mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-15 08:26:22 +07:00
62b5f7d013
Protection keys provide new page-based protection in hardware. But, they have an interesting attribute: they only affect data accesses and never affect instruction fetches. That means that if we set up some memory which is set as "access-disabled" via protection keys, we can still execute from it. This patch uses protection keys to set up mappings to do just that. If a user calls: mmap(..., PROT_EXEC); or mprotect(ptr, sz, PROT_EXEC); (note PROT_EXEC-only without PROT_READ/WRITE), the kernel will notice this, and set a special protection key on the memory. It also sets the appropriate bits in the Protection Keys User Rights (PKRU) register so that the memory becomes unreadable and unwritable. I haven't found any userspace that does this today. With this facility in place, we expect userspace to move to use it eventually. Userspace _could_ start doing this today. Any PROT_EXEC calls get converted to PROT_READ inside the kernel, and would transparently be upgraded to "true" PROT_EXEC with this code. IOW, userspace never has to do any PROT_EXEC runtime detection. This feature provides enhanced protection against leaking executable memory contents. This helps thwart attacks which are attempting to find ROP gadgets on the fly. But, the security provided by this approach is not comprehensive. The PKRU register which controls access permissions is a normal user register writable from unprivileged userspace. An attacker who can execute the 'wrpkru' instruction can easily disable the protection provided by this feature. The protection key that is used for execute-only support is permanently dedicated at compile time. This is fine for now because there is currently no API to set a protection key other than this one. Despite there being a constant PKRU value across the entire system, we do not set it unless this feature is in use in a process. That is to preserve the PKRU XSAVE 'init state', which can lead to faster context switches. PKRU *is* a user register and the kernel is modifying it. That means that code doing: pkru = rdpkru() pkru |= 0x100; mmap(..., PROT_EXEC); wrpkru(pkru); could lose the bits in PKRU that enforce execute-only permissions. To avoid this, we suggest avoiding ever calling mmap() or mprotect() when the PKRU value is expected to be unstable. Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Andy Lutomirski <luto@kernel.org> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Borislav Petkov <bp@suse.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Chen Gang <gang.chen.5i5j@gmail.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Dave Hansen <dave@sr71.net> Cc: David Hildenbrand <dahi@linux.vnet.ibm.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Kees Cook <keescook@chromium.org> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Konstantin Khlebnikov <koct9i@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Piotr Kwapulinski <kwapulinski.piotr@gmail.com> Cc: Rik van Riel <riel@redhat.com> Cc: Stephen Smalley <sds@tycho.nsa.gov> Cc: Vladimir Murzin <vladimir.murzin@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: keescook@google.com Cc: linux-kernel@vger.kernel.org Cc: linux-mm@kvack.org Link: http://lkml.kernel.org/r/20160212210240.CB4BB5CA@viggo.jf.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
34 lines
766 B
C
34 lines
766 B
C
#ifndef _LINUX_PKEYS_H
|
|
#define _LINUX_PKEYS_H
|
|
|
|
#include <linux/mm_types.h>
|
|
#include <asm/mmu_context.h>
|
|
|
|
#define PKEY_DISABLE_ACCESS 0x1
|
|
#define PKEY_DISABLE_WRITE 0x2
|
|
#define PKEY_ACCESS_MASK (PKEY_DISABLE_ACCESS |\
|
|
PKEY_DISABLE_WRITE)
|
|
|
|
#ifdef CONFIG_ARCH_HAS_PKEYS
|
|
#include <asm/pkeys.h>
|
|
#else /* ! CONFIG_ARCH_HAS_PKEYS */
|
|
#define arch_max_pkey() (1)
|
|
#define execute_only_pkey(mm) (0)
|
|
#define arch_override_mprotect_pkey(vma, prot, pkey) (0)
|
|
#define PKEY_DEDICATED_EXECUTE_ONLY 0
|
|
#endif /* ! CONFIG_ARCH_HAS_PKEYS */
|
|
|
|
/*
|
|
* This is called from mprotect_pkey().
|
|
*
|
|
* Returns true if the protection keys is valid.
|
|
*/
|
|
static inline bool validate_pkey(int pkey)
|
|
{
|
|
if (pkey < 0)
|
|
return false;
|
|
return (pkey < arch_max_pkey());
|
|
}
|
|
|
|
#endif /* _LINUX_PKEYS_H */
|