mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-11-24 22:40:53 +07:00
7dbeaad0af
[BUG]
The following simple workload from fsstress can lead to qgroup reserved
data space leak:
0/0: creat f0 x:0 0 0
0/0: creat add id=0,parent=-1
0/1: write f0[259 1 0 0 0 0] [600030,27288] 0
0/4: dwrite - xfsctl(XFS_IOC_DIOINFO) f0[259 1 0 0 64 627318] return 25, fallback to stat()
0/4: dwrite f0[259 1 0 0 64 627318] [610304,106496] 0
This would cause btrfs qgroup to leak 20480 bytes for data reserved
space. If btrfs qgroup limit is enabled, such leak can lead to
unexpected early EDQUOT and unusable space.
[CAUSE]
When doing direct IO, kernel will try to writeback existing buffered
page cache, then invalidate them:
generic_file_direct_write()
|- filemap_write_and_wait_range();
|- invalidate_inode_pages2_range();
However for btrfs, the bi_end_io hook doesn't finish all its heavy work
right after bio ends. In fact, it delays its work further:
submit_extent_page(end_io_func=end_bio_extent_writepage);
end_bio_extent_writepage()
|- btrfs_writepage_endio_finish_ordered()
|- btrfs_init_work(finish_ordered_fn);
<<< Work queue execution >>>
finish_ordered_fn()
|- btrfs_finish_ordered_io();
|- Clear qgroup bits
This means, when filemap_write_and_wait_range() returns,
btrfs_finish_ordered_io() is not guaranteed to be executed, thus the
qgroup bits for related range are not cleared.
Now into how the leak happens, this will only focus on the overlapping
part of buffered and direct IO part.
1. After buffered write
The inode had the following range with QGROUP_RESERVED bit:
596 616K
|///////////////|
Qgroup reserved data space: 20K
2. Writeback part for range [596K, 616K)
Write back finished, but btrfs_finish_ordered_io() not get called
yet.
So we still have:
596K 616K
|///////////////|
Qgroup reserved data space: 20K
3. Pages for range [596K, 616K) get released
This will clear all qgroup bits, but don't update the reserved data
space.
So we have:
596K 616K
| |
Qgroup reserved data space: 20K
That number doesn't match the qgroup bit range anymore.
4. Dio prepare space for range [596K, 700K)
Qgroup reserved data space for that range, we got:
596K 616K 700K
|///////////////|///////////////////////|
Qgroup reserved data space: 20K + 104K = 124K
5. btrfs_finish_ordered_range() gets executed for range [596K, 616K)
Qgroup free reserved space for that range, we got:
596K 616K 700K
| |///////////////////////|
We need to free that range of reserved space.
Qgroup reserved data space: 124K - 20K = 104K
6. btrfs_finish_ordered_range() gets executed for range [596K, 700K)
However qgroup bit for range [596K, 616K) is already cleared in
previous step, so we only free 84K for qgroup reserved space.
596K 616K 700K
| | |
We need to free that range of reserved space.
Qgroup reserved data space: 104K - 84K = 20K
Now there is no way to release that 20K unless disabling qgroup or
unmounting the fs.
[FIX]
This patch will change the timing of btrfs_qgroup_release/free_data()
call. Here it uses buffered COW write as an example.
The new timing | The old timing
----------------------------------------+---------------------------------------
btrfs_buffered_write() | btrfs_buffered_write()
|- btrfs_qgroup_reserve_data() | |- btrfs_qgroup_reserve_data()
|
btrfs_run_delalloc_range() | btrfs_run_delalloc_range()
|- btrfs_add_ordered_extent() |
|- btrfs_qgroup_release_data() |
The reserved is passed into |
btrfs_ordered_extent structure |
|
btrfs_finish_ordered_io() | btrfs_finish_ordered_io()
|- The reserved space is passed to | |- btrfs_qgroup_release_data()
btrfs_qgroup_record | The resereved space is passed
| to btrfs_qgroup_recrod
|
btrfs_qgroup_account_extents() | btrfs_qgroup_account_extents()
|- btrfs_qgroup_free_refroot() | |- btrfs_qgroup_free_refroot()
The point of such change is to ensure, when ordered extents are
submitted, the qgroup reserved space is already released, to keep the
timing aligned with file_write_and_wait_range().
So that qgroup data reserved space is all bound to btrfs_ordered_extent
and solve the timing mismatch.
Fixes:
|
||
---|---|---|
arch | ||
block | ||
certs | ||
crypto | ||
Documentation | ||
drivers | ||
fs | ||
include | ||
init | ||
ipc | ||
kernel | ||
lib | ||
LICENSES | ||
mm | ||
net | ||
samples | ||
scripts | ||
security | ||
sound | ||
tools | ||
usr | ||
virt | ||
.clang-format | ||
.cocciconfig | ||
.get_maintainer.ignore | ||
.gitattributes | ||
.gitignore | ||
.mailmap | ||
COPYING | ||
CREDITS | ||
Kbuild | ||
Kconfig | ||
MAINTAINERS | ||
Makefile | ||
README |
Linux kernel ============ There are several guides for kernel developers and users. These guides can be rendered in a number of formats, like HTML and PDF. Please read Documentation/admin-guide/README.rst first. In order to build the documentation, use ``make htmldocs`` or ``make pdfdocs``. The formatted documentation can also be read online at: https://www.kernel.org/doc/html/latest/ There are various text files in the Documentation/ subdirectory, several of them using the Restructured Text markup notation. Please read the Documentation/process/changes.rst file, as it contains the requirements for building and running the kernel, and information about the problems which may result by upgrading your kernel.