mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-27 20:13:26 +07:00
a3f90c75b8
Right now, satellite tuner drivers specify frequencies in kHz, while terrestrial/cable ones specify in Hz. That's confusing for developers. However, the main problem is that universal tuners capable of handling both satellite and non-satelite delivery systems are appearing. We end by needing to hack the drivers in order to support such hybrid tuners. So, convert everything to specify tuner frequencies in Hz. Plese notice that a similar patch is also needed for frontends. Tested-by: Katsuhiro Suzuki <suzuki.katsuhiro@socionext.com> Acked-by: Michael Büsch <m@bues.ch> Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
341 lines
7.7 KiB
C
341 lines
7.7 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* MaxLinear MxL301RF OFDM tuner driver
|
|
*
|
|
* Copyright (C) 2014 Akihiro Tsukada <tskd08@gmail.com>
|
|
*/
|
|
|
|
/*
|
|
* NOTICE:
|
|
* This driver is incomplete and lacks init/config of the chips,
|
|
* as the necessary info is not disclosed.
|
|
* Other features like get_if_frequency() are missing as well.
|
|
* It assumes that users of this driver (such as a PCI bridge of
|
|
* DTV receiver cards) properly init and configure the chip
|
|
* via I2C *before* calling this driver's init() function.
|
|
*
|
|
* Currently, PT3 driver is the only one that uses this driver,
|
|
* and contains init/config code in its firmware.
|
|
* Thus some part of the code might be dependent on PT3 specific config.
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include "mxl301rf.h"
|
|
|
|
struct mxl301rf_state {
|
|
struct mxl301rf_config cfg;
|
|
struct i2c_client *i2c;
|
|
};
|
|
|
|
static struct mxl301rf_state *cfg_to_state(struct mxl301rf_config *c)
|
|
{
|
|
return container_of(c, struct mxl301rf_state, cfg);
|
|
}
|
|
|
|
static int raw_write(struct mxl301rf_state *state, const u8 *buf, int len)
|
|
{
|
|
int ret;
|
|
|
|
ret = i2c_master_send(state->i2c, buf, len);
|
|
if (ret >= 0 && ret < len)
|
|
ret = -EIO;
|
|
return (ret == len) ? 0 : ret;
|
|
}
|
|
|
|
static int reg_write(struct mxl301rf_state *state, u8 reg, u8 val)
|
|
{
|
|
u8 buf[2] = { reg, val };
|
|
|
|
return raw_write(state, buf, 2);
|
|
}
|
|
|
|
static int reg_read(struct mxl301rf_state *state, u8 reg, u8 *val)
|
|
{
|
|
u8 wbuf[2] = { 0xfb, reg };
|
|
int ret;
|
|
|
|
ret = raw_write(state, wbuf, sizeof(wbuf));
|
|
if (ret == 0)
|
|
ret = i2c_master_recv(state->i2c, val, 1);
|
|
if (ret >= 0 && ret < 1)
|
|
ret = -EIO;
|
|
return (ret == 1) ? 0 : ret;
|
|
}
|
|
|
|
/* tuner_ops */
|
|
|
|
/* get RSSI and update propery cache, set to *out in % */
|
|
static int mxl301rf_get_rf_strength(struct dvb_frontend *fe, u16 *out)
|
|
{
|
|
struct mxl301rf_state *state;
|
|
int ret;
|
|
u8 rf_in1, rf_in2, rf_off1, rf_off2;
|
|
u16 rf_in, rf_off;
|
|
s64 level;
|
|
struct dtv_fe_stats *rssi;
|
|
|
|
rssi = &fe->dtv_property_cache.strength;
|
|
rssi->len = 1;
|
|
rssi->stat[0].scale = FE_SCALE_NOT_AVAILABLE;
|
|
*out = 0;
|
|
|
|
state = fe->tuner_priv;
|
|
ret = reg_write(state, 0x14, 0x01);
|
|
if (ret < 0)
|
|
return ret;
|
|
usleep_range(1000, 2000);
|
|
|
|
ret = reg_read(state, 0x18, &rf_in1);
|
|
if (ret == 0)
|
|
ret = reg_read(state, 0x19, &rf_in2);
|
|
if (ret == 0)
|
|
ret = reg_read(state, 0xd6, &rf_off1);
|
|
if (ret == 0)
|
|
ret = reg_read(state, 0xd7, &rf_off2);
|
|
if (ret != 0)
|
|
return ret;
|
|
|
|
rf_in = (rf_in2 & 0x07) << 8 | rf_in1;
|
|
rf_off = (rf_off2 & 0x0f) << 5 | (rf_off1 >> 3);
|
|
level = rf_in - rf_off - (113 << 3); /* x8 dBm */
|
|
level = level * 1000 / 8;
|
|
rssi->stat[0].svalue = level;
|
|
rssi->stat[0].scale = FE_SCALE_DECIBEL;
|
|
/* *out = (level - min) * 100 / (max - min) */
|
|
*out = (rf_in - rf_off + (1 << 9) - 1) * 100 / ((5 << 9) - 2);
|
|
return 0;
|
|
}
|
|
|
|
/* spur shift parameters */
|
|
struct shf {
|
|
u32 freq; /* Channel center frequency */
|
|
u32 ofst_th; /* Offset frequency threshold */
|
|
u8 shf_val; /* Spur shift value */
|
|
u8 shf_dir; /* Spur shift direction */
|
|
};
|
|
|
|
static const struct shf shf_tab[] = {
|
|
{ 64500, 500, 0x92, 0x07 },
|
|
{ 191500, 300, 0xe2, 0x07 },
|
|
{ 205500, 500, 0x2c, 0x04 },
|
|
{ 212500, 500, 0x1e, 0x04 },
|
|
{ 226500, 500, 0xd4, 0x07 },
|
|
{ 99143, 500, 0x9c, 0x07 },
|
|
{ 173143, 500, 0xd4, 0x07 },
|
|
{ 191143, 300, 0xd4, 0x07 },
|
|
{ 207143, 500, 0xce, 0x07 },
|
|
{ 225143, 500, 0xce, 0x07 },
|
|
{ 243143, 500, 0xd4, 0x07 },
|
|
{ 261143, 500, 0xd4, 0x07 },
|
|
{ 291143, 500, 0xd4, 0x07 },
|
|
{ 339143, 500, 0x2c, 0x04 },
|
|
{ 117143, 500, 0x7a, 0x07 },
|
|
{ 135143, 300, 0x7a, 0x07 },
|
|
{ 153143, 500, 0x01, 0x07 }
|
|
};
|
|
|
|
struct reg_val {
|
|
u8 reg;
|
|
u8 val;
|
|
} __attribute__ ((__packed__));
|
|
|
|
static const struct reg_val set_idac[] = {
|
|
{ 0x0d, 0x00 },
|
|
{ 0x0c, 0x67 },
|
|
{ 0x6f, 0x89 },
|
|
{ 0x70, 0x0c },
|
|
{ 0x6f, 0x8a },
|
|
{ 0x70, 0x0e },
|
|
{ 0x6f, 0x8b },
|
|
{ 0x70, 0x1c },
|
|
};
|
|
|
|
static int mxl301rf_set_params(struct dvb_frontend *fe)
|
|
{
|
|
struct reg_val tune0[] = {
|
|
{ 0x13, 0x00 }, /* abort tuning */
|
|
{ 0x3b, 0xc0 },
|
|
{ 0x3b, 0x80 },
|
|
{ 0x10, 0x95 }, /* BW */
|
|
{ 0x1a, 0x05 },
|
|
{ 0x61, 0x00 }, /* spur shift value (placeholder) */
|
|
{ 0x62, 0xa0 } /* spur shift direction (placeholder) */
|
|
};
|
|
|
|
struct reg_val tune1[] = {
|
|
{ 0x11, 0x40 }, /* RF frequency L (placeholder) */
|
|
{ 0x12, 0x0e }, /* RF frequency H (placeholder) */
|
|
{ 0x13, 0x01 } /* start tune */
|
|
};
|
|
|
|
struct mxl301rf_state *state;
|
|
u32 freq;
|
|
u16 f;
|
|
u32 tmp, div;
|
|
int i, ret;
|
|
|
|
state = fe->tuner_priv;
|
|
freq = fe->dtv_property_cache.frequency;
|
|
|
|
/* spur shift function (for analog) */
|
|
for (i = 0; i < ARRAY_SIZE(shf_tab); i++) {
|
|
if (freq >= (shf_tab[i].freq - shf_tab[i].ofst_th) * 1000 &&
|
|
freq <= (shf_tab[i].freq + shf_tab[i].ofst_th) * 1000) {
|
|
tune0[5].val = shf_tab[i].shf_val;
|
|
tune0[6].val = 0xa0 | shf_tab[i].shf_dir;
|
|
break;
|
|
}
|
|
}
|
|
ret = raw_write(state, (u8 *) tune0, sizeof(tune0));
|
|
if (ret < 0)
|
|
goto failed;
|
|
usleep_range(3000, 4000);
|
|
|
|
/* convert freq to 10.6 fixed point float [MHz] */
|
|
f = freq / 1000000;
|
|
tmp = freq % 1000000;
|
|
div = 1000000;
|
|
for (i = 0; i < 6; i++) {
|
|
f <<= 1;
|
|
div >>= 1;
|
|
if (tmp > div) {
|
|
tmp -= div;
|
|
f |= 1;
|
|
}
|
|
}
|
|
if (tmp > 7812)
|
|
f++;
|
|
tune1[0].val = f & 0xff;
|
|
tune1[1].val = f >> 8;
|
|
ret = raw_write(state, (u8 *) tune1, sizeof(tune1));
|
|
if (ret < 0)
|
|
goto failed;
|
|
msleep(31);
|
|
|
|
ret = reg_write(state, 0x1a, 0x0d);
|
|
if (ret < 0)
|
|
goto failed;
|
|
ret = raw_write(state, (u8 *) set_idac, sizeof(set_idac));
|
|
if (ret < 0)
|
|
goto failed;
|
|
return 0;
|
|
|
|
failed:
|
|
dev_warn(&state->i2c->dev, "(%s) failed. [adap%d-fe%d]\n",
|
|
__func__, fe->dvb->num, fe->id);
|
|
return ret;
|
|
}
|
|
|
|
static const struct reg_val standby_data[] = {
|
|
{ 0x01, 0x00 },
|
|
{ 0x13, 0x00 }
|
|
};
|
|
|
|
static int mxl301rf_sleep(struct dvb_frontend *fe)
|
|
{
|
|
struct mxl301rf_state *state;
|
|
int ret;
|
|
|
|
state = fe->tuner_priv;
|
|
ret = raw_write(state, (u8 *)standby_data, sizeof(standby_data));
|
|
if (ret < 0)
|
|
dev_warn(&state->i2c->dev, "(%s) failed. [adap%d-fe%d]\n",
|
|
__func__, fe->dvb->num, fe->id);
|
|
return ret;
|
|
}
|
|
|
|
|
|
/* init sequence is not public.
|
|
* the parent must have init'ed the device.
|
|
* just wake up here.
|
|
*/
|
|
static int mxl301rf_init(struct dvb_frontend *fe)
|
|
{
|
|
struct mxl301rf_state *state;
|
|
int ret;
|
|
|
|
state = fe->tuner_priv;
|
|
|
|
ret = reg_write(state, 0x01, 0x01);
|
|
if (ret < 0) {
|
|
dev_warn(&state->i2c->dev, "(%s) failed. [adap%d-fe%d]\n",
|
|
__func__, fe->dvb->num, fe->id);
|
|
return ret;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* I2C driver functions */
|
|
|
|
static const struct dvb_tuner_ops mxl301rf_ops = {
|
|
.info = {
|
|
.name = "MaxLinear MxL301RF",
|
|
|
|
.frequency_min_hz = 93 * MHz,
|
|
.frequency_max_hz = 803 * MHz + 142857,
|
|
},
|
|
|
|
.init = mxl301rf_init,
|
|
.sleep = mxl301rf_sleep,
|
|
|
|
.set_params = mxl301rf_set_params,
|
|
.get_rf_strength = mxl301rf_get_rf_strength,
|
|
};
|
|
|
|
|
|
static int mxl301rf_probe(struct i2c_client *client,
|
|
const struct i2c_device_id *id)
|
|
{
|
|
struct mxl301rf_state *state;
|
|
struct mxl301rf_config *cfg;
|
|
struct dvb_frontend *fe;
|
|
|
|
state = kzalloc(sizeof(*state), GFP_KERNEL);
|
|
if (!state)
|
|
return -ENOMEM;
|
|
|
|
state->i2c = client;
|
|
cfg = client->dev.platform_data;
|
|
|
|
memcpy(&state->cfg, cfg, sizeof(state->cfg));
|
|
fe = cfg->fe;
|
|
fe->tuner_priv = state;
|
|
memcpy(&fe->ops.tuner_ops, &mxl301rf_ops, sizeof(mxl301rf_ops));
|
|
|
|
i2c_set_clientdata(client, &state->cfg);
|
|
dev_info(&client->dev, "MaxLinear MxL301RF attached.\n");
|
|
return 0;
|
|
}
|
|
|
|
static int mxl301rf_remove(struct i2c_client *client)
|
|
{
|
|
struct mxl301rf_state *state;
|
|
|
|
state = cfg_to_state(i2c_get_clientdata(client));
|
|
state->cfg.fe->tuner_priv = NULL;
|
|
kfree(state);
|
|
return 0;
|
|
}
|
|
|
|
|
|
static const struct i2c_device_id mxl301rf_id[] = {
|
|
{"mxl301rf", 0},
|
|
{}
|
|
};
|
|
MODULE_DEVICE_TABLE(i2c, mxl301rf_id);
|
|
|
|
static struct i2c_driver mxl301rf_driver = {
|
|
.driver = {
|
|
.name = "mxl301rf",
|
|
},
|
|
.probe = mxl301rf_probe,
|
|
.remove = mxl301rf_remove,
|
|
.id_table = mxl301rf_id,
|
|
};
|
|
|
|
module_i2c_driver(mxl301rf_driver);
|
|
|
|
MODULE_DESCRIPTION("MaxLinear MXL301RF tuner");
|
|
MODULE_AUTHOR("Akihiro TSUKADA");
|
|
MODULE_LICENSE("GPL");
|