mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
7cd58e4381
Currently, part of the spufs code (switch.o, lscsa_alloc.o and fault.o) is compiled directly into the kernel. This change moves these components of spufs into the kernel. The lscsa and switch objects are fairly straightforward to move in. For the fault.o module, we split the fault-handling code into two parts: a/p/p/c/spu_fault.c and a/p/p/c/spufs/fault.c. The former is for the in-kernel spu_handle_mm_fault function, and we move the rest of the fault-handling code into spufs. Signed-off-by: Jeremy Kerr <jk@ozlabs.org> Signed-off-by: Paul Mackerras <paulus@samba.org>
1024 lines
26 KiB
C
1024 lines
26 KiB
C
/* sched.c - SPU scheduler.
|
|
*
|
|
* Copyright (C) IBM 2005
|
|
* Author: Mark Nutter <mnutter@us.ibm.com>
|
|
*
|
|
* 2006-03-31 NUMA domains added.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2, or (at your option)
|
|
* any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
|
*/
|
|
|
|
#undef DEBUG
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/completion.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/stddef.h>
|
|
#include <linux/unistd.h>
|
|
#include <linux/numa.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/kthread.h>
|
|
#include <linux/pid_namespace.h>
|
|
#include <linux/proc_fs.h>
|
|
#include <linux/seq_file.h>
|
|
|
|
#include <asm/io.h>
|
|
#include <asm/mmu_context.h>
|
|
#include <asm/spu.h>
|
|
#include <asm/spu_csa.h>
|
|
#include <asm/spu_priv1.h>
|
|
#include "spufs.h"
|
|
|
|
struct spu_prio_array {
|
|
DECLARE_BITMAP(bitmap, MAX_PRIO);
|
|
struct list_head runq[MAX_PRIO];
|
|
spinlock_t runq_lock;
|
|
int nr_waiting;
|
|
};
|
|
|
|
static unsigned long spu_avenrun[3];
|
|
static struct spu_prio_array *spu_prio;
|
|
static struct task_struct *spusched_task;
|
|
static struct timer_list spusched_timer;
|
|
|
|
/*
|
|
* Priority of a normal, non-rt, non-niced'd process (aka nice level 0).
|
|
*/
|
|
#define NORMAL_PRIO 120
|
|
|
|
/*
|
|
* Frequency of the spu scheduler tick. By default we do one SPU scheduler
|
|
* tick for every 10 CPU scheduler ticks.
|
|
*/
|
|
#define SPUSCHED_TICK (10)
|
|
|
|
/*
|
|
* These are the 'tuning knobs' of the scheduler:
|
|
*
|
|
* Minimum timeslice is 5 msecs (or 1 spu scheduler tick, whichever is
|
|
* larger), default timeslice is 100 msecs, maximum timeslice is 800 msecs.
|
|
*/
|
|
#define MIN_SPU_TIMESLICE max(5 * HZ / (1000 * SPUSCHED_TICK), 1)
|
|
#define DEF_SPU_TIMESLICE (100 * HZ / (1000 * SPUSCHED_TICK))
|
|
|
|
#define MAX_USER_PRIO (MAX_PRIO - MAX_RT_PRIO)
|
|
#define SCALE_PRIO(x, prio) \
|
|
max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_SPU_TIMESLICE)
|
|
|
|
/*
|
|
* scale user-nice values [ -20 ... 0 ... 19 ] to time slice values:
|
|
* [800ms ... 100ms ... 5ms]
|
|
*
|
|
* The higher a thread's priority, the bigger timeslices
|
|
* it gets during one round of execution. But even the lowest
|
|
* priority thread gets MIN_TIMESLICE worth of execution time.
|
|
*/
|
|
void spu_set_timeslice(struct spu_context *ctx)
|
|
{
|
|
if (ctx->prio < NORMAL_PRIO)
|
|
ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE * 4, ctx->prio);
|
|
else
|
|
ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE, ctx->prio);
|
|
}
|
|
|
|
/*
|
|
* Update scheduling information from the owning thread.
|
|
*/
|
|
void __spu_update_sched_info(struct spu_context *ctx)
|
|
{
|
|
/*
|
|
* 32-Bit assignments are atomic on powerpc, and we don't care about
|
|
* memory ordering here because retrieving the controlling thread is
|
|
* per definition racy.
|
|
*/
|
|
ctx->tid = current->pid;
|
|
|
|
/*
|
|
* We do our own priority calculations, so we normally want
|
|
* ->static_prio to start with. Unfortunately this field
|
|
* contains junk for threads with a realtime scheduling
|
|
* policy so we have to look at ->prio in this case.
|
|
*/
|
|
if (rt_prio(current->prio))
|
|
ctx->prio = current->prio;
|
|
else
|
|
ctx->prio = current->static_prio;
|
|
ctx->policy = current->policy;
|
|
|
|
/*
|
|
* A lot of places that don't hold list_mutex poke into
|
|
* cpus_allowed, including grab_runnable_context which
|
|
* already holds the runq_lock. So abuse runq_lock
|
|
* to protect this field as well.
|
|
*/
|
|
spin_lock(&spu_prio->runq_lock);
|
|
ctx->cpus_allowed = current->cpus_allowed;
|
|
spin_unlock(&spu_prio->runq_lock);
|
|
}
|
|
|
|
void spu_update_sched_info(struct spu_context *ctx)
|
|
{
|
|
int node = ctx->spu->node;
|
|
|
|
mutex_lock(&cbe_spu_info[node].list_mutex);
|
|
__spu_update_sched_info(ctx);
|
|
mutex_unlock(&cbe_spu_info[node].list_mutex);
|
|
}
|
|
|
|
static int __node_allowed(struct spu_context *ctx, int node)
|
|
{
|
|
if (nr_cpus_node(node)) {
|
|
cpumask_t mask = node_to_cpumask(node);
|
|
|
|
if (cpus_intersects(mask, ctx->cpus_allowed))
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int node_allowed(struct spu_context *ctx, int node)
|
|
{
|
|
int rval;
|
|
|
|
spin_lock(&spu_prio->runq_lock);
|
|
rval = __node_allowed(ctx, node);
|
|
spin_unlock(&spu_prio->runq_lock);
|
|
|
|
return rval;
|
|
}
|
|
|
|
static BLOCKING_NOTIFIER_HEAD(spu_switch_notifier);
|
|
|
|
void spu_switch_notify(struct spu *spu, struct spu_context *ctx)
|
|
{
|
|
blocking_notifier_call_chain(&spu_switch_notifier,
|
|
ctx ? ctx->object_id : 0, spu);
|
|
}
|
|
|
|
static void notify_spus_active(void)
|
|
{
|
|
int node;
|
|
|
|
/*
|
|
* Wake up the active spu_contexts.
|
|
*
|
|
* When the awakened processes see their "notify_active" flag is set,
|
|
* they will call spu_switch_notify().
|
|
*/
|
|
for_each_online_node(node) {
|
|
struct spu *spu;
|
|
|
|
mutex_lock(&cbe_spu_info[node].list_mutex);
|
|
list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
|
|
if (spu->alloc_state != SPU_FREE) {
|
|
struct spu_context *ctx = spu->ctx;
|
|
set_bit(SPU_SCHED_NOTIFY_ACTIVE,
|
|
&ctx->sched_flags);
|
|
mb();
|
|
wake_up_all(&ctx->stop_wq);
|
|
}
|
|
}
|
|
mutex_unlock(&cbe_spu_info[node].list_mutex);
|
|
}
|
|
}
|
|
|
|
int spu_switch_event_register(struct notifier_block * n)
|
|
{
|
|
int ret;
|
|
ret = blocking_notifier_chain_register(&spu_switch_notifier, n);
|
|
if (!ret)
|
|
notify_spus_active();
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(spu_switch_event_register);
|
|
|
|
int spu_switch_event_unregister(struct notifier_block * n)
|
|
{
|
|
return blocking_notifier_chain_unregister(&spu_switch_notifier, n);
|
|
}
|
|
EXPORT_SYMBOL_GPL(spu_switch_event_unregister);
|
|
|
|
/**
|
|
* spu_bind_context - bind spu context to physical spu
|
|
* @spu: physical spu to bind to
|
|
* @ctx: context to bind
|
|
*/
|
|
static void spu_bind_context(struct spu *spu, struct spu_context *ctx)
|
|
{
|
|
pr_debug("%s: pid=%d SPU=%d NODE=%d\n", __FUNCTION__, current->pid,
|
|
spu->number, spu->node);
|
|
spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
|
|
|
|
if (ctx->flags & SPU_CREATE_NOSCHED)
|
|
atomic_inc(&cbe_spu_info[spu->node].reserved_spus);
|
|
|
|
ctx->stats.slb_flt_base = spu->stats.slb_flt;
|
|
ctx->stats.class2_intr_base = spu->stats.class2_intr;
|
|
|
|
spu->ctx = ctx;
|
|
spu->flags = 0;
|
|
ctx->spu = spu;
|
|
ctx->ops = &spu_hw_ops;
|
|
spu->pid = current->pid;
|
|
spu->tgid = current->tgid;
|
|
spu_associate_mm(spu, ctx->owner);
|
|
spu->ibox_callback = spufs_ibox_callback;
|
|
spu->wbox_callback = spufs_wbox_callback;
|
|
spu->stop_callback = spufs_stop_callback;
|
|
spu->mfc_callback = spufs_mfc_callback;
|
|
spu->dma_callback = spufs_dma_callback;
|
|
mb();
|
|
spu_unmap_mappings(ctx);
|
|
spu_restore(&ctx->csa, spu);
|
|
spu->timestamp = jiffies;
|
|
spu_cpu_affinity_set(spu, raw_smp_processor_id());
|
|
spu_switch_notify(spu, ctx);
|
|
ctx->state = SPU_STATE_RUNNABLE;
|
|
|
|
spuctx_switch_state(ctx, SPU_UTIL_IDLE_LOADED);
|
|
}
|
|
|
|
/*
|
|
* Must be used with the list_mutex held.
|
|
*/
|
|
static inline int sched_spu(struct spu *spu)
|
|
{
|
|
BUG_ON(!mutex_is_locked(&cbe_spu_info[spu->node].list_mutex));
|
|
|
|
return (!spu->ctx || !(spu->ctx->flags & SPU_CREATE_NOSCHED));
|
|
}
|
|
|
|
static void aff_merge_remaining_ctxs(struct spu_gang *gang)
|
|
{
|
|
struct spu_context *ctx;
|
|
|
|
list_for_each_entry(ctx, &gang->aff_list_head, aff_list) {
|
|
if (list_empty(&ctx->aff_list))
|
|
list_add(&ctx->aff_list, &gang->aff_list_head);
|
|
}
|
|
gang->aff_flags |= AFF_MERGED;
|
|
}
|
|
|
|
static void aff_set_offsets(struct spu_gang *gang)
|
|
{
|
|
struct spu_context *ctx;
|
|
int offset;
|
|
|
|
offset = -1;
|
|
list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list,
|
|
aff_list) {
|
|
if (&ctx->aff_list == &gang->aff_list_head)
|
|
break;
|
|
ctx->aff_offset = offset--;
|
|
}
|
|
|
|
offset = 0;
|
|
list_for_each_entry(ctx, gang->aff_ref_ctx->aff_list.prev, aff_list) {
|
|
if (&ctx->aff_list == &gang->aff_list_head)
|
|
break;
|
|
ctx->aff_offset = offset++;
|
|
}
|
|
|
|
gang->aff_flags |= AFF_OFFSETS_SET;
|
|
}
|
|
|
|
static struct spu *aff_ref_location(struct spu_context *ctx, int mem_aff,
|
|
int group_size, int lowest_offset)
|
|
{
|
|
struct spu *spu;
|
|
int node, n;
|
|
|
|
/*
|
|
* TODO: A better algorithm could be used to find a good spu to be
|
|
* used as reference location for the ctxs chain.
|
|
*/
|
|
node = cpu_to_node(raw_smp_processor_id());
|
|
for (n = 0; n < MAX_NUMNODES; n++, node++) {
|
|
node = (node < MAX_NUMNODES) ? node : 0;
|
|
if (!node_allowed(ctx, node))
|
|
continue;
|
|
mutex_lock(&cbe_spu_info[node].list_mutex);
|
|
list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
|
|
if ((!mem_aff || spu->has_mem_affinity) &&
|
|
sched_spu(spu)) {
|
|
mutex_unlock(&cbe_spu_info[node].list_mutex);
|
|
return spu;
|
|
}
|
|
}
|
|
mutex_unlock(&cbe_spu_info[node].list_mutex);
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static void aff_set_ref_point_location(struct spu_gang *gang)
|
|
{
|
|
int mem_aff, gs, lowest_offset;
|
|
struct spu_context *ctx;
|
|
struct spu *tmp;
|
|
|
|
mem_aff = gang->aff_ref_ctx->flags & SPU_CREATE_AFFINITY_MEM;
|
|
lowest_offset = 0;
|
|
gs = 0;
|
|
|
|
list_for_each_entry(tmp, &gang->aff_list_head, aff_list)
|
|
gs++;
|
|
|
|
list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list,
|
|
aff_list) {
|
|
if (&ctx->aff_list == &gang->aff_list_head)
|
|
break;
|
|
lowest_offset = ctx->aff_offset;
|
|
}
|
|
|
|
gang->aff_ref_spu = aff_ref_location(gang->aff_ref_ctx, mem_aff, gs,
|
|
lowest_offset);
|
|
}
|
|
|
|
static struct spu *ctx_location(struct spu *ref, int offset, int node)
|
|
{
|
|
struct spu *spu;
|
|
|
|
spu = NULL;
|
|
if (offset >= 0) {
|
|
list_for_each_entry(spu, ref->aff_list.prev, aff_list) {
|
|
BUG_ON(spu->node != node);
|
|
if (offset == 0)
|
|
break;
|
|
if (sched_spu(spu))
|
|
offset--;
|
|
}
|
|
} else {
|
|
list_for_each_entry_reverse(spu, ref->aff_list.next, aff_list) {
|
|
BUG_ON(spu->node != node);
|
|
if (offset == 0)
|
|
break;
|
|
if (sched_spu(spu))
|
|
offset++;
|
|
}
|
|
}
|
|
|
|
return spu;
|
|
}
|
|
|
|
/*
|
|
* affinity_check is called each time a context is going to be scheduled.
|
|
* It returns the spu ptr on which the context must run.
|
|
*/
|
|
static int has_affinity(struct spu_context *ctx)
|
|
{
|
|
struct spu_gang *gang = ctx->gang;
|
|
|
|
if (list_empty(&ctx->aff_list))
|
|
return 0;
|
|
|
|
if (!gang->aff_ref_spu) {
|
|
if (!(gang->aff_flags & AFF_MERGED))
|
|
aff_merge_remaining_ctxs(gang);
|
|
if (!(gang->aff_flags & AFF_OFFSETS_SET))
|
|
aff_set_offsets(gang);
|
|
aff_set_ref_point_location(gang);
|
|
}
|
|
|
|
return gang->aff_ref_spu != NULL;
|
|
}
|
|
|
|
/**
|
|
* spu_unbind_context - unbind spu context from physical spu
|
|
* @spu: physical spu to unbind from
|
|
* @ctx: context to unbind
|
|
*/
|
|
static void spu_unbind_context(struct spu *spu, struct spu_context *ctx)
|
|
{
|
|
pr_debug("%s: unbind pid=%d SPU=%d NODE=%d\n", __FUNCTION__,
|
|
spu->pid, spu->number, spu->node);
|
|
spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
|
|
|
|
if (spu->ctx->flags & SPU_CREATE_NOSCHED)
|
|
atomic_dec(&cbe_spu_info[spu->node].reserved_spus);
|
|
|
|
if (ctx->gang){
|
|
mutex_lock(&ctx->gang->aff_mutex);
|
|
if (has_affinity(ctx)) {
|
|
if (atomic_dec_and_test(&ctx->gang->aff_sched_count))
|
|
ctx->gang->aff_ref_spu = NULL;
|
|
}
|
|
mutex_unlock(&ctx->gang->aff_mutex);
|
|
}
|
|
|
|
spu_switch_notify(spu, NULL);
|
|
spu_unmap_mappings(ctx);
|
|
spu_save(&ctx->csa, spu);
|
|
spu->timestamp = jiffies;
|
|
ctx->state = SPU_STATE_SAVED;
|
|
spu->ibox_callback = NULL;
|
|
spu->wbox_callback = NULL;
|
|
spu->stop_callback = NULL;
|
|
spu->mfc_callback = NULL;
|
|
spu->dma_callback = NULL;
|
|
spu_associate_mm(spu, NULL);
|
|
spu->pid = 0;
|
|
spu->tgid = 0;
|
|
ctx->ops = &spu_backing_ops;
|
|
spu->flags = 0;
|
|
spu->ctx = NULL;
|
|
|
|
ctx->stats.slb_flt +=
|
|
(spu->stats.slb_flt - ctx->stats.slb_flt_base);
|
|
ctx->stats.class2_intr +=
|
|
(spu->stats.class2_intr - ctx->stats.class2_intr_base);
|
|
|
|
/* This maps the underlying spu state to idle */
|
|
spuctx_switch_state(ctx, SPU_UTIL_IDLE_LOADED);
|
|
ctx->spu = NULL;
|
|
}
|
|
|
|
/**
|
|
* spu_add_to_rq - add a context to the runqueue
|
|
* @ctx: context to add
|
|
*/
|
|
static void __spu_add_to_rq(struct spu_context *ctx)
|
|
{
|
|
/*
|
|
* Unfortunately this code path can be called from multiple threads
|
|
* on behalf of a single context due to the way the problem state
|
|
* mmap support works.
|
|
*
|
|
* Fortunately we need to wake up all these threads at the same time
|
|
* and can simply skip the runqueue addition for every but the first
|
|
* thread getting into this codepath.
|
|
*
|
|
* It's still quite hacky, and long-term we should proxy all other
|
|
* threads through the owner thread so that spu_run is in control
|
|
* of all the scheduling activity for a given context.
|
|
*/
|
|
if (list_empty(&ctx->rq)) {
|
|
list_add_tail(&ctx->rq, &spu_prio->runq[ctx->prio]);
|
|
set_bit(ctx->prio, spu_prio->bitmap);
|
|
if (!spu_prio->nr_waiting++)
|
|
__mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
|
|
}
|
|
}
|
|
|
|
static void __spu_del_from_rq(struct spu_context *ctx)
|
|
{
|
|
int prio = ctx->prio;
|
|
|
|
if (!list_empty(&ctx->rq)) {
|
|
if (!--spu_prio->nr_waiting)
|
|
del_timer(&spusched_timer);
|
|
list_del_init(&ctx->rq);
|
|
|
|
if (list_empty(&spu_prio->runq[prio]))
|
|
clear_bit(prio, spu_prio->bitmap);
|
|
}
|
|
}
|
|
|
|
static void spu_prio_wait(struct spu_context *ctx)
|
|
{
|
|
DEFINE_WAIT(wait);
|
|
|
|
spin_lock(&spu_prio->runq_lock);
|
|
prepare_to_wait_exclusive(&ctx->stop_wq, &wait, TASK_INTERRUPTIBLE);
|
|
if (!signal_pending(current)) {
|
|
__spu_add_to_rq(ctx);
|
|
spin_unlock(&spu_prio->runq_lock);
|
|
mutex_unlock(&ctx->state_mutex);
|
|
schedule();
|
|
mutex_lock(&ctx->state_mutex);
|
|
spin_lock(&spu_prio->runq_lock);
|
|
__spu_del_from_rq(ctx);
|
|
}
|
|
spin_unlock(&spu_prio->runq_lock);
|
|
__set_current_state(TASK_RUNNING);
|
|
remove_wait_queue(&ctx->stop_wq, &wait);
|
|
}
|
|
|
|
static struct spu *spu_get_idle(struct spu_context *ctx)
|
|
{
|
|
struct spu *spu, *aff_ref_spu;
|
|
int node, n;
|
|
|
|
if (ctx->gang) {
|
|
mutex_lock(&ctx->gang->aff_mutex);
|
|
if (has_affinity(ctx)) {
|
|
aff_ref_spu = ctx->gang->aff_ref_spu;
|
|
atomic_inc(&ctx->gang->aff_sched_count);
|
|
mutex_unlock(&ctx->gang->aff_mutex);
|
|
node = aff_ref_spu->node;
|
|
|
|
mutex_lock(&cbe_spu_info[node].list_mutex);
|
|
spu = ctx_location(aff_ref_spu, ctx->aff_offset, node);
|
|
if (spu && spu->alloc_state == SPU_FREE)
|
|
goto found;
|
|
mutex_unlock(&cbe_spu_info[node].list_mutex);
|
|
|
|
mutex_lock(&ctx->gang->aff_mutex);
|
|
if (atomic_dec_and_test(&ctx->gang->aff_sched_count))
|
|
ctx->gang->aff_ref_spu = NULL;
|
|
mutex_unlock(&ctx->gang->aff_mutex);
|
|
|
|
return NULL;
|
|
}
|
|
mutex_unlock(&ctx->gang->aff_mutex);
|
|
}
|
|
node = cpu_to_node(raw_smp_processor_id());
|
|
for (n = 0; n < MAX_NUMNODES; n++, node++) {
|
|
node = (node < MAX_NUMNODES) ? node : 0;
|
|
if (!node_allowed(ctx, node))
|
|
continue;
|
|
|
|
mutex_lock(&cbe_spu_info[node].list_mutex);
|
|
list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
|
|
if (spu->alloc_state == SPU_FREE)
|
|
goto found;
|
|
}
|
|
mutex_unlock(&cbe_spu_info[node].list_mutex);
|
|
}
|
|
|
|
return NULL;
|
|
|
|
found:
|
|
spu->alloc_state = SPU_USED;
|
|
mutex_unlock(&cbe_spu_info[node].list_mutex);
|
|
pr_debug("Got SPU %d %d\n", spu->number, spu->node);
|
|
spu_init_channels(spu);
|
|
return spu;
|
|
}
|
|
|
|
/**
|
|
* find_victim - find a lower priority context to preempt
|
|
* @ctx: canidate context for running
|
|
*
|
|
* Returns the freed physical spu to run the new context on.
|
|
*/
|
|
static struct spu *find_victim(struct spu_context *ctx)
|
|
{
|
|
struct spu_context *victim = NULL;
|
|
struct spu *spu;
|
|
int node, n;
|
|
|
|
/*
|
|
* Look for a possible preemption candidate on the local node first.
|
|
* If there is no candidate look at the other nodes. This isn't
|
|
* exactly fair, but so far the whole spu scheduler tries to keep
|
|
* a strong node affinity. We might want to fine-tune this in
|
|
* the future.
|
|
*/
|
|
restart:
|
|
node = cpu_to_node(raw_smp_processor_id());
|
|
for (n = 0; n < MAX_NUMNODES; n++, node++) {
|
|
node = (node < MAX_NUMNODES) ? node : 0;
|
|
if (!node_allowed(ctx, node))
|
|
continue;
|
|
|
|
mutex_lock(&cbe_spu_info[node].list_mutex);
|
|
list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
|
|
struct spu_context *tmp = spu->ctx;
|
|
|
|
if (tmp && tmp->prio > ctx->prio &&
|
|
(!victim || tmp->prio > victim->prio))
|
|
victim = spu->ctx;
|
|
}
|
|
mutex_unlock(&cbe_spu_info[node].list_mutex);
|
|
|
|
if (victim) {
|
|
/*
|
|
* This nests ctx->state_mutex, but we always lock
|
|
* higher priority contexts before lower priority
|
|
* ones, so this is safe until we introduce
|
|
* priority inheritance schemes.
|
|
*/
|
|
if (!mutex_trylock(&victim->state_mutex)) {
|
|
victim = NULL;
|
|
goto restart;
|
|
}
|
|
|
|
spu = victim->spu;
|
|
if (!spu) {
|
|
/*
|
|
* This race can happen because we've dropped
|
|
* the active list mutex. No a problem, just
|
|
* restart the search.
|
|
*/
|
|
mutex_unlock(&victim->state_mutex);
|
|
victim = NULL;
|
|
goto restart;
|
|
}
|
|
|
|
mutex_lock(&cbe_spu_info[node].list_mutex);
|
|
cbe_spu_info[node].nr_active--;
|
|
spu_unbind_context(spu, victim);
|
|
mutex_unlock(&cbe_spu_info[node].list_mutex);
|
|
|
|
victim->stats.invol_ctx_switch++;
|
|
spu->stats.invol_ctx_switch++;
|
|
mutex_unlock(&victim->state_mutex);
|
|
/*
|
|
* We need to break out of the wait loop in spu_run
|
|
* manually to ensure this context gets put on the
|
|
* runqueue again ASAP.
|
|
*/
|
|
wake_up(&victim->stop_wq);
|
|
return spu;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* spu_activate - find a free spu for a context and execute it
|
|
* @ctx: spu context to schedule
|
|
* @flags: flags (currently ignored)
|
|
*
|
|
* Tries to find a free spu to run @ctx. If no free spu is available
|
|
* add the context to the runqueue so it gets woken up once an spu
|
|
* is available.
|
|
*/
|
|
int spu_activate(struct spu_context *ctx, unsigned long flags)
|
|
{
|
|
do {
|
|
struct spu *spu;
|
|
|
|
/*
|
|
* If there are multiple threads waiting for a single context
|
|
* only one actually binds the context while the others will
|
|
* only be able to acquire the state_mutex once the context
|
|
* already is in runnable state.
|
|
*/
|
|
if (ctx->spu)
|
|
return 0;
|
|
|
|
spu = spu_get_idle(ctx);
|
|
/*
|
|
* If this is a realtime thread we try to get it running by
|
|
* preempting a lower priority thread.
|
|
*/
|
|
if (!spu && rt_prio(ctx->prio))
|
|
spu = find_victim(ctx);
|
|
if (spu) {
|
|
int node = spu->node;
|
|
|
|
mutex_lock(&cbe_spu_info[node].list_mutex);
|
|
spu_bind_context(spu, ctx);
|
|
cbe_spu_info[node].nr_active++;
|
|
mutex_unlock(&cbe_spu_info[node].list_mutex);
|
|
return 0;
|
|
}
|
|
|
|
spu_prio_wait(ctx);
|
|
} while (!signal_pending(current));
|
|
|
|
return -ERESTARTSYS;
|
|
}
|
|
|
|
/**
|
|
* grab_runnable_context - try to find a runnable context
|
|
*
|
|
* Remove the highest priority context on the runqueue and return it
|
|
* to the caller. Returns %NULL if no runnable context was found.
|
|
*/
|
|
static struct spu_context *grab_runnable_context(int prio, int node)
|
|
{
|
|
struct spu_context *ctx;
|
|
int best;
|
|
|
|
spin_lock(&spu_prio->runq_lock);
|
|
best = find_first_bit(spu_prio->bitmap, prio);
|
|
while (best < prio) {
|
|
struct list_head *rq = &spu_prio->runq[best];
|
|
|
|
list_for_each_entry(ctx, rq, rq) {
|
|
/* XXX(hch): check for affinity here aswell */
|
|
if (__node_allowed(ctx, node)) {
|
|
__spu_del_from_rq(ctx);
|
|
goto found;
|
|
}
|
|
}
|
|
best++;
|
|
}
|
|
ctx = NULL;
|
|
found:
|
|
spin_unlock(&spu_prio->runq_lock);
|
|
return ctx;
|
|
}
|
|
|
|
static int __spu_deactivate(struct spu_context *ctx, int force, int max_prio)
|
|
{
|
|
struct spu *spu = ctx->spu;
|
|
struct spu_context *new = NULL;
|
|
|
|
if (spu) {
|
|
new = grab_runnable_context(max_prio, spu->node);
|
|
if (new || force) {
|
|
int node = spu->node;
|
|
|
|
mutex_lock(&cbe_spu_info[node].list_mutex);
|
|
spu_unbind_context(spu, ctx);
|
|
spu->alloc_state = SPU_FREE;
|
|
cbe_spu_info[node].nr_active--;
|
|
mutex_unlock(&cbe_spu_info[node].list_mutex);
|
|
|
|
ctx->stats.vol_ctx_switch++;
|
|
spu->stats.vol_ctx_switch++;
|
|
|
|
if (new)
|
|
wake_up(&new->stop_wq);
|
|
}
|
|
|
|
}
|
|
|
|
return new != NULL;
|
|
}
|
|
|
|
/**
|
|
* spu_deactivate - unbind a context from it's physical spu
|
|
* @ctx: spu context to unbind
|
|
*
|
|
* Unbind @ctx from the physical spu it is running on and schedule
|
|
* the highest priority context to run on the freed physical spu.
|
|
*/
|
|
void spu_deactivate(struct spu_context *ctx)
|
|
{
|
|
__spu_deactivate(ctx, 1, MAX_PRIO);
|
|
}
|
|
|
|
/**
|
|
* spu_yield - yield a physical spu if others are waiting
|
|
* @ctx: spu context to yield
|
|
*
|
|
* Check if there is a higher priority context waiting and if yes
|
|
* unbind @ctx from the physical spu and schedule the highest
|
|
* priority context to run on the freed physical spu instead.
|
|
*/
|
|
void spu_yield(struct spu_context *ctx)
|
|
{
|
|
if (!(ctx->flags & SPU_CREATE_NOSCHED)) {
|
|
mutex_lock(&ctx->state_mutex);
|
|
__spu_deactivate(ctx, 0, MAX_PRIO);
|
|
mutex_unlock(&ctx->state_mutex);
|
|
}
|
|
}
|
|
|
|
static noinline void spusched_tick(struct spu_context *ctx)
|
|
{
|
|
if (ctx->flags & SPU_CREATE_NOSCHED)
|
|
return;
|
|
if (ctx->policy == SCHED_FIFO)
|
|
return;
|
|
|
|
if (--ctx->time_slice)
|
|
return;
|
|
|
|
/*
|
|
* Unfortunately list_mutex ranks outside of state_mutex, so
|
|
* we have to trylock here. If we fail give the context another
|
|
* tick and try again.
|
|
*/
|
|
if (mutex_trylock(&ctx->state_mutex)) {
|
|
struct spu *spu = ctx->spu;
|
|
struct spu_context *new;
|
|
|
|
new = grab_runnable_context(ctx->prio + 1, spu->node);
|
|
if (new) {
|
|
spu_unbind_context(spu, ctx);
|
|
ctx->stats.invol_ctx_switch++;
|
|
spu->stats.invol_ctx_switch++;
|
|
spu->alloc_state = SPU_FREE;
|
|
cbe_spu_info[spu->node].nr_active--;
|
|
wake_up(&new->stop_wq);
|
|
/*
|
|
* We need to break out of the wait loop in
|
|
* spu_run manually to ensure this context
|
|
* gets put on the runqueue again ASAP.
|
|
*/
|
|
wake_up(&ctx->stop_wq);
|
|
}
|
|
spu_set_timeslice(ctx);
|
|
mutex_unlock(&ctx->state_mutex);
|
|
} else {
|
|
ctx->time_slice++;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* count_active_contexts - count nr of active tasks
|
|
*
|
|
* Return the number of tasks currently running or waiting to run.
|
|
*
|
|
* Note that we don't take runq_lock / list_mutex here. Reading
|
|
* a single 32bit value is atomic on powerpc, and we don't care
|
|
* about memory ordering issues here.
|
|
*/
|
|
static unsigned long count_active_contexts(void)
|
|
{
|
|
int nr_active = 0, node;
|
|
|
|
for (node = 0; node < MAX_NUMNODES; node++)
|
|
nr_active += cbe_spu_info[node].nr_active;
|
|
nr_active += spu_prio->nr_waiting;
|
|
|
|
return nr_active;
|
|
}
|
|
|
|
/**
|
|
* spu_calc_load - given tick count, update the avenrun load estimates.
|
|
* @tick: tick count
|
|
*
|
|
* No locking against reading these values from userspace, as for
|
|
* the CPU loadavg code.
|
|
*/
|
|
static void spu_calc_load(unsigned long ticks)
|
|
{
|
|
unsigned long active_tasks; /* fixed-point */
|
|
static int count = LOAD_FREQ;
|
|
|
|
count -= ticks;
|
|
|
|
if (unlikely(count < 0)) {
|
|
active_tasks = count_active_contexts() * FIXED_1;
|
|
do {
|
|
CALC_LOAD(spu_avenrun[0], EXP_1, active_tasks);
|
|
CALC_LOAD(spu_avenrun[1], EXP_5, active_tasks);
|
|
CALC_LOAD(spu_avenrun[2], EXP_15, active_tasks);
|
|
count += LOAD_FREQ;
|
|
} while (count < 0);
|
|
}
|
|
}
|
|
|
|
static void spusched_wake(unsigned long data)
|
|
{
|
|
mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
|
|
wake_up_process(spusched_task);
|
|
spu_calc_load(SPUSCHED_TICK);
|
|
}
|
|
|
|
static int spusched_thread(void *unused)
|
|
{
|
|
struct spu *spu;
|
|
int node;
|
|
|
|
while (!kthread_should_stop()) {
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
schedule();
|
|
for (node = 0; node < MAX_NUMNODES; node++) {
|
|
mutex_lock(&cbe_spu_info[node].list_mutex);
|
|
list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list)
|
|
if (spu->ctx)
|
|
spusched_tick(spu->ctx);
|
|
mutex_unlock(&cbe_spu_info[node].list_mutex);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void spuctx_switch_state(struct spu_context *ctx,
|
|
enum spu_utilization_state new_state)
|
|
{
|
|
unsigned long long curtime;
|
|
signed long long delta;
|
|
struct timespec ts;
|
|
struct spu *spu;
|
|
enum spu_utilization_state old_state;
|
|
|
|
ktime_get_ts(&ts);
|
|
curtime = timespec_to_ns(&ts);
|
|
delta = curtime - ctx->stats.tstamp;
|
|
|
|
WARN_ON(!mutex_is_locked(&ctx->state_mutex));
|
|
WARN_ON(delta < 0);
|
|
|
|
spu = ctx->spu;
|
|
old_state = ctx->stats.util_state;
|
|
ctx->stats.util_state = new_state;
|
|
ctx->stats.tstamp = curtime;
|
|
|
|
/*
|
|
* Update the physical SPU utilization statistics.
|
|
*/
|
|
if (spu) {
|
|
ctx->stats.times[old_state] += delta;
|
|
spu->stats.times[old_state] += delta;
|
|
spu->stats.util_state = new_state;
|
|
spu->stats.tstamp = curtime;
|
|
}
|
|
}
|
|
|
|
#define LOAD_INT(x) ((x) >> FSHIFT)
|
|
#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
|
|
|
|
static int show_spu_loadavg(struct seq_file *s, void *private)
|
|
{
|
|
int a, b, c;
|
|
|
|
a = spu_avenrun[0] + (FIXED_1/200);
|
|
b = spu_avenrun[1] + (FIXED_1/200);
|
|
c = spu_avenrun[2] + (FIXED_1/200);
|
|
|
|
/*
|
|
* Note that last_pid doesn't really make much sense for the
|
|
* SPU loadavg (it even seems very odd on the CPU side...),
|
|
* but we include it here to have a 100% compatible interface.
|
|
*/
|
|
seq_printf(s, "%d.%02d %d.%02d %d.%02d %ld/%d %d\n",
|
|
LOAD_INT(a), LOAD_FRAC(a),
|
|
LOAD_INT(b), LOAD_FRAC(b),
|
|
LOAD_INT(c), LOAD_FRAC(c),
|
|
count_active_contexts(),
|
|
atomic_read(&nr_spu_contexts),
|
|
current->nsproxy->pid_ns->last_pid);
|
|
return 0;
|
|
}
|
|
|
|
static int spu_loadavg_open(struct inode *inode, struct file *file)
|
|
{
|
|
return single_open(file, show_spu_loadavg, NULL);
|
|
}
|
|
|
|
static const struct file_operations spu_loadavg_fops = {
|
|
.open = spu_loadavg_open,
|
|
.read = seq_read,
|
|
.llseek = seq_lseek,
|
|
.release = single_release,
|
|
};
|
|
|
|
int __init spu_sched_init(void)
|
|
{
|
|
struct proc_dir_entry *entry;
|
|
int err = -ENOMEM, i;
|
|
|
|
spu_prio = kzalloc(sizeof(struct spu_prio_array), GFP_KERNEL);
|
|
if (!spu_prio)
|
|
goto out;
|
|
|
|
for (i = 0; i < MAX_PRIO; i++) {
|
|
INIT_LIST_HEAD(&spu_prio->runq[i]);
|
|
__clear_bit(i, spu_prio->bitmap);
|
|
}
|
|
spin_lock_init(&spu_prio->runq_lock);
|
|
|
|
setup_timer(&spusched_timer, spusched_wake, 0);
|
|
|
|
spusched_task = kthread_run(spusched_thread, NULL, "spusched");
|
|
if (IS_ERR(spusched_task)) {
|
|
err = PTR_ERR(spusched_task);
|
|
goto out_free_spu_prio;
|
|
}
|
|
|
|
entry = create_proc_entry("spu_loadavg", 0, NULL);
|
|
if (!entry)
|
|
goto out_stop_kthread;
|
|
entry->proc_fops = &spu_loadavg_fops;
|
|
|
|
pr_debug("spusched: tick: %d, min ticks: %d, default ticks: %d\n",
|
|
SPUSCHED_TICK, MIN_SPU_TIMESLICE, DEF_SPU_TIMESLICE);
|
|
return 0;
|
|
|
|
out_stop_kthread:
|
|
kthread_stop(spusched_task);
|
|
out_free_spu_prio:
|
|
kfree(spu_prio);
|
|
out:
|
|
return err;
|
|
}
|
|
|
|
void spu_sched_exit(void)
|
|
{
|
|
struct spu *spu;
|
|
int node;
|
|
|
|
remove_proc_entry("spu_loadavg", NULL);
|
|
|
|
del_timer_sync(&spusched_timer);
|
|
kthread_stop(spusched_task);
|
|
|
|
for (node = 0; node < MAX_NUMNODES; node++) {
|
|
mutex_lock(&cbe_spu_info[node].list_mutex);
|
|
list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list)
|
|
if (spu->alloc_state != SPU_FREE)
|
|
spu->alloc_state = SPU_FREE;
|
|
mutex_unlock(&cbe_spu_info[node].list_mutex);
|
|
}
|
|
kfree(spu_prio);
|
|
}
|