linux_dsm_epyc7002/fs/crypto/keyinfo.c
Eric Biggers d83ae730b6 fscrypto: remove unnecessary includes
This patch removes some #includes that are clearly not needed, such as a
reference to ecryptfs, which is unrelated to the new filesystem
encryption code.

Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
2016-09-15 16:41:09 -04:00

324 lines
8.4 KiB
C

/*
* key management facility for FS encryption support.
*
* Copyright (C) 2015, Google, Inc.
*
* This contains encryption key functions.
*
* Written by Michael Halcrow, Ildar Muslukhov, and Uday Savagaonkar, 2015.
*/
#include <keys/user-type.h>
#include <linux/scatterlist.h>
#include <linux/fscrypto.h>
static void derive_crypt_complete(struct crypto_async_request *req, int rc)
{
struct fscrypt_completion_result *ecr = req->data;
if (rc == -EINPROGRESS)
return;
ecr->res = rc;
complete(&ecr->completion);
}
/**
* derive_key_aes() - Derive a key using AES-128-ECB
* @deriving_key: Encryption key used for derivation.
* @source_key: Source key to which to apply derivation.
* @derived_key: Derived key.
*
* Return: Zero on success; non-zero otherwise.
*/
static int derive_key_aes(u8 deriving_key[FS_AES_128_ECB_KEY_SIZE],
u8 source_key[FS_AES_256_XTS_KEY_SIZE],
u8 derived_key[FS_AES_256_XTS_KEY_SIZE])
{
int res = 0;
struct skcipher_request *req = NULL;
DECLARE_FS_COMPLETION_RESULT(ecr);
struct scatterlist src_sg, dst_sg;
struct crypto_skcipher *tfm = crypto_alloc_skcipher("ecb(aes)", 0, 0);
if (IS_ERR(tfm)) {
res = PTR_ERR(tfm);
tfm = NULL;
goto out;
}
crypto_skcipher_set_flags(tfm, CRYPTO_TFM_REQ_WEAK_KEY);
req = skcipher_request_alloc(tfm, GFP_NOFS);
if (!req) {
res = -ENOMEM;
goto out;
}
skcipher_request_set_callback(req,
CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
derive_crypt_complete, &ecr);
res = crypto_skcipher_setkey(tfm, deriving_key,
FS_AES_128_ECB_KEY_SIZE);
if (res < 0)
goto out;
sg_init_one(&src_sg, source_key, FS_AES_256_XTS_KEY_SIZE);
sg_init_one(&dst_sg, derived_key, FS_AES_256_XTS_KEY_SIZE);
skcipher_request_set_crypt(req, &src_sg, &dst_sg,
FS_AES_256_XTS_KEY_SIZE, NULL);
res = crypto_skcipher_encrypt(req);
if (res == -EINPROGRESS || res == -EBUSY) {
wait_for_completion(&ecr.completion);
res = ecr.res;
}
out:
skcipher_request_free(req);
crypto_free_skcipher(tfm);
return res;
}
static int validate_user_key(struct fscrypt_info *crypt_info,
struct fscrypt_context *ctx, u8 *raw_key,
u8 *prefix, int prefix_size)
{
u8 *full_key_descriptor;
struct key *keyring_key;
struct fscrypt_key *master_key;
const struct user_key_payload *ukp;
int full_key_len = prefix_size + (FS_KEY_DESCRIPTOR_SIZE * 2) + 1;
int res;
full_key_descriptor = kmalloc(full_key_len, GFP_NOFS);
if (!full_key_descriptor)
return -ENOMEM;
memcpy(full_key_descriptor, prefix, prefix_size);
sprintf(full_key_descriptor + prefix_size,
"%*phN", FS_KEY_DESCRIPTOR_SIZE,
ctx->master_key_descriptor);
full_key_descriptor[full_key_len - 1] = '\0';
keyring_key = request_key(&key_type_logon, full_key_descriptor, NULL);
kfree(full_key_descriptor);
if (IS_ERR(keyring_key))
return PTR_ERR(keyring_key);
if (keyring_key->type != &key_type_logon) {
printk_once(KERN_WARNING
"%s: key type must be logon\n", __func__);
res = -ENOKEY;
goto out;
}
down_read(&keyring_key->sem);
ukp = user_key_payload(keyring_key);
if (ukp->datalen != sizeof(struct fscrypt_key)) {
res = -EINVAL;
up_read(&keyring_key->sem);
goto out;
}
master_key = (struct fscrypt_key *)ukp->data;
BUILD_BUG_ON(FS_AES_128_ECB_KEY_SIZE != FS_KEY_DERIVATION_NONCE_SIZE);
if (master_key->size != FS_AES_256_XTS_KEY_SIZE) {
printk_once(KERN_WARNING
"%s: key size incorrect: %d\n",
__func__, master_key->size);
res = -ENOKEY;
up_read(&keyring_key->sem);
goto out;
}
res = derive_key_aes(ctx->nonce, master_key->raw, raw_key);
up_read(&keyring_key->sem);
if (res)
goto out;
crypt_info->ci_keyring_key = keyring_key;
return 0;
out:
key_put(keyring_key);
return res;
}
static int determine_cipher_type(struct fscrypt_info *ci, struct inode *inode,
const char **cipher_str_ret, int *keysize_ret)
{
if (S_ISREG(inode->i_mode)) {
if (ci->ci_data_mode == FS_ENCRYPTION_MODE_AES_256_XTS) {
*cipher_str_ret = "xts(aes)";
*keysize_ret = FS_AES_256_XTS_KEY_SIZE;
return 0;
}
pr_warn_once("fscrypto: unsupported contents encryption mode "
"%d for inode %lu\n",
ci->ci_data_mode, inode->i_ino);
return -ENOKEY;
}
if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)) {
if (ci->ci_filename_mode == FS_ENCRYPTION_MODE_AES_256_CTS) {
*cipher_str_ret = "cts(cbc(aes))";
*keysize_ret = FS_AES_256_CTS_KEY_SIZE;
return 0;
}
pr_warn_once("fscrypto: unsupported filenames encryption mode "
"%d for inode %lu\n",
ci->ci_filename_mode, inode->i_ino);
return -ENOKEY;
}
pr_warn_once("fscrypto: unsupported file type %d for inode %lu\n",
(inode->i_mode & S_IFMT), inode->i_ino);
return -ENOKEY;
}
static void put_crypt_info(struct fscrypt_info *ci)
{
if (!ci)
return;
key_put(ci->ci_keyring_key);
crypto_free_skcipher(ci->ci_ctfm);
kmem_cache_free(fscrypt_info_cachep, ci);
}
int get_crypt_info(struct inode *inode)
{
struct fscrypt_info *crypt_info;
struct fscrypt_context ctx;
struct crypto_skcipher *ctfm;
const char *cipher_str;
int keysize;
u8 raw_key[FS_MAX_KEY_SIZE];
int res;
res = fscrypt_initialize();
if (res)
return res;
if (!inode->i_sb->s_cop->get_context)
return -EOPNOTSUPP;
retry:
crypt_info = ACCESS_ONCE(inode->i_crypt_info);
if (crypt_info) {
if (!crypt_info->ci_keyring_key ||
key_validate(crypt_info->ci_keyring_key) == 0)
return 0;
fscrypt_put_encryption_info(inode, crypt_info);
goto retry;
}
res = inode->i_sb->s_cop->get_context(inode, &ctx, sizeof(ctx));
if (res < 0) {
if (!fscrypt_dummy_context_enabled(inode))
return res;
ctx.format = FS_ENCRYPTION_CONTEXT_FORMAT_V1;
ctx.contents_encryption_mode = FS_ENCRYPTION_MODE_AES_256_XTS;
ctx.filenames_encryption_mode = FS_ENCRYPTION_MODE_AES_256_CTS;
ctx.flags = 0;
} else if (res != sizeof(ctx)) {
return -EINVAL;
}
if (ctx.format != FS_ENCRYPTION_CONTEXT_FORMAT_V1)
return -EINVAL;
if (ctx.flags & ~FS_POLICY_FLAGS_VALID)
return -EINVAL;
crypt_info = kmem_cache_alloc(fscrypt_info_cachep, GFP_NOFS);
if (!crypt_info)
return -ENOMEM;
crypt_info->ci_flags = ctx.flags;
crypt_info->ci_data_mode = ctx.contents_encryption_mode;
crypt_info->ci_filename_mode = ctx.filenames_encryption_mode;
crypt_info->ci_ctfm = NULL;
crypt_info->ci_keyring_key = NULL;
memcpy(crypt_info->ci_master_key, ctx.master_key_descriptor,
sizeof(crypt_info->ci_master_key));
res = determine_cipher_type(crypt_info, inode, &cipher_str, &keysize);
if (res)
goto out;
if (fscrypt_dummy_context_enabled(inode)) {
memset(raw_key, 0x42, FS_AES_256_XTS_KEY_SIZE);
goto got_key;
}
res = validate_user_key(crypt_info, &ctx, raw_key,
FS_KEY_DESC_PREFIX, FS_KEY_DESC_PREFIX_SIZE);
if (res && inode->i_sb->s_cop->key_prefix) {
u8 *prefix = NULL;
int prefix_size, res2;
prefix_size = inode->i_sb->s_cop->key_prefix(inode, &prefix);
res2 = validate_user_key(crypt_info, &ctx, raw_key,
prefix, prefix_size);
if (res2) {
if (res2 == -ENOKEY)
res = -ENOKEY;
goto out;
}
} else if (res) {
goto out;
}
got_key:
ctfm = crypto_alloc_skcipher(cipher_str, 0, 0);
if (!ctfm || IS_ERR(ctfm)) {
res = ctfm ? PTR_ERR(ctfm) : -ENOMEM;
printk(KERN_DEBUG
"%s: error %d (inode %u) allocating crypto tfm\n",
__func__, res, (unsigned) inode->i_ino);
goto out;
}
crypt_info->ci_ctfm = ctfm;
crypto_skcipher_clear_flags(ctfm, ~0);
crypto_skcipher_set_flags(ctfm, CRYPTO_TFM_REQ_WEAK_KEY);
res = crypto_skcipher_setkey(ctfm, raw_key, keysize);
if (res)
goto out;
memzero_explicit(raw_key, sizeof(raw_key));
if (cmpxchg(&inode->i_crypt_info, NULL, crypt_info) != NULL) {
put_crypt_info(crypt_info);
goto retry;
}
return 0;
out:
if (res == -ENOKEY)
res = 0;
put_crypt_info(crypt_info);
memzero_explicit(raw_key, sizeof(raw_key));
return res;
}
void fscrypt_put_encryption_info(struct inode *inode, struct fscrypt_info *ci)
{
struct fscrypt_info *prev;
if (ci == NULL)
ci = ACCESS_ONCE(inode->i_crypt_info);
if (ci == NULL)
return;
prev = cmpxchg(&inode->i_crypt_info, ci, NULL);
if (prev != ci)
return;
put_crypt_info(ci);
}
EXPORT_SYMBOL(fscrypt_put_encryption_info);
int fscrypt_get_encryption_info(struct inode *inode)
{
struct fscrypt_info *ci = inode->i_crypt_info;
if (!ci ||
(ci->ci_keyring_key &&
(ci->ci_keyring_key->flags & ((1 << KEY_FLAG_INVALIDATED) |
(1 << KEY_FLAG_REVOKED) |
(1 << KEY_FLAG_DEAD)))))
return get_crypt_info(inode);
return 0;
}
EXPORT_SYMBOL(fscrypt_get_encryption_info);