxa_dma->sg_cpu)
return -ENOMEM;
pxa_dma->sglen = sglen;
offset = *sg_first_ofs;
dev_dbg(dev, "DMA: sg_first=%p, sglen=%d, ofs=%d, dma.desc=%x\n",
*sg_first, sglen, *sg_first_ofs, pxa_dma->sg_dma);
for_each_sg(*sg_first, sg, sglen, i) {
dma_len = sg_dma_len(sg);
/* PXA27x Developer's Manual 27.4.4.1: round up to 8 bytes */
xfer_len = roundup(min(dma_len - offset, size), 8);
size = max(0, size - xfer_len);
pxa_dma->sg_cpu[i].dsadr = pcdev->res->start + cibr;
pxa_dma->sg_cpu[i].dtadr = sg_dma_address(sg) + offset;
pxa_dma->sg_cpu[i].dcmd =
DCMD_FLOWSRC | DCMD_BURST8 | DCMD_INCTRGADDR | xfer_len;
#ifdef DEBUG
if (!i)
pxa_dma->sg_cpu[i].dcmd |= DCMD_STARTIRQEN;
#endif
pxa_dma->sg_cpu[i].ddadr =
pxa_dma->sg_dma + (i + 1) * sizeof(struct pxa_dma_desc);
dev_vdbg(dev, "DMA: desc.%08x->@phys=0x%08x, len=%d\n",
pxa_dma->sg_dma + i * sizeof(struct pxa_dma_desc),
sg_dma_address(sg) + offset, xfer_len);
offset = 0;
if (size == 0)
break;
}
pxa_dma->sg_cpu[sglen].ddadr = DDADR_STOP;
pxa_dma->sg_cpu[sglen].dcmd = DCMD_FLOWSRC | DCMD_BURST8 | DCMD_ENDIRQEN;
/*
* Handle 1 special case :
* - in 3 planes (YUV422P format), we might finish with xfer_len equal
* to dma_len (end on PAGE boundary). In this case, the sg element
* for next plane should be the next after the last used to store the
* last scatter gather RAM page
*/
if (xfer_len >= dma_len) {
*sg_first_ofs = xfer_len - dma_len;
*sg_first = sg_next(sg);
} else {
*sg_first_ofs = xfer_len;
*sg_first = sg;
}
return 0;
}
static void pxa_videobuf_set_actdma(struct pxa_camera_dev *pcdev,
struct pxa_buffer *buf)
{
buf->active_dma = DMA_Y;
if (pcdev->channels == 3)
buf->active_dma |= DMA_U | DMA_V;
}
/*
* Please check the DMA prepared buffer structure in :
* Documentation/video4linux/pxa_camera.txt
* Please check also in pxa_camera_check_link_miss() to understand why DMA chain
* modification while DMA chain is running will work anyway.
*/
static int pxa_videobuf_prepare(struct videobuf_queue *vq,
struct videobuf_buffer *vb, enum v4l2_field field)
{
struct soc_camera_device *icd = vq->priv_data;
struct soc_camera_host *ici = to_soc_camera_host(icd->dev.parent);
struct pxa_camera_dev *pcdev = ici->priv;
struct device *dev = pcdev->soc_host.v4l2_dev.dev;
struct pxa_buffer *buf = container_of(vb, struct pxa_buffer, vb);
int ret;
int size_y, size_u = 0, size_v = 0;
int bytes_per_line = soc_mbus_bytes_per_line(icd->user_width,
icd->current_fmt->host_fmt);
if (bytes_per_line < 0)
return bytes_per_line;
dev_dbg(dev, "%s (vb=0x%p) 0x%08lx %d\n", __func__,
vb, vb->baddr, vb->bsize);
/* Added list head initialization on alloc */
WARN_ON(!list_empty(&vb->queue));
#ifdef DEBUG
/*
* This can be useful if you want to see if we actually fill
* the buffer with something
*/
memset((void *)vb->baddr, 0xaa, vb->bsize);
#endif
BUG_ON(NULL == icd->current_fmt);
/*
* I think, in buf_prepare you only have to protect global data,
* the actual buffer is yours
*/
buf->inwork = 1;
if (buf->code != icd->current_fmt->code ||
vb->width != icd->user_width ||
vb->height != icd->user_height ||
vb->field != field) {
buf->code = icd->current_fmt->code;
vb->width = icd->user_width;
vb->height = icd->user_height;
vb->field = field;
vb->state = VIDEOBUF_NEEDS_INIT;
}
vb->size = bytes_per_line * vb->height;
if (0 != vb->baddr && vb->bsize < vb->size) {
ret = -EINVAL;
goto out;
}
if (vb->state == VIDEOBUF_NEEDS_INIT) {
int size = vb->size;
int next_ofs = 0;
struct videobuf_dmabuf *dma = videobuf_to_dma(vb);
struct scatterlist *sg;
ret = videobuf_iolock(vq, vb, NULL);
if (ret)
goto fail;
if (pcdev->channels == 3) {
size_y = size / 2;
size_u = size_v = size / 4;
} else {
size_y = size;
}
sg = dma->sglist;
/* init DMA for Y channel */
ret = pxa_init_dma_channel(pcdev, buf, dma, 0, CIBR0, size_y,
&sg, &next_ofs);
if (ret) {
dev_err(dev, "DMA initialization for Y/RGB failed\n");
goto fail;
}
/* init DMA for U channel */
if (size_u)
ret = pxa_init_dma_channel(pcdev, buf, dma, 1, CIBR1,
size_u, &sg, &next_ofs);
if (ret) {
dev_err(dev, "DMA initialization for U failed\n");
goto fail_u;
}
/* init DMA for V channel */
if (size_v)
ret = pxa_init_dma_channel(pcdev, buf, dma, 2, CIBR2,
size_v, &sg, &next_ofs);
if (ret) {
dev_err(dev, "DMA initialization for V failed\n");
goto fail_v;
}
vb->state = VIDEOBUF_PREPARED;
}
buf->inwork = 0;
pxa_videobuf_set_actdma(pcdev, buf);
return 0;
fail_v:
dma_free_coherent(dev, buf->dmas[1].sg_size,
buf->dmas[1].sg_cpu, buf->dmas[1].sg_dma);
fail_u:
dma_free_coherent(dev, buf->dmas[0].sg_size,
buf->dmas[0].sg_cpu, buf->dmas[0].sg_dma);
fail:
free_buffer(vq, buf);
out:
buf->inwork = 0;
return ret;
}
/**
* pxa_dma_start_channels - start DMA channel for active buffer
* @pcdev: pxa camera device
*
* Initialize DMA channels to the beginning of the active video buffer, and
* start these channels.
*/
static void pxa_dma_start_channels(struct pxa_camera_dev *pcdev)
{
int i;
struct pxa_buffer *active;
active = pcdev->active;
for (i = 0; i < pcdev->channels; i++) {
dev_dbg(pcdev->soc_host.v4l2_dev.dev,
"%s (channel=%d) ddadr=%08x\n", __func__,
i, active->dmas[i].sg_dma);
DDADR(pcdev->dma_chans[i]) = active->dmas[i].sg_dma;
DCSR(pcdev->dma_chans[i]) = DCSR_RUN;
}
}
static void pxa_dma_stop_channels(struct pxa_camera_dev *pcdev)
{
int i;
for (i = 0; i < pcdev->channels; i++) {
dev_dbg(pcdev->soc_host.v4l2_dev.dev,
"%s (channel=%d)\n", __func__, i);
DCSR(pcdev->dma_chans[i]) = 0;
}
}
static void pxa_dma_add_tail_buf(struct pxa_camera_dev *pcdev,
struct pxa_buffer *buf)
{
int i;
struct pxa_dma_desc *buf_last_desc;
for (i = 0; i < pcdev->channels; i++) {
buf_last_desc = buf->dmas[i].sg_cpu + buf->dmas[i].sglen;
buf_last_desc->ddadr = DDADR_STOP;
if (pcdev->sg_tail[i])
/* Link the new buffer to the old tail */
pcdev->sg_tail[i]->ddadr = buf->dmas[i].sg_dma;
/* Update the channel tail */
pcdev->sg_tail[i] = buf_last_desc;
}
}
/**
* pxa_camera_start_capture - start video capturing
* @pcdev: camera device
*
* Launch capturing. DMA channels should not be active yet. They should get
* activated at the end of frame interrupt, to capture only whole frames, and
* never begin the capture of a partial frame.
*/
static void pxa_camera_start_capture(struct pxa_camera_dev *pcdev)
{
unsigned long cicr0;
dev_dbg(pcdev->soc_host.v4l2_dev.dev, "%s\n", __func__);
/* Enable End-Of-Frame Interrupt */
cicr0 = __raw_readl(pcdev->base + CICR0) | CICR0_ENB;
cicr0 &= ~CICR0_EOFM;
__raw_writel(cicr0, pcdev->base + CICR0);
}
static void pxa_camera_stop_capture(struct pxa_camera_dev *pcdev)
{
unsigned long cicr0;
pxa_dma_stop_channels(pcdev);
cicr0 = __raw_readl(pcdev->base + CICR0) & ~CICR0_ENB;
__raw_writel(cicr0, pcdev->base + CICR0);
pcdev->active = NULL;
dev_dbg(pcdev->soc_host.v4l2_dev.dev, "%s\n", __func__);
}
/* Called under spinlock_irqsave(&pcdev->lock, ...) */
static void pxa_videobuf_queue(struct videobuf_queue *vq,
struct videobuf_buffer *vb)
{
struct soc_camera_device *icd = vq->priv_data;
struct soc_camera_host *ici = to_soc_camera_host(icd->dev.parent);
struct pxa_camera_dev *pcdev = ici->priv;
struct pxa_buffer *buf = container_of(vb, struct pxa_buffer, vb);
dev_dbg(icd->dev.parent, "%s (vb=0x%p) 0x%08lx %d active=%p\n",
__func__, vb, vb->baddr, vb->bsize, pcdev->active);
list_add_tail(&vb->queue, &pcdev->capture);
vb->state = VIDEOBUF_ACTIVE;
pxa_dma_add_tail_buf(pcdev, buf);
if (!pcdev->active)
pxa_camera_start_capture(pcdev);
}
static void pxa_videobuf_release(struct videobuf_queue *vq,
struct videobuf_buffer *vb)
{
struct pxa_buffer *buf = container_of(vb, struct pxa_buffer, vb);
#ifdef DEBUG
struct soc_camera_device *icd = vq->priv_data;
struct device *dev = icd->dev.parent;
dev_dbg(dev, "%s (vb=0x%p) 0x%08lx %d\n", __func__,
vb, vb->baddr, vb->bsize);
switch (vb->state) {
case VIDEOBUF_ACTIVE:
dev_dbg(dev, "%s (active)\n", __func__);
break;
case VIDEOBUF_QUEUED:
dev_dbg(dev, "%s (queued)\n", __func__);
break;
case VIDEOBUF_PREPARED:
dev_dbg(dev, "%s (prepared)\n", __func__);
break;
default:
dev_dbg(dev, "%s (unknown)\n", __func__);
break;
}
#endif
free_buffer(vq, buf);
}
static void pxa_camera_wakeup(struct pxa_camera_dev *pcdev,
struct videobuf_buffer *vb,
struct pxa_buffer *buf)
{
int i;
/* _init is used to debug races, see comment in pxa_camera_reqbufs() */
list_del_init(&vb->queue);
vb->state = VIDEOBUF_DONE;
do_gettimeofday(&vb->ts);
vb->field_count++;
wake_up(&vb->done);
dev_dbg(pcdev->soc_host.v4l2_dev.dev, "%s dequeud buffer (vb=0x%p)\n",
__func__, vb);
if (list_empty(&pcdev->capture)) {
pxa_camera_stop_capture(pcdev);
for (i = 0; i < pcdev->channels; i++)
pcdev->sg_tail[i] = NULL;
return;
}
pcdev->active = list_entry(pcdev->capture.next,
struct pxa_buffer, vb.queue);
}
/**
* pxa_camera_check_link_miss - check missed DMA linking
* @pcdev: camera device
*
* The DMA chaining is done with DMA running. This means a tiny temporal window
* remains, where a buffer is queued on the chain, while the chain is already
* stopped. This means the tailed buffer would never be transfered by DMA.
* This function restarts the capture for this corner case, where :
* - DADR() == DADDR_STOP
* - a videobuffer is queued on the pcdev->capture list
*
* Please check the "DMA hot chaining timeslice issue" in
* Documentation/video4linux/pxa_camera.txt
*
* Context: should only be called within the dma irq handler
*/
static void pxa_camera_check_link_miss(struct pxa_camera_dev *pcdev)
{
int i, is_dma_stopped = 1;
for (i = 0; i < pcdev->channels; i++)
if (DDADR(pcdev->dma_chans[i]) != DDADR_STOP)
is_dma_stopped = 0;
dev_dbg(pcdev->soc_host.v4l2_dev.dev,
"%s : top queued buffer=%p, dma_stopped=%d\n",
__func__, pcdev->active, is_dma_stopped);
if (pcdev->active && is_dma_stopped)
pxa_camera_start_capture(pcdev);
}
static void pxa_camera_dma_irq(int channel, struct pxa_camera_dev *pcdev,
enum pxa_camera_active_dma act_dma)
{
struct device *dev = pcdev->soc_host.v4l2_dev.dev;
struct pxa_buffer *buf;
unsigned long flags;
u32 status, camera_status, overrun;
struct videobuf_buffer *vb;
spin_lock_irqsave(&pcdev->lock, flags);
status = DCSR(channel);
DCSR(channel) = status;
camera_status = __raw_readl(pcdev->base + CISR);
overrun = CISR_IFO_0;
if (pcdev->channels == 3)
overrun |= CISR_IFO_1 | CISR_IFO_2;
if (status & DCSR_BUSERR) {
dev_err(dev, "DMA Bus Error IRQ!\n");
goto out;
}
if (!(status & (DCSR_ENDINTR | DCSR_STARTINTR))) {
dev_err(dev, "Unknown DMA IRQ source, status: 0x%08x\n",
status);
goto out;
}
/*
* pcdev->active should not be NULL in DMA irq handler.
*
* But there is one corner case : if capture was stopped due to an
* overrun of channel 1, and at that same channel 2 was completed.
*
* When handling the overrun in DMA irq for channel 1, we'll stop the
* capture and restart it (and thus set pcdev->active to NULL). But the
* DMA irq handler will already be pending for channel 2. So on entering
* the DMA irq handler for channel 2 there will be no active buffer, yet
* that is normal.
*/
if (!pcdev->active)
goto out;
vb = &pcdev->active->vb;
buf = container_of(vb, struct pxa_buffer, vb);
WARN_ON(buf->inwork || list_empty(&vb->queue));
dev_dbg(dev, "%s channel=%d %s%s(vb=0x%p) dma.desc=%x\n",
__func__, channel, status & DCSR_STARTINTR ? "SOF " : "",
status & DCSR_ENDINTR ? "EOF " : "", vb, DDADR(channel));
if (status & DCSR_ENDINTR) {
/*
* It's normal if the last frame creates an overrun, as there
* are no more DMA descriptors to fetch from QCI fifos
*/
if (camera_status & overrun &&
!list_is_last(pcdev->capture.next, &pcdev->capture)) {
dev_dbg(dev, "FIFO overrun! CISR: %x\n",
camera_status);
pxa_camera_stop_capture(pcdev);
pxa_camera_start_capture(pcdev);
goto out;
}
buf->active_dma &= ~act_dma;
if (!buf->active_dma) {
pxa_camera_wakeup(pcdev, vb, buf);
pxa_camera_check_link_miss(pcdev);
}
}
out:
spin_unlock_irqrestore(&pcdev->lock, flags);
}
static void pxa_camera_dma_irq_y(int channel, void *data)
{
struct pxa_camera_dev *pcdev = data;
pxa_camera_dma_irq(channel, pcdev, DMA_Y);
}
static void pxa_camera_dma_irq_u(int channel, void *data)
{
struct pxa_camera_dev *pcdev = data;
pxa_camera_dma_irq(channel, pcdev, DMA_U);
}
static void pxa_camera_dma_irq_v(int channel, void *data)
{
struct pxa_camera_dev *pcdev = data;
pxa_camera_dma_irq(channel, pcdev, DMA_V);
}
static struct videobuf_queue_ops pxa_videobuf_ops = {
.buf_setup = pxa_videobuf_setup,
.buf_prepare = pxa_videobuf_prepare,
.buf_queue = pxa_videobuf_queue,
.buf_release = pxa_videobuf_release,
};
static void pxa_camera_init_videobuf(struct videobuf_queue *q,
struct soc_camera_device *icd)
{
struct soc_camera_host *ici = to_soc_camera_host(icd->dev.parent);
struct pxa_camera_dev *pcdev = ici->priv;
/*
* We must pass NULL as dev pointer, then all pci_* dma operations
* transform to normal dma_* ones.
*/
videobuf_queue_sg_init(q, &pxa_videobuf_ops, NULL, &pcdev->lock,
V4L2_BUF_TYPE_VIDEO_CAPTURE, V4L2_FIELD_NONE,
sizeof(struct pxa_buffer), icd);
}
static u32 mclk_get_divisor(struct platform_device *pdev,
struct pxa_camera_dev *pcdev)
{
unsigned long mclk = pcdev->mclk;
struct device *dev = &pdev->dev;
u32 div;
unsigned long lcdclk;
lcdclk = clk_get_rate(pcdev->clk);
pcdev->ciclk = lcdclk;
/* mclk <= ciclk / 4 (27.4.2) */
if (mclk > lcdclk / 4) {
mclk = lcdclk / 4;
dev_warn(dev, "Limiting master clock to %lu\n", mclk);
}
/* We verify mclk != 0, so if anyone breaks it, here comes their Oops */
div = (lcdclk + 2 * mclk - 1) / (2 * mclk) - 1;
/* If we're not supplying MCLK, leave it at 0 */
if (pcdev->platform_flags & PXA_CAMERA_MCLK_EN)
pcdev->mclk = lcdclk / (2 * (div + 1));
dev_dbg(dev, "LCD clock %luHz, target freq %luHz, divisor %u\n",
lcdclk, mclk, div);
return div;
}
static void recalculate_fifo_timeout(struct pxa_camera_dev *pcdev,
unsigned long pclk)
{
/* We want a timeout > 1 pixel time, not ">=" */
u32 ciclk_per_pixel = pcdev->ciclk / pclk + 1;
__raw_writel(ciclk_per_pixel, pcdev->base + CITOR);
}
static void pxa_camera_activate(struct pxa_camera_dev *pcdev)
{
u32 cicr4 = 0;
/* disable all interrupts */
__raw_writel(0x3ff, pcdev->base + CICR0);
if (pcdev->platform_flags & PXA_CAMERA_PCLK_EN)
cicr4 |= CICR4_PCLK_EN;
if (pcdev->platform_flags & PXA_CAMERA_MCLK_EN)
cicr4 |= CICR4_MCLK_EN;
if (pcdev->platform_flags & PXA_CAMERA_PCP)
cicr4 |= CICR4_PCP;
if (pcdev->platform_flags & PXA_CAMERA_HSP)
cicr4 |= CICR4_HSP;
if (pcdev->platform_flags & PXA_CAMERA_VSP)
cicr4 |= CICR4_VSP;
__raw_writel(pcdev->mclk_divisor | cicr4, pcdev->base + CICR4);
if (pcdev->platform_flags & PXA_CAMERA_MCLK_EN)
/* Initialise the timeout under the assumption pclk = mclk */
recalculate_fifo_timeout(pcdev, pcdev->mclk);
else
/* "Safe default" - 13MHz */
recalculate_fifo_timeout(pcdev, 13000000);
clk_enable(pcdev->clk);
}
static void pxa_camera_deactivate(struct pxa_camera_dev *pcdev)
{
clk_disable(pcdev->clk);
}
static irqreturn_t pxa_camera_irq(int irq, void *data)
{
struct pxa_camera_dev *pcdev = data;
unsigned long status, cifr, cicr0;
struct pxa_buffer *buf;
struct videobuf_buffer *vb;
status = __raw_readl(pcdev->base + CISR);
dev_dbg(pcdev->soc_host.v4l2_dev.dev,
"Camera interrupt status 0x%lx\n", status);
if (!status)
return IRQ_NONE;
__raw_writel(status, pcdev->base + CISR);
if (status & CISR_EOF) {
/* Reset the FIFOs */
cifr = __raw_readl(pcdev->base + CIFR) | CIFR_RESET_F;
__raw_writel(cifr, pcdev->base + CIFR);
pcdev->active = list_first_entry(&pcdev->capture,
struct pxa_buffer, vb.queue);
vb = &pcdev->active->vb;
buf = container_of(vb, struct pxa_buffer, vb);
pxa_videobuf_set_actdma(pcdev, buf);
pxa_dma_start_channels(pcdev);
cicr0 = __raw_readl(pcdev->base + CICR0) | CICR0_EOFM;
__raw_writel(cicr0, pcdev->base + CICR0);
}
return IRQ_HANDLED;
}
/*
* The following two functions absolutely depend on the fact, that
* there can be only one camera on PXA quick capture interface
* Called with .video_lock held
*/
static int pxa_camera_add_device(struct soc_camera_device *icd)
{
struct soc_camera_host *ici = to_soc_camera_host(icd->dev.parent);
struct pxa_camera_dev *pcdev = ici->priv;
if (pcdev->icd)
return -EBUSY;
pxa_camera_activate(pcdev);
pcdev->icd = icd;
dev_info(icd->dev.parent, "PXA Camera driver attached to camera %d\n",
icd->devnum);
return 0;
}
/* Called with .video_lock held */
static void pxa_camera_remove_device(struct soc_camera_device *icd)
{
struct soc_camera_host *ici = to_soc_camera_host(icd->dev.parent);
struct pxa_camera_dev *pcdev = ici->priv;
BUG_ON(icd != pcdev->icd);
dev_info(icd->dev.parent, "PXA Camera driver detached from camera %d\n",
icd->devnum);
/* disable capture, disable interrupts */
__raw_writel(0x3ff, pcdev->base + CICR0);
/* Stop DMA engine */
DCSR(pcdev->dma_chans[0]) = 0;
DCSR(pcdev->dma_chans[1]) = 0;
DCSR(pcdev->dma_chans[2]) = 0;
pxa_camera_deactivate(pcdev);
pcdev->icd = NULL;
}
static int test_platform_param(struct pxa_camera_dev *pcdev,
unsigned char buswidth, unsigned long *flags)
{
/*
* Platform specified synchronization and pixel clock polarities are
* only a recommendation and are only used during probing. The PXA270
* quick capture interface supports both.
*/
*flags = (pcdev->platform_flags & PXA_CAMERA_MASTER ?
SOCAM_MASTER : SOCAM_SLAVE) |
SOCAM_HSYNC_ACTIVE_HIGH |
SOCAM_HSYNC_ACTIVE_LOW |
SOCAM_VSYNC_ACTIVE_HIGH |
SOCAM_VSYNC_ACTIVE_LOW |
SOCAM_DATA_ACTIVE_HIGH |
SOCAM_PCLK_SAMPLE_RISING |
SOCAM_PCLK_SAMPLE_FALLING;
/* If requested data width is supported by the platform, use it */
switch (buswidth) {
case 10:
if (!(pcdev->platform_flags & PXA_CAMERA_DATAWIDTH_10))
return -EINVAL;
*flags |= SOCAM_DATAWIDTH_10;
break;
case 9:
if (!(pcdev->platform_flags & PXA_CAMERA_DATAWIDTH_9))
return -EINVAL;
*flags |= SOCAM_DATAWIDTH_9;
break;
case 8:
if (!(pcdev->platform_flags & PXA_CAMERA_DATAWIDTH_8))
return -EINVAL;
*flags |= SOCAM_DATAWIDTH_8;
break;
default:
return -EINVAL;
}
return 0;
}
static void pxa_camera_setup_cicr(struct soc_camera_device *icd,
unsigned long flags, __u32 pixfmt)
{
struct soc_camera_host *ici = to_soc_camera_host(icd->dev.parent);
struct pxa_camera_dev *pcdev = ici->priv;
struct v4l2_subdev *sd = soc_camera_to_subdev(icd);
unsigned long dw, bpp;
u32 cicr0, cicr1, cicr2, cicr3, cicr4 = 0, y_skip_top;
int ret = v4l2_subdev_call(sd, sensor, g_skip_top_lines, &y_skip_top);
if (ret < 0)
y_skip_top = 0;
/*
* Datawidth is now guaranteed to be equal to one of the three values.
* We fix bit-per-pixel equal to data-width...
*/
switch (flags & SOCAM_DATAWIDTH_MASK) {
case SOCAM_DATAWIDTH_10:
dw = 4;
bpp = 0x40;
break;
case SOCAM_DATAWIDTH_9:
dw = 3;
bpp = 0x20;
break;
default:
/*
* Actually it can only be 8 now,
* default is just to silence compiler warnings
*/
case SOCAM_DATAWIDTH_8:
dw = 2;
bpp = 0;
}
if (pcdev->platform_flags & PXA_CAMERA_PCLK_EN)
cicr4 |= CICR4_PCLK_EN;
if (pcdev->platform_flags & PXA_CAMERA_MCLK_EN)
cicr4 |= CICR4_MCLK_EN;
if (flags & SOCAM_PCLK_SAMPLE_FALLING)
cicr4 |= CICR4_PCP;
if (flags & SOCAM_HSYNC_ACTIVE_LOW)
cicr4 |= CICR4_HSP;
if (flags & SOCAM_VSYNC_ACTIVE_LOW)
cicr4 |= CICR4_VSP;
cicr0 = __raw_readl(pcdev->base + CICR0);
if (cicr0 & CICR0_ENB)
__raw_writel(cicr0 & ~CICR0_ENB, pcdev->base + CICR0);
cicr1 = CICR1_PPL_VAL(icd->user_width - 1) | bpp | dw;
switch (pixfmt) {
case V4L2_PIX_FMT_YUV422P:
pcdev->channels = 3;
cicr1 |= CICR1_YCBCR_F;
/*
* Normally, pxa bus wants as input UYVY format. We allow all
* reorderings of the YUV422 format, as no processing is done,
* and the YUV stream is just passed through without any
* transformation. Note that UYVY is the only format that
* should be used if pxa framebuffer Overlay2 is used.
*/
case V4L2_PIX_FMT_UYVY:
case V4L2_PIX_FMT_VYUY:
case V4L2_PIX_FMT_YUYV:
case V4L2_PIX_FMT_YVYU:
cicr1 |= CICR1_COLOR_SP_VAL(2);
break;
case V4L2_PIX_FMT_RGB555:
cicr1 |= CICR1_RGB_BPP_VAL(1) | CICR1_RGBT_CONV_VAL(2) |
CICR1_TBIT | CICR1_COLOR_SP_VAL(1);
break;
case V4L2_PIX_FMT_RGB565:
cicr1 |= CICR1_COLOR_SP_VAL(1) | CICR1_RGB_BPP_VAL(2);
break;
}
cicr2 = 0;
cicr3 = CICR3_LPF_VAL(icd->user_height - 1) |
CICR3_BFW_VAL(min((u32)255, y_skip_top));
cicr4 |= pcdev->mclk_divisor;
__raw_writel(cicr1, pcdev->base + CICR1);
__raw_writel(cicr2, pcdev->base + CICR2);
__raw_writel(cicr3, pcdev->base + CICR3);
__raw_writel(cicr4, pcdev->base + CICR4);
/* CIF interrupts are not used, only DMA */
cicr0 = (cicr0 & CICR0_ENB) | (pcdev->platform_flags & PXA_CAMERA_MASTER ?
CICR0_SIM_MP : (CICR0_SL_CAP_EN | CICR0_SIM_SP));
cicr0 |= CICR0_DMAEN | CICR0_IRQ_MASK;
__raw_writel(cicr0, pcdev->base + CICR0);
}
static int pxa_camera_set_bus_param(struct soc_camera_device *icd, __u32 pixfmt)
{
struct soc_camera_host *ici = to_soc_camera_host(icd->dev.parent);
struct pxa_camera_dev *pcdev = ici->priv;
unsigned long bus_flags, camera_flags, common_flags;
const struct soc_mbus_pixelfmt *fmt;
int ret;
struct pxa_cam *cam = icd->host_priv;
fmt = soc_mbus_get_fmtdesc(icd->current_fmt->code);
if (!fmt)
return -EINVAL;
ret = test_platform_param(pcdev, fmt->bits_per_sample, &bus_flags);
if (ret < 0)
return ret;
camera_flags = icd->ops->query_bus_param(icd);
common_flags = soc_camera_bus_param_compatible(camera_flags, bus_flags);
if (!common_flags)
return -EINVAL;
pcdev->channels = 1;
/* Make choises, based on platform preferences */
if ((common_flags & SOCAM_HSYNC_ACTIVE_HIGH) &&
(common_flags & SOCAM_HSYNC_ACTIVE_LOW)) {
if (pcdev->platform_flags & PXA_CAMERA_HSP)
common_flags &= ~SOCAM_HSYNC_ACTIVE_HIGH;
else
common_flags &= ~SOCAM_HSYNC_ACTIVE_LOW;
}
if ((common_flags & SOCAM_VSYNC_ACTIVE_HIGH) &&
(common_flags & SOCAM_VSYNC_ACTIVE_LOW)) {
if (pcdev->platform_flags & PXA_CAMERA_VSP)
common_flags &= ~SOCAM_VSYNC_ACTIVE_HIGH;
else
common_flags &= ~SOCAM_VSYNC_ACTIVE_LOW;
}
if ((common_flags & SOCAM_PCLK_SAMPLE_RISING) &&
(common_flags & SOCAM_PCLK_SAMPLE_FALLING)) {
if (pcdev->platform_flags & PXA_CAMERA_PCP)
common_flags &= ~SOCAM_PCLK_SAMPLE_RISING;
else
common_flags &= ~SOCAM_PCLK_SAMPLE_FALLING;
}
cam->flags = common_flags;
ret = icd->ops->set_bus_param(icd, common_flags);
if (ret < 0)
return ret;
pxa_camera_setup_cicr(icd, common_flags, pixfmt);
return 0;
}
static int pxa_camera_try_bus_param(struct soc_camera_device *icd,
unsigned char buswidth)
{
struct soc_camera_host *ici = to_soc_camera_host(icd->dev.parent);
struct pxa_camera_dev *pcdev = ici->priv;
unsigned long bus_flags, camera_flags;
int ret = test_platform_param(pcdev, buswidth, &bus_flags);
if (ret < 0)
return ret;
camera_flags = icd->ops->query_bus_param(icd);
return soc_camera_bus_param_compatible(camera_flags, bus_flags) ? 0 : -EINVAL;
}
static const struct soc_mbus_pixelfmt pxa_camera_formats[] = {
{
.fourcc = V4L2_PIX_FMT_YUV422P,
.name = "Planar YUV422 16 bit",
.bits_per_sample = 8,
.packing = SOC_MBUS_PACKING_2X8_PADHI,
.order = SOC_MBUS_ORDER_LE,
},
};
/* This will be corrected as we get more formats */
static bool pxa_camera_packing_supported(const struct soc_mbus_pixelfmt *fmt)
{
return fmt->packing == SOC_MBUS_PACKING_NONE ||
(fmt->bits_per_sample == 8 &&
fmt->packing == SOC_MBUS_PACKING_2X8_PADHI) ||
(fmt->bits_per_sample > 8 &&
fmt->packing == SOC_MBUS_PACKING_EXTEND16);
}
static int pxa_camera_get_formats(struct soc_camera_device *icd, int idx,
struct soc_camera_format_xlate *xlate)
{
struct v4l2_subdev *sd = soc_camera_to_subdev(icd);
struct device *dev = icd->dev.parent;
int formats = 0, ret;
struct pxa_cam *cam;
enum v4l2_mbus_pixelcode code;
const struct soc_mbus_pixelfmt *fmt;
ret = v4l2_subdev_call(sd, video, enum_mbus_fmt, idx, &code);
if (ret < 0)
/* No more formats */
return 0;
fmt = soc_mbus_get_fmtdesc(code);
if (!fmt) {
dev_err(dev, "Invalid format code #%d: %d\n", idx, code);
return 0;
}
/* This also checks support for the requested bits-per-sample */
ret = pxa_camera_try_bus_param(icd, fmt->bits_per_sample);
if (ret < 0)
return 0;
if (!icd->host_priv) {
cam = kzalloc(sizeof(*cam), GFP_KERNEL);
if (!cam)
return -ENOMEM;
icd->host_priv = cam;
} else {
cam = icd->host_priv;
}
switch (code) {
case V4L2_MBUS_FMT_YUYV8_2X8_BE:
formats++;
if (xlate) {
xlate->host_fmt = &pxa_camera_formats[0];
xlate->code = code;
xlate++;
dev_dbg(dev, "Providing format %s using code %d\n",
pxa_camera_formats[0].name, code);
}
case V4L2_MBUS_FMT_YVYU8_2X8_BE:
case V4L2_MBUS_FMT_YUYV8_2X8_LE:
case V4L2_MBUS_FMT_YVYU8_2X8_LE:
case V4L2_MBUS_FMT_RGB565_2X8_LE:
case V4L2_MBUS_FMT_RGB555_2X8_PADHI_LE:
if (xlate)
dev_dbg(dev, "Providing format %s packed\n",
fmt->name);
break;
default:
if (!pxa_camera_packing_supported(fmt))
return 0;
if (xlate)
dev_dbg(dev,
"Providing format %s in pass-through mode\n",
fmt->name);
}
/* Generic pass-through */
formats++;
if (xlate) {
xlate->host_fmt = fmt;
xlate->code = code;
xlate++;
}
return formats;
}
static void pxa_camera_put_formats(struct soc_camera_device *icd)
{
kfree(icd->host_priv);
icd->host_priv = NULL;
}
static int pxa_camera_check_frame(u32 width, u32 height)
{
/* limit to pxa hardware capabilities */
return height < 32 || height > 2048 || width < 48 || width > 2048 ||
(width & 0x01);
}
static int pxa_camera_set_crop(struct soc_camera_device *icd,
struct v4l2_crop *a)
{
struct v4l2_rect *rect = &a->c;
struct soc_camera_host *ici = to_soc_camera_host(icd->dev.parent);
struct pxa_camera_dev *pcdev = ici->priv;
struct device *dev = icd->dev.parent;
struct v4l2_subdev *sd = soc_camera_to_subdev(icd);
struct soc_camera_sense sense = {
.master_clock = pcdev->mclk,
.pixel_clock_max = pcdev->ciclk / 4,
};
struct v4l2_mbus_framefmt mf;
struct pxa_cam *cam = icd->host_priv;
u32 fourcc = icd->current_fmt->host_fmt->fourcc;
int ret;
/* If PCLK is used to latch data from the sensor, check sense */
if (pcdev->platform_flags & PXA_CAMERA_PCLK_EN)
icd->sense = &sense;
ret = v4l2_subdev_call(sd, video, s_crop, a);
icd->sense = NULL;
if (ret < 0) {
dev_warn(dev, "Failed to crop to %ux%u@%u:%u\n",
rect->width, rect->height, rect->left, rect->top);
return ret;
}
ret = v4l2_subdev_call(sd, video, g_mbus_fmt, &mf);
if (ret < 0)
return ret;
if (pxa_camera_check_frame(mf.width, mf.height)) {
/*
* Camera cropping produced a frame beyond our capabilities.
* FIXME: just extract a subframe, that we can process.
*/
v4l_bound_align_image(&mf.width, 48, 2048, 1,
&mf.height, 32, 2048, 0,
fourcc == V4L2_PIX_FMT_YUV422P ? 4 : 0);
ret = v4l2_subdev_call(sd, video, s_mbus_fmt, &mf);
if (ret < 0)
return ret;
if (pxa_camera_check_frame(mf.width, mf.height)) {
dev_warn(icd->dev.parent,
"Inconsistent state. Use S_FMT to repair\n");
return -EINVAL;
}
}
if (sense.flags & SOCAM_SENSE_PCLK_CHANGED) {
if (sense.pixel_clock > sense.pixel_clock_max) {
dev_err(dev,
"pixel clock %lu set by the camera too high!",
sense.pixel_clock);
return -EIO;
}
recalculate_fifo_timeout(pcdev, sense.pixel_clock);
}
icd->user_width = mf.width;
icd->user_height = mf.height;
pxa_camera_setup_cicr(icd, cam->flags, fourcc);
return ret;
}
static int pxa_camera_set_fmt(struct soc_camera_device *icd,
struct v4l2_format *f)
{
struct soc_camera_host *ici = to_soc_camera_host(icd->dev.parent);
struct pxa_camera_dev *pcdev = ici->priv;
struct device *dev = icd->dev.parent;
struct v4l2_subdev *sd = soc_camera_to_subdev(icd);
const struct soc_camera_format_xlate *xlate = NULL;
struct soc_camera_sense sense = {
.master_clock = pcdev->mclk,
.pixel_clock_max = pcdev->ciclk / 4,
};
struct v4l2_pix_format *pix = &f->fmt.pix;
struct v4l2_mbus_framefmt mf;
int ret;
xlate = soc_camera_xlate_by_fourcc(icd, pix->pixelformat);
if (!xlate) {
dev_warn(dev, "Format %x not found\n", pix->pixelformat);
return -EINVAL;
}
/* If PCLK is used to latch data from the sensor, check sense */
if (pcdev->platform_flags & PXA_CAMERA_PCLK_EN)
/* The caller holds a mutex. */
icd->sense = &sense;
mf.width = pix->width;
mf.height = pix->height;
mf.field = pix->field;
mf.colorspace = pix->colorspace;
mf.code = xlate->code;
ret = v4l2_subdev_call(sd, video, s_mbus_fmt, &mf);
if (mf.code != xlate->code)
return -EINVAL;
icd->sense = NULL;
if (ret < 0) {
dev_warn(dev, "Failed to configure for format %x\n",
pix->pixelformat);
} else if (pxa_camera_check_frame(mf.width, mf.height)) {
dev_warn(dev,
"Camera driver produced an unsupported frame %dx%d\n",
mf.width, mf.height);
ret = -EINVAL;
} else if (sense.flags & SOCAM_SENSE_PCLK_CHANGED) {
if (sense.pixel_clock > sense.pixel_clock_max) {
dev_err(dev,
"pixel clock %lu set by the camera too high!",
sense.pixel_clock);
return -EIO;
}
recalculate_fifo_timeout(pcdev, sense.pixel_clock);
}
if (ret < 0)
return ret;
pix->width = mf.width;
pix->height = mf.height;
pix->field = mf.field;
pix->colorspace = mf.colorspace;
icd->current_fmt = xlate;
return ret;
}
static int pxa_camera_try_fmt(struct soc_camera_device *icd,
struct v4l2_format *f)
{
struct v4l2_subdev *sd = soc_camera_to_subdev(icd);
const struct soc_camera_format_xlate *xlate;
struct v4l2_pix_format *pix = &f->fmt.pix;
struct v4l2_mbus_framefmt mf;
__u32 pixfmt = pix->pixelformat;
int ret;
xlate = soc_camera_xlate_by_fourcc(icd, pixfmt);
if (!xlate) {
dev_warn(icd->dev.parent, "Format %x not found\n", pixfmt);
return -EINVAL;
}
/*
* Limit to pxa hardware capabilities. YUV422P planar format requires
* images size to be a multiple of 16 bytes. If not, zeros will be
* inserted between Y and U planes, and U and V planes, which violates
* the YUV422P standard.
*/
v4l_bound_align_image(&pix->width, 48, 2048, 1,
&pix->height, 32, 2048, 0,
pixfmt == V4L2_PIX_FMT_YUV422P ? 4 : 0);
pix->bytesperline = soc_mbus_bytes_per_line(pix->width,
xlate->host_fmt);
if (pix->bytesperline < 0)
return pix->bytesperline;
pix->sizeimage = pix->height * pix->bytesperline;
/* limit to sensor capabilities */
mf.width = pix->width;
mf.height = pix->height;
mf.field = pix->field;
mf.colorspace = pix->colorspace;
mf.code = xlate->code;
ret = v4l2_subdev_call(sd, video, try_mbus_fmt, &mf);
if (ret < 0)
return ret;
pix->width = mf.width;
pix->height = mf.height;
pix->colorspace = mf.colorspace;
switch (mf.field) {
case V4L2_FIELD_ANY:
case V4L2_FIELD_NONE:
pix->field = V4L2_FIELD_NONE;
break;
default:
/* TODO: support interlaced at least in pass-through mode */
dev_err(icd->dev.parent, "Field type %d unsupported.\n",
mf.field);
return -EINVAL;
}
return ret;
}
static int pxa_camera_reqbufs(struct soc_camera_file *icf,
struct v4l2_requestbuffers *p)
{
int i;
/*
* This is for locking debugging only. I removed spinlocks and now I
* check whether .prepare is ever called on a linked buffer, or whether
* a dma IRQ can occur for an in-work or unlinked buffer. Until now
* it hadn't triggered
*/
for (i = 0; i < p->count; i++) {
struct pxa_buffer *buf = container_of(icf->vb_vidq.bufs[i],
struct pxa_buffer, vb);
buf->inwork = 0;
INIT_LIST_HEAD(&buf->vb.queue);
}
return 0;
}
static unsigned int pxa_camera_poll(struct file *file, poll_table *pt)
{
struct soc_camera_file *icf = file->private_data;
struct pxa_buffer *buf;
buf = list_entry(icf->vb_vidq.stream.next, struct pxa_buffer,
vb.stream);
poll_wait(file, &buf->vb.done, pt);
if (buf->vb.state == VIDEOBUF_DONE ||
buf->vb.state == VIDEOBUF_ERROR)
return POLLIN|POLLRDNORM;
return 0;
}
static int pxa_camera_querycap(struct soc_camera_host *ici,
struct v4l2_capability *cap)
{
/* cap->name is set by the firendly caller:-> */
strlcpy(cap->card, pxa_cam_driver_description, sizeof(cap->card));
cap->version = PXA_CAM_VERSION_CODE;
cap->capabilities = V4L2_CAP_VIDEO_CAPTURE | V4L2_CAP_STREAMING;
return 0;
}
static int pxa_camera_suspend(struct soc_camera_device *icd, pm_message_t state)
{
struct soc_camera_host *ici = to_soc_camera_host(icd->dev.parent);
struct pxa_camera_dev *pcdev = ici->priv;
int i = 0, ret = 0;
pcdev->save_cicr[i++] = __raw_readl(pcdev->base + CICR0);
pcdev->save_cicr[i++] = __raw_readl(pcdev->base + CICR1);
pcdev->save_cicr[i++] = __raw_readl(pcdev->base + CICR2);
pcdev->save_cicr[i++] = __raw_readl(pcdev->base + CICR3);
pcdev->save_cicr[i++] = __raw_readl(pcdev->base + CICR4);
if ((pcdev->icd) && (pcdev->icd->ops->suspend))
ret = pcdev->icd->ops->suspend(pcdev->icd, state);
return ret;
}
static int pxa_camera_resume(struct soc_camera_device *icd)
{
struct soc_camera_host *ici = to_soc_camera_host(icd->dev.parent);
struct pxa_camera_dev *pcdev = ici->priv;
int i = 0, ret = 0;
DRCMR(68) = pcdev->dma_chans[0] | DRCMR_MAPVLD;
DRCMR(69) = pcdev->dma_chans[1] | DRCMR_MAPVLD;
DRCMR(70) = pcdev->dma_chans[2] | DRCMR_MAPVLD;
__raw_writel(pcdev->save_cicr[i++] & ~CICR0_ENB, pcdev->base + CICR0);
__raw_writel(pcdev->save_cicr[i++], pcdev->base + CICR1);
__raw_writel(pcdev->save_cicr[i++], pcdev->base + CICR2);
__raw_writel(pcdev->save_cicr[i++], pcdev->base + CICR3);
__raw_writel(pcdev->save_cicr[i++], pcdev->base + CICR4);
if ((pcdev->icd) && (pcdev->icd->ops->resume))
ret = pcdev->icd->ops->resume(pcdev->icd);
/* Restart frame capture if active buffer exists */
if (!ret && pcdev->active)
pxa_camera_start_capture(pcdev);
return ret;
}
static struct soc_camera_host_ops pxa_soc_camera_host_ops = {
.owner = THIS_MODULE,
.add = pxa_camera_add_device,
.remove = pxa_camera_remove_device,
.suspend = pxa_camera_suspend,
.resume = pxa_camera_resume,
.set_crop = pxa_camera_set_crop,
.get_formats = pxa_camera_get_formats,
.put_formats = pxa_camera_put_formats,
.set_fmt = pxa_camera_set_fmt,
.try_fmt = pxa_camera_try_fmt,
.init_videobuf = pxa_camera_init_videobuf,
.reqbufs = pxa_camera_reqbufs,
.poll = pxa_camera_poll,
.querycap = pxa_camera_querycap,
.set_bus_param = pxa_camera_set_bus_param,
};
static int __devinit pxa_camera_probe(struct platform_device *pdev)
{
struct pxa_camera_dev *pcdev;
struct resource *res;
void __iomem *base;
int irq;
int err = 0;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
irq = platform_get_irq(pdev, 0);
if (!res || irq < 0) {
err = -ENODEV;
goto exit;
}
pcdev = kzalloc(sizeof(*pcdev), GFP_KERNEL);
if (!pcdev) {
dev_err(&pdev->dev, "Could not allocate pcdev\n");
err = -ENOMEM;
goto exit;
}
pcdev->clk = clk_get(&pdev->dev, NULL);
if (IS_ERR(pcdev->clk)) {
err = PTR_ERR(pcdev->clk);
goto exit_kfree;
}
pcdev->res = res;
pcdev->pdata = pdev->dev.platform_data;
pcdev->platform_flags = pcdev->pdata->flags;
if (!(pcdev->platform_flags & (PXA_CAMERA_DATAWIDTH_8 |
PXA_CAMERA_DATAWIDTH_9 | PXA_CAMERA_DATAWIDTH_10))) {
/*
* Platform hasn't set available data widths. This is bad.
* Warn and use a default.
*/
dev_warn(&pdev->dev, "WARNING! Platform hasn't set available "
"data widths, using default 10 bit\n");
pcdev->platform_flags |= PXA_CAMERA_DATAWIDTH_10;
}
pcdev->mclk = pcdev->pdata->mclk_10khz * 10000;
if (!pcdev->mclk) {
dev_warn(&pdev->dev,
"mclk == 0! Please, fix your platform data. "
"Using default 20MHz\n");
pcdev->mclk = 20000000;
}
pcdev->mclk_divisor = mclk_get_divisor(pdev, pcdev);
INIT_LIST_HEAD(&pcdev->capture);
spin_lock_init(&pcdev->lock);
/*
* Request the regions.
*/
if (!request_mem_region(res->start, resource_size(res),
PXA_CAM_DRV_NAME)) {
err = -EBUSY;
goto exit_clk;
}
base = ioremap(res->start, resource_size(res));
if (!base) {
err = -ENOMEM;
goto exit_release;
}
pcdev->irq = irq;
pcdev->base = base;
/* request dma */
err = pxa_request_dma("CI_Y", DMA_PRIO_HIGH,
pxa_camera_dma_irq_y, pcdev);
if (err < 0) {
dev_err(&pdev->dev, "Can't request DMA for Y\n");
goto exit_iounmap;
}
pcdev->dma_chans[0] = err;
dev_dbg(&pdev->dev, "got DMA channel %d\n", pcdev->dma_chans[0]);
err = pxa_request_dma("CI_U", DMA_PRIO_HIGH,
pxa_camera_dma_irq_u, pcdev);
if (err < 0) {
dev_err(&pdev->dev, "Can't request DMA for U\n");
goto exit_free_dma_y;
}
pcdev->dma_chans[1] = err;
dev_dbg(&pdev->dev, "got DMA channel (U) %d\n", pcdev->dma_chans[1]);
err = pxa_request_dma("CI_V", DMA_PRIO_HIGH,
pxa_camera_dma_irq_v, pcdev);
if (err < 0) {
dev_err(&pdev->dev, "Can't request DMA for V\n");
goto exit_free_dma_u;
}
pcdev->dma_chans[2] = err;
dev_dbg(&pdev->dev, "got DMA channel (V) %d\n", pcdev->dma_chans[2]);
DRCMR(68) = pcdev->dma_chans[0] | DRCMR_MAPVLD;
DRCMR(69) = pcdev->dma_chans[1] | DRCMR_MAPVLD;
DRCMR(70) = pcdev->dma_chans[2] | DRCMR_MAPVLD;
/* request irq */
err = request_irq(pcdev->irq, pxa_camera_irq, 0, PXA_CAM_DRV_NAME,
pcdev);
if (err) {
dev_err(&pdev->dev, "Camera interrupt register failed \n");
goto exit_free_dma;
}
pcdev->soc_host.drv_name = PXA_CAM_DRV_NAME;
pcdev->soc_host.ops = &pxa_soc_camera_host_ops;
pcdev->soc_host.priv = pcdev;
pcdev->soc_host.v4l2_dev.dev = &pdev->dev;
pcdev->soc_host.nr = pdev->id;
err = soc_camera_host_register(&pcdev->soc_host);
if (err)
goto exit_free_irq;
return 0;
exit_free_irq:
free_irq(pcdev->irq, pcdev);
exit_free_dma:
pxa_free_dma(pcdev->dma_chans[2]);
exit_free_dma_u:
pxa_free_dma(pcdev->dma_chans[1]);
exit_free_dma_y:
pxa_free_dma(pcdev->dma_chans[0]);
exit_iounmap:
iounmap(base);
exit_release:
release_mem_region(res->start, resource_size(res));
exit_clk:
clk_put(pcdev->clk);
exit_kfree:
kfree(pcdev);
exit:
return err;
}
static int __devexit pxa_camera_remove(struct platform_device *pdev)
{
struct soc_camera_host *soc_host = to_soc_camera_host(&pdev->dev);
struct pxa_camera_dev *pcdev = container_of(soc_host,
struct pxa_camera_dev, soc_host);
struct resource *res;
clk_put(pcdev->clk);
pxa_free_dma(pcdev->dma_chans[0]);
pxa_free_dma(pcdev->dma_chans[1]);
pxa_free_dma(pcdev->dma_chans[2]);
free_irq(pcdev->irq, pcdev);
soc_camera_host_unregister(soc_host);
iounmap(pcdev->base);
res = pcdev->res;
release_mem_region(res->start, resource_size(res));
kfree(pcdev);
dev_info(&pdev->dev, "PXA Camera driver unloaded\n");
return 0;
}
static struct platform_driver pxa_camera_driver = {
.driver = {
.name = PXA_CAM_DRV_NAME,
},
.probe = pxa_camera_probe,
.remove = __devexit_p(pxa_camera_remove),
};
static int __init pxa_camera_init(void)
{
return platform_driver_register(&pxa_camera_driver);
}
static void __exit pxa_camera_exit(void)
{
platform_driver_unregister(&pxa_camera_driver);
}
module_init(pxa_camera_init);
module_exit(pxa_camera_exit);
MODULE_DESCRIPTION("PXA27x SoC Camera Host driver");
MODULE_AUTHOR("Guennadi Liakhovetski <kernel@pengutronix.de>");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:" PXA_CAM_DRV_NAME);