mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-03 08:56:39 +07:00
7cfe749fad
Commit76931edd54
("leds: fix brightness changing when software blinking is active") changed the semantics of led_set_brightness() which according to the documentation should disable blinking upon any brightness setting. Moreover it made it different for soft blink case, where it was possible to change blink brightness, and for hardware blink case, where setting any brightness greater than 0 was ignored. While the change itself is against the documentation claims, it was driven also by the fact that timer trigger remained active after turning blinking off. Fixing that would have required major refactoring in the led-core, led-class, and led-triggers because of cyclic dependencies. Finally, it has been decided that allowing for brightness change during blinking is beneficial as it can be accomplished without disturbing blink rhythm. The change in brightness setting semantics will not affect existing LED class drivers that implement blink_set op thanks to the LED_BLINK_SW flag introduced by this patch. The flag state will be from now on checked in led_set_brightness() which will allow to distinguish between software and hardware blink mode. In the latter case the control will be passed directly to the drivers which apply their semantics on brightness set, which is disable the blinking in case of most such drivers. New drivers will apply new semantics and just change the brightness while hardware blinking is on, if possible. The issue was smuggled by subsequent LED core improvements, which modified the code that originally introduced the problem. Fixes:f1e80c0741
("leds: core: Add two new LED_BLINK_ flags") Signed-off-by: Tony Makkiel <tony.makkiel@daqri.com> Signed-off-by: Jacek Anaszewski <j.anaszewski@samsung.com>
108 lines
4.3 KiB
Plaintext
108 lines
4.3 KiB
Plaintext
|
|
LED handling under Linux
|
|
========================
|
|
|
|
In its simplest form, the LED class just allows control of LEDs from
|
|
userspace. LEDs appear in /sys/class/leds/. The maximum brightness of the
|
|
LED is defined in max_brightness file. The brightness file will set the brightness
|
|
of the LED (taking a value 0-max_brightness). Most LEDs don't have hardware
|
|
brightness support so will just be turned on for non-zero brightness settings.
|
|
|
|
The class also introduces the optional concept of an LED trigger. A trigger
|
|
is a kernel based source of led events. Triggers can either be simple or
|
|
complex. A simple trigger isn't configurable and is designed to slot into
|
|
existing subsystems with minimal additional code. Examples are the ide-disk,
|
|
nand-disk and sharpsl-charge triggers. With led triggers disabled, the code
|
|
optimises away.
|
|
|
|
Complex triggers whilst available to all LEDs have LED specific
|
|
parameters and work on a per LED basis. The timer trigger is an example.
|
|
The timer trigger will periodically change the LED brightness between
|
|
LED_OFF and the current brightness setting. The "on" and "off" time can
|
|
be specified via /sys/class/leds/<device>/delay_{on,off} in milliseconds.
|
|
You can change the brightness value of a LED independently of the timer
|
|
trigger. However, if you set the brightness value to LED_OFF it will
|
|
also disable the timer trigger.
|
|
|
|
You can change triggers in a similar manner to the way an IO scheduler
|
|
is chosen (via /sys/class/leds/<device>/trigger). Trigger specific
|
|
parameters can appear in /sys/class/leds/<device> once a given trigger is
|
|
selected.
|
|
|
|
|
|
Design Philosophy
|
|
=================
|
|
|
|
The underlying design philosophy is simplicity. LEDs are simple devices
|
|
and the aim is to keep a small amount of code giving as much functionality
|
|
as possible. Please keep this in mind when suggesting enhancements.
|
|
|
|
|
|
LED Device Naming
|
|
=================
|
|
|
|
Is currently of the form:
|
|
|
|
"devicename:colour:function"
|
|
|
|
There have been calls for LED properties such as colour to be exported as
|
|
individual led class attributes. As a solution which doesn't incur as much
|
|
overhead, I suggest these become part of the device name. The naming scheme
|
|
above leaves scope for further attributes should they be needed. If sections
|
|
of the name don't apply, just leave that section blank.
|
|
|
|
|
|
Brightness setting API
|
|
======================
|
|
|
|
LED subsystem core exposes following API for setting brightness:
|
|
|
|
- led_set_brightness : it is guaranteed not to sleep, passing LED_OFF stops
|
|
blinking,
|
|
- led_set_brightness_sync : for use cases when immediate effect is desired -
|
|
it can block the caller for the time required for accessing
|
|
device registers and can sleep, passing LED_OFF stops hardware
|
|
blinking, returns -EBUSY if software blink fallback is enabled.
|
|
|
|
|
|
Hardware accelerated blink of LEDs
|
|
==================================
|
|
|
|
Some LEDs can be programmed to blink without any CPU interaction. To
|
|
support this feature, a LED driver can optionally implement the
|
|
blink_set() function (see <linux/leds.h>). To set an LED to blinking,
|
|
however, it is better to use the API function led_blink_set(), as it
|
|
will check and implement software fallback if necessary.
|
|
|
|
To turn off blinking, use the API function led_brightness_set()
|
|
with brightness value LED_OFF, which should stop any software
|
|
timers that may have been required for blinking.
|
|
|
|
The blink_set() function should choose a user friendly blinking value
|
|
if it is called with *delay_on==0 && *delay_off==0 parameters. In this
|
|
case the driver should give back the chosen value through delay_on and
|
|
delay_off parameters to the leds subsystem.
|
|
|
|
Setting the brightness to zero with brightness_set() callback function
|
|
should completely turn off the LED and cancel the previously programmed
|
|
hardware blinking function, if any.
|
|
|
|
|
|
Known Issues
|
|
============
|
|
|
|
The LED Trigger core cannot be a module as the simple trigger functions
|
|
would cause nightmare dependency issues. I see this as a minor issue
|
|
compared to the benefits the simple trigger functionality brings. The
|
|
rest of the LED subsystem can be modular.
|
|
|
|
|
|
Future Development
|
|
==================
|
|
|
|
At the moment, a trigger can't be created specifically for a single LED.
|
|
There are a number of cases where a trigger might only be mappable to a
|
|
particular LED (ACPI?). The addition of triggers provided by the LED driver
|
|
should cover this option and be possible to add without breaking the
|
|
current interface.
|