mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-19 00:16:18 +07:00
81b29a3bf7
From Dave's testing described below, it's possible to drive a file system to have bogus values of discardable_extents and _bytes. As btrfs_discard_calc_delay() is the only user of discardable_extents, we can correct here for any negative discardable_extents/discardable_bytes. The problem is not reliably reproducible. The workload that created it was based on linux git tree, switching between release tags, then everytihng deleted followed by a full rebalance. At this state the values of discardable_bytes was 16K and discardable_extents was -1, expected values 0 and 0. Repeating the workload again did not correct the bogus values so the offset seems to be stable once it happens. Reported-by: David Sterba <dsterba@suse.com> Signed-off-by: Dennis Zhou <dennis@kernel.org> Signed-off-by: David Sterba <dsterba@suse.com>
703 lines
22 KiB
C
703 lines
22 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
|
|
#include <linux/jiffies.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/ktime.h>
|
|
#include <linux/list.h>
|
|
#include <linux/math64.h>
|
|
#include <linux/sizes.h>
|
|
#include <linux/workqueue.h>
|
|
#include "ctree.h"
|
|
#include "block-group.h"
|
|
#include "discard.h"
|
|
#include "free-space-cache.h"
|
|
|
|
/*
|
|
* This contains the logic to handle async discard.
|
|
*
|
|
* Async discard manages trimming of free space outside of transaction commit.
|
|
* Discarding is done by managing the block_groups on a LRU list based on free
|
|
* space recency. Two passes are used to first prioritize discarding extents
|
|
* and then allow for trimming in the bitmap the best opportunity to coalesce.
|
|
* The block_groups are maintained on multiple lists to allow for multiple
|
|
* passes with different discard filter requirements. A delayed work item is
|
|
* used to manage discarding with timeout determined by a max of the delay
|
|
* incurred by the iops rate limit, the byte rate limit, and the max delay of
|
|
* BTRFS_DISCARD_MAX_DELAY.
|
|
*
|
|
* Note, this only keeps track of block_groups that are explicitly for data.
|
|
* Mixed block_groups are not supported.
|
|
*
|
|
* The first list is special to manage discarding of fully free block groups.
|
|
* This is necessary because we issue a final trim for a full free block group
|
|
* after forgetting it. When a block group becomes unused, instead of directly
|
|
* being added to the unused_bgs list, we add it to this first list. Then
|
|
* from there, if it becomes fully discarded, we place it onto the unused_bgs
|
|
* list.
|
|
*
|
|
* The in-memory free space cache serves as the backing state for discard.
|
|
* Consequently this means there is no persistence. We opt to load all the
|
|
* block groups in as not discarded, so the mount case degenerates to the
|
|
* crashing case.
|
|
*
|
|
* As the free space cache uses bitmaps, there exists a tradeoff between
|
|
* ease/efficiency for find_free_extent() and the accuracy of discard state.
|
|
* Here we opt to let untrimmed regions merge with everything while only letting
|
|
* trimmed regions merge with other trimmed regions. This can cause
|
|
* overtrimming, but the coalescing benefit seems to be worth it. Additionally,
|
|
* bitmap state is tracked as a whole. If we're able to fully trim a bitmap,
|
|
* the trimmed flag is set on the bitmap. Otherwise, if an allocation comes in,
|
|
* this resets the state and we will retry trimming the whole bitmap. This is a
|
|
* tradeoff between discard state accuracy and the cost of accounting.
|
|
*/
|
|
|
|
/* This is an initial delay to give some chance for block reuse */
|
|
#define BTRFS_DISCARD_DELAY (120ULL * NSEC_PER_SEC)
|
|
#define BTRFS_DISCARD_UNUSED_DELAY (10ULL * NSEC_PER_SEC)
|
|
|
|
/* Target completion latency of discarding all discardable extents */
|
|
#define BTRFS_DISCARD_TARGET_MSEC (6 * 60 * 60UL * MSEC_PER_SEC)
|
|
#define BTRFS_DISCARD_MIN_DELAY_MSEC (1UL)
|
|
#define BTRFS_DISCARD_MAX_DELAY_MSEC (1000UL)
|
|
#define BTRFS_DISCARD_MAX_IOPS (10U)
|
|
|
|
/* Montonically decreasing minimum length filters after index 0 */
|
|
static int discard_minlen[BTRFS_NR_DISCARD_LISTS] = {
|
|
0,
|
|
BTRFS_ASYNC_DISCARD_MAX_FILTER,
|
|
BTRFS_ASYNC_DISCARD_MIN_FILTER
|
|
};
|
|
|
|
static struct list_head *get_discard_list(struct btrfs_discard_ctl *discard_ctl,
|
|
struct btrfs_block_group *block_group)
|
|
{
|
|
return &discard_ctl->discard_list[block_group->discard_index];
|
|
}
|
|
|
|
static void __add_to_discard_list(struct btrfs_discard_ctl *discard_ctl,
|
|
struct btrfs_block_group *block_group)
|
|
{
|
|
if (!btrfs_run_discard_work(discard_ctl))
|
|
return;
|
|
|
|
if (list_empty(&block_group->discard_list) ||
|
|
block_group->discard_index == BTRFS_DISCARD_INDEX_UNUSED) {
|
|
if (block_group->discard_index == BTRFS_DISCARD_INDEX_UNUSED)
|
|
block_group->discard_index = BTRFS_DISCARD_INDEX_START;
|
|
block_group->discard_eligible_time = (ktime_get_ns() +
|
|
BTRFS_DISCARD_DELAY);
|
|
block_group->discard_state = BTRFS_DISCARD_RESET_CURSOR;
|
|
}
|
|
|
|
list_move_tail(&block_group->discard_list,
|
|
get_discard_list(discard_ctl, block_group));
|
|
}
|
|
|
|
static void add_to_discard_list(struct btrfs_discard_ctl *discard_ctl,
|
|
struct btrfs_block_group *block_group)
|
|
{
|
|
if (!btrfs_is_block_group_data_only(block_group))
|
|
return;
|
|
|
|
spin_lock(&discard_ctl->lock);
|
|
__add_to_discard_list(discard_ctl, block_group);
|
|
spin_unlock(&discard_ctl->lock);
|
|
}
|
|
|
|
static void add_to_discard_unused_list(struct btrfs_discard_ctl *discard_ctl,
|
|
struct btrfs_block_group *block_group)
|
|
{
|
|
spin_lock(&discard_ctl->lock);
|
|
|
|
if (!btrfs_run_discard_work(discard_ctl)) {
|
|
spin_unlock(&discard_ctl->lock);
|
|
return;
|
|
}
|
|
|
|
list_del_init(&block_group->discard_list);
|
|
|
|
block_group->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
|
|
block_group->discard_eligible_time = (ktime_get_ns() +
|
|
BTRFS_DISCARD_UNUSED_DELAY);
|
|
block_group->discard_state = BTRFS_DISCARD_RESET_CURSOR;
|
|
list_add_tail(&block_group->discard_list,
|
|
&discard_ctl->discard_list[BTRFS_DISCARD_INDEX_UNUSED]);
|
|
|
|
spin_unlock(&discard_ctl->lock);
|
|
}
|
|
|
|
static bool remove_from_discard_list(struct btrfs_discard_ctl *discard_ctl,
|
|
struct btrfs_block_group *block_group)
|
|
{
|
|
bool running = false;
|
|
|
|
spin_lock(&discard_ctl->lock);
|
|
|
|
if (block_group == discard_ctl->block_group) {
|
|
running = true;
|
|
discard_ctl->block_group = NULL;
|
|
}
|
|
|
|
block_group->discard_eligible_time = 0;
|
|
list_del_init(&block_group->discard_list);
|
|
|
|
spin_unlock(&discard_ctl->lock);
|
|
|
|
return running;
|
|
}
|
|
|
|
/**
|
|
* find_next_block_group - find block_group that's up next for discarding
|
|
* @discard_ctl: discard control
|
|
* @now: current time
|
|
*
|
|
* Iterate over the discard lists to find the next block_group up for
|
|
* discarding checking the discard_eligible_time of block_group.
|
|
*/
|
|
static struct btrfs_block_group *find_next_block_group(
|
|
struct btrfs_discard_ctl *discard_ctl,
|
|
u64 now)
|
|
{
|
|
struct btrfs_block_group *ret_block_group = NULL, *block_group;
|
|
int i;
|
|
|
|
for (i = 0; i < BTRFS_NR_DISCARD_LISTS; i++) {
|
|
struct list_head *discard_list = &discard_ctl->discard_list[i];
|
|
|
|
if (!list_empty(discard_list)) {
|
|
block_group = list_first_entry(discard_list,
|
|
struct btrfs_block_group,
|
|
discard_list);
|
|
|
|
if (!ret_block_group)
|
|
ret_block_group = block_group;
|
|
|
|
if (ret_block_group->discard_eligible_time < now)
|
|
break;
|
|
|
|
if (ret_block_group->discard_eligible_time >
|
|
block_group->discard_eligible_time)
|
|
ret_block_group = block_group;
|
|
}
|
|
}
|
|
|
|
return ret_block_group;
|
|
}
|
|
|
|
/**
|
|
* peek_discard_list - wrap find_next_block_group()
|
|
* @discard_ctl: discard control
|
|
* @discard_state: the discard_state of the block_group after state management
|
|
* @discard_index: the discard_index of the block_group after state management
|
|
*
|
|
* This wraps find_next_block_group() and sets the block_group to be in use.
|
|
* discard_state's control flow is managed here. Variables related to
|
|
* discard_state are reset here as needed (eg discard_cursor). @discard_state
|
|
* and @discard_index are remembered as it may change while we're discarding,
|
|
* but we want the discard to execute in the context determined here.
|
|
*/
|
|
static struct btrfs_block_group *peek_discard_list(
|
|
struct btrfs_discard_ctl *discard_ctl,
|
|
enum btrfs_discard_state *discard_state,
|
|
int *discard_index)
|
|
{
|
|
struct btrfs_block_group *block_group;
|
|
const u64 now = ktime_get_ns();
|
|
|
|
spin_lock(&discard_ctl->lock);
|
|
again:
|
|
block_group = find_next_block_group(discard_ctl, now);
|
|
|
|
if (block_group && now > block_group->discard_eligible_time) {
|
|
if (block_group->discard_index == BTRFS_DISCARD_INDEX_UNUSED &&
|
|
block_group->used != 0) {
|
|
if (btrfs_is_block_group_data_only(block_group))
|
|
__add_to_discard_list(discard_ctl, block_group);
|
|
else
|
|
list_del_init(&block_group->discard_list);
|
|
goto again;
|
|
}
|
|
if (block_group->discard_state == BTRFS_DISCARD_RESET_CURSOR) {
|
|
block_group->discard_cursor = block_group->start;
|
|
block_group->discard_state = BTRFS_DISCARD_EXTENTS;
|
|
}
|
|
discard_ctl->block_group = block_group;
|
|
*discard_state = block_group->discard_state;
|
|
*discard_index = block_group->discard_index;
|
|
} else {
|
|
block_group = NULL;
|
|
}
|
|
|
|
spin_unlock(&discard_ctl->lock);
|
|
|
|
return block_group;
|
|
}
|
|
|
|
/**
|
|
* btrfs_discard_check_filter - updates a block groups filters
|
|
* @block_group: block group of interest
|
|
* @bytes: recently freed region size after coalescing
|
|
*
|
|
* Async discard maintains multiple lists with progressively smaller filters
|
|
* to prioritize discarding based on size. Should a free space that matches
|
|
* a larger filter be returned to the free_space_cache, prioritize that discard
|
|
* by moving @block_group to the proper filter.
|
|
*/
|
|
void btrfs_discard_check_filter(struct btrfs_block_group *block_group,
|
|
u64 bytes)
|
|
{
|
|
struct btrfs_discard_ctl *discard_ctl;
|
|
|
|
if (!block_group ||
|
|
!btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC))
|
|
return;
|
|
|
|
discard_ctl = &block_group->fs_info->discard_ctl;
|
|
|
|
if (block_group->discard_index > BTRFS_DISCARD_INDEX_START &&
|
|
bytes >= discard_minlen[block_group->discard_index - 1]) {
|
|
int i;
|
|
|
|
remove_from_discard_list(discard_ctl, block_group);
|
|
|
|
for (i = BTRFS_DISCARD_INDEX_START; i < BTRFS_NR_DISCARD_LISTS;
|
|
i++) {
|
|
if (bytes >= discard_minlen[i]) {
|
|
block_group->discard_index = i;
|
|
add_to_discard_list(discard_ctl, block_group);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* btrfs_update_discard_index - moves a block group along the discard lists
|
|
* @discard_ctl: discard control
|
|
* @block_group: block_group of interest
|
|
*
|
|
* Increment @block_group's discard_index. If it falls of the list, let it be.
|
|
* Otherwise add it back to the appropriate list.
|
|
*/
|
|
static void btrfs_update_discard_index(struct btrfs_discard_ctl *discard_ctl,
|
|
struct btrfs_block_group *block_group)
|
|
{
|
|
block_group->discard_index++;
|
|
if (block_group->discard_index == BTRFS_NR_DISCARD_LISTS) {
|
|
block_group->discard_index = 1;
|
|
return;
|
|
}
|
|
|
|
add_to_discard_list(discard_ctl, block_group);
|
|
}
|
|
|
|
/**
|
|
* btrfs_discard_cancel_work - remove a block_group from the discard lists
|
|
* @discard_ctl: discard control
|
|
* @block_group: block_group of interest
|
|
*
|
|
* This removes @block_group from the discard lists. If necessary, it waits on
|
|
* the current work and then reschedules the delayed work.
|
|
*/
|
|
void btrfs_discard_cancel_work(struct btrfs_discard_ctl *discard_ctl,
|
|
struct btrfs_block_group *block_group)
|
|
{
|
|
if (remove_from_discard_list(discard_ctl, block_group)) {
|
|
cancel_delayed_work_sync(&discard_ctl->work);
|
|
btrfs_discard_schedule_work(discard_ctl, true);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* btrfs_discard_queue_work - handles queuing the block_groups
|
|
* @discard_ctl: discard control
|
|
* @block_group: block_group of interest
|
|
*
|
|
* This maintains the LRU order of the discard lists.
|
|
*/
|
|
void btrfs_discard_queue_work(struct btrfs_discard_ctl *discard_ctl,
|
|
struct btrfs_block_group *block_group)
|
|
{
|
|
if (!block_group || !btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC))
|
|
return;
|
|
|
|
if (block_group->used == 0)
|
|
add_to_discard_unused_list(discard_ctl, block_group);
|
|
else
|
|
add_to_discard_list(discard_ctl, block_group);
|
|
|
|
if (!delayed_work_pending(&discard_ctl->work))
|
|
btrfs_discard_schedule_work(discard_ctl, false);
|
|
}
|
|
|
|
/**
|
|
* btrfs_discard_schedule_work - responsible for scheduling the discard work
|
|
* @discard_ctl: discard control
|
|
* @override: override the current timer
|
|
*
|
|
* Discards are issued by a delayed workqueue item. @override is used to
|
|
* update the current delay as the baseline delay interval is reevaluated on
|
|
* transaction commit. This is also maxed with any other rate limit.
|
|
*/
|
|
void btrfs_discard_schedule_work(struct btrfs_discard_ctl *discard_ctl,
|
|
bool override)
|
|
{
|
|
struct btrfs_block_group *block_group;
|
|
const u64 now = ktime_get_ns();
|
|
|
|
spin_lock(&discard_ctl->lock);
|
|
|
|
if (!btrfs_run_discard_work(discard_ctl))
|
|
goto out;
|
|
|
|
if (!override && delayed_work_pending(&discard_ctl->work))
|
|
goto out;
|
|
|
|
block_group = find_next_block_group(discard_ctl, now);
|
|
if (block_group) {
|
|
unsigned long delay = discard_ctl->delay;
|
|
u32 kbps_limit = READ_ONCE(discard_ctl->kbps_limit);
|
|
|
|
/*
|
|
* A single delayed workqueue item is responsible for
|
|
* discarding, so we can manage the bytes rate limit by keeping
|
|
* track of the previous discard.
|
|
*/
|
|
if (kbps_limit && discard_ctl->prev_discard) {
|
|
u64 bps_limit = ((u64)kbps_limit) * SZ_1K;
|
|
u64 bps_delay = div64_u64(discard_ctl->prev_discard *
|
|
MSEC_PER_SEC, bps_limit);
|
|
|
|
delay = max(delay, msecs_to_jiffies(bps_delay));
|
|
}
|
|
|
|
/*
|
|
* This timeout is to hopefully prevent immediate discarding
|
|
* in a recently allocated block group.
|
|
*/
|
|
if (now < block_group->discard_eligible_time) {
|
|
u64 bg_timeout = block_group->discard_eligible_time - now;
|
|
|
|
delay = max(delay, nsecs_to_jiffies(bg_timeout));
|
|
}
|
|
|
|
mod_delayed_work(discard_ctl->discard_workers,
|
|
&discard_ctl->work, delay);
|
|
}
|
|
out:
|
|
spin_unlock(&discard_ctl->lock);
|
|
}
|
|
|
|
/**
|
|
* btrfs_finish_discard_pass - determine next step of a block_group
|
|
* @discard_ctl: discard control
|
|
* @block_group: block_group of interest
|
|
*
|
|
* This determines the next step for a block group after it's finished going
|
|
* through a pass on a discard list. If it is unused and fully trimmed, we can
|
|
* mark it unused and send it to the unused_bgs path. Otherwise, pass it onto
|
|
* the appropriate filter list or let it fall off.
|
|
*/
|
|
static void btrfs_finish_discard_pass(struct btrfs_discard_ctl *discard_ctl,
|
|
struct btrfs_block_group *block_group)
|
|
{
|
|
remove_from_discard_list(discard_ctl, block_group);
|
|
|
|
if (block_group->used == 0) {
|
|
if (btrfs_is_free_space_trimmed(block_group))
|
|
btrfs_mark_bg_unused(block_group);
|
|
else
|
|
add_to_discard_unused_list(discard_ctl, block_group);
|
|
} else {
|
|
btrfs_update_discard_index(discard_ctl, block_group);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* btrfs_discard_workfn - discard work function
|
|
* @work: work
|
|
*
|
|
* This finds the next block_group to start discarding and then discards a
|
|
* single region. It does this in a two-pass fashion: first extents and second
|
|
* bitmaps. Completely discarded block groups are sent to the unused_bgs path.
|
|
*/
|
|
static void btrfs_discard_workfn(struct work_struct *work)
|
|
{
|
|
struct btrfs_discard_ctl *discard_ctl;
|
|
struct btrfs_block_group *block_group;
|
|
enum btrfs_discard_state discard_state;
|
|
int discard_index = 0;
|
|
u64 trimmed = 0;
|
|
u64 minlen = 0;
|
|
|
|
discard_ctl = container_of(work, struct btrfs_discard_ctl, work.work);
|
|
|
|
block_group = peek_discard_list(discard_ctl, &discard_state,
|
|
&discard_index);
|
|
if (!block_group || !btrfs_run_discard_work(discard_ctl))
|
|
return;
|
|
|
|
/* Perform discarding */
|
|
minlen = discard_minlen[discard_index];
|
|
|
|
if (discard_state == BTRFS_DISCARD_BITMAPS) {
|
|
u64 maxlen = 0;
|
|
|
|
/*
|
|
* Use the previous levels minimum discard length as the max
|
|
* length filter. In the case something is added to make a
|
|
* region go beyond the max filter, the entire bitmap is set
|
|
* back to BTRFS_TRIM_STATE_UNTRIMMED.
|
|
*/
|
|
if (discard_index != BTRFS_DISCARD_INDEX_UNUSED)
|
|
maxlen = discard_minlen[discard_index - 1];
|
|
|
|
btrfs_trim_block_group_bitmaps(block_group, &trimmed,
|
|
block_group->discard_cursor,
|
|
btrfs_block_group_end(block_group),
|
|
minlen, maxlen, true);
|
|
discard_ctl->discard_bitmap_bytes += trimmed;
|
|
} else {
|
|
btrfs_trim_block_group_extents(block_group, &trimmed,
|
|
block_group->discard_cursor,
|
|
btrfs_block_group_end(block_group),
|
|
minlen, true);
|
|
discard_ctl->discard_extent_bytes += trimmed;
|
|
}
|
|
|
|
discard_ctl->prev_discard = trimmed;
|
|
|
|
/* Determine next steps for a block_group */
|
|
if (block_group->discard_cursor >= btrfs_block_group_end(block_group)) {
|
|
if (discard_state == BTRFS_DISCARD_BITMAPS) {
|
|
btrfs_finish_discard_pass(discard_ctl, block_group);
|
|
} else {
|
|
block_group->discard_cursor = block_group->start;
|
|
spin_lock(&discard_ctl->lock);
|
|
if (block_group->discard_state !=
|
|
BTRFS_DISCARD_RESET_CURSOR)
|
|
block_group->discard_state =
|
|
BTRFS_DISCARD_BITMAPS;
|
|
spin_unlock(&discard_ctl->lock);
|
|
}
|
|
}
|
|
|
|
spin_lock(&discard_ctl->lock);
|
|
discard_ctl->block_group = NULL;
|
|
spin_unlock(&discard_ctl->lock);
|
|
|
|
btrfs_discard_schedule_work(discard_ctl, false);
|
|
}
|
|
|
|
/**
|
|
* btrfs_run_discard_work - determines if async discard should be running
|
|
* @discard_ctl: discard control
|
|
*
|
|
* Checks if the file system is writeable and BTRFS_FS_DISCARD_RUNNING is set.
|
|
*/
|
|
bool btrfs_run_discard_work(struct btrfs_discard_ctl *discard_ctl)
|
|
{
|
|
struct btrfs_fs_info *fs_info = container_of(discard_ctl,
|
|
struct btrfs_fs_info,
|
|
discard_ctl);
|
|
|
|
return (!(fs_info->sb->s_flags & SB_RDONLY) &&
|
|
test_bit(BTRFS_FS_DISCARD_RUNNING, &fs_info->flags));
|
|
}
|
|
|
|
/**
|
|
* btrfs_discard_calc_delay - recalculate the base delay
|
|
* @discard_ctl: discard control
|
|
*
|
|
* Recalculate the base delay which is based off the total number of
|
|
* discardable_extents. Clamp this between the lower_limit (iops_limit or 1ms)
|
|
* and the upper_limit (BTRFS_DISCARD_MAX_DELAY_MSEC).
|
|
*/
|
|
void btrfs_discard_calc_delay(struct btrfs_discard_ctl *discard_ctl)
|
|
{
|
|
s32 discardable_extents;
|
|
s64 discardable_bytes;
|
|
u32 iops_limit;
|
|
unsigned long delay;
|
|
unsigned long lower_limit = BTRFS_DISCARD_MIN_DELAY_MSEC;
|
|
|
|
discardable_extents = atomic_read(&discard_ctl->discardable_extents);
|
|
if (!discardable_extents)
|
|
return;
|
|
|
|
spin_lock(&discard_ctl->lock);
|
|
|
|
/*
|
|
* The following is to fix a potential -1 discrepenancy that we're not
|
|
* sure how to reproduce. But given that this is the only place that
|
|
* utilizes these numbers and this is only called by from
|
|
* btrfs_finish_extent_commit() which is synchronized, we can correct
|
|
* here.
|
|
*/
|
|
if (discardable_extents < 0)
|
|
atomic_add(-discardable_extents,
|
|
&discard_ctl->discardable_extents);
|
|
|
|
discardable_bytes = atomic64_read(&discard_ctl->discardable_bytes);
|
|
if (discardable_bytes < 0)
|
|
atomic64_add(-discardable_bytes,
|
|
&discard_ctl->discardable_bytes);
|
|
|
|
if (discardable_extents <= 0) {
|
|
spin_unlock(&discard_ctl->lock);
|
|
return;
|
|
}
|
|
|
|
iops_limit = READ_ONCE(discard_ctl->iops_limit);
|
|
if (iops_limit)
|
|
lower_limit = max_t(unsigned long, lower_limit,
|
|
MSEC_PER_SEC / iops_limit);
|
|
|
|
delay = BTRFS_DISCARD_TARGET_MSEC / discardable_extents;
|
|
delay = clamp(delay, lower_limit, BTRFS_DISCARD_MAX_DELAY_MSEC);
|
|
discard_ctl->delay = msecs_to_jiffies(delay);
|
|
|
|
spin_unlock(&discard_ctl->lock);
|
|
}
|
|
|
|
/**
|
|
* btrfs_discard_update_discardable - propagate discard counters
|
|
* @block_group: block_group of interest
|
|
* @ctl: free_space_ctl of @block_group
|
|
*
|
|
* This propagates deltas of counters up to the discard_ctl. It maintains a
|
|
* current counter and a previous counter passing the delta up to the global
|
|
* stat. Then the current counter value becomes the previous counter value.
|
|
*/
|
|
void btrfs_discard_update_discardable(struct btrfs_block_group *block_group,
|
|
struct btrfs_free_space_ctl *ctl)
|
|
{
|
|
struct btrfs_discard_ctl *discard_ctl;
|
|
s32 extents_delta;
|
|
s64 bytes_delta;
|
|
|
|
if (!block_group ||
|
|
!btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC) ||
|
|
!btrfs_is_block_group_data_only(block_group))
|
|
return;
|
|
|
|
discard_ctl = &block_group->fs_info->discard_ctl;
|
|
|
|
extents_delta = ctl->discardable_extents[BTRFS_STAT_CURR] -
|
|
ctl->discardable_extents[BTRFS_STAT_PREV];
|
|
if (extents_delta) {
|
|
atomic_add(extents_delta, &discard_ctl->discardable_extents);
|
|
ctl->discardable_extents[BTRFS_STAT_PREV] =
|
|
ctl->discardable_extents[BTRFS_STAT_CURR];
|
|
}
|
|
|
|
bytes_delta = ctl->discardable_bytes[BTRFS_STAT_CURR] -
|
|
ctl->discardable_bytes[BTRFS_STAT_PREV];
|
|
if (bytes_delta) {
|
|
atomic64_add(bytes_delta, &discard_ctl->discardable_bytes);
|
|
ctl->discardable_bytes[BTRFS_STAT_PREV] =
|
|
ctl->discardable_bytes[BTRFS_STAT_CURR];
|
|
}
|
|
}
|
|
|
|
/**
|
|
* btrfs_discard_punt_unused_bgs_list - punt unused_bgs list to discard lists
|
|
* @fs_info: fs_info of interest
|
|
*
|
|
* The unused_bgs list needs to be punted to the discard lists because the
|
|
* order of operations is changed. In the normal sychronous discard path, the
|
|
* block groups are trimmed via a single large trim in transaction commit. This
|
|
* is ultimately what we are trying to avoid with asynchronous discard. Thus,
|
|
* it must be done before going down the unused_bgs path.
|
|
*/
|
|
void btrfs_discard_punt_unused_bgs_list(struct btrfs_fs_info *fs_info)
|
|
{
|
|
struct btrfs_block_group *block_group, *next;
|
|
|
|
spin_lock(&fs_info->unused_bgs_lock);
|
|
/* We enabled async discard, so punt all to the queue */
|
|
list_for_each_entry_safe(block_group, next, &fs_info->unused_bgs,
|
|
bg_list) {
|
|
list_del_init(&block_group->bg_list);
|
|
btrfs_discard_queue_work(&fs_info->discard_ctl, block_group);
|
|
}
|
|
spin_unlock(&fs_info->unused_bgs_lock);
|
|
}
|
|
|
|
/**
|
|
* btrfs_discard_purge_list - purge discard lists
|
|
* @discard_ctl: discard control
|
|
*
|
|
* If we are disabling async discard, we may have intercepted block groups that
|
|
* are completely free and ready for the unused_bgs path. As discarding will
|
|
* now happen in transaction commit or not at all, we can safely mark the
|
|
* corresponding block groups as unused and they will be sent on their merry
|
|
* way to the unused_bgs list.
|
|
*/
|
|
static void btrfs_discard_purge_list(struct btrfs_discard_ctl *discard_ctl)
|
|
{
|
|
struct btrfs_block_group *block_group, *next;
|
|
int i;
|
|
|
|
spin_lock(&discard_ctl->lock);
|
|
for (i = 0; i < BTRFS_NR_DISCARD_LISTS; i++) {
|
|
list_for_each_entry_safe(block_group, next,
|
|
&discard_ctl->discard_list[i],
|
|
discard_list) {
|
|
list_del_init(&block_group->discard_list);
|
|
spin_unlock(&discard_ctl->lock);
|
|
if (block_group->used == 0)
|
|
btrfs_mark_bg_unused(block_group);
|
|
spin_lock(&discard_ctl->lock);
|
|
}
|
|
}
|
|
spin_unlock(&discard_ctl->lock);
|
|
}
|
|
|
|
void btrfs_discard_resume(struct btrfs_fs_info *fs_info)
|
|
{
|
|
if (!btrfs_test_opt(fs_info, DISCARD_ASYNC)) {
|
|
btrfs_discard_cleanup(fs_info);
|
|
return;
|
|
}
|
|
|
|
btrfs_discard_punt_unused_bgs_list(fs_info);
|
|
|
|
set_bit(BTRFS_FS_DISCARD_RUNNING, &fs_info->flags);
|
|
}
|
|
|
|
void btrfs_discard_stop(struct btrfs_fs_info *fs_info)
|
|
{
|
|
clear_bit(BTRFS_FS_DISCARD_RUNNING, &fs_info->flags);
|
|
}
|
|
|
|
void btrfs_discard_init(struct btrfs_fs_info *fs_info)
|
|
{
|
|
struct btrfs_discard_ctl *discard_ctl = &fs_info->discard_ctl;
|
|
int i;
|
|
|
|
spin_lock_init(&discard_ctl->lock);
|
|
INIT_DELAYED_WORK(&discard_ctl->work, btrfs_discard_workfn);
|
|
|
|
for (i = 0; i < BTRFS_NR_DISCARD_LISTS; i++)
|
|
INIT_LIST_HEAD(&discard_ctl->discard_list[i]);
|
|
|
|
discard_ctl->prev_discard = 0;
|
|
atomic_set(&discard_ctl->discardable_extents, 0);
|
|
atomic64_set(&discard_ctl->discardable_bytes, 0);
|
|
discard_ctl->max_discard_size = BTRFS_ASYNC_DISCARD_DEFAULT_MAX_SIZE;
|
|
discard_ctl->delay = BTRFS_DISCARD_MAX_DELAY_MSEC;
|
|
discard_ctl->iops_limit = BTRFS_DISCARD_MAX_IOPS;
|
|
discard_ctl->kbps_limit = 0;
|
|
discard_ctl->discard_extent_bytes = 0;
|
|
discard_ctl->discard_bitmap_bytes = 0;
|
|
atomic64_set(&discard_ctl->discard_bytes_saved, 0);
|
|
}
|
|
|
|
void btrfs_discard_cleanup(struct btrfs_fs_info *fs_info)
|
|
{
|
|
btrfs_discard_stop(fs_info);
|
|
cancel_delayed_work_sync(&fs_info->discard_ctl.work);
|
|
btrfs_discard_purge_list(&fs_info->discard_ctl);
|
|
}
|