linux_dsm_epyc7002/kernel/bpf/reuseport_array.c
Alexei Starovoitov 2c78ee898d bpf: Implement CAP_BPF
Implement permissions as stated in uapi/linux/capability.h
In order to do that the verifier allow_ptr_leaks flag is split
into four flags and they are set as:
  env->allow_ptr_leaks = bpf_allow_ptr_leaks();
  env->bypass_spec_v1 = bpf_bypass_spec_v1();
  env->bypass_spec_v4 = bpf_bypass_spec_v4();
  env->bpf_capable = bpf_capable();

The first three currently equivalent to perfmon_capable(), since leaking kernel
pointers and reading kernel memory via side channel attacks is roughly
equivalent to reading kernel memory with cap_perfmon.

'bpf_capable' enables bounded loops, precision tracking, bpf to bpf calls and
other verifier features. 'allow_ptr_leaks' enable ptr leaks, ptr conversions,
subtraction of pointers. 'bypass_spec_v1' disables speculative analysis in the
verifier, run time mitigations in bpf array, and enables indirect variable
access in bpf programs. 'bypass_spec_v4' disables emission of sanitation code
by the verifier.

That means that the networking BPF program loaded with CAP_BPF + CAP_NET_ADMIN
will have speculative checks done by the verifier and other spectre mitigation
applied. Such networking BPF program will not be able to leak kernel pointers
and will not be able to access arbitrary kernel memory.

Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20200513230355.7858-3-alexei.starovoitov@gmail.com
2020-05-15 17:29:41 +02:00

356 lines
8.4 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2018 Facebook
*/
#include <linux/bpf.h>
#include <linux/err.h>
#include <linux/sock_diag.h>
#include <net/sock_reuseport.h>
struct reuseport_array {
struct bpf_map map;
struct sock __rcu *ptrs[];
};
static struct reuseport_array *reuseport_array(struct bpf_map *map)
{
return (struct reuseport_array *)map;
}
/* The caller must hold the reuseport_lock */
void bpf_sk_reuseport_detach(struct sock *sk)
{
struct sock __rcu **socks;
write_lock_bh(&sk->sk_callback_lock);
socks = sk->sk_user_data;
if (socks) {
WRITE_ONCE(sk->sk_user_data, NULL);
/*
* Do not move this NULL assignment outside of
* sk->sk_callback_lock because there is
* a race with reuseport_array_free()
* which does not hold the reuseport_lock.
*/
RCU_INIT_POINTER(*socks, NULL);
}
write_unlock_bh(&sk->sk_callback_lock);
}
static int reuseport_array_alloc_check(union bpf_attr *attr)
{
if (attr->value_size != sizeof(u32) &&
attr->value_size != sizeof(u64))
return -EINVAL;
return array_map_alloc_check(attr);
}
static void *reuseport_array_lookup_elem(struct bpf_map *map, void *key)
{
struct reuseport_array *array = reuseport_array(map);
u32 index = *(u32 *)key;
if (unlikely(index >= array->map.max_entries))
return NULL;
return rcu_dereference(array->ptrs[index]);
}
/* Called from syscall only */
static int reuseport_array_delete_elem(struct bpf_map *map, void *key)
{
struct reuseport_array *array = reuseport_array(map);
u32 index = *(u32 *)key;
struct sock *sk;
int err;
if (index >= map->max_entries)
return -E2BIG;
if (!rcu_access_pointer(array->ptrs[index]))
return -ENOENT;
spin_lock_bh(&reuseport_lock);
sk = rcu_dereference_protected(array->ptrs[index],
lockdep_is_held(&reuseport_lock));
if (sk) {
write_lock_bh(&sk->sk_callback_lock);
WRITE_ONCE(sk->sk_user_data, NULL);
RCU_INIT_POINTER(array->ptrs[index], NULL);
write_unlock_bh(&sk->sk_callback_lock);
err = 0;
} else {
err = -ENOENT;
}
spin_unlock_bh(&reuseport_lock);
return err;
}
static void reuseport_array_free(struct bpf_map *map)
{
struct reuseport_array *array = reuseport_array(map);
struct sock *sk;
u32 i;
synchronize_rcu();
/*
* ops->map_*_elem() will not be able to access this
* array now. Hence, this function only races with
* bpf_sk_reuseport_detach() which was triggerred by
* close() or disconnect().
*
* This function and bpf_sk_reuseport_detach() are
* both removing sk from "array". Who removes it
* first does not matter.
*
* The only concern here is bpf_sk_reuseport_detach()
* may access "array" which is being freed here.
* bpf_sk_reuseport_detach() access this "array"
* through sk->sk_user_data _and_ with sk->sk_callback_lock
* held which is enough because this "array" is not freed
* until all sk->sk_user_data has stopped referencing this "array".
*
* Hence, due to the above, taking "reuseport_lock" is not
* needed here.
*/
/*
* Since reuseport_lock is not taken, sk is accessed under
* rcu_read_lock()
*/
rcu_read_lock();
for (i = 0; i < map->max_entries; i++) {
sk = rcu_dereference(array->ptrs[i]);
if (sk) {
write_lock_bh(&sk->sk_callback_lock);
/*
* No need for WRITE_ONCE(). At this point,
* no one is reading it without taking the
* sk->sk_callback_lock.
*/
sk->sk_user_data = NULL;
write_unlock_bh(&sk->sk_callback_lock);
RCU_INIT_POINTER(array->ptrs[i], NULL);
}
}
rcu_read_unlock();
/*
* Once reaching here, all sk->sk_user_data is not
* referenceing this "array". "array" can be freed now.
*/
bpf_map_area_free(array);
}
static struct bpf_map *reuseport_array_alloc(union bpf_attr *attr)
{
int err, numa_node = bpf_map_attr_numa_node(attr);
struct reuseport_array *array;
struct bpf_map_memory mem;
u64 array_size;
if (!bpf_capable())
return ERR_PTR(-EPERM);
array_size = sizeof(*array);
array_size += (u64)attr->max_entries * sizeof(struct sock *);
err = bpf_map_charge_init(&mem, array_size);
if (err)
return ERR_PTR(err);
/* allocate all map elements and zero-initialize them */
array = bpf_map_area_alloc(array_size, numa_node);
if (!array) {
bpf_map_charge_finish(&mem);
return ERR_PTR(-ENOMEM);
}
/* copy mandatory map attributes */
bpf_map_init_from_attr(&array->map, attr);
bpf_map_charge_move(&array->map.memory, &mem);
return &array->map;
}
int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map, void *key,
void *value)
{
struct sock *sk;
int err;
if (map->value_size != sizeof(u64))
return -ENOSPC;
rcu_read_lock();
sk = reuseport_array_lookup_elem(map, key);
if (sk) {
*(u64 *)value = sock_gen_cookie(sk);
err = 0;
} else {
err = -ENOENT;
}
rcu_read_unlock();
return err;
}
static int
reuseport_array_update_check(const struct reuseport_array *array,
const struct sock *nsk,
const struct sock *osk,
const struct sock_reuseport *nsk_reuse,
u32 map_flags)
{
if (osk && map_flags == BPF_NOEXIST)
return -EEXIST;
if (!osk && map_flags == BPF_EXIST)
return -ENOENT;
if (nsk->sk_protocol != IPPROTO_UDP && nsk->sk_protocol != IPPROTO_TCP)
return -ENOTSUPP;
if (nsk->sk_family != AF_INET && nsk->sk_family != AF_INET6)
return -ENOTSUPP;
if (nsk->sk_type != SOCK_STREAM && nsk->sk_type != SOCK_DGRAM)
return -ENOTSUPP;
/*
* sk must be hashed (i.e. listening in the TCP case or binded
* in the UDP case) and
* it must also be a SO_REUSEPORT sk (i.e. reuse cannot be NULL).
*
* Also, sk will be used in bpf helper that is protected by
* rcu_read_lock().
*/
if (!sock_flag(nsk, SOCK_RCU_FREE) || !sk_hashed(nsk) || !nsk_reuse)
return -EINVAL;
/* READ_ONCE because the sk->sk_callback_lock may not be held here */
if (READ_ONCE(nsk->sk_user_data))
return -EBUSY;
return 0;
}
/*
* Called from syscall only.
* The "nsk" in the fd refcnt.
* The "osk" and "reuse" are protected by reuseport_lock.
*/
int bpf_fd_reuseport_array_update_elem(struct bpf_map *map, void *key,
void *value, u64 map_flags)
{
struct reuseport_array *array = reuseport_array(map);
struct sock *free_osk = NULL, *osk, *nsk;
struct sock_reuseport *reuse;
u32 index = *(u32 *)key;
struct socket *socket;
int err, fd;
if (map_flags > BPF_EXIST)
return -EINVAL;
if (index >= map->max_entries)
return -E2BIG;
if (map->value_size == sizeof(u64)) {
u64 fd64 = *(u64 *)value;
if (fd64 > S32_MAX)
return -EINVAL;
fd = fd64;
} else {
fd = *(int *)value;
}
socket = sockfd_lookup(fd, &err);
if (!socket)
return err;
nsk = socket->sk;
if (!nsk) {
err = -EINVAL;
goto put_file;
}
/* Quick checks before taking reuseport_lock */
err = reuseport_array_update_check(array, nsk,
rcu_access_pointer(array->ptrs[index]),
rcu_access_pointer(nsk->sk_reuseport_cb),
map_flags);
if (err)
goto put_file;
spin_lock_bh(&reuseport_lock);
/*
* Some of the checks only need reuseport_lock
* but it is done under sk_callback_lock also
* for simplicity reason.
*/
write_lock_bh(&nsk->sk_callback_lock);
osk = rcu_dereference_protected(array->ptrs[index],
lockdep_is_held(&reuseport_lock));
reuse = rcu_dereference_protected(nsk->sk_reuseport_cb,
lockdep_is_held(&reuseport_lock));
err = reuseport_array_update_check(array, nsk, osk, reuse, map_flags);
if (err)
goto put_file_unlock;
WRITE_ONCE(nsk->sk_user_data, &array->ptrs[index]);
rcu_assign_pointer(array->ptrs[index], nsk);
free_osk = osk;
err = 0;
put_file_unlock:
write_unlock_bh(&nsk->sk_callback_lock);
if (free_osk) {
write_lock_bh(&free_osk->sk_callback_lock);
WRITE_ONCE(free_osk->sk_user_data, NULL);
write_unlock_bh(&free_osk->sk_callback_lock);
}
spin_unlock_bh(&reuseport_lock);
put_file:
fput(socket->file);
return err;
}
/* Called from syscall */
static int reuseport_array_get_next_key(struct bpf_map *map, void *key,
void *next_key)
{
struct reuseport_array *array = reuseport_array(map);
u32 index = key ? *(u32 *)key : U32_MAX;
u32 *next = (u32 *)next_key;
if (index >= array->map.max_entries) {
*next = 0;
return 0;
}
if (index == array->map.max_entries - 1)
return -ENOENT;
*next = index + 1;
return 0;
}
const struct bpf_map_ops reuseport_array_ops = {
.map_alloc_check = reuseport_array_alloc_check,
.map_alloc = reuseport_array_alloc,
.map_free = reuseport_array_free,
.map_lookup_elem = reuseport_array_lookup_elem,
.map_get_next_key = reuseport_array_get_next_key,
.map_delete_elem = reuseport_array_delete_elem,
};