mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-27 09:36:57 +07:00
7ce99d24ed
An interesting discussion regarding "hybrid interrupt polling" for NVMe came to the conclusion that the ideal busyspin before sleeping was half of the expected request latency (and better if it was already halfway through that request). This suggested that we too should look again at our tradeoff between spinning and waiting. Currently, our spin simply tries to hide the cost of enabling the interrupt, which is good to avoid penalising nop requests (i.e. test throughput) and not much else. Studying real world workloads suggests that a spin of upto 500us can dramatically boost performance, but the suggestion is that this is not from avoiding interrupt latency per-se, but from secondary effects of sleeping such as allowing the CPU reduce cstate and context switch away. In a truly hybrid interrupt polling scheme, we would aim to sleep until just before the request completed and then wake up in advance of the interrupt and do a quick poll to handle completion. This is tricky for ourselves at the moment as we are not recording request times, and since we allow preemption, our requests are not on as a nicely ordered timeline as IO. However, the idea is interesting, for it will certainly help us decide when busyspinning is worthwhile. v2: Expose the spin setting via Kconfig options for easier adjustment and testing. v3: Don't get caught sneaking in a change to the busyspin parameters. v4: Explain more about the "hybrid interrupt polling" scheme that we want to migrate towards. Suggested-by: Sagar Kamble <sagar.a.kamble@intel.com> References: http://events.linuxfoundation.org/sites/events/files/slides/lemoal-nvme-polling-vault-2017-final_0.pdf Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Sagar Kamble <sagar.a.kamble@intel.com> Cc: Eero Tamminen <eero.t.tamminen@intel.com> Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Ben Widawsky <ben@bwidawsk.net> Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Michał Winiarski <michal.winiarski@intel.com> Reviewed-by: Sagar Kamble <sagar.a.kamble@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20190419182625.11186-1-chris@chris-wilson.co.uk |
||
---|---|---|
arch | ||
block | ||
certs | ||
crypto | ||
Documentation | ||
drivers | ||
fs | ||
include | ||
init | ||
ipc | ||
kernel | ||
lib | ||
LICENSES | ||
mm | ||
net | ||
samples | ||
scripts | ||
security | ||
sound | ||
tools | ||
usr | ||
virt | ||
.clang-format | ||
.cocciconfig | ||
.get_maintainer.ignore | ||
.gitattributes | ||
.gitignore | ||
.mailmap | ||
COPYING | ||
CREDITS | ||
Kbuild | ||
Kconfig | ||
MAINTAINERS | ||
Makefile | ||
README |
Linux kernel ============ There are several guides for kernel developers and users. These guides can be rendered in a number of formats, like HTML and PDF. Please read Documentation/admin-guide/README.rst first. In order to build the documentation, use ``make htmldocs`` or ``make pdfdocs``. The formatted documentation can also be read online at: https://www.kernel.org/doc/html/latest/ There are various text files in the Documentation/ subdirectory, several of them using the Restructured Text markup notation. Please read the Documentation/process/changes.rst file, as it contains the requirements for building and running the kernel, and information about the problems which may result by upgrading your kernel.