linux_dsm_epyc7002/drivers/net/bnx2.c
Michael Chan 7c62e83beb bnx2: Allow flexible VLAN tag settings.
Negotiate with boot code and ASF firmware to see if it can
support keeping VLAN tags in the RX packets.  If supported
by firmware, the VLAN tag will be kept in the RX packet
unless VLAN acceleration is registered.

Signed-off-by: Michael Chan <mchan@broadcom.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2008-07-14 22:39:03 -07:00

7883 lines
190 KiB
C

/* bnx2.c: Broadcom NX2 network driver.
*
* Copyright (c) 2004-2008 Broadcom Corporation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation.
*
* Written by: Michael Chan (mchan@broadcom.com)
*/
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/kernel.h>
#include <linux/timer.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/dma-mapping.h>
#include <linux/bitops.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <linux/delay.h>
#include <asm/byteorder.h>
#include <asm/page.h>
#include <linux/time.h>
#include <linux/ethtool.h>
#include <linux/mii.h>
#ifdef NETIF_F_HW_VLAN_TX
#include <linux/if_vlan.h>
#define BCM_VLAN 1
#endif
#include <net/ip.h>
#include <net/tcp.h>
#include <net/checksum.h>
#include <linux/workqueue.h>
#include <linux/crc32.h>
#include <linux/prefetch.h>
#include <linux/cache.h>
#include <linux/zlib.h>
#include "bnx2.h"
#include "bnx2_fw.h"
#include "bnx2_fw2.h"
#define FW_BUF_SIZE 0x10000
#define DRV_MODULE_NAME "bnx2"
#define PFX DRV_MODULE_NAME ": "
#define DRV_MODULE_VERSION "1.7.7"
#define DRV_MODULE_RELDATE "June 17, 2008"
#define RUN_AT(x) (jiffies + (x))
/* Time in jiffies before concluding the transmitter is hung. */
#define TX_TIMEOUT (5*HZ)
static char version[] __devinitdata =
"Broadcom NetXtreme II Gigabit Ethernet Driver " DRV_MODULE_NAME " v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
MODULE_AUTHOR("Michael Chan <mchan@broadcom.com>");
MODULE_DESCRIPTION("Broadcom NetXtreme II BCM5706/5708/5709 Driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_MODULE_VERSION);
static int disable_msi = 0;
module_param(disable_msi, int, 0);
MODULE_PARM_DESC(disable_msi, "Disable Message Signaled Interrupt (MSI)");
typedef enum {
BCM5706 = 0,
NC370T,
NC370I,
BCM5706S,
NC370F,
BCM5708,
BCM5708S,
BCM5709,
BCM5709S,
BCM5716,
} board_t;
/* indexed by board_t, above */
static struct {
char *name;
} board_info[] __devinitdata = {
{ "Broadcom NetXtreme II BCM5706 1000Base-T" },
{ "HP NC370T Multifunction Gigabit Server Adapter" },
{ "HP NC370i Multifunction Gigabit Server Adapter" },
{ "Broadcom NetXtreme II BCM5706 1000Base-SX" },
{ "HP NC370F Multifunction Gigabit Server Adapter" },
{ "Broadcom NetXtreme II BCM5708 1000Base-T" },
{ "Broadcom NetXtreme II BCM5708 1000Base-SX" },
{ "Broadcom NetXtreme II BCM5709 1000Base-T" },
{ "Broadcom NetXtreme II BCM5709 1000Base-SX" },
{ "Broadcom NetXtreme II BCM5716 1000Base-T" },
};
static DEFINE_PCI_DEVICE_TABLE(bnx2_pci_tbl) = {
{ PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
PCI_VENDOR_ID_HP, 0x3101, 0, 0, NC370T },
{ PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
PCI_VENDOR_ID_HP, 0x3106, 0, 0, NC370I },
{ PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706 },
{ PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708 },
{ PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
PCI_VENDOR_ID_HP, 0x3102, 0, 0, NC370F },
{ PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5706S,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5706S },
{ PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5708S,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5708S },
{ PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709 },
{ PCI_VENDOR_ID_BROADCOM, PCI_DEVICE_ID_NX2_5709S,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5709S },
{ PCI_VENDOR_ID_BROADCOM, 0x163b,
PCI_ANY_ID, PCI_ANY_ID, 0, 0, BCM5716 },
{ 0, }
};
static struct flash_spec flash_table[] =
{
#define BUFFERED_FLAGS (BNX2_NV_BUFFERED | BNX2_NV_TRANSLATE)
#define NONBUFFERED_FLAGS (BNX2_NV_WREN)
/* Slow EEPROM */
{0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
"EEPROM - slow"},
/* Expansion entry 0001 */
{0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
"Entry 0001"},
/* Saifun SA25F010 (non-buffered flash) */
/* strap, cfg1, & write1 need updates */
{0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
"Non-buffered flash (128kB)"},
/* Saifun SA25F020 (non-buffered flash) */
/* strap, cfg1, & write1 need updates */
{0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
"Non-buffered flash (256kB)"},
/* Expansion entry 0100 */
{0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
"Entry 0100"},
/* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
{0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
"Entry 0101: ST M45PE10 (128kB non-bufferred)"},
/* Entry 0110: ST M45PE20 (non-buffered flash)*/
{0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
"Entry 0110: ST M45PE20 (256kB non-bufferred)"},
/* Saifun SA25F005 (non-buffered flash) */
/* strap, cfg1, & write1 need updates */
{0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
"Non-buffered flash (64kB)"},
/* Fast EEPROM */
{0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
"EEPROM - fast"},
/* Expansion entry 1001 */
{0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
"Entry 1001"},
/* Expansion entry 1010 */
{0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
"Entry 1010"},
/* ATMEL AT45DB011B (buffered flash) */
{0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
"Buffered flash (128kB)"},
/* Expansion entry 1100 */
{0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
"Entry 1100"},
/* Expansion entry 1101 */
{0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
"Entry 1101"},
/* Ateml Expansion entry 1110 */
{0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
"Entry 1110 (Atmel)"},
/* ATMEL AT45DB021B (buffered flash) */
{0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
"Buffered flash (256kB)"},
};
static struct flash_spec flash_5709 = {
.flags = BNX2_NV_BUFFERED,
.page_bits = BCM5709_FLASH_PAGE_BITS,
.page_size = BCM5709_FLASH_PAGE_SIZE,
.addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK,
.total_size = BUFFERED_FLASH_TOTAL_SIZE*2,
.name = "5709 Buffered flash (256kB)",
};
MODULE_DEVICE_TABLE(pci, bnx2_pci_tbl);
static inline u32 bnx2_tx_avail(struct bnx2 *bp, struct bnx2_tx_ring_info *txr)
{
u32 diff;
smp_mb();
/* The ring uses 256 indices for 255 entries, one of them
* needs to be skipped.
*/
diff = txr->tx_prod - txr->tx_cons;
if (unlikely(diff >= TX_DESC_CNT)) {
diff &= 0xffff;
if (diff == TX_DESC_CNT)
diff = MAX_TX_DESC_CNT;
}
return (bp->tx_ring_size - diff);
}
static u32
bnx2_reg_rd_ind(struct bnx2 *bp, u32 offset)
{
u32 val;
spin_lock_bh(&bp->indirect_lock);
REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
val = REG_RD(bp, BNX2_PCICFG_REG_WINDOW);
spin_unlock_bh(&bp->indirect_lock);
return val;
}
static void
bnx2_reg_wr_ind(struct bnx2 *bp, u32 offset, u32 val)
{
spin_lock_bh(&bp->indirect_lock);
REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, offset);
REG_WR(bp, BNX2_PCICFG_REG_WINDOW, val);
spin_unlock_bh(&bp->indirect_lock);
}
static void
bnx2_shmem_wr(struct bnx2 *bp, u32 offset, u32 val)
{
bnx2_reg_wr_ind(bp, bp->shmem_base + offset, val);
}
static u32
bnx2_shmem_rd(struct bnx2 *bp, u32 offset)
{
return (bnx2_reg_rd_ind(bp, bp->shmem_base + offset));
}
static void
bnx2_ctx_wr(struct bnx2 *bp, u32 cid_addr, u32 offset, u32 val)
{
offset += cid_addr;
spin_lock_bh(&bp->indirect_lock);
if (CHIP_NUM(bp) == CHIP_NUM_5709) {
int i;
REG_WR(bp, BNX2_CTX_CTX_DATA, val);
REG_WR(bp, BNX2_CTX_CTX_CTRL,
offset | BNX2_CTX_CTX_CTRL_WRITE_REQ);
for (i = 0; i < 5; i++) {
u32 val;
val = REG_RD(bp, BNX2_CTX_CTX_CTRL);
if ((val & BNX2_CTX_CTX_CTRL_WRITE_REQ) == 0)
break;
udelay(5);
}
} else {
REG_WR(bp, BNX2_CTX_DATA_ADR, offset);
REG_WR(bp, BNX2_CTX_DATA, val);
}
spin_unlock_bh(&bp->indirect_lock);
}
static int
bnx2_read_phy(struct bnx2 *bp, u32 reg, u32 *val)
{
u32 val1;
int i, ret;
if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
REG_RD(bp, BNX2_EMAC_MDIO_MODE);
udelay(40);
}
val1 = (bp->phy_addr << 21) | (reg << 16) |
BNX2_EMAC_MDIO_COMM_COMMAND_READ | BNX2_EMAC_MDIO_COMM_DISEXT |
BNX2_EMAC_MDIO_COMM_START_BUSY;
REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
for (i = 0; i < 50; i++) {
udelay(10);
val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
udelay(5);
val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
val1 &= BNX2_EMAC_MDIO_COMM_DATA;
break;
}
}
if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY) {
*val = 0x0;
ret = -EBUSY;
}
else {
*val = val1;
ret = 0;
}
if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
REG_RD(bp, BNX2_EMAC_MDIO_MODE);
udelay(40);
}
return ret;
}
static int
bnx2_write_phy(struct bnx2 *bp, u32 reg, u32 val)
{
u32 val1;
int i, ret;
if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
val1 &= ~BNX2_EMAC_MDIO_MODE_AUTO_POLL;
REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
REG_RD(bp, BNX2_EMAC_MDIO_MODE);
udelay(40);
}
val1 = (bp->phy_addr << 21) | (reg << 16) | val |
BNX2_EMAC_MDIO_COMM_COMMAND_WRITE |
BNX2_EMAC_MDIO_COMM_START_BUSY | BNX2_EMAC_MDIO_COMM_DISEXT;
REG_WR(bp, BNX2_EMAC_MDIO_COMM, val1);
for (i = 0; i < 50; i++) {
udelay(10);
val1 = REG_RD(bp, BNX2_EMAC_MDIO_COMM);
if (!(val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)) {
udelay(5);
break;
}
}
if (val1 & BNX2_EMAC_MDIO_COMM_START_BUSY)
ret = -EBUSY;
else
ret = 0;
if (bp->phy_flags & BNX2_PHY_FLAG_INT_MODE_AUTO_POLLING) {
val1 = REG_RD(bp, BNX2_EMAC_MDIO_MODE);
val1 |= BNX2_EMAC_MDIO_MODE_AUTO_POLL;
REG_WR(bp, BNX2_EMAC_MDIO_MODE, val1);
REG_RD(bp, BNX2_EMAC_MDIO_MODE);
udelay(40);
}
return ret;
}
static void
bnx2_disable_int(struct bnx2 *bp)
{
int i;
struct bnx2_napi *bnapi;
for (i = 0; i < bp->irq_nvecs; i++) {
bnapi = &bp->bnx2_napi[i];
REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
}
REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
}
static void
bnx2_enable_int(struct bnx2 *bp)
{
int i;
struct bnx2_napi *bnapi;
for (i = 0; i < bp->irq_nvecs; i++) {
bnapi = &bp->bnx2_napi[i];
REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
bnapi->last_status_idx);
REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
bnapi->last_status_idx);
}
REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
}
static void
bnx2_disable_int_sync(struct bnx2 *bp)
{
int i;
atomic_inc(&bp->intr_sem);
bnx2_disable_int(bp);
for (i = 0; i < bp->irq_nvecs; i++)
synchronize_irq(bp->irq_tbl[i].vector);
}
static void
bnx2_napi_disable(struct bnx2 *bp)
{
int i;
for (i = 0; i < bp->irq_nvecs; i++)
napi_disable(&bp->bnx2_napi[i].napi);
}
static void
bnx2_napi_enable(struct bnx2 *bp)
{
int i;
for (i = 0; i < bp->irq_nvecs; i++)
napi_enable(&bp->bnx2_napi[i].napi);
}
static void
bnx2_netif_stop(struct bnx2 *bp)
{
bnx2_disable_int_sync(bp);
if (netif_running(bp->dev)) {
bnx2_napi_disable(bp);
netif_tx_disable(bp->dev);
bp->dev->trans_start = jiffies; /* prevent tx timeout */
}
}
static void
bnx2_netif_start(struct bnx2 *bp)
{
if (atomic_dec_and_test(&bp->intr_sem)) {
if (netif_running(bp->dev)) {
netif_wake_queue(bp->dev);
bnx2_napi_enable(bp);
bnx2_enable_int(bp);
}
}
}
static void
bnx2_free_tx_mem(struct bnx2 *bp)
{
int i;
for (i = 0; i < bp->num_tx_rings; i++) {
struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
if (txr->tx_desc_ring) {
pci_free_consistent(bp->pdev, TXBD_RING_SIZE,
txr->tx_desc_ring,
txr->tx_desc_mapping);
txr->tx_desc_ring = NULL;
}
kfree(txr->tx_buf_ring);
txr->tx_buf_ring = NULL;
}
}
static void
bnx2_free_rx_mem(struct bnx2 *bp)
{
int i;
for (i = 0; i < bp->num_rx_rings; i++) {
struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
int j;
for (j = 0; j < bp->rx_max_ring; j++) {
if (rxr->rx_desc_ring[j])
pci_free_consistent(bp->pdev, RXBD_RING_SIZE,
rxr->rx_desc_ring[j],
rxr->rx_desc_mapping[j]);
rxr->rx_desc_ring[j] = NULL;
}
if (rxr->rx_buf_ring)
vfree(rxr->rx_buf_ring);
rxr->rx_buf_ring = NULL;
for (j = 0; j < bp->rx_max_pg_ring; j++) {
if (rxr->rx_pg_desc_ring[j])
pci_free_consistent(bp->pdev, RXBD_RING_SIZE,
rxr->rx_pg_desc_ring[i],
rxr->rx_pg_desc_mapping[i]);
rxr->rx_pg_desc_ring[i] = NULL;
}
if (rxr->rx_pg_ring)
vfree(rxr->rx_pg_ring);
rxr->rx_pg_ring = NULL;
}
}
static int
bnx2_alloc_tx_mem(struct bnx2 *bp)
{
int i;
for (i = 0; i < bp->num_tx_rings; i++) {
struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
txr->tx_buf_ring = kzalloc(SW_TXBD_RING_SIZE, GFP_KERNEL);
if (txr->tx_buf_ring == NULL)
return -ENOMEM;
txr->tx_desc_ring =
pci_alloc_consistent(bp->pdev, TXBD_RING_SIZE,
&txr->tx_desc_mapping);
if (txr->tx_desc_ring == NULL)
return -ENOMEM;
}
return 0;
}
static int
bnx2_alloc_rx_mem(struct bnx2 *bp)
{
int i;
for (i = 0; i < bp->num_rx_rings; i++) {
struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
int j;
rxr->rx_buf_ring =
vmalloc(SW_RXBD_RING_SIZE * bp->rx_max_ring);
if (rxr->rx_buf_ring == NULL)
return -ENOMEM;
memset(rxr->rx_buf_ring, 0,
SW_RXBD_RING_SIZE * bp->rx_max_ring);
for (j = 0; j < bp->rx_max_ring; j++) {
rxr->rx_desc_ring[j] =
pci_alloc_consistent(bp->pdev, RXBD_RING_SIZE,
&rxr->rx_desc_mapping[j]);
if (rxr->rx_desc_ring[j] == NULL)
return -ENOMEM;
}
if (bp->rx_pg_ring_size) {
rxr->rx_pg_ring = vmalloc(SW_RXPG_RING_SIZE *
bp->rx_max_pg_ring);
if (rxr->rx_pg_ring == NULL)
return -ENOMEM;
memset(rxr->rx_pg_ring, 0, SW_RXPG_RING_SIZE *
bp->rx_max_pg_ring);
}
for (j = 0; j < bp->rx_max_pg_ring; j++) {
rxr->rx_pg_desc_ring[j] =
pci_alloc_consistent(bp->pdev, RXBD_RING_SIZE,
&rxr->rx_pg_desc_mapping[j]);
if (rxr->rx_pg_desc_ring[j] == NULL)
return -ENOMEM;
}
}
return 0;
}
static void
bnx2_free_mem(struct bnx2 *bp)
{
int i;
struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
bnx2_free_tx_mem(bp);
bnx2_free_rx_mem(bp);
for (i = 0; i < bp->ctx_pages; i++) {
if (bp->ctx_blk[i]) {
pci_free_consistent(bp->pdev, BCM_PAGE_SIZE,
bp->ctx_blk[i],
bp->ctx_blk_mapping[i]);
bp->ctx_blk[i] = NULL;
}
}
if (bnapi->status_blk.msi) {
pci_free_consistent(bp->pdev, bp->status_stats_size,
bnapi->status_blk.msi,
bp->status_blk_mapping);
bnapi->status_blk.msi = NULL;
bp->stats_blk = NULL;
}
}
static int
bnx2_alloc_mem(struct bnx2 *bp)
{
int i, status_blk_size, err;
struct bnx2_napi *bnapi;
void *status_blk;
/* Combine status and statistics blocks into one allocation. */
status_blk_size = L1_CACHE_ALIGN(sizeof(struct status_block));
if (bp->flags & BNX2_FLAG_MSIX_CAP)
status_blk_size = L1_CACHE_ALIGN(BNX2_MAX_MSIX_HW_VEC *
BNX2_SBLK_MSIX_ALIGN_SIZE);
bp->status_stats_size = status_blk_size +
sizeof(struct statistics_block);
status_blk = pci_alloc_consistent(bp->pdev, bp->status_stats_size,
&bp->status_blk_mapping);
if (status_blk == NULL)
goto alloc_mem_err;
memset(status_blk, 0, bp->status_stats_size);
bnapi = &bp->bnx2_napi[0];
bnapi->status_blk.msi = status_blk;
bnapi->hw_tx_cons_ptr =
&bnapi->status_blk.msi->status_tx_quick_consumer_index0;
bnapi->hw_rx_cons_ptr =
&bnapi->status_blk.msi->status_rx_quick_consumer_index0;
if (bp->flags & BNX2_FLAG_MSIX_CAP) {
for (i = 1; i < BNX2_MAX_MSIX_VEC; i++) {
struct status_block_msix *sblk;
bnapi = &bp->bnx2_napi[i];
sblk = (void *) (status_blk +
BNX2_SBLK_MSIX_ALIGN_SIZE * i);
bnapi->status_blk.msix = sblk;
bnapi->hw_tx_cons_ptr =
&sblk->status_tx_quick_consumer_index;
bnapi->hw_rx_cons_ptr =
&sblk->status_rx_quick_consumer_index;
bnapi->int_num = i << 24;
}
}
bp->stats_blk = status_blk + status_blk_size;
bp->stats_blk_mapping = bp->status_blk_mapping + status_blk_size;
if (CHIP_NUM(bp) == CHIP_NUM_5709) {
bp->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
if (bp->ctx_pages == 0)
bp->ctx_pages = 1;
for (i = 0; i < bp->ctx_pages; i++) {
bp->ctx_blk[i] = pci_alloc_consistent(bp->pdev,
BCM_PAGE_SIZE,
&bp->ctx_blk_mapping[i]);
if (bp->ctx_blk[i] == NULL)
goto alloc_mem_err;
}
}
err = bnx2_alloc_rx_mem(bp);
if (err)
goto alloc_mem_err;
err = bnx2_alloc_tx_mem(bp);
if (err)
goto alloc_mem_err;
return 0;
alloc_mem_err:
bnx2_free_mem(bp);
return -ENOMEM;
}
static void
bnx2_report_fw_link(struct bnx2 *bp)
{
u32 fw_link_status = 0;
if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
return;
if (bp->link_up) {
u32 bmsr;
switch (bp->line_speed) {
case SPEED_10:
if (bp->duplex == DUPLEX_HALF)
fw_link_status = BNX2_LINK_STATUS_10HALF;
else
fw_link_status = BNX2_LINK_STATUS_10FULL;
break;
case SPEED_100:
if (bp->duplex == DUPLEX_HALF)
fw_link_status = BNX2_LINK_STATUS_100HALF;
else
fw_link_status = BNX2_LINK_STATUS_100FULL;
break;
case SPEED_1000:
if (bp->duplex == DUPLEX_HALF)
fw_link_status = BNX2_LINK_STATUS_1000HALF;
else
fw_link_status = BNX2_LINK_STATUS_1000FULL;
break;
case SPEED_2500:
if (bp->duplex == DUPLEX_HALF)
fw_link_status = BNX2_LINK_STATUS_2500HALF;
else
fw_link_status = BNX2_LINK_STATUS_2500FULL;
break;
}
fw_link_status |= BNX2_LINK_STATUS_LINK_UP;
if (bp->autoneg) {
fw_link_status |= BNX2_LINK_STATUS_AN_ENABLED;
bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
if (!(bmsr & BMSR_ANEGCOMPLETE) ||
bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)
fw_link_status |= BNX2_LINK_STATUS_PARALLEL_DET;
else
fw_link_status |= BNX2_LINK_STATUS_AN_COMPLETE;
}
}
else
fw_link_status = BNX2_LINK_STATUS_LINK_DOWN;
bnx2_shmem_wr(bp, BNX2_LINK_STATUS, fw_link_status);
}
static char *
bnx2_xceiver_str(struct bnx2 *bp)
{
return ((bp->phy_port == PORT_FIBRE) ? "SerDes" :
((bp->phy_flags & BNX2_PHY_FLAG_SERDES) ? "Remote Copper" :
"Copper"));
}
static void
bnx2_report_link(struct bnx2 *bp)
{
if (bp->link_up) {
netif_carrier_on(bp->dev);
printk(KERN_INFO PFX "%s NIC %s Link is Up, ", bp->dev->name,
bnx2_xceiver_str(bp));
printk("%d Mbps ", bp->line_speed);
if (bp->duplex == DUPLEX_FULL)
printk("full duplex");
else
printk("half duplex");
if (bp->flow_ctrl) {
if (bp->flow_ctrl & FLOW_CTRL_RX) {
printk(", receive ");
if (bp->flow_ctrl & FLOW_CTRL_TX)
printk("& transmit ");
}
else {
printk(", transmit ");
}
printk("flow control ON");
}
printk("\n");
}
else {
netif_carrier_off(bp->dev);
printk(KERN_ERR PFX "%s NIC %s Link is Down\n", bp->dev->name,
bnx2_xceiver_str(bp));
}
bnx2_report_fw_link(bp);
}
static void
bnx2_resolve_flow_ctrl(struct bnx2 *bp)
{
u32 local_adv, remote_adv;
bp->flow_ctrl = 0;
if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
(AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
if (bp->duplex == DUPLEX_FULL) {
bp->flow_ctrl = bp->req_flow_ctrl;
}
return;
}
if (bp->duplex != DUPLEX_FULL) {
return;
}
if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
(CHIP_NUM(bp) == CHIP_NUM_5708)) {
u32 val;
bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
if (val & BCM5708S_1000X_STAT1_TX_PAUSE)
bp->flow_ctrl |= FLOW_CTRL_TX;
if (val & BCM5708S_1000X_STAT1_RX_PAUSE)
bp->flow_ctrl |= FLOW_CTRL_RX;
return;
}
bnx2_read_phy(bp, bp->mii_adv, &local_adv);
bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
u32 new_local_adv = 0;
u32 new_remote_adv = 0;
if (local_adv & ADVERTISE_1000XPAUSE)
new_local_adv |= ADVERTISE_PAUSE_CAP;
if (local_adv & ADVERTISE_1000XPSE_ASYM)
new_local_adv |= ADVERTISE_PAUSE_ASYM;
if (remote_adv & ADVERTISE_1000XPAUSE)
new_remote_adv |= ADVERTISE_PAUSE_CAP;
if (remote_adv & ADVERTISE_1000XPSE_ASYM)
new_remote_adv |= ADVERTISE_PAUSE_ASYM;
local_adv = new_local_adv;
remote_adv = new_remote_adv;
}
/* See Table 28B-3 of 802.3ab-1999 spec. */
if (local_adv & ADVERTISE_PAUSE_CAP) {
if(local_adv & ADVERTISE_PAUSE_ASYM) {
if (remote_adv & ADVERTISE_PAUSE_CAP) {
bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
}
else if (remote_adv & ADVERTISE_PAUSE_ASYM) {
bp->flow_ctrl = FLOW_CTRL_RX;
}
}
else {
if (remote_adv & ADVERTISE_PAUSE_CAP) {
bp->flow_ctrl = FLOW_CTRL_TX | FLOW_CTRL_RX;
}
}
}
else if (local_adv & ADVERTISE_PAUSE_ASYM) {
if ((remote_adv & ADVERTISE_PAUSE_CAP) &&
(remote_adv & ADVERTISE_PAUSE_ASYM)) {
bp->flow_ctrl = FLOW_CTRL_TX;
}
}
}
static int
bnx2_5709s_linkup(struct bnx2 *bp)
{
u32 val, speed;
bp->link_up = 1;
bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_GP_STATUS);
bnx2_read_phy(bp, MII_BNX2_GP_TOP_AN_STATUS1, &val);
bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
if ((bp->autoneg & AUTONEG_SPEED) == 0) {
bp->line_speed = bp->req_line_speed;
bp->duplex = bp->req_duplex;
return 0;
}
speed = val & MII_BNX2_GP_TOP_AN_SPEED_MSK;
switch (speed) {
case MII_BNX2_GP_TOP_AN_SPEED_10:
bp->line_speed = SPEED_10;
break;
case MII_BNX2_GP_TOP_AN_SPEED_100:
bp->line_speed = SPEED_100;
break;
case MII_BNX2_GP_TOP_AN_SPEED_1G:
case MII_BNX2_GP_TOP_AN_SPEED_1GKV:
bp->line_speed = SPEED_1000;
break;
case MII_BNX2_GP_TOP_AN_SPEED_2_5G:
bp->line_speed = SPEED_2500;
break;
}
if (val & MII_BNX2_GP_TOP_AN_FD)
bp->duplex = DUPLEX_FULL;
else
bp->duplex = DUPLEX_HALF;
return 0;
}
static int
bnx2_5708s_linkup(struct bnx2 *bp)
{
u32 val;
bp->link_up = 1;
bnx2_read_phy(bp, BCM5708S_1000X_STAT1, &val);
switch (val & BCM5708S_1000X_STAT1_SPEED_MASK) {
case BCM5708S_1000X_STAT1_SPEED_10:
bp->line_speed = SPEED_10;
break;
case BCM5708S_1000X_STAT1_SPEED_100:
bp->line_speed = SPEED_100;
break;
case BCM5708S_1000X_STAT1_SPEED_1G:
bp->line_speed = SPEED_1000;
break;
case BCM5708S_1000X_STAT1_SPEED_2G5:
bp->line_speed = SPEED_2500;
break;
}
if (val & BCM5708S_1000X_STAT1_FD)
bp->duplex = DUPLEX_FULL;
else
bp->duplex = DUPLEX_HALF;
return 0;
}
static int
bnx2_5706s_linkup(struct bnx2 *bp)
{
u32 bmcr, local_adv, remote_adv, common;
bp->link_up = 1;
bp->line_speed = SPEED_1000;
bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
if (bmcr & BMCR_FULLDPLX) {
bp->duplex = DUPLEX_FULL;
}
else {
bp->duplex = DUPLEX_HALF;
}
if (!(bmcr & BMCR_ANENABLE)) {
return 0;
}
bnx2_read_phy(bp, bp->mii_adv, &local_adv);
bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
common = local_adv & remote_adv;
if (common & (ADVERTISE_1000XHALF | ADVERTISE_1000XFULL)) {
if (common & ADVERTISE_1000XFULL) {
bp->duplex = DUPLEX_FULL;
}
else {
bp->duplex = DUPLEX_HALF;
}
}
return 0;
}
static int
bnx2_copper_linkup(struct bnx2 *bp)
{
u32 bmcr;
bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
if (bmcr & BMCR_ANENABLE) {
u32 local_adv, remote_adv, common;
bnx2_read_phy(bp, MII_CTRL1000, &local_adv);
bnx2_read_phy(bp, MII_STAT1000, &remote_adv);
common = local_adv & (remote_adv >> 2);
if (common & ADVERTISE_1000FULL) {
bp->line_speed = SPEED_1000;
bp->duplex = DUPLEX_FULL;
}
else if (common & ADVERTISE_1000HALF) {
bp->line_speed = SPEED_1000;
bp->duplex = DUPLEX_HALF;
}
else {
bnx2_read_phy(bp, bp->mii_adv, &local_adv);
bnx2_read_phy(bp, bp->mii_lpa, &remote_adv);
common = local_adv & remote_adv;
if (common & ADVERTISE_100FULL) {
bp->line_speed = SPEED_100;
bp->duplex = DUPLEX_FULL;
}
else if (common & ADVERTISE_100HALF) {
bp->line_speed = SPEED_100;
bp->duplex = DUPLEX_HALF;
}
else if (common & ADVERTISE_10FULL) {
bp->line_speed = SPEED_10;
bp->duplex = DUPLEX_FULL;
}
else if (common & ADVERTISE_10HALF) {
bp->line_speed = SPEED_10;
bp->duplex = DUPLEX_HALF;
}
else {
bp->line_speed = 0;
bp->link_up = 0;
}
}
}
else {
if (bmcr & BMCR_SPEED100) {
bp->line_speed = SPEED_100;
}
else {
bp->line_speed = SPEED_10;
}
if (bmcr & BMCR_FULLDPLX) {
bp->duplex = DUPLEX_FULL;
}
else {
bp->duplex = DUPLEX_HALF;
}
}
return 0;
}
static void
bnx2_init_rx_context(struct bnx2 *bp, u32 cid)
{
u32 val, rx_cid_addr = GET_CID_ADDR(cid);
val = BNX2_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE;
val |= BNX2_L2CTX_CTX_TYPE_SIZE_L2;
val |= 0x02 << 8;
if (CHIP_NUM(bp) == CHIP_NUM_5709) {
u32 lo_water, hi_water;
if (bp->flow_ctrl & FLOW_CTRL_TX)
lo_water = BNX2_L2CTX_LO_WATER_MARK_DEFAULT;
else
lo_water = BNX2_L2CTX_LO_WATER_MARK_DIS;
if (lo_water >= bp->rx_ring_size)
lo_water = 0;
hi_water = bp->rx_ring_size / 4;
if (hi_water <= lo_water)
lo_water = 0;
hi_water /= BNX2_L2CTX_HI_WATER_MARK_SCALE;
lo_water /= BNX2_L2CTX_LO_WATER_MARK_SCALE;
if (hi_water > 0xf)
hi_water = 0xf;
else if (hi_water == 0)
lo_water = 0;
val |= lo_water | (hi_water << BNX2_L2CTX_HI_WATER_MARK_SHIFT);
}
bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_CTX_TYPE, val);
}
static void
bnx2_init_all_rx_contexts(struct bnx2 *bp)
{
int i;
u32 cid;
for (i = 0, cid = RX_CID; i < bp->num_rx_rings; i++, cid++) {
if (i == 1)
cid = RX_RSS_CID;
bnx2_init_rx_context(bp, cid);
}
}
static int
bnx2_set_mac_link(struct bnx2 *bp)
{
u32 val;
REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x2620);
if (bp->link_up && (bp->line_speed == SPEED_1000) &&
(bp->duplex == DUPLEX_HALF)) {
REG_WR(bp, BNX2_EMAC_TX_LENGTHS, 0x26ff);
}
/* Configure the EMAC mode register. */
val = REG_RD(bp, BNX2_EMAC_MODE);
val &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
BNX2_EMAC_MODE_25G_MODE);
if (bp->link_up) {
switch (bp->line_speed) {
case SPEED_10:
if (CHIP_NUM(bp) != CHIP_NUM_5706) {
val |= BNX2_EMAC_MODE_PORT_MII_10M;
break;
}
/* fall through */
case SPEED_100:
val |= BNX2_EMAC_MODE_PORT_MII;
break;
case SPEED_2500:
val |= BNX2_EMAC_MODE_25G_MODE;
/* fall through */
case SPEED_1000:
val |= BNX2_EMAC_MODE_PORT_GMII;
break;
}
}
else {
val |= BNX2_EMAC_MODE_PORT_GMII;
}
/* Set the MAC to operate in the appropriate duplex mode. */
if (bp->duplex == DUPLEX_HALF)
val |= BNX2_EMAC_MODE_HALF_DUPLEX;
REG_WR(bp, BNX2_EMAC_MODE, val);
/* Enable/disable rx PAUSE. */
bp->rx_mode &= ~BNX2_EMAC_RX_MODE_FLOW_EN;
if (bp->flow_ctrl & FLOW_CTRL_RX)
bp->rx_mode |= BNX2_EMAC_RX_MODE_FLOW_EN;
REG_WR(bp, BNX2_EMAC_RX_MODE, bp->rx_mode);
/* Enable/disable tx PAUSE. */
val = REG_RD(bp, BNX2_EMAC_TX_MODE);
val &= ~BNX2_EMAC_TX_MODE_FLOW_EN;
if (bp->flow_ctrl & FLOW_CTRL_TX)
val |= BNX2_EMAC_TX_MODE_FLOW_EN;
REG_WR(bp, BNX2_EMAC_TX_MODE, val);
/* Acknowledge the interrupt. */
REG_WR(bp, BNX2_EMAC_STATUS, BNX2_EMAC_STATUS_LINK_CHANGE);
if (CHIP_NUM(bp) == CHIP_NUM_5709)
bnx2_init_all_rx_contexts(bp);
return 0;
}
static void
bnx2_enable_bmsr1(struct bnx2 *bp)
{
if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
(CHIP_NUM(bp) == CHIP_NUM_5709))
bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
MII_BNX2_BLK_ADDR_GP_STATUS);
}
static void
bnx2_disable_bmsr1(struct bnx2 *bp)
{
if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
(CHIP_NUM(bp) == CHIP_NUM_5709))
bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
}
static int
bnx2_test_and_enable_2g5(struct bnx2 *bp)
{
u32 up1;
int ret = 1;
if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
return 0;
if (bp->autoneg & AUTONEG_SPEED)
bp->advertising |= ADVERTISED_2500baseX_Full;
if (CHIP_NUM(bp) == CHIP_NUM_5709)
bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
bnx2_read_phy(bp, bp->mii_up1, &up1);
if (!(up1 & BCM5708S_UP1_2G5)) {
up1 |= BCM5708S_UP1_2G5;
bnx2_write_phy(bp, bp->mii_up1, up1);
ret = 0;
}
if (CHIP_NUM(bp) == CHIP_NUM_5709)
bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
return ret;
}
static int
bnx2_test_and_disable_2g5(struct bnx2 *bp)
{
u32 up1;
int ret = 0;
if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
return 0;
if (CHIP_NUM(bp) == CHIP_NUM_5709)
bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
bnx2_read_phy(bp, bp->mii_up1, &up1);
if (up1 & BCM5708S_UP1_2G5) {
up1 &= ~BCM5708S_UP1_2G5;
bnx2_write_phy(bp, bp->mii_up1, up1);
ret = 1;
}
if (CHIP_NUM(bp) == CHIP_NUM_5709)
bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
return ret;
}
static void
bnx2_enable_forced_2g5(struct bnx2 *bp)
{
u32 bmcr;
if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
return;
if (CHIP_NUM(bp) == CHIP_NUM_5709) {
u32 val;
bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
MII_BNX2_BLK_ADDR_SERDES_DIG);
bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val);
val &= ~MII_BNX2_SD_MISC1_FORCE_MSK;
val |= MII_BNX2_SD_MISC1_FORCE | MII_BNX2_SD_MISC1_FORCE_2_5G;
bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
} else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
bmcr |= BCM5708S_BMCR_FORCE_2500;
}
if (bp->autoneg & AUTONEG_SPEED) {
bmcr &= ~BMCR_ANENABLE;
if (bp->req_duplex == DUPLEX_FULL)
bmcr |= BMCR_FULLDPLX;
}
bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
}
static void
bnx2_disable_forced_2g5(struct bnx2 *bp)
{
u32 bmcr;
if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
return;
if (CHIP_NUM(bp) == CHIP_NUM_5709) {
u32 val;
bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
MII_BNX2_BLK_ADDR_SERDES_DIG);
bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_MISC1, &val);
val &= ~MII_BNX2_SD_MISC1_FORCE;
bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_MISC1, val);
bnx2_write_phy(bp, MII_BNX2_BLK_ADDR,
MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
} else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
bmcr &= ~BCM5708S_BMCR_FORCE_2500;
}
if (bp->autoneg & AUTONEG_SPEED)
bmcr |= BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_ANRESTART;
bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
}
static void
bnx2_5706s_force_link_dn(struct bnx2 *bp, int start)
{
u32 val;
bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_SERDES_CTL);
bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
if (start)
bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val & 0xff0f);
else
bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val | 0xc0);
}
static int
bnx2_set_link(struct bnx2 *bp)
{
u32 bmsr;
u8 link_up;
if (bp->loopback == MAC_LOOPBACK || bp->loopback == PHY_LOOPBACK) {
bp->link_up = 1;
return 0;
}
if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
return 0;
link_up = bp->link_up;
bnx2_enable_bmsr1(bp);
bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
bnx2_disable_bmsr1(bp);
if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
(CHIP_NUM(bp) == CHIP_NUM_5706)) {
u32 val, an_dbg;
if (bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN) {
bnx2_5706s_force_link_dn(bp, 0);
bp->phy_flags &= ~BNX2_PHY_FLAG_FORCED_DOWN;
}
val = REG_RD(bp, BNX2_EMAC_STATUS);
bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
if ((val & BNX2_EMAC_STATUS_LINK) &&
!(an_dbg & MISC_SHDW_AN_DBG_NOSYNC))
bmsr |= BMSR_LSTATUS;
else
bmsr &= ~BMSR_LSTATUS;
}
if (bmsr & BMSR_LSTATUS) {
bp->link_up = 1;
if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
if (CHIP_NUM(bp) == CHIP_NUM_5706)
bnx2_5706s_linkup(bp);
else if (CHIP_NUM(bp) == CHIP_NUM_5708)
bnx2_5708s_linkup(bp);
else if (CHIP_NUM(bp) == CHIP_NUM_5709)
bnx2_5709s_linkup(bp);
}
else {
bnx2_copper_linkup(bp);
}
bnx2_resolve_flow_ctrl(bp);
}
else {
if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
(bp->autoneg & AUTONEG_SPEED))
bnx2_disable_forced_2g5(bp);
if (bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT) {
u32 bmcr;
bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
bmcr |= BMCR_ANENABLE;
bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
}
bp->link_up = 0;
}
if (bp->link_up != link_up) {
bnx2_report_link(bp);
}
bnx2_set_mac_link(bp);
return 0;
}
static int
bnx2_reset_phy(struct bnx2 *bp)
{
int i;
u32 reg;
bnx2_write_phy(bp, bp->mii_bmcr, BMCR_RESET);
#define PHY_RESET_MAX_WAIT 100
for (i = 0; i < PHY_RESET_MAX_WAIT; i++) {
udelay(10);
bnx2_read_phy(bp, bp->mii_bmcr, &reg);
if (!(reg & BMCR_RESET)) {
udelay(20);
break;
}
}
if (i == PHY_RESET_MAX_WAIT) {
return -EBUSY;
}
return 0;
}
static u32
bnx2_phy_get_pause_adv(struct bnx2 *bp)
{
u32 adv = 0;
if ((bp->req_flow_ctrl & (FLOW_CTRL_RX | FLOW_CTRL_TX)) ==
(FLOW_CTRL_RX | FLOW_CTRL_TX)) {
if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
adv = ADVERTISE_1000XPAUSE;
}
else {
adv = ADVERTISE_PAUSE_CAP;
}
}
else if (bp->req_flow_ctrl & FLOW_CTRL_TX) {
if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
adv = ADVERTISE_1000XPSE_ASYM;
}
else {
adv = ADVERTISE_PAUSE_ASYM;
}
}
else if (bp->req_flow_ctrl & FLOW_CTRL_RX) {
if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
adv = ADVERTISE_1000XPAUSE | ADVERTISE_1000XPSE_ASYM;
}
else {
adv = ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
}
}
return adv;
}
static int bnx2_fw_sync(struct bnx2 *, u32, int, int);
static int
bnx2_setup_remote_phy(struct bnx2 *bp, u8 port)
{
u32 speed_arg = 0, pause_adv;
pause_adv = bnx2_phy_get_pause_adv(bp);
if (bp->autoneg & AUTONEG_SPEED) {
speed_arg |= BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG;
if (bp->advertising & ADVERTISED_10baseT_Half)
speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10HALF;
if (bp->advertising & ADVERTISED_10baseT_Full)
speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_10FULL;
if (bp->advertising & ADVERTISED_100baseT_Half)
speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100HALF;
if (bp->advertising & ADVERTISED_100baseT_Full)
speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_100FULL;
if (bp->advertising & ADVERTISED_1000baseT_Full)
speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
if (bp->advertising & ADVERTISED_2500baseX_Full)
speed_arg |= BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
} else {
if (bp->req_line_speed == SPEED_2500)
speed_arg = BNX2_NETLINK_SET_LINK_SPEED_2G5FULL;
else if (bp->req_line_speed == SPEED_1000)
speed_arg = BNX2_NETLINK_SET_LINK_SPEED_1GFULL;
else if (bp->req_line_speed == SPEED_100) {
if (bp->req_duplex == DUPLEX_FULL)
speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100FULL;
else
speed_arg = BNX2_NETLINK_SET_LINK_SPEED_100HALF;
} else if (bp->req_line_speed == SPEED_10) {
if (bp->req_duplex == DUPLEX_FULL)
speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10FULL;
else
speed_arg = BNX2_NETLINK_SET_LINK_SPEED_10HALF;
}
}
if (pause_adv & (ADVERTISE_1000XPAUSE | ADVERTISE_PAUSE_CAP))
speed_arg |= BNX2_NETLINK_SET_LINK_FC_SYM_PAUSE;
if (pause_adv & (ADVERTISE_1000XPSE_ASYM | ADVERTISE_PAUSE_ASYM))
speed_arg |= BNX2_NETLINK_SET_LINK_FC_ASYM_PAUSE;
if (port == PORT_TP)
speed_arg |= BNX2_NETLINK_SET_LINK_PHY_APP_REMOTE |
BNX2_NETLINK_SET_LINK_ETH_AT_WIRESPEED;
bnx2_shmem_wr(bp, BNX2_DRV_MB_ARG0, speed_arg);
spin_unlock_bh(&bp->phy_lock);
bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_CMD_SET_LINK, 1, 0);
spin_lock_bh(&bp->phy_lock);
return 0;
}
static int
bnx2_setup_serdes_phy(struct bnx2 *bp, u8 port)
{
u32 adv, bmcr;
u32 new_adv = 0;
if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
return (bnx2_setup_remote_phy(bp, port));
if (!(bp->autoneg & AUTONEG_SPEED)) {
u32 new_bmcr;
int force_link_down = 0;
if (bp->req_line_speed == SPEED_2500) {
if (!bnx2_test_and_enable_2g5(bp))
force_link_down = 1;
} else if (bp->req_line_speed == SPEED_1000) {
if (bnx2_test_and_disable_2g5(bp))
force_link_down = 1;
}
bnx2_read_phy(bp, bp->mii_adv, &adv);
adv &= ~(ADVERTISE_1000XFULL | ADVERTISE_1000XHALF);
bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
new_bmcr = bmcr & ~BMCR_ANENABLE;
new_bmcr |= BMCR_SPEED1000;
if (CHIP_NUM(bp) == CHIP_NUM_5709) {
if (bp->req_line_speed == SPEED_2500)
bnx2_enable_forced_2g5(bp);
else if (bp->req_line_speed == SPEED_1000) {
bnx2_disable_forced_2g5(bp);
new_bmcr &= ~0x2000;
}
} else if (CHIP_NUM(bp) == CHIP_NUM_5708) {
if (bp->req_line_speed == SPEED_2500)
new_bmcr |= BCM5708S_BMCR_FORCE_2500;
else
new_bmcr = bmcr & ~BCM5708S_BMCR_FORCE_2500;
}
if (bp->req_duplex == DUPLEX_FULL) {
adv |= ADVERTISE_1000XFULL;
new_bmcr |= BMCR_FULLDPLX;
}
else {
adv |= ADVERTISE_1000XHALF;
new_bmcr &= ~BMCR_FULLDPLX;
}
if ((new_bmcr != bmcr) || (force_link_down)) {
/* Force a link down visible on the other side */
if (bp->link_up) {
bnx2_write_phy(bp, bp->mii_adv, adv &
~(ADVERTISE_1000XFULL |
ADVERTISE_1000XHALF));
bnx2_write_phy(bp, bp->mii_bmcr, bmcr |
BMCR_ANRESTART | BMCR_ANENABLE);
bp->link_up = 0;
netif_carrier_off(bp->dev);
bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
bnx2_report_link(bp);
}
bnx2_write_phy(bp, bp->mii_adv, adv);
bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
} else {
bnx2_resolve_flow_ctrl(bp);
bnx2_set_mac_link(bp);
}
return 0;
}
bnx2_test_and_enable_2g5(bp);
if (bp->advertising & ADVERTISED_1000baseT_Full)
new_adv |= ADVERTISE_1000XFULL;
new_adv |= bnx2_phy_get_pause_adv(bp);
bnx2_read_phy(bp, bp->mii_adv, &adv);
bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
bp->serdes_an_pending = 0;
if ((adv != new_adv) || ((bmcr & BMCR_ANENABLE) == 0)) {
/* Force a link down visible on the other side */
if (bp->link_up) {
bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
spin_unlock_bh(&bp->phy_lock);
msleep(20);
spin_lock_bh(&bp->phy_lock);
}
bnx2_write_phy(bp, bp->mii_adv, new_adv);
bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART |
BMCR_ANENABLE);
/* Speed up link-up time when the link partner
* does not autonegotiate which is very common
* in blade servers. Some blade servers use
* IPMI for kerboard input and it's important
* to minimize link disruptions. Autoneg. involves
* exchanging base pages plus 3 next pages and
* normally completes in about 120 msec.
*/
bp->current_interval = SERDES_AN_TIMEOUT;
bp->serdes_an_pending = 1;
mod_timer(&bp->timer, jiffies + bp->current_interval);
} else {
bnx2_resolve_flow_ctrl(bp);
bnx2_set_mac_link(bp);
}
return 0;
}
#define ETHTOOL_ALL_FIBRE_SPEED \
(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ? \
(ADVERTISED_2500baseX_Full | ADVERTISED_1000baseT_Full) :\
(ADVERTISED_1000baseT_Full)
#define ETHTOOL_ALL_COPPER_SPEED \
(ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \
ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
ADVERTISED_1000baseT_Full)
#define PHY_ALL_10_100_SPEED (ADVERTISE_10HALF | ADVERTISE_10FULL | \
ADVERTISE_100HALF | ADVERTISE_100FULL | ADVERTISE_CSMA)
#define PHY_ALL_1000_SPEED (ADVERTISE_1000HALF | ADVERTISE_1000FULL)
static void
bnx2_set_default_remote_link(struct bnx2 *bp)
{
u32 link;
if (bp->phy_port == PORT_TP)
link = bnx2_shmem_rd(bp, BNX2_RPHY_COPPER_LINK);
else
link = bnx2_shmem_rd(bp, BNX2_RPHY_SERDES_LINK);
if (link & BNX2_NETLINK_SET_LINK_ENABLE_AUTONEG) {
bp->req_line_speed = 0;
bp->autoneg |= AUTONEG_SPEED;
bp->advertising = ADVERTISED_Autoneg;
if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
bp->advertising |= ADVERTISED_10baseT_Half;
if (link & BNX2_NETLINK_SET_LINK_SPEED_10FULL)
bp->advertising |= ADVERTISED_10baseT_Full;
if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
bp->advertising |= ADVERTISED_100baseT_Half;
if (link & BNX2_NETLINK_SET_LINK_SPEED_100FULL)
bp->advertising |= ADVERTISED_100baseT_Full;
if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
bp->advertising |= ADVERTISED_1000baseT_Full;
if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
bp->advertising |= ADVERTISED_2500baseX_Full;
} else {
bp->autoneg = 0;
bp->advertising = 0;
bp->req_duplex = DUPLEX_FULL;
if (link & BNX2_NETLINK_SET_LINK_SPEED_10) {
bp->req_line_speed = SPEED_10;
if (link & BNX2_NETLINK_SET_LINK_SPEED_10HALF)
bp->req_duplex = DUPLEX_HALF;
}
if (link & BNX2_NETLINK_SET_LINK_SPEED_100) {
bp->req_line_speed = SPEED_100;
if (link & BNX2_NETLINK_SET_LINK_SPEED_100HALF)
bp->req_duplex = DUPLEX_HALF;
}
if (link & BNX2_NETLINK_SET_LINK_SPEED_1GFULL)
bp->req_line_speed = SPEED_1000;
if (link & BNX2_NETLINK_SET_LINK_SPEED_2G5FULL)
bp->req_line_speed = SPEED_2500;
}
}
static void
bnx2_set_default_link(struct bnx2 *bp)
{
if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
bnx2_set_default_remote_link(bp);
return;
}
bp->autoneg = AUTONEG_SPEED | AUTONEG_FLOW_CTRL;
bp->req_line_speed = 0;
if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
u32 reg;
bp->advertising = ETHTOOL_ALL_FIBRE_SPEED | ADVERTISED_Autoneg;
reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG);
reg &= BNX2_PORT_HW_CFG_CFG_DFLT_LINK_MASK;
if (reg == BNX2_PORT_HW_CFG_CFG_DFLT_LINK_1G) {
bp->autoneg = 0;
bp->req_line_speed = bp->line_speed = SPEED_1000;
bp->req_duplex = DUPLEX_FULL;
}
} else
bp->advertising = ETHTOOL_ALL_COPPER_SPEED | ADVERTISED_Autoneg;
}
static void
bnx2_send_heart_beat(struct bnx2 *bp)
{
u32 msg;
u32 addr;
spin_lock(&bp->indirect_lock);
msg = (u32) (++bp->fw_drv_pulse_wr_seq & BNX2_DRV_PULSE_SEQ_MASK);
addr = bp->shmem_base + BNX2_DRV_PULSE_MB;
REG_WR(bp, BNX2_PCICFG_REG_WINDOW_ADDRESS, addr);
REG_WR(bp, BNX2_PCICFG_REG_WINDOW, msg);
spin_unlock(&bp->indirect_lock);
}
static void
bnx2_remote_phy_event(struct bnx2 *bp)
{
u32 msg;
u8 link_up = bp->link_up;
u8 old_port;
msg = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
if (msg & BNX2_LINK_STATUS_HEART_BEAT_EXPIRED)
bnx2_send_heart_beat(bp);
msg &= ~BNX2_LINK_STATUS_HEART_BEAT_EXPIRED;
if ((msg & BNX2_LINK_STATUS_LINK_UP) == BNX2_LINK_STATUS_LINK_DOWN)
bp->link_up = 0;
else {
u32 speed;
bp->link_up = 1;
speed = msg & BNX2_LINK_STATUS_SPEED_MASK;
bp->duplex = DUPLEX_FULL;
switch (speed) {
case BNX2_LINK_STATUS_10HALF:
bp->duplex = DUPLEX_HALF;
case BNX2_LINK_STATUS_10FULL:
bp->line_speed = SPEED_10;
break;
case BNX2_LINK_STATUS_100HALF:
bp->duplex = DUPLEX_HALF;
case BNX2_LINK_STATUS_100BASE_T4:
case BNX2_LINK_STATUS_100FULL:
bp->line_speed = SPEED_100;
break;
case BNX2_LINK_STATUS_1000HALF:
bp->duplex = DUPLEX_HALF;
case BNX2_LINK_STATUS_1000FULL:
bp->line_speed = SPEED_1000;
break;
case BNX2_LINK_STATUS_2500HALF:
bp->duplex = DUPLEX_HALF;
case BNX2_LINK_STATUS_2500FULL:
bp->line_speed = SPEED_2500;
break;
default:
bp->line_speed = 0;
break;
}
bp->flow_ctrl = 0;
if ((bp->autoneg & (AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) !=
(AUTONEG_SPEED | AUTONEG_FLOW_CTRL)) {
if (bp->duplex == DUPLEX_FULL)
bp->flow_ctrl = bp->req_flow_ctrl;
} else {
if (msg & BNX2_LINK_STATUS_TX_FC_ENABLED)
bp->flow_ctrl |= FLOW_CTRL_TX;
if (msg & BNX2_LINK_STATUS_RX_FC_ENABLED)
bp->flow_ctrl |= FLOW_CTRL_RX;
}
old_port = bp->phy_port;
if (msg & BNX2_LINK_STATUS_SERDES_LINK)
bp->phy_port = PORT_FIBRE;
else
bp->phy_port = PORT_TP;
if (old_port != bp->phy_port)
bnx2_set_default_link(bp);
}
if (bp->link_up != link_up)
bnx2_report_link(bp);
bnx2_set_mac_link(bp);
}
static int
bnx2_set_remote_link(struct bnx2 *bp)
{
u32 evt_code;
evt_code = bnx2_shmem_rd(bp, BNX2_FW_EVT_CODE_MB);
switch (evt_code) {
case BNX2_FW_EVT_CODE_LINK_EVENT:
bnx2_remote_phy_event(bp);
break;
case BNX2_FW_EVT_CODE_SW_TIMER_EXPIRATION_EVENT:
default:
bnx2_send_heart_beat(bp);
break;
}
return 0;
}
static int
bnx2_setup_copper_phy(struct bnx2 *bp)
{
u32 bmcr;
u32 new_bmcr;
bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
if (bp->autoneg & AUTONEG_SPEED) {
u32 adv_reg, adv1000_reg;
u32 new_adv_reg = 0;
u32 new_adv1000_reg = 0;
bnx2_read_phy(bp, bp->mii_adv, &adv_reg);
adv_reg &= (PHY_ALL_10_100_SPEED | ADVERTISE_PAUSE_CAP |
ADVERTISE_PAUSE_ASYM);
bnx2_read_phy(bp, MII_CTRL1000, &adv1000_reg);
adv1000_reg &= PHY_ALL_1000_SPEED;
if (bp->advertising & ADVERTISED_10baseT_Half)
new_adv_reg |= ADVERTISE_10HALF;
if (bp->advertising & ADVERTISED_10baseT_Full)
new_adv_reg |= ADVERTISE_10FULL;
if (bp->advertising & ADVERTISED_100baseT_Half)
new_adv_reg |= ADVERTISE_100HALF;
if (bp->advertising & ADVERTISED_100baseT_Full)
new_adv_reg |= ADVERTISE_100FULL;
if (bp->advertising & ADVERTISED_1000baseT_Full)
new_adv1000_reg |= ADVERTISE_1000FULL;
new_adv_reg |= ADVERTISE_CSMA;
new_adv_reg |= bnx2_phy_get_pause_adv(bp);
if ((adv1000_reg != new_adv1000_reg) ||
(adv_reg != new_adv_reg) ||
((bmcr & BMCR_ANENABLE) == 0)) {
bnx2_write_phy(bp, bp->mii_adv, new_adv_reg);
bnx2_write_phy(bp, MII_CTRL1000, new_adv1000_reg);
bnx2_write_phy(bp, bp->mii_bmcr, BMCR_ANRESTART |
BMCR_ANENABLE);
}
else if (bp->link_up) {
/* Flow ctrl may have changed from auto to forced */
/* or vice-versa. */
bnx2_resolve_flow_ctrl(bp);
bnx2_set_mac_link(bp);
}
return 0;
}
new_bmcr = 0;
if (bp->req_line_speed == SPEED_100) {
new_bmcr |= BMCR_SPEED100;
}
if (bp->req_duplex == DUPLEX_FULL) {
new_bmcr |= BMCR_FULLDPLX;
}
if (new_bmcr != bmcr) {
u32 bmsr;
bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
if (bmsr & BMSR_LSTATUS) {
/* Force link down */
bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
spin_unlock_bh(&bp->phy_lock);
msleep(50);
spin_lock_bh(&bp->phy_lock);
bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
bnx2_read_phy(bp, bp->mii_bmsr, &bmsr);
}
bnx2_write_phy(bp, bp->mii_bmcr, new_bmcr);
/* Normally, the new speed is setup after the link has
* gone down and up again. In some cases, link will not go
* down so we need to set up the new speed here.
*/
if (bmsr & BMSR_LSTATUS) {
bp->line_speed = bp->req_line_speed;
bp->duplex = bp->req_duplex;
bnx2_resolve_flow_ctrl(bp);
bnx2_set_mac_link(bp);
}
} else {
bnx2_resolve_flow_ctrl(bp);
bnx2_set_mac_link(bp);
}
return 0;
}
static int
bnx2_setup_phy(struct bnx2 *bp, u8 port)
{
if (bp->loopback == MAC_LOOPBACK)
return 0;
if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
return (bnx2_setup_serdes_phy(bp, port));
}
else {
return (bnx2_setup_copper_phy(bp));
}
}
static int
bnx2_init_5709s_phy(struct bnx2 *bp, int reset_phy)
{
u32 val;
bp->mii_bmcr = MII_BMCR + 0x10;
bp->mii_bmsr = MII_BMSR + 0x10;
bp->mii_bmsr1 = MII_BNX2_GP_TOP_AN_STATUS1;
bp->mii_adv = MII_ADVERTISE + 0x10;
bp->mii_lpa = MII_LPA + 0x10;
bp->mii_up1 = MII_BNX2_OVER1G_UP1;
bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_AER);
bnx2_write_phy(bp, MII_BNX2_AER_AER, MII_BNX2_AER_AER_AN_MMD);
bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
if (reset_phy)
bnx2_reset_phy(bp);
bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_SERDES_DIG);
bnx2_read_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, &val);
val &= ~MII_BNX2_SD_1000XCTL1_AUTODET;
val |= MII_BNX2_SD_1000XCTL1_FIBER;
bnx2_write_phy(bp, MII_BNX2_SERDES_DIG_1000XCTL1, val);
bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_OVER1G);
bnx2_read_phy(bp, MII_BNX2_OVER1G_UP1, &val);
if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
val |= BCM5708S_UP1_2G5;
else
val &= ~BCM5708S_UP1_2G5;
bnx2_write_phy(bp, MII_BNX2_OVER1G_UP1, val);
bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_BAM_NXTPG);
bnx2_read_phy(bp, MII_BNX2_BAM_NXTPG_CTL, &val);
val |= MII_BNX2_NXTPG_CTL_T2 | MII_BNX2_NXTPG_CTL_BAM;
bnx2_write_phy(bp, MII_BNX2_BAM_NXTPG_CTL, val);
bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_CL73_USERB0);
val = MII_BNX2_CL73_BAM_EN | MII_BNX2_CL73_BAM_STA_MGR_EN |
MII_BNX2_CL73_BAM_NP_AFT_BP_EN;
bnx2_write_phy(bp, MII_BNX2_CL73_BAM_CTL1, val);
bnx2_write_phy(bp, MII_BNX2_BLK_ADDR, MII_BNX2_BLK_ADDR_COMBO_IEEEB0);
return 0;
}
static int
bnx2_init_5708s_phy(struct bnx2 *bp, int reset_phy)
{
u32 val;
if (reset_phy)
bnx2_reset_phy(bp);
bp->mii_up1 = BCM5708S_UP1;
bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG3);
bnx2_write_phy(bp, BCM5708S_DIG_3_0, BCM5708S_DIG_3_0_USE_IEEE);
bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
bnx2_read_phy(bp, BCM5708S_1000X_CTL1, &val);
val |= BCM5708S_1000X_CTL1_FIBER_MODE | BCM5708S_1000X_CTL1_AUTODET_EN;
bnx2_write_phy(bp, BCM5708S_1000X_CTL1, val);
bnx2_read_phy(bp, BCM5708S_1000X_CTL2, &val);
val |= BCM5708S_1000X_CTL2_PLLEL_DET_EN;
bnx2_write_phy(bp, BCM5708S_1000X_CTL2, val);
if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) {
bnx2_read_phy(bp, BCM5708S_UP1, &val);
val |= BCM5708S_UP1_2G5;
bnx2_write_phy(bp, BCM5708S_UP1, val);
}
if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
(CHIP_ID(bp) == CHIP_ID_5708_B0) ||
(CHIP_ID(bp) == CHIP_ID_5708_B1)) {
/* increase tx signal amplitude */
bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
BCM5708S_BLK_ADDR_TX_MISC);
bnx2_read_phy(bp, BCM5708S_TX_ACTL1, &val);
val &= ~BCM5708S_TX_ACTL1_DRIVER_VCM;
bnx2_write_phy(bp, BCM5708S_TX_ACTL1, val);
bnx2_write_phy(bp, BCM5708S_BLK_ADDR, BCM5708S_BLK_ADDR_DIG);
}
val = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_CONFIG) &
BNX2_PORT_HW_CFG_CFG_TXCTL3_MASK;
if (val) {
u32 is_backplane;
is_backplane = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
if (is_backplane & BNX2_SHARED_HW_CFG_PHY_BACKPLANE) {
bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
BCM5708S_BLK_ADDR_TX_MISC);
bnx2_write_phy(bp, BCM5708S_TX_ACTL3, val);
bnx2_write_phy(bp, BCM5708S_BLK_ADDR,
BCM5708S_BLK_ADDR_DIG);
}
}
return 0;
}
static int
bnx2_init_5706s_phy(struct bnx2 *bp, int reset_phy)
{
if (reset_phy)
bnx2_reset_phy(bp);
bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
if (CHIP_NUM(bp) == CHIP_NUM_5706)
REG_WR(bp, BNX2_MISC_GP_HW_CTL0, 0x300);
if (bp->dev->mtu > 1500) {
u32 val;
/* Set extended packet length bit */
bnx2_write_phy(bp, 0x18, 0x7);
bnx2_read_phy(bp, 0x18, &val);
bnx2_write_phy(bp, 0x18, (val & 0xfff8) | 0x4000);
bnx2_write_phy(bp, 0x1c, 0x6c00);
bnx2_read_phy(bp, 0x1c, &val);
bnx2_write_phy(bp, 0x1c, (val & 0x3ff) | 0xec02);
}
else {
u32 val;
bnx2_write_phy(bp, 0x18, 0x7);
bnx2_read_phy(bp, 0x18, &val);
bnx2_write_phy(bp, 0x18, val & ~0x4007);
bnx2_write_phy(bp, 0x1c, 0x6c00);
bnx2_read_phy(bp, 0x1c, &val);
bnx2_write_phy(bp, 0x1c, (val & 0x3fd) | 0xec00);
}
return 0;
}
static int
bnx2_init_copper_phy(struct bnx2 *bp, int reset_phy)
{
u32 val;
if (reset_phy)
bnx2_reset_phy(bp);
if (bp->phy_flags & BNX2_PHY_FLAG_CRC_FIX) {
bnx2_write_phy(bp, 0x18, 0x0c00);
bnx2_write_phy(bp, 0x17, 0x000a);
bnx2_write_phy(bp, 0x15, 0x310b);
bnx2_write_phy(bp, 0x17, 0x201f);
bnx2_write_phy(bp, 0x15, 0x9506);
bnx2_write_phy(bp, 0x17, 0x401f);
bnx2_write_phy(bp, 0x15, 0x14e2);
bnx2_write_phy(bp, 0x18, 0x0400);
}
if (bp->phy_flags & BNX2_PHY_FLAG_DIS_EARLY_DAC) {
bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS,
MII_BNX2_DSP_EXPAND_REG | 0x8);
bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &val);
val &= ~(1 << 8);
bnx2_write_phy(bp, MII_BNX2_DSP_RW_PORT, val);
}
if (bp->dev->mtu > 1500) {
/* Set extended packet length bit */
bnx2_write_phy(bp, 0x18, 0x7);
bnx2_read_phy(bp, 0x18, &val);
bnx2_write_phy(bp, 0x18, val | 0x4000);
bnx2_read_phy(bp, 0x10, &val);
bnx2_write_phy(bp, 0x10, val | 0x1);
}
else {
bnx2_write_phy(bp, 0x18, 0x7);
bnx2_read_phy(bp, 0x18, &val);
bnx2_write_phy(bp, 0x18, val & ~0x4007);
bnx2_read_phy(bp, 0x10, &val);
bnx2_write_phy(bp, 0x10, val & ~0x1);
}
/* ethernet@wirespeed */
bnx2_write_phy(bp, 0x18, 0x7007);
bnx2_read_phy(bp, 0x18, &val);
bnx2_write_phy(bp, 0x18, val | (1 << 15) | (1 << 4));
return 0;
}
static int
bnx2_init_phy(struct bnx2 *bp, int reset_phy)
{
u32 val;
int rc = 0;
bp->phy_flags &= ~BNX2_PHY_FLAG_INT_MODE_MASK;
bp->phy_flags |= BNX2_PHY_FLAG_INT_MODE_LINK_READY;
bp->mii_bmcr = MII_BMCR;
bp->mii_bmsr = MII_BMSR;
bp->mii_bmsr1 = MII_BMSR;
bp->mii_adv = MII_ADVERTISE;
bp->mii_lpa = MII_LPA;
REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
goto setup_phy;
bnx2_read_phy(bp, MII_PHYSID1, &val);
bp->phy_id = val << 16;
bnx2_read_phy(bp, MII_PHYSID2, &val);
bp->phy_id |= val & 0xffff;
if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
if (CHIP_NUM(bp) == CHIP_NUM_5706)
rc = bnx2_init_5706s_phy(bp, reset_phy);
else if (CHIP_NUM(bp) == CHIP_NUM_5708)
rc = bnx2_init_5708s_phy(bp, reset_phy);
else if (CHIP_NUM(bp) == CHIP_NUM_5709)
rc = bnx2_init_5709s_phy(bp, reset_phy);
}
else {
rc = bnx2_init_copper_phy(bp, reset_phy);
}
setup_phy:
if (!rc)
rc = bnx2_setup_phy(bp, bp->phy_port);
return rc;
}
static int
bnx2_set_mac_loopback(struct bnx2 *bp)
{
u32 mac_mode;
mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
mac_mode &= ~BNX2_EMAC_MODE_PORT;
mac_mode |= BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK;
REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
bp->link_up = 1;
return 0;
}
static int bnx2_test_link(struct bnx2 *);
static int
bnx2_set_phy_loopback(struct bnx2 *bp)
{
u32 mac_mode;
int rc, i;
spin_lock_bh(&bp->phy_lock);
rc = bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK | BMCR_FULLDPLX |
BMCR_SPEED1000);
spin_unlock_bh(&bp->phy_lock);
if (rc)
return rc;
for (i = 0; i < 10; i++) {
if (bnx2_test_link(bp) == 0)
break;
msleep(100);
}
mac_mode = REG_RD(bp, BNX2_EMAC_MODE);
mac_mode &= ~(BNX2_EMAC_MODE_PORT | BNX2_EMAC_MODE_HALF_DUPLEX |
BNX2_EMAC_MODE_MAC_LOOP | BNX2_EMAC_MODE_FORCE_LINK |
BNX2_EMAC_MODE_25G_MODE);
mac_mode |= BNX2_EMAC_MODE_PORT_GMII;
REG_WR(bp, BNX2_EMAC_MODE, mac_mode);
bp->link_up = 1;
return 0;
}
static int
bnx2_fw_sync(struct bnx2 *bp, u32 msg_data, int ack, int silent)
{
int i;
u32 val;
bp->fw_wr_seq++;
msg_data |= bp->fw_wr_seq;
bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
if (!ack)
return 0;
/* wait for an acknowledgement. */
for (i = 0; i < (FW_ACK_TIME_OUT_MS / 10); i++) {
msleep(10);
val = bnx2_shmem_rd(bp, BNX2_FW_MB);
if ((val & BNX2_FW_MSG_ACK) == (msg_data & BNX2_DRV_MSG_SEQ))
break;
}
if ((msg_data & BNX2_DRV_MSG_DATA) == BNX2_DRV_MSG_DATA_WAIT0)
return 0;
/* If we timed out, inform the firmware that this is the case. */
if ((val & BNX2_FW_MSG_ACK) != (msg_data & BNX2_DRV_MSG_SEQ)) {
if (!silent)
printk(KERN_ERR PFX "fw sync timeout, reset code = "
"%x\n", msg_data);
msg_data &= ~BNX2_DRV_MSG_CODE;
msg_data |= BNX2_DRV_MSG_CODE_FW_TIMEOUT;
bnx2_shmem_wr(bp, BNX2_DRV_MB, msg_data);
return -EBUSY;
}
if ((val & BNX2_FW_MSG_STATUS_MASK) != BNX2_FW_MSG_STATUS_OK)
return -EIO;
return 0;
}
static int
bnx2_init_5709_context(struct bnx2 *bp)
{
int i, ret = 0;
u32 val;
val = BNX2_CTX_COMMAND_ENABLED | BNX2_CTX_COMMAND_MEM_INIT | (1 << 12);
val |= (BCM_PAGE_BITS - 8) << 16;
REG_WR(bp, BNX2_CTX_COMMAND, val);
for (i = 0; i < 10; i++) {
val = REG_RD(bp, BNX2_CTX_COMMAND);
if (!(val & BNX2_CTX_COMMAND_MEM_INIT))
break;
udelay(2);
}
if (val & BNX2_CTX_COMMAND_MEM_INIT)
return -EBUSY;
for (i = 0; i < bp->ctx_pages; i++) {
int j;
if (bp->ctx_blk[i])
memset(bp->ctx_blk[i], 0, BCM_PAGE_SIZE);
else
return -ENOMEM;
REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA0,
(bp->ctx_blk_mapping[i] & 0xffffffff) |
BNX2_CTX_HOST_PAGE_TBL_DATA0_VALID);
REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_DATA1,
(u64) bp->ctx_blk_mapping[i] >> 32);
REG_WR(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL, i |
BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
for (j = 0; j < 10; j++) {
val = REG_RD(bp, BNX2_CTX_HOST_PAGE_TBL_CTRL);
if (!(val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ))
break;
udelay(5);
}
if (val & BNX2_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) {
ret = -EBUSY;
break;
}
}
return ret;
}
static void
bnx2_init_context(struct bnx2 *bp)
{
u32 vcid;
vcid = 96;
while (vcid) {
u32 vcid_addr, pcid_addr, offset;
int i;
vcid--;
if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
u32 new_vcid;
vcid_addr = GET_PCID_ADDR(vcid);
if (vcid & 0x8) {
new_vcid = 0x60 + (vcid & 0xf0) + (vcid & 0x7);
}
else {
new_vcid = vcid;
}
pcid_addr = GET_PCID_ADDR(new_vcid);
}
else {
vcid_addr = GET_CID_ADDR(vcid);
pcid_addr = vcid_addr;
}
for (i = 0; i < (CTX_SIZE / PHY_CTX_SIZE); i++) {
vcid_addr += (i << PHY_CTX_SHIFT);
pcid_addr += (i << PHY_CTX_SHIFT);
REG_WR(bp, BNX2_CTX_VIRT_ADDR, vcid_addr);
REG_WR(bp, BNX2_CTX_PAGE_TBL, pcid_addr);
/* Zero out the context. */
for (offset = 0; offset < PHY_CTX_SIZE; offset += 4)
bnx2_ctx_wr(bp, vcid_addr, offset, 0);
}
}
}
static int
bnx2_alloc_bad_rbuf(struct bnx2 *bp)
{
u16 *good_mbuf;
u32 good_mbuf_cnt;
u32 val;
good_mbuf = kmalloc(512 * sizeof(u16), GFP_KERNEL);
if (good_mbuf == NULL) {
printk(KERN_ERR PFX "Failed to allocate memory in "
"bnx2_alloc_bad_rbuf\n");
return -ENOMEM;
}
REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
BNX2_MISC_ENABLE_SET_BITS_RX_MBUF_ENABLE);
good_mbuf_cnt = 0;
/* Allocate a bunch of mbufs and save the good ones in an array. */
val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
while (val & BNX2_RBUF_STATUS1_FREE_COUNT) {
bnx2_reg_wr_ind(bp, BNX2_RBUF_COMMAND,
BNX2_RBUF_COMMAND_ALLOC_REQ);
val = bnx2_reg_rd_ind(bp, BNX2_RBUF_FW_BUF_ALLOC);
val &= BNX2_RBUF_FW_BUF_ALLOC_VALUE;
/* The addresses with Bit 9 set are bad memory blocks. */
if (!(val & (1 << 9))) {
good_mbuf[good_mbuf_cnt] = (u16) val;
good_mbuf_cnt++;
}
val = bnx2_reg_rd_ind(bp, BNX2_RBUF_STATUS1);
}
/* Free the good ones back to the mbuf pool thus discarding
* all the bad ones. */
while (good_mbuf_cnt) {
good_mbuf_cnt--;
val = good_mbuf[good_mbuf_cnt];
val = (val << 9) | val | 1;
bnx2_reg_wr_ind(bp, BNX2_RBUF_FW_BUF_FREE, val);
}
kfree(good_mbuf);
return 0;
}
static void
bnx2_set_mac_addr(struct bnx2 *bp)
{
u32 val;
u8 *mac_addr = bp->dev->dev_addr;
val = (mac_addr[0] << 8) | mac_addr[1];
REG_WR(bp, BNX2_EMAC_MAC_MATCH0, val);
val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
(mac_addr[4] << 8) | mac_addr[5];
REG_WR(bp, BNX2_EMAC_MAC_MATCH1, val);
}
static inline int
bnx2_alloc_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
{
dma_addr_t mapping;
struct sw_pg *rx_pg = &rxr->rx_pg_ring[index];
struct rx_bd *rxbd =
&rxr->rx_pg_desc_ring[RX_RING(index)][RX_IDX(index)];
struct page *page = alloc_page(GFP_ATOMIC);
if (!page)
return -ENOMEM;
mapping = pci_map_page(bp->pdev, page, 0, PAGE_SIZE,
PCI_DMA_FROMDEVICE);
rx_pg->page = page;
pci_unmap_addr_set(rx_pg, mapping, mapping);
rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
return 0;
}
static void
bnx2_free_rx_page(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
{
struct sw_pg *rx_pg = &rxr->rx_pg_ring[index];
struct page *page = rx_pg->page;
if (!page)
return;
pci_unmap_page(bp->pdev, pci_unmap_addr(rx_pg, mapping), PAGE_SIZE,
PCI_DMA_FROMDEVICE);
__free_page(page);
rx_pg->page = NULL;
}
static inline int
bnx2_alloc_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, u16 index)
{
struct sk_buff *skb;
struct sw_bd *rx_buf = &rxr->rx_buf_ring[index];
dma_addr_t mapping;
struct rx_bd *rxbd = &rxr->rx_desc_ring[RX_RING(index)][RX_IDX(index)];
unsigned long align;
skb = netdev_alloc_skb(bp->dev, bp->rx_buf_size);
if (skb == NULL) {
return -ENOMEM;
}
if (unlikely((align = (unsigned long) skb->data & (BNX2_RX_ALIGN - 1))))
skb_reserve(skb, BNX2_RX_ALIGN - align);
mapping = pci_map_single(bp->pdev, skb->data, bp->rx_buf_use_size,
PCI_DMA_FROMDEVICE);
rx_buf->skb = skb;
pci_unmap_addr_set(rx_buf, mapping, mapping);
rxbd->rx_bd_haddr_hi = (u64) mapping >> 32;
rxbd->rx_bd_haddr_lo = (u64) mapping & 0xffffffff;
rxr->rx_prod_bseq += bp->rx_buf_use_size;
return 0;
}
static int
bnx2_phy_event_is_set(struct bnx2 *bp, struct bnx2_napi *bnapi, u32 event)
{
struct status_block *sblk = bnapi->status_blk.msi;
u32 new_link_state, old_link_state;
int is_set = 1;
new_link_state = sblk->status_attn_bits & event;
old_link_state = sblk->status_attn_bits_ack & event;
if (new_link_state != old_link_state) {
if (new_link_state)
REG_WR(bp, BNX2_PCICFG_STATUS_BIT_SET_CMD, event);
else
REG_WR(bp, BNX2_PCICFG_STATUS_BIT_CLEAR_CMD, event);
} else
is_set = 0;
return is_set;
}
static void
bnx2_phy_int(struct bnx2 *bp, struct bnx2_napi *bnapi)
{
spin_lock(&bp->phy_lock);
if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_LINK_STATE))
bnx2_set_link(bp);
if (bnx2_phy_event_is_set(bp, bnapi, STATUS_ATTN_BITS_TIMER_ABORT))
bnx2_set_remote_link(bp);
spin_unlock(&bp->phy_lock);
}
static inline u16
bnx2_get_hw_tx_cons(struct bnx2_napi *bnapi)
{
u16 cons;
/* Tell compiler that status block fields can change. */
barrier();
cons = *bnapi->hw_tx_cons_ptr;
if (unlikely((cons & MAX_TX_DESC_CNT) == MAX_TX_DESC_CNT))
cons++;
return cons;
}
static int
bnx2_tx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
{
struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
u16 hw_cons, sw_cons, sw_ring_cons;
int tx_pkt = 0;
hw_cons = bnx2_get_hw_tx_cons(bnapi);
sw_cons = txr->tx_cons;
while (sw_cons != hw_cons) {
struct sw_bd *tx_buf;
struct sk_buff *skb;
int i, last;
sw_ring_cons = TX_RING_IDX(sw_cons);
tx_buf = &txr->tx_buf_ring[sw_ring_cons];
skb = tx_buf->skb;
/* partial BD completions possible with TSO packets */
if (skb_is_gso(skb)) {
u16 last_idx, last_ring_idx;
last_idx = sw_cons +
skb_shinfo(skb)->nr_frags + 1;
last_ring_idx = sw_ring_cons +
skb_shinfo(skb)->nr_frags + 1;
if (unlikely(last_ring_idx >= MAX_TX_DESC_CNT)) {
last_idx++;
}
if (((s16) ((s16) last_idx - (s16) hw_cons)) > 0) {
break;
}
}
pci_unmap_single(bp->pdev, pci_unmap_addr(tx_buf, mapping),
skb_headlen(skb), PCI_DMA_TODEVICE);
tx_buf->skb = NULL;
last = skb_shinfo(skb)->nr_frags;
for (i = 0; i < last; i++) {
sw_cons = NEXT_TX_BD(sw_cons);
pci_unmap_page(bp->pdev,
pci_unmap_addr(
&txr->tx_buf_ring[TX_RING_IDX(sw_cons)],
mapping),
skb_shinfo(skb)->frags[i].size,
PCI_DMA_TODEVICE);
}
sw_cons = NEXT_TX_BD(sw_cons);
dev_kfree_skb(skb);
tx_pkt++;
if (tx_pkt == budget)
break;
hw_cons = bnx2_get_hw_tx_cons(bnapi);
}
txr->hw_tx_cons = hw_cons;
txr->tx_cons = sw_cons;
/* Need to make the tx_cons update visible to bnx2_start_xmit()
* before checking for netif_queue_stopped(). Without the
* memory barrier, there is a small possibility that bnx2_start_xmit()
* will miss it and cause the queue to be stopped forever.
*/
smp_mb();
if (unlikely(netif_queue_stopped(bp->dev)) &&
(bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)) {
netif_tx_lock(bp->dev);
if ((netif_queue_stopped(bp->dev)) &&
(bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh))
netif_wake_queue(bp->dev);
netif_tx_unlock(bp->dev);
}
return tx_pkt;
}
static void
bnx2_reuse_rx_skb_pages(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
struct sk_buff *skb, int count)
{
struct sw_pg *cons_rx_pg, *prod_rx_pg;
struct rx_bd *cons_bd, *prod_bd;
dma_addr_t mapping;
int i;
u16 hw_prod = rxr->rx_pg_prod, prod;
u16 cons = rxr->rx_pg_cons;
for (i = 0; i < count; i++) {
prod = RX_PG_RING_IDX(hw_prod);
prod_rx_pg = &rxr->rx_pg_ring[prod];
cons_rx_pg = &rxr->rx_pg_ring[cons];
cons_bd = &rxr->rx_pg_desc_ring[RX_RING(cons)][RX_IDX(cons)];
prod_bd = &rxr->rx_pg_desc_ring[RX_RING(prod)][RX_IDX(prod)];
if (i == 0 && skb) {
struct page *page;
struct skb_shared_info *shinfo;
shinfo = skb_shinfo(skb);
shinfo->nr_frags--;
page = shinfo->frags[shinfo->nr_frags].page;
shinfo->frags[shinfo->nr_frags].page = NULL;
mapping = pci_map_page(bp->pdev, page, 0, PAGE_SIZE,
PCI_DMA_FROMDEVICE);
cons_rx_pg->page = page;
pci_unmap_addr_set(cons_rx_pg, mapping, mapping);
dev_kfree_skb(skb);
}
if (prod != cons) {
prod_rx_pg->page = cons_rx_pg->page;
cons_rx_pg->page = NULL;
pci_unmap_addr_set(prod_rx_pg, mapping,
pci_unmap_addr(cons_rx_pg, mapping));
prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
}
cons = RX_PG_RING_IDX(NEXT_RX_BD(cons));
hw_prod = NEXT_RX_BD(hw_prod);
}
rxr->rx_pg_prod = hw_prod;
rxr->rx_pg_cons = cons;
}
static inline void
bnx2_reuse_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr,
struct sk_buff *skb, u16 cons, u16 prod)
{
struct sw_bd *cons_rx_buf, *prod_rx_buf;
struct rx_bd *cons_bd, *prod_bd;
cons_rx_buf = &rxr->rx_buf_ring[cons];
prod_rx_buf = &rxr->rx_buf_ring[prod];
pci_dma_sync_single_for_device(bp->pdev,
pci_unmap_addr(cons_rx_buf, mapping),
BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH, PCI_DMA_FROMDEVICE);
rxr->rx_prod_bseq += bp->rx_buf_use_size;
prod_rx_buf->skb = skb;
if (cons == prod)
return;
pci_unmap_addr_set(prod_rx_buf, mapping,
pci_unmap_addr(cons_rx_buf, mapping));
cons_bd = &rxr->rx_desc_ring[RX_RING(cons)][RX_IDX(cons)];
prod_bd = &rxr->rx_desc_ring[RX_RING(prod)][RX_IDX(prod)];
prod_bd->rx_bd_haddr_hi = cons_bd->rx_bd_haddr_hi;
prod_bd->rx_bd_haddr_lo = cons_bd->rx_bd_haddr_lo;
}
static int
bnx2_rx_skb(struct bnx2 *bp, struct bnx2_rx_ring_info *rxr, struct sk_buff *skb,
unsigned int len, unsigned int hdr_len, dma_addr_t dma_addr,
u32 ring_idx)
{
int err;
u16 prod = ring_idx & 0xffff;
err = bnx2_alloc_rx_skb(bp, rxr, prod);
if (unlikely(err)) {
bnx2_reuse_rx_skb(bp, rxr, skb, (u16) (ring_idx >> 16), prod);
if (hdr_len) {
unsigned int raw_len = len + 4;
int pages = PAGE_ALIGN(raw_len - hdr_len) >> PAGE_SHIFT;
bnx2_reuse_rx_skb_pages(bp, rxr, NULL, pages);
}
return err;
}
skb_reserve(skb, BNX2_RX_OFFSET);
pci_unmap_single(bp->pdev, dma_addr, bp->rx_buf_use_size,
PCI_DMA_FROMDEVICE);
if (hdr_len == 0) {
skb_put(skb, len);
return 0;
} else {
unsigned int i, frag_len, frag_size, pages;
struct sw_pg *rx_pg;
u16 pg_cons = rxr->rx_pg_cons;
u16 pg_prod = rxr->rx_pg_prod;
frag_size = len + 4 - hdr_len;
pages = PAGE_ALIGN(frag_size) >> PAGE_SHIFT;
skb_put(skb, hdr_len);
for (i = 0; i < pages; i++) {
frag_len = min(frag_size, (unsigned int) PAGE_SIZE);
if (unlikely(frag_len <= 4)) {
unsigned int tail = 4 - frag_len;
rxr->rx_pg_cons = pg_cons;
rxr->rx_pg_prod = pg_prod;
bnx2_reuse_rx_skb_pages(bp, rxr, NULL,
pages - i);
skb->len -= tail;
if (i == 0) {
skb->tail -= tail;
} else {
skb_frag_t *frag =
&skb_shinfo(skb)->frags[i - 1];
frag->size -= tail;
skb->data_len -= tail;
skb->truesize -= tail;
}
return 0;
}
rx_pg = &rxr->rx_pg_ring[pg_cons];
pci_unmap_page(bp->pdev, pci_unmap_addr(rx_pg, mapping),
PAGE_SIZE, PCI_DMA_FROMDEVICE);
if (i == pages - 1)
frag_len -= 4;
skb_fill_page_desc(skb, i, rx_pg->page, 0, frag_len);
rx_pg->page = NULL;
err = bnx2_alloc_rx_page(bp, rxr,
RX_PG_RING_IDX(pg_prod));
if (unlikely(err)) {
rxr->rx_pg_cons = pg_cons;
rxr->rx_pg_prod = pg_prod;
bnx2_reuse_rx_skb_pages(bp, rxr, skb,
pages - i);
return err;
}
frag_size -= frag_len;
skb->data_len += frag_len;
skb->truesize += frag_len;
skb->len += frag_len;
pg_prod = NEXT_RX_BD(pg_prod);
pg_cons = RX_PG_RING_IDX(NEXT_RX_BD(pg_cons));
}
rxr->rx_pg_prod = pg_prod;
rxr->rx_pg_cons = pg_cons;
}
return 0;
}
static inline u16
bnx2_get_hw_rx_cons(struct bnx2_napi *bnapi)
{
u16 cons;
/* Tell compiler that status block fields can change. */
barrier();
cons = *bnapi->hw_rx_cons_ptr;
if (unlikely((cons & MAX_RX_DESC_CNT) == MAX_RX_DESC_CNT))
cons++;
return cons;
}
static int
bnx2_rx_int(struct bnx2 *bp, struct bnx2_napi *bnapi, int budget)
{
struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
u16 hw_cons, sw_cons, sw_ring_cons, sw_prod, sw_ring_prod;
struct l2_fhdr *rx_hdr;
int rx_pkt = 0, pg_ring_used = 0;
hw_cons = bnx2_get_hw_rx_cons(bnapi);
sw_cons = rxr->rx_cons;
sw_prod = rxr->rx_prod;
/* Memory barrier necessary as speculative reads of the rx
* buffer can be ahead of the index in the status block
*/
rmb();
while (sw_cons != hw_cons) {
unsigned int len, hdr_len;
u32 status;
struct sw_bd *rx_buf;
struct sk_buff *skb;
dma_addr_t dma_addr;
sw_ring_cons = RX_RING_IDX(sw_cons);
sw_ring_prod = RX_RING_IDX(sw_prod);
rx_buf = &rxr->rx_buf_ring[sw_ring_cons];
skb = rx_buf->skb;
rx_buf->skb = NULL;
dma_addr = pci_unmap_addr(rx_buf, mapping);
pci_dma_sync_single_for_cpu(bp->pdev, dma_addr,
BNX2_RX_OFFSET + BNX2_RX_COPY_THRESH,
PCI_DMA_FROMDEVICE);
rx_hdr = (struct l2_fhdr *) skb->data;
len = rx_hdr->l2_fhdr_pkt_len;
if ((status = rx_hdr->l2_fhdr_status) &
(L2_FHDR_ERRORS_BAD_CRC |
L2_FHDR_ERRORS_PHY_DECODE |
L2_FHDR_ERRORS_ALIGNMENT |
L2_FHDR_ERRORS_TOO_SHORT |
L2_FHDR_ERRORS_GIANT_FRAME)) {
bnx2_reuse_rx_skb(bp, rxr, skb, sw_ring_cons,
sw_ring_prod);
goto next_rx;
}
hdr_len = 0;
if (status & L2_FHDR_STATUS_SPLIT) {
hdr_len = rx_hdr->l2_fhdr_ip_xsum;
pg_ring_used = 1;
} else if (len > bp->rx_jumbo_thresh) {
hdr_len = bp->rx_jumbo_thresh;
pg_ring_used = 1;
}
len -= 4;
if (len <= bp->rx_copy_thresh) {
struct sk_buff *new_skb;
new_skb = netdev_alloc_skb(bp->dev, len + 2);
if (new_skb == NULL) {
bnx2_reuse_rx_skb(bp, rxr, skb, sw_ring_cons,
sw_ring_prod);
goto next_rx;
}
/* aligned copy */
skb_copy_from_linear_data_offset(skb,
BNX2_RX_OFFSET - 2,
new_skb->data, len + 2);
skb_reserve(new_skb, 2);
skb_put(new_skb, len);
bnx2_reuse_rx_skb(bp, rxr, skb,
sw_ring_cons, sw_ring_prod);
skb = new_skb;
} else if (unlikely(bnx2_rx_skb(bp, rxr, skb, len, hdr_len,
dma_addr, (sw_ring_cons << 16) | sw_ring_prod)))
goto next_rx;
skb->protocol = eth_type_trans(skb, bp->dev);
if ((len > (bp->dev->mtu + ETH_HLEN)) &&
(ntohs(skb->protocol) != 0x8100)) {
dev_kfree_skb(skb);
goto next_rx;
}
skb->ip_summed = CHECKSUM_NONE;
if (bp->rx_csum &&
(status & (L2_FHDR_STATUS_TCP_SEGMENT |
L2_FHDR_STATUS_UDP_DATAGRAM))) {
if (likely((status & (L2_FHDR_ERRORS_TCP_XSUM |
L2_FHDR_ERRORS_UDP_XSUM)) == 0))
skb->ip_summed = CHECKSUM_UNNECESSARY;
}
#ifdef BCM_VLAN
if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) && bp->vlgrp) {
vlan_hwaccel_receive_skb(skb, bp->vlgrp,
rx_hdr->l2_fhdr_vlan_tag);
}
else
#endif
netif_receive_skb(skb);
bp->dev->last_rx = jiffies;
rx_pkt++;
next_rx:
sw_cons = NEXT_RX_BD(sw_cons);
sw_prod = NEXT_RX_BD(sw_prod);
if ((rx_pkt == budget))
break;
/* Refresh hw_cons to see if there is new work */
if (sw_cons == hw_cons) {
hw_cons = bnx2_get_hw_rx_cons(bnapi);
rmb();
}
}
rxr->rx_cons = sw_cons;
rxr->rx_prod = sw_prod;
if (pg_ring_used)
REG_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
REG_WR16(bp, rxr->rx_bidx_addr, sw_prod);
REG_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
mmiowb();
return rx_pkt;
}
/* MSI ISR - The only difference between this and the INTx ISR
* is that the MSI interrupt is always serviced.
*/
static irqreturn_t
bnx2_msi(int irq, void *dev_instance)
{
struct bnx2_napi *bnapi = dev_instance;
struct bnx2 *bp = bnapi->bp;
struct net_device *dev = bp->dev;
prefetch(bnapi->status_blk.msi);
REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
/* Return here if interrupt is disabled. */
if (unlikely(atomic_read(&bp->intr_sem) != 0))
return IRQ_HANDLED;
netif_rx_schedule(dev, &bnapi->napi);
return IRQ_HANDLED;
}
static irqreturn_t
bnx2_msi_1shot(int irq, void *dev_instance)
{
struct bnx2_napi *bnapi = dev_instance;
struct bnx2 *bp = bnapi->bp;
struct net_device *dev = bp->dev;
prefetch(bnapi->status_blk.msi);
/* Return here if interrupt is disabled. */
if (unlikely(atomic_read(&bp->intr_sem) != 0))
return IRQ_HANDLED;
netif_rx_schedule(dev, &bnapi->napi);
return IRQ_HANDLED;
}
static irqreturn_t
bnx2_interrupt(int irq, void *dev_instance)
{
struct bnx2_napi *bnapi = dev_instance;
struct bnx2 *bp = bnapi->bp;
struct net_device *dev = bp->dev;
struct status_block *sblk = bnapi->status_blk.msi;
/* When using INTx, it is possible for the interrupt to arrive
* at the CPU before the status block posted prior to the
* interrupt. Reading a register will flush the status block.
* When using MSI, the MSI message will always complete after
* the status block write.
*/
if ((sblk->status_idx == bnapi->last_status_idx) &&
(REG_RD(bp, BNX2_PCICFG_MISC_STATUS) &
BNX2_PCICFG_MISC_STATUS_INTA_VALUE))
return IRQ_NONE;
REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
BNX2_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
/* Read back to deassert IRQ immediately to avoid too many
* spurious interrupts.
*/
REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD);
/* Return here if interrupt is shared and is disabled. */
if (unlikely(atomic_read(&bp->intr_sem) != 0))
return IRQ_HANDLED;
if (netif_rx_schedule_prep(dev, &bnapi->napi)) {
bnapi->last_status_idx = sblk->status_idx;
__netif_rx_schedule(dev, &bnapi->napi);
}
return IRQ_HANDLED;
}
static inline int
bnx2_has_fast_work(struct bnx2_napi *bnapi)
{
struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
if ((bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons) ||
(bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons))
return 1;
return 0;
}
#define STATUS_ATTN_EVENTS (STATUS_ATTN_BITS_LINK_STATE | \
STATUS_ATTN_BITS_TIMER_ABORT)
static inline int
bnx2_has_work(struct bnx2_napi *bnapi)
{
struct status_block *sblk = bnapi->status_blk.msi;
if (bnx2_has_fast_work(bnapi))
return 1;
if ((sblk->status_attn_bits & STATUS_ATTN_EVENTS) !=
(sblk->status_attn_bits_ack & STATUS_ATTN_EVENTS))
return 1;
return 0;
}
static void bnx2_poll_link(struct bnx2 *bp, struct bnx2_napi *bnapi)
{
struct status_block *sblk = bnapi->status_blk.msi;
u32 status_attn_bits = sblk->status_attn_bits;
u32 status_attn_bits_ack = sblk->status_attn_bits_ack;
if ((status_attn_bits & STATUS_ATTN_EVENTS) !=
(status_attn_bits_ack & STATUS_ATTN_EVENTS)) {
bnx2_phy_int(bp, bnapi);
/* This is needed to take care of transient status
* during link changes.
*/
REG_WR(bp, BNX2_HC_COMMAND,
bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
REG_RD(bp, BNX2_HC_COMMAND);
}
}
static int bnx2_poll_work(struct bnx2 *bp, struct bnx2_napi *bnapi,
int work_done, int budget)
{
struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
if (bnx2_get_hw_tx_cons(bnapi) != txr->hw_tx_cons)
bnx2_tx_int(bp, bnapi, 0);
if (bnx2_get_hw_rx_cons(bnapi) != rxr->rx_cons)
work_done += bnx2_rx_int(bp, bnapi, budget - work_done);
return work_done;
}
static int bnx2_poll_msix(struct napi_struct *napi, int budget)
{
struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
struct bnx2 *bp = bnapi->bp;
int work_done = 0;
struct status_block_msix *sblk = bnapi->status_blk.msix;
while (1) {
work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
if (unlikely(work_done >= budget))
break;
bnapi->last_status_idx = sblk->status_idx;
/* status idx must be read before checking for more work. */
rmb();
if (likely(!bnx2_has_fast_work(bnapi))) {
netif_rx_complete(bp->dev, napi);
REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, bnapi->int_num |
BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
bnapi->last_status_idx);
break;
}
}
return work_done;
}
static int bnx2_poll(struct napi_struct *napi, int budget)
{
struct bnx2_napi *bnapi = container_of(napi, struct bnx2_napi, napi);
struct bnx2 *bp = bnapi->bp;
int work_done = 0;
struct status_block *sblk = bnapi->status_blk.msi;
while (1) {
bnx2_poll_link(bp, bnapi);
work_done = bnx2_poll_work(bp, bnapi, work_done, budget);
if (unlikely(work_done >= budget))
break;
/* bnapi->last_status_idx is used below to tell the hw how
* much work has been processed, so we must read it before
* checking for more work.
*/
bnapi->last_status_idx = sblk->status_idx;
rmb();
if (likely(!bnx2_has_work(bnapi))) {
netif_rx_complete(bp->dev, napi);
if (likely(bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)) {
REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
bnapi->last_status_idx);
break;
}
REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
BNX2_PCICFG_INT_ACK_CMD_MASK_INT |
bnapi->last_status_idx);
REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD,
BNX2_PCICFG_INT_ACK_CMD_INDEX_VALID |
bnapi->last_status_idx);
break;
}
}
return work_done;
}
/* Called with rtnl_lock from vlan functions and also netif_tx_lock
* from set_multicast.
*/
static void
bnx2_set_rx_mode(struct net_device *dev)
{
struct bnx2 *bp = netdev_priv(dev);
u32 rx_mode, sort_mode;
int i;
spin_lock_bh(&bp->phy_lock);
rx_mode = bp->rx_mode & ~(BNX2_EMAC_RX_MODE_PROMISCUOUS |
BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG);
sort_mode = 1 | BNX2_RPM_SORT_USER0_BC_EN;
#ifdef BCM_VLAN
if (!bp->vlgrp && !(bp->flags & BNX2_FLAG_ASF_ENABLE))
rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
#else
if (!(bp->flags & BNX2_FLAG_ASF_ENABLE))
rx_mode |= BNX2_EMAC_RX_MODE_KEEP_VLAN_TAG;
#endif
if (dev->flags & IFF_PROMISC) {
/* Promiscuous mode. */
rx_mode |= BNX2_EMAC_RX_MODE_PROMISCUOUS;
sort_mode |= BNX2_RPM_SORT_USER0_PROM_EN |
BNX2_RPM_SORT_USER0_PROM_VLAN;
}
else if (dev->flags & IFF_ALLMULTI) {
for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
0xffffffff);
}
sort_mode |= BNX2_RPM_SORT_USER0_MC_EN;
}
else {
/* Accept one or more multicast(s). */
struct dev_mc_list *mclist;
u32 mc_filter[NUM_MC_HASH_REGISTERS];
u32 regidx;
u32 bit;
u32 crc;
memset(mc_filter, 0, 4 * NUM_MC_HASH_REGISTERS);
for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count;
i++, mclist = mclist->next) {
crc = ether_crc_le(ETH_ALEN, mclist->dmi_addr);
bit = crc & 0xff;
regidx = (bit & 0xe0) >> 5;
bit &= 0x1f;
mc_filter[regidx] |= (1 << bit);
}
for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
mc_filter[i]);
}
sort_mode |= BNX2_RPM_SORT_USER0_MC_HSH_EN;
}
if (rx_mode != bp->rx_mode) {
bp->rx_mode = rx_mode;
REG_WR(bp, BNX2_EMAC_RX_MODE, rx_mode);
}
REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode);
REG_WR(bp, BNX2_RPM_SORT_USER0, sort_mode | BNX2_RPM_SORT_USER0_ENA);
spin_unlock_bh(&bp->phy_lock);
}
static void
load_rv2p_fw(struct bnx2 *bp, __le32 *rv2p_code, u32 rv2p_code_len,
u32 rv2p_proc)
{
int i;
u32 val;
if (rv2p_proc == RV2P_PROC2 && CHIP_NUM(bp) == CHIP_NUM_5709) {
val = le32_to_cpu(rv2p_code[XI_RV2P_PROC2_MAX_BD_PAGE_LOC]);
val &= ~XI_RV2P_PROC2_BD_PAGE_SIZE_MSK;
val |= XI_RV2P_PROC2_BD_PAGE_SIZE;
rv2p_code[XI_RV2P_PROC2_MAX_BD_PAGE_LOC] = cpu_to_le32(val);
}
for (i = 0; i < rv2p_code_len; i += 8) {
REG_WR(bp, BNX2_RV2P_INSTR_HIGH, le32_to_cpu(*rv2p_code));
rv2p_code++;
REG_WR(bp, BNX2_RV2P_INSTR_LOW, le32_to_cpu(*rv2p_code));
rv2p_code++;
if (rv2p_proc == RV2P_PROC1) {
val = (i / 8) | BNX2_RV2P_PROC1_ADDR_CMD_RDWR;
REG_WR(bp, BNX2_RV2P_PROC1_ADDR_CMD, val);
}
else {
val = (i / 8) | BNX2_RV2P_PROC2_ADDR_CMD_RDWR;
REG_WR(bp, BNX2_RV2P_PROC2_ADDR_CMD, val);
}
}
/* Reset the processor, un-stall is done later. */
if (rv2p_proc == RV2P_PROC1) {
REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC1_RESET);
}
else {
REG_WR(bp, BNX2_RV2P_COMMAND, BNX2_RV2P_COMMAND_PROC2_RESET);
}
}
static int
load_cpu_fw(struct bnx2 *bp, const struct cpu_reg *cpu_reg, struct fw_info *fw)
{
u32 offset;
u32 val;
int rc;
/* Halt the CPU. */
val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
val |= cpu_reg->mode_value_halt;
bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
/* Load the Text area. */
offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
if (fw->gz_text) {
int j;
rc = zlib_inflate_blob(fw->text, FW_BUF_SIZE, fw->gz_text,
fw->gz_text_len);
if (rc < 0)
return rc;
for (j = 0; j < (fw->text_len / 4); j++, offset += 4) {
bnx2_reg_wr_ind(bp, offset, le32_to_cpu(fw->text[j]));
}
}
/* Load the Data area. */
offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
if (fw->data) {
int j;
for (j = 0; j < (fw->data_len / 4); j++, offset += 4) {
bnx2_reg_wr_ind(bp, offset, fw->data[j]);
}
}
/* Load the SBSS area. */
offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
if (fw->sbss_len) {
int j;
for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4) {
bnx2_reg_wr_ind(bp, offset, 0);
}
}
/* Load the BSS area. */
offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
if (fw->bss_len) {
int j;
for (j = 0; j < (fw->bss_len/4); j++, offset += 4) {
bnx2_reg_wr_ind(bp, offset, 0);
}
}
/* Load the Read-Only area. */
offset = cpu_reg->spad_base +
(fw->rodata_addr - cpu_reg->mips_view_base);
if (fw->rodata) {
int j;
for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4) {
bnx2_reg_wr_ind(bp, offset, fw->rodata[j]);
}
}
/* Clear the pre-fetch instruction. */
bnx2_reg_wr_ind(bp, cpu_reg->inst, 0);
bnx2_reg_wr_ind(bp, cpu_reg->pc, fw->start_addr);
/* Start the CPU. */
val = bnx2_reg_rd_ind(bp, cpu_reg->mode);
val &= ~cpu_reg->mode_value_halt;
bnx2_reg_wr_ind(bp, cpu_reg->state, cpu_reg->state_value_clear);
bnx2_reg_wr_ind(bp, cpu_reg->mode, val);
return 0;
}
static int
bnx2_init_cpus(struct bnx2 *bp)
{
struct fw_info *fw;
int rc, rv2p_len;
void *text, *rv2p;
/* Initialize the RV2P processor. */
text = vmalloc(FW_BUF_SIZE);
if (!text)
return -ENOMEM;
if (CHIP_NUM(bp) == CHIP_NUM_5709) {
rv2p = bnx2_xi_rv2p_proc1;
rv2p_len = sizeof(bnx2_xi_rv2p_proc1);
} else {
rv2p = bnx2_rv2p_proc1;
rv2p_len = sizeof(bnx2_rv2p_proc1);
}
rc = zlib_inflate_blob(text, FW_BUF_SIZE, rv2p, rv2p_len);
if (rc < 0)
goto init_cpu_err;
load_rv2p_fw(bp, text, rc /* == len */, RV2P_PROC1);
if (CHIP_NUM(bp) == CHIP_NUM_5709) {
rv2p = bnx2_xi_rv2p_proc2;
rv2p_len = sizeof(bnx2_xi_rv2p_proc2);
} else {
rv2p = bnx2_rv2p_proc2;
rv2p_len = sizeof(bnx2_rv2p_proc2);
}
rc = zlib_inflate_blob(text, FW_BUF_SIZE, rv2p, rv2p_len);
if (rc < 0)
goto init_cpu_err;
load_rv2p_fw(bp, text, rc /* == len */, RV2P_PROC2);
/* Initialize the RX Processor. */
if (CHIP_NUM(bp) == CHIP_NUM_5709)
fw = &bnx2_rxp_fw_09;
else
fw = &bnx2_rxp_fw_06;
fw->text = text;
rc = load_cpu_fw(bp, &cpu_reg_rxp, fw);
if (rc)
goto init_cpu_err;
/* Initialize the TX Processor. */
if (CHIP_NUM(bp) == CHIP_NUM_5709)
fw = &bnx2_txp_fw_09;
else
fw = &bnx2_txp_fw_06;
fw->text = text;
rc = load_cpu_fw(bp, &cpu_reg_txp, fw);
if (rc)
goto init_cpu_err;
/* Initialize the TX Patch-up Processor. */
if (CHIP_NUM(bp) == CHIP_NUM_5709)
fw = &bnx2_tpat_fw_09;
else
fw = &bnx2_tpat_fw_06;
fw->text = text;
rc = load_cpu_fw(bp, &cpu_reg_tpat, fw);
if (rc)
goto init_cpu_err;
/* Initialize the Completion Processor. */
if (CHIP_NUM(bp) == CHIP_NUM_5709)
fw = &bnx2_com_fw_09;
else
fw = &bnx2_com_fw_06;
fw->text = text;
rc = load_cpu_fw(bp, &cpu_reg_com, fw);
if (rc)
goto init_cpu_err;
/* Initialize the Command Processor. */
if (CHIP_NUM(bp) == CHIP_NUM_5709)
fw = &bnx2_cp_fw_09;
else
fw = &bnx2_cp_fw_06;
fw->text = text;
rc = load_cpu_fw(bp, &cpu_reg_cp, fw);
init_cpu_err:
vfree(text);
return rc;
}
static int
bnx2_set_power_state(struct bnx2 *bp, pci_power_t state)
{
u16 pmcsr;
pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmcsr);
switch (state) {
case PCI_D0: {
u32 val;
pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
(pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
PCI_PM_CTRL_PME_STATUS);
if (pmcsr & PCI_PM_CTRL_STATE_MASK)
/* delay required during transition out of D3hot */
msleep(20);
val = REG_RD(bp, BNX2_EMAC_MODE);
val |= BNX2_EMAC_MODE_MPKT_RCVD | BNX2_EMAC_MODE_ACPI_RCVD;
val &= ~BNX2_EMAC_MODE_MPKT;
REG_WR(bp, BNX2_EMAC_MODE, val);
val = REG_RD(bp, BNX2_RPM_CONFIG);
val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
REG_WR(bp, BNX2_RPM_CONFIG, val);
break;
}
case PCI_D3hot: {
int i;
u32 val, wol_msg;
if (bp->wol) {
u32 advertising;
u8 autoneg;
autoneg = bp->autoneg;
advertising = bp->advertising;
if (bp->phy_port == PORT_TP) {
bp->autoneg = AUTONEG_SPEED;
bp->advertising = ADVERTISED_10baseT_Half |
ADVERTISED_10baseT_Full |
ADVERTISED_100baseT_Half |
ADVERTISED_100baseT_Full |
ADVERTISED_Autoneg;
}
spin_lock_bh(&bp->phy_lock);
bnx2_setup_phy(bp, bp->phy_port);
spin_unlock_bh(&bp->phy_lock);
bp->autoneg = autoneg;
bp->advertising = advertising;
bnx2_set_mac_addr(bp);
val = REG_RD(bp, BNX2_EMAC_MODE);
/* Enable port mode. */
val &= ~BNX2_EMAC_MODE_PORT;
val |= BNX2_EMAC_MODE_MPKT_RCVD |
BNX2_EMAC_MODE_ACPI_RCVD |
BNX2_EMAC_MODE_MPKT;
if (bp->phy_port == PORT_TP)
val |= BNX2_EMAC_MODE_PORT_MII;
else {
val |= BNX2_EMAC_MODE_PORT_GMII;
if (bp->line_speed == SPEED_2500)
val |= BNX2_EMAC_MODE_25G_MODE;
}
REG_WR(bp, BNX2_EMAC_MODE, val);
/* receive all multicast */
for (i = 0; i < NUM_MC_HASH_REGISTERS; i++) {
REG_WR(bp, BNX2_EMAC_MULTICAST_HASH0 + (i * 4),
0xffffffff);
}
REG_WR(bp, BNX2_EMAC_RX_MODE,
BNX2_EMAC_RX_MODE_SORT_MODE);
val = 1 | BNX2_RPM_SORT_USER0_BC_EN |
BNX2_RPM_SORT_USER0_MC_EN;
REG_WR(bp, BNX2_RPM_SORT_USER0, 0x0);
REG_WR(bp, BNX2_RPM_SORT_USER0, val);
REG_WR(bp, BNX2_RPM_SORT_USER0, val |
BNX2_RPM_SORT_USER0_ENA);
/* Need to enable EMAC and RPM for WOL. */
REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
BNX2_MISC_ENABLE_SET_BITS_RX_PARSER_MAC_ENABLE |
BNX2_MISC_ENABLE_SET_BITS_TX_HEADER_Q_ENABLE |
BNX2_MISC_ENABLE_SET_BITS_EMAC_ENABLE);
val = REG_RD(bp, BNX2_RPM_CONFIG);
val &= ~BNX2_RPM_CONFIG_ACPI_ENA;
REG_WR(bp, BNX2_RPM_CONFIG, val);
wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
}
else {
wol_msg = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
}
if (!(bp->flags & BNX2_FLAG_NO_WOL))
bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT3 | wol_msg,
1, 0);
pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
(CHIP_ID(bp) == CHIP_ID_5706_A1)) {
if (bp->wol)
pmcsr |= 3;
}
else {
pmcsr |= 3;
}
if (bp->wol) {
pmcsr |= PCI_PM_CTRL_PME_ENABLE;
}
pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL,
pmcsr);
/* No more memory access after this point until
* device is brought back to D0.
*/
udelay(50);
break;
}
default:
return -EINVAL;
}
return 0;
}
static int
bnx2_acquire_nvram_lock(struct bnx2 *bp)
{
u32 val;
int j;
/* Request access to the flash interface. */
REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_SET2);
for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
val = REG_RD(bp, BNX2_NVM_SW_ARB);
if (val & BNX2_NVM_SW_ARB_ARB_ARB2)
break;
udelay(5);
}
if (j >= NVRAM_TIMEOUT_COUNT)
return -EBUSY;
return 0;
}
static int
bnx2_release_nvram_lock(struct bnx2 *bp)
{
int j;
u32 val;
/* Relinquish nvram interface. */
REG_WR(bp, BNX2_NVM_SW_ARB, BNX2_NVM_SW_ARB_ARB_REQ_CLR2);
for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
val = REG_RD(bp, BNX2_NVM_SW_ARB);
if (!(val & BNX2_NVM_SW_ARB_ARB_ARB2))
break;
udelay(5);
}
if (j >= NVRAM_TIMEOUT_COUNT)
return -EBUSY;
return 0;
}
static int
bnx2_enable_nvram_write(struct bnx2 *bp)
{
u32 val;
val = REG_RD(bp, BNX2_MISC_CFG);
REG_WR(bp, BNX2_MISC_CFG, val | BNX2_MISC_CFG_NVM_WR_EN_PCI);
if (bp->flash_info->flags & BNX2_NV_WREN) {
int j;
REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
REG_WR(bp, BNX2_NVM_COMMAND,
BNX2_NVM_COMMAND_WREN | BNX2_NVM_COMMAND_DOIT);
for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
udelay(5);
val = REG_RD(bp, BNX2_NVM_COMMAND);
if (val & BNX2_NVM_COMMAND_DONE)
break;
}
if (j >= NVRAM_TIMEOUT_COUNT)
return -EBUSY;
}
return 0;
}
static void
bnx2_disable_nvram_write(struct bnx2 *bp)
{
u32 val;
val = REG_RD(bp, BNX2_MISC_CFG);
REG_WR(bp, BNX2_MISC_CFG, val & ~BNX2_MISC_CFG_NVM_WR_EN);
}
static void
bnx2_enable_nvram_access(struct bnx2 *bp)
{
u32 val;
val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
/* Enable both bits, even on read. */
REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
val | BNX2_NVM_ACCESS_ENABLE_EN | BNX2_NVM_ACCESS_ENABLE_WR_EN);
}
static void
bnx2_disable_nvram_access(struct bnx2 *bp)
{
u32 val;
val = REG_RD(bp, BNX2_NVM_ACCESS_ENABLE);
/* Disable both bits, even after read. */
REG_WR(bp, BNX2_NVM_ACCESS_ENABLE,
val & ~(BNX2_NVM_ACCESS_ENABLE_EN |
BNX2_NVM_ACCESS_ENABLE_WR_EN));
}
static int
bnx2_nvram_erase_page(struct bnx2 *bp, u32 offset)
{
u32 cmd;
int j;
if (bp->flash_info->flags & BNX2_NV_BUFFERED)
/* Buffered flash, no erase needed */
return 0;
/* Build an erase command */
cmd = BNX2_NVM_COMMAND_ERASE | BNX2_NVM_COMMAND_WR |
BNX2_NVM_COMMAND_DOIT;
/* Need to clear DONE bit separately. */
REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
/* Address of the NVRAM to read from. */
REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
/* Issue an erase command. */
REG_WR(bp, BNX2_NVM_COMMAND, cmd);
/* Wait for completion. */
for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
u32 val;
udelay(5);
val = REG_RD(bp, BNX2_NVM_COMMAND);
if (val & BNX2_NVM_COMMAND_DONE)
break;
}
if (j >= NVRAM_TIMEOUT_COUNT)
return -EBUSY;
return 0;
}
static int
bnx2_nvram_read_dword(struct bnx2 *bp, u32 offset, u8 *ret_val, u32 cmd_flags)
{
u32 cmd;
int j;
/* Build the command word. */
cmd = BNX2_NVM_COMMAND_DOIT | cmd_flags;
/* Calculate an offset of a buffered flash, not needed for 5709. */
if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
offset = ((offset / bp->flash_info->page_size) <<
bp->flash_info->page_bits) +
(offset % bp->flash_info->page_size);
}
/* Need to clear DONE bit separately. */
REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
/* Address of the NVRAM to read from. */
REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
/* Issue a read command. */
REG_WR(bp, BNX2_NVM_COMMAND, cmd);
/* Wait for completion. */
for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
u32 val;
udelay(5);
val = REG_RD(bp, BNX2_NVM_COMMAND);
if (val & BNX2_NVM_COMMAND_DONE) {
__be32 v = cpu_to_be32(REG_RD(bp, BNX2_NVM_READ));
memcpy(ret_val, &v, 4);
break;
}
}
if (j >= NVRAM_TIMEOUT_COUNT)
return -EBUSY;
return 0;
}
static int
bnx2_nvram_write_dword(struct bnx2 *bp, u32 offset, u8 *val, u32 cmd_flags)
{
u32 cmd;
__be32 val32;
int j;
/* Build the command word. */
cmd = BNX2_NVM_COMMAND_DOIT | BNX2_NVM_COMMAND_WR | cmd_flags;
/* Calculate an offset of a buffered flash, not needed for 5709. */
if (bp->flash_info->flags & BNX2_NV_TRANSLATE) {
offset = ((offset / bp->flash_info->page_size) <<
bp->flash_info->page_bits) +
(offset % bp->flash_info->page_size);
}
/* Need to clear DONE bit separately. */
REG_WR(bp, BNX2_NVM_COMMAND, BNX2_NVM_COMMAND_DONE);
memcpy(&val32, val, 4);
/* Write the data. */
REG_WR(bp, BNX2_NVM_WRITE, be32_to_cpu(val32));
/* Address of the NVRAM to write to. */
REG_WR(bp, BNX2_NVM_ADDR, offset & BNX2_NVM_ADDR_NVM_ADDR_VALUE);
/* Issue the write command. */
REG_WR(bp, BNX2_NVM_COMMAND, cmd);
/* Wait for completion. */
for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
udelay(5);
if (REG_RD(bp, BNX2_NVM_COMMAND) & BNX2_NVM_COMMAND_DONE)
break;
}
if (j >= NVRAM_TIMEOUT_COUNT)
return -EBUSY;
return 0;
}
static int
bnx2_init_nvram(struct bnx2 *bp)
{
u32 val;
int j, entry_count, rc = 0;
struct flash_spec *flash;
if (CHIP_NUM(bp) == CHIP_NUM_5709) {
bp->flash_info = &flash_5709;
goto get_flash_size;
}
/* Determine the selected interface. */
val = REG_RD(bp, BNX2_NVM_CFG1);
entry_count = ARRAY_SIZE(flash_table);
if (val & 0x40000000) {
/* Flash interface has been reconfigured */
for (j = 0, flash = &flash_table[0]; j < entry_count;
j++, flash++) {
if ((val & FLASH_BACKUP_STRAP_MASK) ==
(flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
bp->flash_info = flash;
break;
}
}
}
else {
u32 mask;
/* Not yet been reconfigured */
if (val & (1 << 23))
mask = FLASH_BACKUP_STRAP_MASK;
else
mask = FLASH_STRAP_MASK;
for (j = 0, flash = &flash_table[0]; j < entry_count;
j++, flash++) {
if ((val & mask) == (flash->strapping & mask)) {
bp->flash_info = flash;
/* Request access to the flash interface. */
if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
return rc;
/* Enable access to flash interface */
bnx2_enable_nvram_access(bp);
/* Reconfigure the flash interface */
REG_WR(bp, BNX2_NVM_CFG1, flash->config1);
REG_WR(bp, BNX2_NVM_CFG2, flash->config2);
REG_WR(bp, BNX2_NVM_CFG3, flash->config3);
REG_WR(bp, BNX2_NVM_WRITE1, flash->write1);
/* Disable access to flash interface */
bnx2_disable_nvram_access(bp);
bnx2_release_nvram_lock(bp);
break;
}
}
} /* if (val & 0x40000000) */
if (j == entry_count) {
bp->flash_info = NULL;
printk(KERN_ALERT PFX "Unknown flash/EEPROM type.\n");
return -ENODEV;
}
get_flash_size:
val = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG2);
val &= BNX2_SHARED_HW_CFG2_NVM_SIZE_MASK;
if (val)
bp->flash_size = val;
else
bp->flash_size = bp->flash_info->total_size;
return rc;
}
static int
bnx2_nvram_read(struct bnx2 *bp, u32 offset, u8 *ret_buf,
int buf_size)
{
int rc = 0;
u32 cmd_flags, offset32, len32, extra;
if (buf_size == 0)
return 0;
/* Request access to the flash interface. */
if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
return rc;
/* Enable access to flash interface */
bnx2_enable_nvram_access(bp);
len32 = buf_size;
offset32 = offset;
extra = 0;
cmd_flags = 0;
if (offset32 & 3) {
u8 buf[4];
u32 pre_len;
offset32 &= ~3;
pre_len = 4 - (offset & 3);
if (pre_len >= len32) {
pre_len = len32;
cmd_flags = BNX2_NVM_COMMAND_FIRST |
BNX2_NVM_COMMAND_LAST;
}
else {
cmd_flags = BNX2_NVM_COMMAND_FIRST;
}
rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
if (rc)
return rc;
memcpy(ret_buf, buf + (offset & 3), pre_len);
offset32 += 4;
ret_buf += pre_len;
len32 -= pre_len;
}
if (len32 & 3) {
extra = 4 - (len32 & 3);
len32 = (len32 + 4) & ~3;
}
if (len32 == 4) {
u8 buf[4];
if (cmd_flags)
cmd_flags = BNX2_NVM_COMMAND_LAST;
else
cmd_flags = BNX2_NVM_COMMAND_FIRST |
BNX2_NVM_COMMAND_LAST;
rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
memcpy(ret_buf, buf, 4 - extra);
}
else if (len32 > 0) {
u8 buf[4];
/* Read the first word. */
if (cmd_flags)
cmd_flags = 0;
else
cmd_flags = BNX2_NVM_COMMAND_FIRST;
rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, cmd_flags);
/* Advance to the next dword. */
offset32 += 4;
ret_buf += 4;
len32 -= 4;
while (len32 > 4 && rc == 0) {
rc = bnx2_nvram_read_dword(bp, offset32, ret_buf, 0);
/* Advance to the next dword. */
offset32 += 4;
ret_buf += 4;
len32 -= 4;
}
if (rc)
return rc;
cmd_flags = BNX2_NVM_COMMAND_LAST;
rc = bnx2_nvram_read_dword(bp, offset32, buf, cmd_flags);
memcpy(ret_buf, buf, 4 - extra);
}
/* Disable access to flash interface */
bnx2_disable_nvram_access(bp);
bnx2_release_nvram_lock(bp);
return rc;
}
static int
bnx2_nvram_write(struct bnx2 *bp, u32 offset, u8 *data_buf,
int buf_size)
{
u32 written, offset32, len32;
u8 *buf, start[4], end[4], *align_buf = NULL, *flash_buffer = NULL;
int rc = 0;
int align_start, align_end;
buf = data_buf;
offset32 = offset;
len32 = buf_size;
align_start = align_end = 0;
if ((align_start = (offset32 & 3))) {
offset32 &= ~3;
len32 += align_start;
if (len32 < 4)
len32 = 4;
if ((rc = bnx2_nvram_read(bp, offset32, start, 4)))
return rc;
}
if (len32 & 3) {
align_end = 4 - (len32 & 3);
len32 += align_end;
if ((rc = bnx2_nvram_read(bp, offset32 + len32 - 4, end, 4)))
return rc;
}
if (align_start || align_end) {
align_buf = kmalloc(len32, GFP_KERNEL);
if (align_buf == NULL)
return -ENOMEM;
if (align_start) {
memcpy(align_buf, start, 4);
}
if (align_end) {
memcpy(align_buf + len32 - 4, end, 4);
}
memcpy(align_buf + align_start, data_buf, buf_size);
buf = align_buf;
}
if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
flash_buffer = kmalloc(264, GFP_KERNEL);
if (flash_buffer == NULL) {
rc = -ENOMEM;
goto nvram_write_end;
}
}
written = 0;
while ((written < len32) && (rc == 0)) {
u32 page_start, page_end, data_start, data_end;
u32 addr, cmd_flags;
int i;
/* Find the page_start addr */
page_start = offset32 + written;
page_start -= (page_start % bp->flash_info->page_size);
/* Find the page_end addr */
page_end = page_start + bp->flash_info->page_size;
/* Find the data_start addr */
data_start = (written == 0) ? offset32 : page_start;
/* Find the data_end addr */
data_end = (page_end > offset32 + len32) ?
(offset32 + len32) : page_end;
/* Request access to the flash interface. */
if ((rc = bnx2_acquire_nvram_lock(bp)) != 0)
goto nvram_write_end;
/* Enable access to flash interface */
bnx2_enable_nvram_access(bp);
cmd_flags = BNX2_NVM_COMMAND_FIRST;
if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
int j;
/* Read the whole page into the buffer
* (non-buffer flash only) */
for (j = 0; j < bp->flash_info->page_size; j += 4) {
if (j == (bp->flash_info->page_size - 4)) {
cmd_flags |= BNX2_NVM_COMMAND_LAST;
}
rc = bnx2_nvram_read_dword(bp,
page_start + j,
&flash_buffer[j],
cmd_flags);
if (rc)
goto nvram_write_end;
cmd_flags = 0;
}
}
/* Enable writes to flash interface (unlock write-protect) */
if ((rc = bnx2_enable_nvram_write(bp)) != 0)
goto nvram_write_end;
/* Loop to write back the buffer data from page_start to
* data_start */
i = 0;
if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
/* Erase the page */
if ((rc = bnx2_nvram_erase_page(bp, page_start)) != 0)
goto nvram_write_end;
/* Re-enable the write again for the actual write */
bnx2_enable_nvram_write(bp);
for (addr = page_start; addr < data_start;
addr += 4, i += 4) {
rc = bnx2_nvram_write_dword(bp, addr,
&flash_buffer[i], cmd_flags);
if (rc != 0)
goto nvram_write_end;
cmd_flags = 0;
}
}
/* Loop to write the new data from data_start to data_end */
for (addr = data_start; addr < data_end; addr += 4, i += 4) {
if ((addr == page_end - 4) ||
((bp->flash_info->flags & BNX2_NV_BUFFERED) &&
(addr == data_end - 4))) {
cmd_flags |= BNX2_NVM_COMMAND_LAST;
}
rc = bnx2_nvram_write_dword(bp, addr, buf,
cmd_flags);
if (rc != 0)
goto nvram_write_end;
cmd_flags = 0;
buf += 4;
}
/* Loop to write back the buffer data from data_end
* to page_end */
if (!(bp->flash_info->flags & BNX2_NV_BUFFERED)) {
for (addr = data_end; addr < page_end;
addr += 4, i += 4) {
if (addr == page_end-4) {
cmd_flags = BNX2_NVM_COMMAND_LAST;
}
rc = bnx2_nvram_write_dword(bp, addr,
&flash_buffer[i], cmd_flags);
if (rc != 0)
goto nvram_write_end;
cmd_flags = 0;
}
}
/* Disable writes to flash interface (lock write-protect) */
bnx2_disable_nvram_write(bp);
/* Disable access to flash interface */
bnx2_disable_nvram_access(bp);
bnx2_release_nvram_lock(bp);
/* Increment written */
written += data_end - data_start;
}
nvram_write_end:
kfree(flash_buffer);
kfree(align_buf);
return rc;
}
static void
bnx2_init_fw_cap(struct bnx2 *bp)
{
u32 val, sig = 0;
bp->phy_flags &= ~BNX2_PHY_FLAG_REMOTE_PHY_CAP;
bp->flags &= ~BNX2_FLAG_CAN_KEEP_VLAN;
if (!(bp->flags & BNX2_FLAG_ASF_ENABLE))
bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
val = bnx2_shmem_rd(bp, BNX2_FW_CAP_MB);
if ((val & BNX2_FW_CAP_SIGNATURE_MASK) != BNX2_FW_CAP_SIGNATURE)
return;
if ((val & BNX2_FW_CAP_CAN_KEEP_VLAN) == BNX2_FW_CAP_CAN_KEEP_VLAN) {
bp->flags |= BNX2_FLAG_CAN_KEEP_VLAN;
sig |= BNX2_DRV_ACK_CAP_SIGNATURE | BNX2_FW_CAP_CAN_KEEP_VLAN;
}
if ((bp->phy_flags & BNX2_PHY_FLAG_SERDES) &&
(val & BNX2_FW_CAP_REMOTE_PHY_CAPABLE)) {
u32 link;
bp->phy_flags |= BNX2_PHY_FLAG_REMOTE_PHY_CAP;
link = bnx2_shmem_rd(bp, BNX2_LINK_STATUS);
if (link & BNX2_LINK_STATUS_SERDES_LINK)
bp->phy_port = PORT_FIBRE;
else
bp->phy_port = PORT_TP;
sig |= BNX2_DRV_ACK_CAP_SIGNATURE |
BNX2_FW_CAP_REMOTE_PHY_CAPABLE;
}
if (netif_running(bp->dev) && sig)
bnx2_shmem_wr(bp, BNX2_DRV_ACK_CAP_MB, sig);
}
static void
bnx2_setup_msix_tbl(struct bnx2 *bp)
{
REG_WR(bp, BNX2_PCI_GRC_WINDOW_ADDR, BNX2_PCI_GRC_WINDOW_ADDR_SEP_WIN);
REG_WR(bp, BNX2_PCI_GRC_WINDOW2_ADDR, BNX2_MSIX_TABLE_ADDR);
REG_WR(bp, BNX2_PCI_GRC_WINDOW3_ADDR, BNX2_MSIX_PBA_ADDR);
}
static int
bnx2_reset_chip(struct bnx2 *bp, u32 reset_code)
{
u32 val;
int i, rc = 0;
u8 old_port;
/* Wait for the current PCI transaction to complete before
* issuing a reset. */
REG_WR(bp, BNX2_MISC_ENABLE_CLR_BITS,
BNX2_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
BNX2_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
BNX2_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
BNX2_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
val = REG_RD(bp, BNX2_MISC_ENABLE_CLR_BITS);
udelay(5);
/* Wait for the firmware to tell us it is ok to issue a reset. */
bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT0 | reset_code, 1, 1);
/* Deposit a driver reset signature so the firmware knows that
* this is a soft reset. */
bnx2_shmem_wr(bp, BNX2_DRV_RESET_SIGNATURE,
BNX2_DRV_RESET_SIGNATURE_MAGIC);
/* Do a dummy read to force the chip to complete all current transaction
* before we issue a reset. */
val = REG_RD(bp, BNX2_MISC_ID);
if (CHIP_NUM(bp) == CHIP_NUM_5709) {
REG_WR(bp, BNX2_MISC_COMMAND, BNX2_MISC_COMMAND_SW_RESET);
REG_RD(bp, BNX2_MISC_COMMAND);
udelay(5);
val = BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG, val);
} else {
val = BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
/* Chip reset. */
REG_WR(bp, BNX2_PCICFG_MISC_CONFIG, val);
/* Reading back any register after chip reset will hang the
* bus on 5706 A0 and A1. The msleep below provides plenty
* of margin for write posting.
*/
if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
(CHIP_ID(bp) == CHIP_ID_5706_A1))
msleep(20);
/* Reset takes approximate 30 usec */
for (i = 0; i < 10; i++) {
val = REG_RD(bp, BNX2_PCICFG_MISC_CONFIG);
if ((val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0)
break;
udelay(10);
}
if (val & (BNX2_PCICFG_MISC_CONFIG_CORE_RST_REQ |
BNX2_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
printk(KERN_ERR PFX "Chip reset did not complete\n");
return -EBUSY;
}
}
/* Make sure byte swapping is properly configured. */
val = REG_RD(bp, BNX2_PCI_SWAP_DIAG0);
if (val != 0x01020304) {
printk(KERN_ERR PFX "Chip not in correct endian mode\n");
return -ENODEV;
}
/* Wait for the firmware to finish its initialization. */
rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT1 | reset_code, 1, 0);
if (rc)
return rc;
spin_lock_bh(&bp->phy_lock);
old_port = bp->phy_port;
bnx2_init_fw_cap(bp);
if ((bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) &&
old_port != bp->phy_port)
bnx2_set_default_remote_link(bp);
spin_unlock_bh(&bp->phy_lock);
if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
/* Adjust the voltage regular to two steps lower. The default
* of this register is 0x0000000e. */
REG_WR(bp, BNX2_MISC_VREG_CONTROL, 0x000000fa);
/* Remove bad rbuf memory from the free pool. */
rc = bnx2_alloc_bad_rbuf(bp);
}
if (bp->flags & BNX2_FLAG_USING_MSIX)
bnx2_setup_msix_tbl(bp);
return rc;
}
static int
bnx2_init_chip(struct bnx2 *bp)
{
u32 val;
int rc, i;
/* Make sure the interrupt is not active. */
REG_WR(bp, BNX2_PCICFG_INT_ACK_CMD, BNX2_PCICFG_INT_ACK_CMD_MASK_INT);
val = BNX2_DMA_CONFIG_DATA_BYTE_SWAP |
BNX2_DMA_CONFIG_DATA_WORD_SWAP |
#ifdef __BIG_ENDIAN
BNX2_DMA_CONFIG_CNTL_BYTE_SWAP |
#endif
BNX2_DMA_CONFIG_CNTL_WORD_SWAP |
DMA_READ_CHANS << 12 |
DMA_WRITE_CHANS << 16;
val |= (0x2 << 20) | (1 << 11);
if ((bp->flags & BNX2_FLAG_PCIX) && (bp->bus_speed_mhz == 133))
val |= (1 << 23);
if ((CHIP_NUM(bp) == CHIP_NUM_5706) &&
(CHIP_ID(bp) != CHIP_ID_5706_A0) && !(bp->flags & BNX2_FLAG_PCIX))
val |= BNX2_DMA_CONFIG_CNTL_PING_PONG_DMA;
REG_WR(bp, BNX2_DMA_CONFIG, val);
if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
val = REG_RD(bp, BNX2_TDMA_CONFIG);
val |= BNX2_TDMA_CONFIG_ONE_DMA;
REG_WR(bp, BNX2_TDMA_CONFIG, val);
}
if (bp->flags & BNX2_FLAG_PCIX) {
u16 val16;
pci_read_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
&val16);
pci_write_config_word(bp->pdev, bp->pcix_cap + PCI_X_CMD,
val16 & ~PCI_X_CMD_ERO);
}
REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS,
BNX2_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
BNX2_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
BNX2_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
/* Initialize context mapping and zero out the quick contexts. The
* context block must have already been enabled. */
if (CHIP_NUM(bp) == CHIP_NUM_5709) {
rc = bnx2_init_5709_context(bp);
if (rc)
return rc;
} else
bnx2_init_context(bp);
if ((rc = bnx2_init_cpus(bp)) != 0)
return rc;
bnx2_init_nvram(bp);
bnx2_set_mac_addr(bp);
val = REG_RD(bp, BNX2_MQ_CONFIG);
val &= ~BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE;
val |= BNX2_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
if (CHIP_ID(bp) == CHIP_ID_5709_A0 || CHIP_ID(bp) == CHIP_ID_5709_A1)
val |= BNX2_MQ_CONFIG_HALT_DIS;
REG_WR(bp, BNX2_MQ_CONFIG, val);
val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
REG_WR(bp, BNX2_MQ_KNL_BYP_WIND_START, val);
REG_WR(bp, BNX2_MQ_KNL_WIND_END, val);
val = (BCM_PAGE_BITS - 8) << 24;
REG_WR(bp, BNX2_RV2P_CONFIG, val);
/* Configure page size. */
val = REG_RD(bp, BNX2_TBDR_CONFIG);
val &= ~BNX2_TBDR_CONFIG_PAGE_SIZE;
val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
REG_WR(bp, BNX2_TBDR_CONFIG, val);
val = bp->mac_addr[0] +
(bp->mac_addr[1] << 8) +
(bp->mac_addr[2] << 16) +
bp->mac_addr[3] +
(bp->mac_addr[4] << 8) +
(bp->mac_addr[5] << 16);
REG_WR(bp, BNX2_EMAC_BACKOFF_SEED, val);
/* Program the MTU. Also include 4 bytes for CRC32. */
val = bp->dev->mtu + ETH_HLEN + 4;
if (val > (MAX_ETHERNET_PACKET_SIZE + 4))
val |= BNX2_EMAC_RX_MTU_SIZE_JUMBO_ENA;
REG_WR(bp, BNX2_EMAC_RX_MTU_SIZE, val);
for (i = 0; i < BNX2_MAX_MSIX_VEC; i++)
bp->bnx2_napi[i].last_status_idx = 0;
bp->rx_mode = BNX2_EMAC_RX_MODE_SORT_MODE;
/* Set up how to generate a link change interrupt. */
REG_WR(bp, BNX2_EMAC_ATTENTION_ENA, BNX2_EMAC_ATTENTION_ENA_LINK);
REG_WR(bp, BNX2_HC_STATUS_ADDR_L,
(u64) bp->status_blk_mapping & 0xffffffff);
REG_WR(bp, BNX2_HC_STATUS_ADDR_H, (u64) bp->status_blk_mapping >> 32);
REG_WR(bp, BNX2_HC_STATISTICS_ADDR_L,
(u64) bp->stats_blk_mapping & 0xffffffff);
REG_WR(bp, BNX2_HC_STATISTICS_ADDR_H,
(u64) bp->stats_blk_mapping >> 32);
REG_WR(bp, BNX2_HC_TX_QUICK_CONS_TRIP,
(bp->tx_quick_cons_trip_int << 16) | bp->tx_quick_cons_trip);
REG_WR(bp, BNX2_HC_RX_QUICK_CONS_TRIP,
(bp->rx_quick_cons_trip_int << 16) | bp->rx_quick_cons_trip);
REG_WR(bp, BNX2_HC_COMP_PROD_TRIP,
(bp->comp_prod_trip_int << 16) | bp->comp_prod_trip);
REG_WR(bp, BNX2_HC_TX_TICKS, (bp->tx_ticks_int << 16) | bp->tx_ticks);
REG_WR(bp, BNX2_HC_RX_TICKS, (bp->rx_ticks_int << 16) | bp->rx_ticks);
REG_WR(bp, BNX2_HC_COM_TICKS,
(bp->com_ticks_int << 16) | bp->com_ticks);
REG_WR(bp, BNX2_HC_CMD_TICKS,
(bp->cmd_ticks_int << 16) | bp->cmd_ticks);
if (CHIP_NUM(bp) == CHIP_NUM_5708)
REG_WR(bp, BNX2_HC_STATS_TICKS, 0);
else
REG_WR(bp, BNX2_HC_STATS_TICKS, bp->stats_ticks);
REG_WR(bp, BNX2_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
if (CHIP_ID(bp) == CHIP_ID_5706_A1)
val = BNX2_HC_CONFIG_COLLECT_STATS;
else {
val = BNX2_HC_CONFIG_RX_TMR_MODE | BNX2_HC_CONFIG_TX_TMR_MODE |
BNX2_HC_CONFIG_COLLECT_STATS;
}
if (bp->irq_nvecs > 1) {
REG_WR(bp, BNX2_HC_MSIX_BIT_VECTOR,
BNX2_HC_MSIX_BIT_VECTOR_VAL);
val |= BNX2_HC_CONFIG_SB_ADDR_INC_128B;
}
if (bp->flags & BNX2_FLAG_ONE_SHOT_MSI)
val |= BNX2_HC_CONFIG_ONE_SHOT;
REG_WR(bp, BNX2_HC_CONFIG, val);
for (i = 1; i < bp->irq_nvecs; i++) {
u32 base = ((i - 1) * BNX2_HC_SB_CONFIG_SIZE) +
BNX2_HC_SB_CONFIG_1;
REG_WR(bp, base,
BNX2_HC_SB_CONFIG_1_TX_TMR_MODE |
BNX2_HC_SB_CONFIG_1_RX_TMR_MODE |
BNX2_HC_SB_CONFIG_1_ONE_SHOT);
REG_WR(bp, base + BNX2_HC_TX_QUICK_CONS_TRIP_OFF,
(bp->tx_quick_cons_trip_int << 16) |
bp->tx_quick_cons_trip);
REG_WR(bp, base + BNX2_HC_TX_TICKS_OFF,
(bp->tx_ticks_int << 16) | bp->tx_ticks);
REG_WR(bp, base + BNX2_HC_RX_QUICK_CONS_TRIP_OFF,
(bp->rx_quick_cons_trip_int << 16) |
bp->rx_quick_cons_trip);
REG_WR(bp, base + BNX2_HC_RX_TICKS_OFF,
(bp->rx_ticks_int << 16) | bp->rx_ticks);
}
/* Clear internal stats counters. */
REG_WR(bp, BNX2_HC_COMMAND, BNX2_HC_COMMAND_CLR_STAT_NOW);
REG_WR(bp, BNX2_HC_ATTN_BITS_ENABLE, STATUS_ATTN_EVENTS);
/* Initialize the receive filter. */
bnx2_set_rx_mode(bp->dev);
if (CHIP_NUM(bp) == CHIP_NUM_5709) {
val = REG_RD(bp, BNX2_MISC_NEW_CORE_CTL);
val |= BNX2_MISC_NEW_CORE_CTL_DMA_ENABLE;
REG_WR(bp, BNX2_MISC_NEW_CORE_CTL, val);
}
rc = bnx2_fw_sync(bp, BNX2_DRV_MSG_DATA_WAIT2 | BNX2_DRV_MSG_CODE_RESET,
1, 0);
REG_WR(bp, BNX2_MISC_ENABLE_SET_BITS, BNX2_MISC_ENABLE_DEFAULT);
REG_RD(bp, BNX2_MISC_ENABLE_SET_BITS);
udelay(20);
bp->hc_cmd = REG_RD(bp, BNX2_HC_COMMAND);
return rc;
}
static void
bnx2_clear_ring_states(struct bnx2 *bp)
{
struct bnx2_napi *bnapi;
struct bnx2_tx_ring_info *txr;
struct bnx2_rx_ring_info *rxr;
int i;
for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
bnapi = &bp->bnx2_napi[i];
txr = &bnapi->tx_ring;
rxr = &bnapi->rx_ring;
txr->tx_cons = 0;
txr->hw_tx_cons = 0;
rxr->rx_prod_bseq = 0;
rxr->rx_prod = 0;
rxr->rx_cons = 0;
rxr->rx_pg_prod = 0;
rxr->rx_pg_cons = 0;
}
}
static void
bnx2_init_tx_context(struct bnx2 *bp, u32 cid, struct bnx2_tx_ring_info *txr)
{
u32 val, offset0, offset1, offset2, offset3;
u32 cid_addr = GET_CID_ADDR(cid);
if (CHIP_NUM(bp) == CHIP_NUM_5709) {
offset0 = BNX2_L2CTX_TYPE_XI;
offset1 = BNX2_L2CTX_CMD_TYPE_XI;
offset2 = BNX2_L2CTX_TBDR_BHADDR_HI_XI;
offset3 = BNX2_L2CTX_TBDR_BHADDR_LO_XI;
} else {
offset0 = BNX2_L2CTX_TYPE;
offset1 = BNX2_L2CTX_CMD_TYPE;
offset2 = BNX2_L2CTX_TBDR_BHADDR_HI;
offset3 = BNX2_L2CTX_TBDR_BHADDR_LO;
}
val = BNX2_L2CTX_TYPE_TYPE_L2 | BNX2_L2CTX_TYPE_SIZE_L2;
bnx2_ctx_wr(bp, cid_addr, offset0, val);
val = BNX2_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
bnx2_ctx_wr(bp, cid_addr, offset1, val);
val = (u64) txr->tx_desc_mapping >> 32;
bnx2_ctx_wr(bp, cid_addr, offset2, val);
val = (u64) txr->tx_desc_mapping & 0xffffffff;
bnx2_ctx_wr(bp, cid_addr, offset3, val);
}
static void
bnx2_init_tx_ring(struct bnx2 *bp, int ring_num)
{
struct tx_bd *txbd;
u32 cid = TX_CID;
struct bnx2_napi *bnapi;
struct bnx2_tx_ring_info *txr;
bnapi = &bp->bnx2_napi[ring_num];
txr = &bnapi->tx_ring;
if (ring_num == 0)
cid = TX_CID;
else
cid = TX_TSS_CID + ring_num - 1;
bp->tx_wake_thresh = bp->tx_ring_size / 2;
txbd = &txr->tx_desc_ring[MAX_TX_DESC_CNT];
txbd->tx_bd_haddr_hi = (u64) txr->tx_desc_mapping >> 32;
txbd->tx_bd_haddr_lo = (u64) txr->tx_desc_mapping & 0xffffffff;
txr->tx_prod = 0;
txr->tx_prod_bseq = 0;
txr->tx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BIDX;
txr->tx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_TX_HOST_BSEQ;
bnx2_init_tx_context(bp, cid, txr);
}
static void
bnx2_init_rxbd_rings(struct rx_bd *rx_ring[], dma_addr_t dma[], u32 buf_size,
int num_rings)
{
int i;
struct rx_bd *rxbd;
for (i = 0; i < num_rings; i++) {
int j;
rxbd = &rx_ring[i][0];
for (j = 0; j < MAX_RX_DESC_CNT; j++, rxbd++) {
rxbd->rx_bd_len = buf_size;
rxbd->rx_bd_flags = RX_BD_FLAGS_START | RX_BD_FLAGS_END;
}
if (i == (num_rings - 1))
j = 0;
else
j = i + 1;
rxbd->rx_bd_haddr_hi = (u64) dma[j] >> 32;
rxbd->rx_bd_haddr_lo = (u64) dma[j] & 0xffffffff;
}
}
static void
bnx2_init_rx_ring(struct bnx2 *bp, int ring_num)
{
int i;
u16 prod, ring_prod;
u32 cid, rx_cid_addr, val;
struct bnx2_napi *bnapi = &bp->bnx2_napi[ring_num];
struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
if (ring_num == 0)
cid = RX_CID;
else
cid = RX_RSS_CID + ring_num - 1;
rx_cid_addr = GET_CID_ADDR(cid);
bnx2_init_rxbd_rings(rxr->rx_desc_ring, rxr->rx_desc_mapping,
bp->rx_buf_use_size, bp->rx_max_ring);
bnx2_init_rx_context(bp, cid);
if (CHIP_NUM(bp) == CHIP_NUM_5709) {
val = REG_RD(bp, BNX2_MQ_MAP_L2_5);
REG_WR(bp, BNX2_MQ_MAP_L2_5, val | BNX2_MQ_MAP_L2_5_ARM);
}
bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, 0);
if (bp->rx_pg_ring_size) {
bnx2_init_rxbd_rings(rxr->rx_pg_desc_ring,
rxr->rx_pg_desc_mapping,
PAGE_SIZE, bp->rx_max_pg_ring);
val = (bp->rx_buf_use_size << 16) | PAGE_SIZE;
bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_PG_BUF_SIZE, val);
bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_RBDC_KEY,
BNX2_L2CTX_RBDC_JUMBO_KEY - ring_num);
val = (u64) rxr->rx_pg_desc_mapping[0] >> 32;
bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_HI, val);
val = (u64) rxr->rx_pg_desc_mapping[0] & 0xffffffff;
bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_PG_BDHADDR_LO, val);
if (CHIP_NUM(bp) == CHIP_NUM_5709)
REG_WR(bp, BNX2_MQ_MAP_L2_3, BNX2_MQ_MAP_L2_3_DEFAULT);
}
val = (u64) rxr->rx_desc_mapping[0] >> 32;
bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_HI, val);
val = (u64) rxr->rx_desc_mapping[0] & 0xffffffff;
bnx2_ctx_wr(bp, rx_cid_addr, BNX2_L2CTX_NX_BDHADDR_LO, val);
ring_prod = prod = rxr->rx_pg_prod;
for (i = 0; i < bp->rx_pg_ring_size; i++) {
if (bnx2_alloc_rx_page(bp, rxr, ring_prod) < 0)
break;
prod = NEXT_RX_BD(prod);
ring_prod = RX_PG_RING_IDX(prod);
}
rxr->rx_pg_prod = prod;
ring_prod = prod = rxr->rx_prod;
for (i = 0; i < bp->rx_ring_size; i++) {
if (bnx2_alloc_rx_skb(bp, rxr, ring_prod) < 0)
break;
prod = NEXT_RX_BD(prod);
ring_prod = RX_RING_IDX(prod);
}
rxr->rx_prod = prod;
rxr->rx_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BDIDX;
rxr->rx_bseq_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_BSEQ;
rxr->rx_pg_bidx_addr = MB_GET_CID_ADDR(cid) + BNX2_L2CTX_HOST_PG_BDIDX;
REG_WR16(bp, rxr->rx_pg_bidx_addr, rxr->rx_pg_prod);
REG_WR16(bp, rxr->rx_bidx_addr, prod);
REG_WR(bp, rxr->rx_bseq_addr, rxr->rx_prod_bseq);
}
static void
bnx2_init_all_rings(struct bnx2 *bp)
{
int i;
u32 val;
bnx2_clear_ring_states(bp);
REG_WR(bp, BNX2_TSCH_TSS_CFG, 0);
for (i = 0; i < bp->num_tx_rings; i++)
bnx2_init_tx_ring(bp, i);
if (bp->num_tx_rings > 1)
REG_WR(bp, BNX2_TSCH_TSS_CFG, ((bp->num_tx_rings - 1) << 24) |
(TX_TSS_CID << 7));
REG_WR(bp, BNX2_RLUP_RSS_CONFIG, 0);
bnx2_reg_wr_ind(bp, BNX2_RXP_SCRATCH_RSS_TBL_SZ, 0);
for (i = 0; i < bp->num_rx_rings; i++)
bnx2_init_rx_ring(bp, i);
if (bp->num_rx_rings > 1) {
u32 tbl_32;
u8 *tbl = (u8 *) &tbl_32;
bnx2_reg_wr_ind(bp, BNX2_RXP_SCRATCH_RSS_TBL_SZ,
BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES);
for (i = 0; i < BNX2_RXP_SCRATCH_RSS_TBL_MAX_ENTRIES; i++) {
tbl[i % 4] = i % (bp->num_rx_rings - 1);
if ((i % 4) == 3)
bnx2_reg_wr_ind(bp,
BNX2_RXP_SCRATCH_RSS_TBL + i,
cpu_to_be32(tbl_32));
}
val = BNX2_RLUP_RSS_CONFIG_IPV4_RSS_TYPE_ALL_XI |
BNX2_RLUP_RSS_CONFIG_IPV6_RSS_TYPE_ALL_XI;
REG_WR(bp, BNX2_RLUP_RSS_CONFIG, val);
}
}
static u32 bnx2_find_max_ring(u32 ring_size, u32 max_size)
{
u32 max, num_rings = 1;
while (ring_size > MAX_RX_DESC_CNT) {
ring_size -= MAX_RX_DESC_CNT;
num_rings++;
}
/* round to next power of 2 */
max = max_size;
while ((max & num_rings) == 0)
max >>= 1;
if (num_rings != max)
max <<= 1;
return max;
}
static void
bnx2_set_rx_ring_size(struct bnx2 *bp, u32 size)
{
u32 rx_size, rx_space, jumbo_size;
/* 8 for CRC and VLAN */
rx_size = bp->dev->mtu + ETH_HLEN + BNX2_RX_OFFSET + 8;
rx_space = SKB_DATA_ALIGN(rx_size + BNX2_RX_ALIGN) + NET_SKB_PAD +
sizeof(struct skb_shared_info);
bp->rx_copy_thresh = BNX2_RX_COPY_THRESH;
bp->rx_pg_ring_size = 0;
bp->rx_max_pg_ring = 0;
bp->rx_max_pg_ring_idx = 0;
if ((rx_space > PAGE_SIZE) && !(bp->flags & BNX2_FLAG_JUMBO_BROKEN)) {
int pages = PAGE_ALIGN(bp->dev->mtu - 40) >> PAGE_SHIFT;
jumbo_size = size * pages;
if (jumbo_size > MAX_TOTAL_RX_PG_DESC_CNT)
jumbo_size = MAX_TOTAL_RX_PG_DESC_CNT;
bp->rx_pg_ring_size = jumbo_size;
bp->rx_max_pg_ring = bnx2_find_max_ring(jumbo_size,
MAX_RX_PG_RINGS);
bp->rx_max_pg_ring_idx = (bp->rx_max_pg_ring * RX_DESC_CNT) - 1;
rx_size = BNX2_RX_COPY_THRESH + BNX2_RX_OFFSET;
bp->rx_copy_thresh = 0;
}
bp->rx_buf_use_size = rx_size;
/* hw alignment */
bp->rx_buf_size = bp->rx_buf_use_size + BNX2_RX_ALIGN;
bp->rx_jumbo_thresh = rx_size - BNX2_RX_OFFSET;
bp->rx_ring_size = size;
bp->rx_max_ring = bnx2_find_max_ring(size, MAX_RX_RINGS);
bp->rx_max_ring_idx = (bp->rx_max_ring * RX_DESC_CNT) - 1;
}
static void
bnx2_free_tx_skbs(struct bnx2 *bp)
{
int i;
for (i = 0; i < bp->num_tx_rings; i++) {
struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
int j;
if (txr->tx_buf_ring == NULL)
continue;
for (j = 0; j < TX_DESC_CNT; ) {
struct sw_bd *tx_buf = &txr->tx_buf_ring[j];
struct sk_buff *skb = tx_buf->skb;
int k, last;
if (skb == NULL) {
j++;
continue;
}
pci_unmap_single(bp->pdev,
pci_unmap_addr(tx_buf, mapping),
skb_headlen(skb), PCI_DMA_TODEVICE);
tx_buf->skb = NULL;
last = skb_shinfo(skb)->nr_frags;
for (k = 0; k < last; k++) {
tx_buf = &txr->tx_buf_ring[j + k + 1];
pci_unmap_page(bp->pdev,
pci_unmap_addr(tx_buf, mapping),
skb_shinfo(skb)->frags[j].size,
PCI_DMA_TODEVICE);
}
dev_kfree_skb(skb);
j += k + 1;
}
}
}
static void
bnx2_free_rx_skbs(struct bnx2 *bp)
{
int i;
for (i = 0; i < bp->num_rx_rings; i++) {
struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
int j;
if (rxr->rx_buf_ring == NULL)
return;
for (j = 0; j < bp->rx_max_ring_idx; j++) {
struct sw_bd *rx_buf = &rxr->rx_buf_ring[j];
struct sk_buff *skb = rx_buf->skb;
if (skb == NULL)
continue;
pci_unmap_single(bp->pdev,
pci_unmap_addr(rx_buf, mapping),
bp->rx_buf_use_size,
PCI_DMA_FROMDEVICE);
rx_buf->skb = NULL;
dev_kfree_skb(skb);
}
for (j = 0; j < bp->rx_max_pg_ring_idx; j++)
bnx2_free_rx_page(bp, rxr, j);
}
}
static void
bnx2_free_skbs(struct bnx2 *bp)
{
bnx2_free_tx_skbs(bp);
bnx2_free_rx_skbs(bp);
}
static int
bnx2_reset_nic(struct bnx2 *bp, u32 reset_code)
{
int rc;
rc = bnx2_reset_chip(bp, reset_code);
bnx2_free_skbs(bp);
if (rc)
return rc;
if ((rc = bnx2_init_chip(bp)) != 0)
return rc;
bnx2_init_all_rings(bp);
return 0;
}
static int
bnx2_init_nic(struct bnx2 *bp, int reset_phy)
{
int rc;
if ((rc = bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET)) != 0)
return rc;
spin_lock_bh(&bp->phy_lock);
bnx2_init_phy(bp, reset_phy);
bnx2_set_link(bp);
if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
bnx2_remote_phy_event(bp);
spin_unlock_bh(&bp->phy_lock);
return 0;
}
static int
bnx2_test_registers(struct bnx2 *bp)
{
int ret;
int i, is_5709;
static const struct {
u16 offset;
u16 flags;
#define BNX2_FL_NOT_5709 1
u32 rw_mask;
u32 ro_mask;
} reg_tbl[] = {
{ 0x006c, 0, 0x00000000, 0x0000003f },
{ 0x0090, 0, 0xffffffff, 0x00000000 },
{ 0x0094, 0, 0x00000000, 0x00000000 },
{ 0x0404, BNX2_FL_NOT_5709, 0x00003f00, 0x00000000 },
{ 0x0418, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
{ 0x041c, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
{ 0x0420, BNX2_FL_NOT_5709, 0x00000000, 0x80ffffff },
{ 0x0424, BNX2_FL_NOT_5709, 0x00000000, 0x00000000 },
{ 0x0428, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
{ 0x0450, BNX2_FL_NOT_5709, 0x00000000, 0x0000ffff },
{ 0x0454, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
{ 0x0458, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
{ 0x0808, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
{ 0x0854, BNX2_FL_NOT_5709, 0x00000000, 0xffffffff },
{ 0x0868, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
{ 0x086c, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
{ 0x0870, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
{ 0x0874, BNX2_FL_NOT_5709, 0x00000000, 0x77777777 },
{ 0x0c00, BNX2_FL_NOT_5709, 0x00000000, 0x00000001 },
{ 0x0c04, BNX2_FL_NOT_5709, 0x00000000, 0x03ff0001 },
{ 0x0c08, BNX2_FL_NOT_5709, 0x0f0ff073, 0x00000000 },
{ 0x1000, 0, 0x00000000, 0x00000001 },
{ 0x1004, BNX2_FL_NOT_5709, 0x00000000, 0x000f0001 },
{ 0x1408, 0, 0x01c00800, 0x00000000 },
{ 0x149c, 0, 0x8000ffff, 0x00000000 },
{ 0x14a8, 0, 0x00000000, 0x000001ff },
{ 0x14ac, 0, 0x0fffffff, 0x10000000 },
{ 0x14b0, 0, 0x00000002, 0x00000001 },
{ 0x14b8, 0, 0x00000000, 0x00000000 },
{ 0x14c0, 0, 0x00000000, 0x00000009 },
{ 0x14c4, 0, 0x00003fff, 0x00000000 },
{ 0x14cc, 0, 0x00000000, 0x00000001 },
{ 0x14d0, 0, 0xffffffff, 0x00000000 },
{ 0x1800, 0, 0x00000000, 0x00000001 },
{ 0x1804, 0, 0x00000000, 0x00000003 },
{ 0x2800, 0, 0x00000000, 0x00000001 },
{ 0x2804, 0, 0x00000000, 0x00003f01 },
{ 0x2808, 0, 0x0f3f3f03, 0x00000000 },
{ 0x2810, 0, 0xffff0000, 0x00000000 },
{ 0x2814, 0, 0xffff0000, 0x00000000 },
{ 0x2818, 0, 0xffff0000, 0x00000000 },
{ 0x281c, 0, 0xffff0000, 0x00000000 },
{ 0x2834, 0, 0xffffffff, 0x00000000 },
{ 0x2840, 0, 0x00000000, 0xffffffff },
{ 0x2844, 0, 0x00000000, 0xffffffff },
{ 0x2848, 0, 0xffffffff, 0x00000000 },
{ 0x284c, 0, 0xf800f800, 0x07ff07ff },
{ 0x2c00, 0, 0x00000000, 0x00000011 },
{ 0x2c04, 0, 0x00000000, 0x00030007 },
{ 0x3c00, 0, 0x00000000, 0x00000001 },
{ 0x3c04, 0, 0x00000000, 0x00070000 },
{ 0x3c08, 0, 0x00007f71, 0x07f00000 },
{ 0x3c0c, 0, 0x1f3ffffc, 0x00000000 },
{ 0x3c10, 0, 0xffffffff, 0x00000000 },
{ 0x3c14, 0, 0x00000000, 0xffffffff },
{ 0x3c18, 0, 0x00000000, 0xffffffff },
{ 0x3c1c, 0, 0xfffff000, 0x00000000 },
{ 0x3c20, 0, 0xffffff00, 0x00000000 },
{ 0x5004, 0, 0x00000000, 0x0000007f },
{ 0x5008, 0, 0x0f0007ff, 0x00000000 },
{ 0x5c00, 0, 0x00000000, 0x00000001 },
{ 0x5c04, 0, 0x00000000, 0x0003000f },
{ 0x5c08, 0, 0x00000003, 0x00000000 },
{ 0x5c0c, 0, 0x0000fff8, 0x00000000 },
{ 0x5c10, 0, 0x00000000, 0xffffffff },
{ 0x5c80, 0, 0x00000000, 0x0f7113f1 },
{ 0x5c84, 0, 0x00000000, 0x0000f333 },
{ 0x5c88, 0, 0x00000000, 0x00077373 },
{ 0x5c8c, 0, 0x00000000, 0x0007f737 },
{ 0x6808, 0, 0x0000ff7f, 0x00000000 },
{ 0x680c, 0, 0xffffffff, 0x00000000 },
{ 0x6810, 0, 0xffffffff, 0x00000000 },
{ 0x6814, 0, 0xffffffff, 0x00000000 },
{ 0x6818, 0, 0xffffffff, 0x00000000 },
{ 0x681c, 0, 0xffffffff, 0x00000000 },
{ 0x6820, 0, 0x00ff00ff, 0x00000000 },
{ 0x6824, 0, 0x00ff00ff, 0x00000000 },
{ 0x6828, 0, 0x00ff00ff, 0x00000000 },
{ 0x682c, 0, 0x03ff03ff, 0x00000000 },
{ 0x6830, 0, 0x03ff03ff, 0x00000000 },
{ 0x6834, 0, 0x03ff03ff, 0x00000000 },
{ 0x6838, 0, 0x03ff03ff, 0x00000000 },
{ 0x683c, 0, 0x0000ffff, 0x00000000 },
{ 0x6840, 0, 0x00000ff0, 0x00000000 },
{ 0x6844, 0, 0x00ffff00, 0x00000000 },
{ 0x684c, 0, 0xffffffff, 0x00000000 },
{ 0x6850, 0, 0x7f7f7f7f, 0x00000000 },
{ 0x6854, 0, 0x7f7f7f7f, 0x00000000 },
{ 0x6858, 0, 0x7f7f7f7f, 0x00000000 },
{ 0x685c, 0, 0x7f7f7f7f, 0x00000000 },
{ 0x6908, 0, 0x00000000, 0x0001ff0f },
{ 0x690c, 0, 0x00000000, 0x0ffe00f0 },
{ 0xffff, 0, 0x00000000, 0x00000000 },
};
ret = 0;
is_5709 = 0;
if (CHIP_NUM(bp) == CHIP_NUM_5709)
is_5709 = 1;
for (i = 0; reg_tbl[i].offset != 0xffff; i++) {
u32 offset, rw_mask, ro_mask, save_val, val;
u16 flags = reg_tbl[i].flags;
if (is_5709 && (flags & BNX2_FL_NOT_5709))
continue;
offset = (u32) reg_tbl[i].offset;
rw_mask = reg_tbl[i].rw_mask;
ro_mask = reg_tbl[i].ro_mask;
save_val = readl(bp->regview + offset);
writel(0, bp->regview + offset);
val = readl(bp->regview + offset);
if ((val & rw_mask) != 0) {
goto reg_test_err;
}
if ((val & ro_mask) != (save_val & ro_mask)) {
goto reg_test_err;
}
writel(0xffffffff, bp->regview + offset);
val = readl(bp->regview + offset);
if ((val & rw_mask) != rw_mask) {
goto reg_test_err;
}
if ((val & ro_mask) != (save_val & ro_mask)) {
goto reg_test_err;
}
writel(save_val, bp->regview + offset);
continue;
reg_test_err:
writel(save_val, bp->regview + offset);
ret = -ENODEV;
break;
}
return ret;
}
static int
bnx2_do_mem_test(struct bnx2 *bp, u32 start, u32 size)
{
static const u32 test_pattern[] = { 0x00000000, 0xffffffff, 0x55555555,
0xaaaaaaaa , 0xaa55aa55, 0x55aa55aa };
int i;
for (i = 0; i < sizeof(test_pattern) / 4; i++) {
u32 offset;
for (offset = 0; offset < size; offset += 4) {
bnx2_reg_wr_ind(bp, start + offset, test_pattern[i]);
if (bnx2_reg_rd_ind(bp, start + offset) !=
test_pattern[i]) {
return -ENODEV;
}
}
}
return 0;
}
static int
bnx2_test_memory(struct bnx2 *bp)
{
int ret = 0;
int i;
static struct mem_entry {
u32 offset;
u32 len;
} mem_tbl_5706[] = {
{ 0x60000, 0x4000 },
{ 0xa0000, 0x3000 },
{ 0xe0000, 0x4000 },
{ 0x120000, 0x4000 },
{ 0x1a0000, 0x4000 },
{ 0x160000, 0x4000 },
{ 0xffffffff, 0 },
},
mem_tbl_5709[] = {
{ 0x60000, 0x4000 },
{ 0xa0000, 0x3000 },
{ 0xe0000, 0x4000 },
{ 0x120000, 0x4000 },
{ 0x1a0000, 0x4000 },
{ 0xffffffff, 0 },
};
struct mem_entry *mem_tbl;
if (CHIP_NUM(bp) == CHIP_NUM_5709)
mem_tbl = mem_tbl_5709;
else
mem_tbl = mem_tbl_5706;
for (i = 0; mem_tbl[i].offset != 0xffffffff; i++) {
if ((ret = bnx2_do_mem_test(bp, mem_tbl[i].offset,
mem_tbl[i].len)) != 0) {
return ret;
}
}
return ret;
}
#define BNX2_MAC_LOOPBACK 0
#define BNX2_PHY_LOOPBACK 1
static int
bnx2_run_loopback(struct bnx2 *bp, int loopback_mode)
{
unsigned int pkt_size, num_pkts, i;
struct sk_buff *skb, *rx_skb;
unsigned char *packet;
u16 rx_start_idx, rx_idx;
dma_addr_t map;
struct tx_bd *txbd;
struct sw_bd *rx_buf;
struct l2_fhdr *rx_hdr;
int ret = -ENODEV;
struct bnx2_napi *bnapi = &bp->bnx2_napi[0], *tx_napi;
struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
struct bnx2_rx_ring_info *rxr = &bnapi->rx_ring;
tx_napi = bnapi;
txr = &tx_napi->tx_ring;
rxr = &bnapi->rx_ring;
if (loopback_mode == BNX2_MAC_LOOPBACK) {
bp->loopback = MAC_LOOPBACK;
bnx2_set_mac_loopback(bp);
}
else if (loopback_mode == BNX2_PHY_LOOPBACK) {
if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
return 0;
bp->loopback = PHY_LOOPBACK;
bnx2_set_phy_loopback(bp);
}
else
return -EINVAL;
pkt_size = min(bp->dev->mtu + ETH_HLEN, bp->rx_jumbo_thresh - 4);
skb = netdev_alloc_skb(bp->dev, pkt_size);
if (!skb)
return -ENOMEM;
packet = skb_put(skb, pkt_size);
memcpy(packet, bp->dev->dev_addr, 6);
memset(packet + 6, 0x0, 8);
for (i = 14; i < pkt_size; i++)
packet[i] = (unsigned char) (i & 0xff);
map = pci_map_single(bp->pdev, skb->data, pkt_size,
PCI_DMA_TODEVICE);
REG_WR(bp, BNX2_HC_COMMAND,
bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
REG_RD(bp, BNX2_HC_COMMAND);
udelay(5);
rx_start_idx = bnx2_get_hw_rx_cons(bnapi);
num_pkts = 0;
txbd = &txr->tx_desc_ring[TX_RING_IDX(txr->tx_prod)];
txbd->tx_bd_haddr_hi = (u64) map >> 32;
txbd->tx_bd_haddr_lo = (u64) map & 0xffffffff;
txbd->tx_bd_mss_nbytes = pkt_size;
txbd->tx_bd_vlan_tag_flags = TX_BD_FLAGS_START | TX_BD_FLAGS_END;
num_pkts++;
txr->tx_prod = NEXT_TX_BD(txr->tx_prod);
txr->tx_prod_bseq += pkt_size;
REG_WR16(bp, txr->tx_bidx_addr, txr->tx_prod);
REG_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
udelay(100);
REG_WR(bp, BNX2_HC_COMMAND,
bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW_WO_INT);
REG_RD(bp, BNX2_HC_COMMAND);
udelay(5);
pci_unmap_single(bp->pdev, map, pkt_size, PCI_DMA_TODEVICE);
dev_kfree_skb(skb);
if (bnx2_get_hw_tx_cons(tx_napi) != txr->tx_prod)
goto loopback_test_done;
rx_idx = bnx2_get_hw_rx_cons(bnapi);
if (rx_idx != rx_start_idx + num_pkts) {
goto loopback_test_done;
}
rx_buf = &rxr->rx_buf_ring[rx_start_idx];
rx_skb = rx_buf->skb;
rx_hdr = (struct l2_fhdr *) rx_skb->data;
skb_reserve(rx_skb, BNX2_RX_OFFSET);
pci_dma_sync_single_for_cpu(bp->pdev,
pci_unmap_addr(rx_buf, mapping),
bp->rx_buf_size, PCI_DMA_FROMDEVICE);
if (rx_hdr->l2_fhdr_status &
(L2_FHDR_ERRORS_BAD_CRC |
L2_FHDR_ERRORS_PHY_DECODE |
L2_FHDR_ERRORS_ALIGNMENT |
L2_FHDR_ERRORS_TOO_SHORT |
L2_FHDR_ERRORS_GIANT_FRAME)) {
goto loopback_test_done;
}
if ((rx_hdr->l2_fhdr_pkt_len - 4) != pkt_size) {
goto loopback_test_done;
}
for (i = 14; i < pkt_size; i++) {
if (*(rx_skb->data + i) != (unsigned char) (i & 0xff)) {
goto loopback_test_done;
}
}
ret = 0;
loopback_test_done:
bp->loopback = 0;
return ret;
}
#define BNX2_MAC_LOOPBACK_FAILED 1
#define BNX2_PHY_LOOPBACK_FAILED 2
#define BNX2_LOOPBACK_FAILED (BNX2_MAC_LOOPBACK_FAILED | \
BNX2_PHY_LOOPBACK_FAILED)
static int
bnx2_test_loopback(struct bnx2 *bp)
{
int rc = 0;
if (!netif_running(bp->dev))
return BNX2_LOOPBACK_FAILED;
bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
spin_lock_bh(&bp->phy_lock);
bnx2_init_phy(bp, 1);
spin_unlock_bh(&bp->phy_lock);
if (bnx2_run_loopback(bp, BNX2_MAC_LOOPBACK))
rc |= BNX2_MAC_LOOPBACK_FAILED;
if (bnx2_run_loopback(bp, BNX2_PHY_LOOPBACK))
rc |= BNX2_PHY_LOOPBACK_FAILED;
return rc;
}
#define NVRAM_SIZE 0x200
#define CRC32_RESIDUAL 0xdebb20e3
static int
bnx2_test_nvram(struct bnx2 *bp)
{
__be32 buf[NVRAM_SIZE / 4];
u8 *data = (u8 *) buf;
int rc = 0;
u32 magic, csum;
if ((rc = bnx2_nvram_read(bp, 0, data, 4)) != 0)
goto test_nvram_done;
magic = be32_to_cpu(buf[0]);
if (magic != 0x669955aa) {
rc = -ENODEV;
goto test_nvram_done;
}
if ((rc = bnx2_nvram_read(bp, 0x100, data, NVRAM_SIZE)) != 0)
goto test_nvram_done;
csum = ether_crc_le(0x100, data);
if (csum != CRC32_RESIDUAL) {
rc = -ENODEV;
goto test_nvram_done;
}
csum = ether_crc_le(0x100, data + 0x100);
if (csum != CRC32_RESIDUAL) {
rc = -ENODEV;
}
test_nvram_done:
return rc;
}
static int
bnx2_test_link(struct bnx2 *bp)
{
u32 bmsr;
if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
if (bp->link_up)
return 0;
return -ENODEV;
}
spin_lock_bh(&bp->phy_lock);
bnx2_enable_bmsr1(bp);
bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
bnx2_read_phy(bp, bp->mii_bmsr1, &bmsr);
bnx2_disable_bmsr1(bp);
spin_unlock_bh(&bp->phy_lock);
if (bmsr & BMSR_LSTATUS) {
return 0;
}
return -ENODEV;
}
static int
bnx2_test_intr(struct bnx2 *bp)
{
int i;
u16 status_idx;
if (!netif_running(bp->dev))
return -ENODEV;
status_idx = REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff;
/* This register is not touched during run-time. */
REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd | BNX2_HC_COMMAND_COAL_NOW);
REG_RD(bp, BNX2_HC_COMMAND);
for (i = 0; i < 10; i++) {
if ((REG_RD(bp, BNX2_PCICFG_INT_ACK_CMD) & 0xffff) !=
status_idx) {
break;
}
msleep_interruptible(10);
}
if (i < 10)
return 0;
return -ENODEV;
}
/* Determining link for parallel detection. */
static int
bnx2_5706_serdes_has_link(struct bnx2 *bp)
{
u32 mode_ctl, an_dbg, exp;
if (bp->phy_flags & BNX2_PHY_FLAG_NO_PARALLEL)
return 0;
bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_MODE_CTL);
bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &mode_ctl);
if (!(mode_ctl & MISC_SHDW_MODE_CTL_SIG_DET))
return 0;
bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &an_dbg);
if (an_dbg & (MISC_SHDW_AN_DBG_NOSYNC | MISC_SHDW_AN_DBG_RUDI_INVALID))
return 0;
bnx2_write_phy(bp, MII_BNX2_DSP_ADDRESS, MII_EXPAND_REG1);
bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
bnx2_read_phy(bp, MII_BNX2_DSP_RW_PORT, &exp);
if (exp & MII_EXPAND_REG1_RUDI_C) /* receiving CONFIG */
return 0;
return 1;
}
static void
bnx2_5706_serdes_timer(struct bnx2 *bp)
{
int check_link = 1;
spin_lock(&bp->phy_lock);
if (bp->serdes_an_pending) {
bp->serdes_an_pending--;
check_link = 0;
} else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
u32 bmcr;
bp->current_interval = bp->timer_interval;
bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
if (bmcr & BMCR_ANENABLE) {
if (bnx2_5706_serdes_has_link(bp)) {
bmcr &= ~BMCR_ANENABLE;
bmcr |= BMCR_SPEED1000 | BMCR_FULLDPLX;
bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
bp->phy_flags |= BNX2_PHY_FLAG_PARALLEL_DETECT;
}
}
}
else if ((bp->link_up) && (bp->autoneg & AUTONEG_SPEED) &&
(bp->phy_flags & BNX2_PHY_FLAG_PARALLEL_DETECT)) {
u32 phy2;
bnx2_write_phy(bp, 0x17, 0x0f01);
bnx2_read_phy(bp, 0x15, &phy2);
if (phy2 & 0x20) {
u32 bmcr;
bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
bmcr |= BMCR_ANENABLE;
bnx2_write_phy(bp, bp->mii_bmcr, bmcr);
bp->phy_flags &= ~BNX2_PHY_FLAG_PARALLEL_DETECT;
}
} else
bp->current_interval = bp->timer_interval;
if (check_link) {
u32 val;
bnx2_write_phy(bp, MII_BNX2_MISC_SHADOW, MISC_SHDW_AN_DBG);
bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
bnx2_read_phy(bp, MII_BNX2_MISC_SHADOW, &val);
if (bp->link_up && (val & MISC_SHDW_AN_DBG_NOSYNC)) {
if (!(bp->phy_flags & BNX2_PHY_FLAG_FORCED_DOWN)) {
bnx2_5706s_force_link_dn(bp, 1);
bp->phy_flags |= BNX2_PHY_FLAG_FORCED_DOWN;
} else
bnx2_set_link(bp);
} else if (!bp->link_up && !(val & MISC_SHDW_AN_DBG_NOSYNC))
bnx2_set_link(bp);
}
spin_unlock(&bp->phy_lock);
}
static void
bnx2_5708_serdes_timer(struct bnx2 *bp)
{
if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
return;
if ((bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) == 0) {
bp->serdes_an_pending = 0;
return;
}
spin_lock(&bp->phy_lock);
if (bp->serdes_an_pending)
bp->serdes_an_pending--;
else if ((bp->link_up == 0) && (bp->autoneg & AUTONEG_SPEED)) {
u32 bmcr;
bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
if (bmcr & BMCR_ANENABLE) {
bnx2_enable_forced_2g5(bp);
bp->current_interval = SERDES_FORCED_TIMEOUT;
} else {
bnx2_disable_forced_2g5(bp);
bp->serdes_an_pending = 2;
bp->current_interval = bp->timer_interval;
}
} else
bp->current_interval = bp->timer_interval;
spin_unlock(&bp->phy_lock);
}
static void
bnx2_timer(unsigned long data)
{
struct bnx2 *bp = (struct bnx2 *) data;
if (!netif_running(bp->dev))
return;
if (atomic_read(&bp->intr_sem) != 0)
goto bnx2_restart_timer;
bnx2_send_heart_beat(bp);
bp->stats_blk->stat_FwRxDrop =
bnx2_reg_rd_ind(bp, BNX2_FW_RX_DROP_COUNT);
/* workaround occasional corrupted counters */
if (CHIP_NUM(bp) == CHIP_NUM_5708 && bp->stats_ticks)
REG_WR(bp, BNX2_HC_COMMAND, bp->hc_cmd |
BNX2_HC_COMMAND_STATS_NOW);
if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
if (CHIP_NUM(bp) == CHIP_NUM_5706)
bnx2_5706_serdes_timer(bp);
else
bnx2_5708_serdes_timer(bp);
}
bnx2_restart_timer:
mod_timer(&bp->timer, jiffies + bp->current_interval);
}
static int
bnx2_request_irq(struct bnx2 *bp)
{
unsigned long flags;
struct bnx2_irq *irq;
int rc = 0, i;
if (bp->flags & BNX2_FLAG_USING_MSI_OR_MSIX)
flags = 0;
else
flags = IRQF_SHARED;
for (i = 0; i < bp->irq_nvecs; i++) {
irq = &bp->irq_tbl[i];
rc = request_irq(irq->vector, irq->handler, flags, irq->name,
&bp->bnx2_napi[i]);
if (rc)
break;
irq->requested = 1;
}
return rc;
}
static void
bnx2_free_irq(struct bnx2 *bp)
{
struct bnx2_irq *irq;
int i;
for (i = 0; i < bp->irq_nvecs; i++) {
irq = &bp->irq_tbl[i];
if (irq->requested)
free_irq(irq->vector, &bp->bnx2_napi[i]);
irq->requested = 0;
}
if (bp->flags & BNX2_FLAG_USING_MSI)
pci_disable_msi(bp->pdev);
else if (bp->flags & BNX2_FLAG_USING_MSIX)
pci_disable_msix(bp->pdev);
bp->flags &= ~(BNX2_FLAG_USING_MSI_OR_MSIX | BNX2_FLAG_ONE_SHOT_MSI);
}
static void
bnx2_enable_msix(struct bnx2 *bp, int msix_vecs)
{
int i, rc;
struct msix_entry msix_ent[BNX2_MAX_MSIX_VEC];
bnx2_setup_msix_tbl(bp);
REG_WR(bp, BNX2_PCI_MSIX_CONTROL, BNX2_MAX_MSIX_HW_VEC - 1);
REG_WR(bp, BNX2_PCI_MSIX_TBL_OFF_BIR, BNX2_PCI_GRC_WINDOW2_BASE);
REG_WR(bp, BNX2_PCI_MSIX_PBA_OFF_BIT, BNX2_PCI_GRC_WINDOW3_BASE);
for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
msix_ent[i].entry = i;
msix_ent[i].vector = 0;
strcpy(bp->irq_tbl[i].name, bp->dev->name);
bp->irq_tbl[i].handler = bnx2_msi_1shot;
}
rc = pci_enable_msix(bp->pdev, msix_ent, BNX2_MAX_MSIX_VEC);
if (rc != 0)
return;
bp->irq_nvecs = msix_vecs;
bp->flags |= BNX2_FLAG_USING_MSIX | BNX2_FLAG_ONE_SHOT_MSI;
for (i = 0; i < BNX2_MAX_MSIX_VEC; i++)
bp->irq_tbl[i].vector = msix_ent[i].vector;
}
static void
bnx2_setup_int_mode(struct bnx2 *bp, int dis_msi)
{
int cpus = num_online_cpus();
int msix_vecs = min(cpus + 1, RX_MAX_RSS_RINGS);
bp->irq_tbl[0].handler = bnx2_interrupt;
strcpy(bp->irq_tbl[0].name, bp->dev->name);
bp->irq_nvecs = 1;
bp->irq_tbl[0].vector = bp->pdev->irq;
if ((bp->flags & BNX2_FLAG_MSIX_CAP) && !dis_msi && cpus > 1)
bnx2_enable_msix(bp, msix_vecs);
if ((bp->flags & BNX2_FLAG_MSI_CAP) && !dis_msi &&
!(bp->flags & BNX2_FLAG_USING_MSIX)) {
if (pci_enable_msi(bp->pdev) == 0) {
bp->flags |= BNX2_FLAG_USING_MSI;
if (CHIP_NUM(bp) == CHIP_NUM_5709) {
bp->flags |= BNX2_FLAG_ONE_SHOT_MSI;
bp->irq_tbl[0].handler = bnx2_msi_1shot;
} else
bp->irq_tbl[0].handler = bnx2_msi;
bp->irq_tbl[0].vector = bp->pdev->irq;
}
}
bp->num_tx_rings = 1;
bp->num_rx_rings = bp->irq_nvecs;
}
/* Called with rtnl_lock */
static int
bnx2_open(struct net_device *dev)
{
struct bnx2 *bp = netdev_priv(dev);
int rc;
netif_carrier_off(dev);
bnx2_set_power_state(bp, PCI_D0);
bnx2_disable_int(bp);
bnx2_setup_int_mode(bp, disable_msi);
bnx2_napi_enable(bp);
rc = bnx2_alloc_mem(bp);
if (rc)
goto open_err;
rc = bnx2_request_irq(bp);
if (rc)
goto open_err;
rc = bnx2_init_nic(bp, 1);
if (rc)
goto open_err;
mod_timer(&bp->timer, jiffies + bp->current_interval);
atomic_set(&bp->intr_sem, 0);
bnx2_enable_int(bp);
if (bp->flags & BNX2_FLAG_USING_MSI) {
/* Test MSI to make sure it is working
* If MSI test fails, go back to INTx mode
*/
if (bnx2_test_intr(bp) != 0) {
printk(KERN_WARNING PFX "%s: No interrupt was generated"
" using MSI, switching to INTx mode. Please"
" report this failure to the PCI maintainer"
" and include system chipset information.\n",
bp->dev->name);
bnx2_disable_int(bp);
bnx2_free_irq(bp);
bnx2_setup_int_mode(bp, 1);
rc = bnx2_init_nic(bp, 0);
if (!rc)
rc = bnx2_request_irq(bp);
if (rc) {
del_timer_sync(&bp->timer);
goto open_err;
}
bnx2_enable_int(bp);
}
}
if (bp->flags & BNX2_FLAG_USING_MSI)
printk(KERN_INFO PFX "%s: using MSI\n", dev->name);
else if (bp->flags & BNX2_FLAG_USING_MSIX)
printk(KERN_INFO PFX "%s: using MSIX\n", dev->name);
netif_start_queue(dev);
return 0;
open_err:
bnx2_napi_disable(bp);
bnx2_free_skbs(bp);
bnx2_free_irq(bp);
bnx2_free_mem(bp);
return rc;
}
static void
bnx2_reset_task(struct work_struct *work)
{
struct bnx2 *bp = container_of(work, struct bnx2, reset_task);
if (!netif_running(bp->dev))
return;
bnx2_netif_stop(bp);
bnx2_init_nic(bp, 1);
atomic_set(&bp->intr_sem, 1);
bnx2_netif_start(bp);
}
static void
bnx2_tx_timeout(struct net_device *dev)
{
struct bnx2 *bp = netdev_priv(dev);
/* This allows the netif to be shutdown gracefully before resetting */
schedule_work(&bp->reset_task);
}
#ifdef BCM_VLAN
/* Called with rtnl_lock */
static void
bnx2_vlan_rx_register(struct net_device *dev, struct vlan_group *vlgrp)
{
struct bnx2 *bp = netdev_priv(dev);
bnx2_netif_stop(bp);
bp->vlgrp = vlgrp;
bnx2_set_rx_mode(dev);
if (bp->flags & BNX2_FLAG_CAN_KEEP_VLAN)
bnx2_fw_sync(bp, BNX2_DRV_MSG_CODE_KEEP_VLAN_UPDATE, 0, 1);
bnx2_netif_start(bp);
}
#endif
/* Called with netif_tx_lock.
* bnx2_tx_int() runs without netif_tx_lock unless it needs to call
* netif_wake_queue().
*/
static int
bnx2_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct bnx2 *bp = netdev_priv(dev);
dma_addr_t mapping;
struct tx_bd *txbd;
struct sw_bd *tx_buf;
u32 len, vlan_tag_flags, last_frag, mss;
u16 prod, ring_prod;
int i;
struct bnx2_napi *bnapi = &bp->bnx2_napi[0];
struct bnx2_tx_ring_info *txr = &bnapi->tx_ring;
if (unlikely(bnx2_tx_avail(bp, txr) <
(skb_shinfo(skb)->nr_frags + 1))) {
netif_stop_queue(dev);
printk(KERN_ERR PFX "%s: BUG! Tx ring full when queue awake!\n",
dev->name);
return NETDEV_TX_BUSY;
}
len = skb_headlen(skb);
prod = txr->tx_prod;
ring_prod = TX_RING_IDX(prod);
vlan_tag_flags = 0;
if (skb->ip_summed == CHECKSUM_PARTIAL) {
vlan_tag_flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
}
if (bp->vlgrp && vlan_tx_tag_present(skb)) {
vlan_tag_flags |=
(TX_BD_FLAGS_VLAN_TAG | (vlan_tx_tag_get(skb) << 16));
}
if ((mss = skb_shinfo(skb)->gso_size)) {
u32 tcp_opt_len, ip_tcp_len;
struct iphdr *iph;
vlan_tag_flags |= TX_BD_FLAGS_SW_LSO;
tcp_opt_len = tcp_optlen(skb);
if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) {
u32 tcp_off = skb_transport_offset(skb) -
sizeof(struct ipv6hdr) - ETH_HLEN;
vlan_tag_flags |= ((tcp_opt_len >> 2) << 8) |
TX_BD_FLAGS_SW_FLAGS;
if (likely(tcp_off == 0))
vlan_tag_flags &= ~TX_BD_FLAGS_TCP6_OFF0_MSK;
else {
tcp_off >>= 3;
vlan_tag_flags |= ((tcp_off & 0x3) <<
TX_BD_FLAGS_TCP6_OFF0_SHL) |
((tcp_off & 0x10) <<
TX_BD_FLAGS_TCP6_OFF4_SHL);
mss |= (tcp_off & 0xc) << TX_BD_TCP6_OFF2_SHL;
}
} else {
if (skb_header_cloned(skb) &&
pskb_expand_head(skb, 0, 0, GFP_ATOMIC)) {
dev_kfree_skb(skb);
return NETDEV_TX_OK;
}
ip_tcp_len = ip_hdrlen(skb) + sizeof(struct tcphdr);
iph = ip_hdr(skb);
iph->check = 0;
iph->tot_len = htons(mss + ip_tcp_len + tcp_opt_len);
tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
iph->daddr, 0,
IPPROTO_TCP,
0);
if (tcp_opt_len || (iph->ihl > 5)) {
vlan_tag_flags |= ((iph->ihl - 5) +
(tcp_opt_len >> 2)) << 8;
}
}
} else
mss = 0;
mapping = pci_map_single(bp->pdev, skb->data, len, PCI_DMA_TODEVICE);
tx_buf = &txr->tx_buf_ring[ring_prod];
tx_buf->skb = skb;
pci_unmap_addr_set(tx_buf, mapping, mapping);
txbd = &txr->tx_desc_ring[ring_prod];
txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
txbd->tx_bd_mss_nbytes = len | (mss << 16);
txbd->tx_bd_vlan_tag_flags = vlan_tag_flags | TX_BD_FLAGS_START;
last_frag = skb_shinfo(skb)->nr_frags;
for (i = 0; i < last_frag; i++) {
skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
prod = NEXT_TX_BD(prod);
ring_prod = TX_RING_IDX(prod);
txbd = &txr->tx_desc_ring[ring_prod];
len = frag->size;
mapping = pci_map_page(bp->pdev, frag->page, frag->page_offset,
len, PCI_DMA_TODEVICE);
pci_unmap_addr_set(&txr->tx_buf_ring[ring_prod],
mapping, mapping);
txbd->tx_bd_haddr_hi = (u64) mapping >> 32;
txbd->tx_bd_haddr_lo = (u64) mapping & 0xffffffff;
txbd->tx_bd_mss_nbytes = len | (mss << 16);
txbd->tx_bd_vlan_tag_flags = vlan_tag_flags;
}
txbd->tx_bd_vlan_tag_flags |= TX_BD_FLAGS_END;
prod = NEXT_TX_BD(prod);
txr->tx_prod_bseq += skb->len;
REG_WR16(bp, txr->tx_bidx_addr, prod);
REG_WR(bp, txr->tx_bseq_addr, txr->tx_prod_bseq);
mmiowb();
txr->tx_prod = prod;
dev->trans_start = jiffies;
if (unlikely(bnx2_tx_avail(bp, txr) <= MAX_SKB_FRAGS)) {
netif_stop_queue(dev);
if (bnx2_tx_avail(bp, txr) > bp->tx_wake_thresh)
netif_wake_queue(dev);
}
return NETDEV_TX_OK;
}
/* Called with rtnl_lock */
static int
bnx2_close(struct net_device *dev)
{
struct bnx2 *bp = netdev_priv(dev);
u32 reset_code;
cancel_work_sync(&bp->reset_task);
bnx2_disable_int_sync(bp);
bnx2_napi_disable(bp);
del_timer_sync(&bp->timer);
if (bp->flags & BNX2_FLAG_NO_WOL)
reset_code = BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN;
else if (bp->wol)
reset_code = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
else
reset_code = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
bnx2_reset_chip(bp, reset_code);
bnx2_free_irq(bp);
bnx2_free_skbs(bp);
bnx2_free_mem(bp);
bp->link_up = 0;
netif_carrier_off(bp->dev);
bnx2_set_power_state(bp, PCI_D3hot);
return 0;
}
#define GET_NET_STATS64(ctr) \
(unsigned long) ((unsigned long) (ctr##_hi) << 32) + \
(unsigned long) (ctr##_lo)
#define GET_NET_STATS32(ctr) \
(ctr##_lo)
#if (BITS_PER_LONG == 64)
#define GET_NET_STATS GET_NET_STATS64
#else
#define GET_NET_STATS GET_NET_STATS32
#endif
static struct net_device_stats *
bnx2_get_stats(struct net_device *dev)
{
struct bnx2 *bp = netdev_priv(dev);
struct statistics_block *stats_blk = bp->stats_blk;
struct net_device_stats *net_stats = &bp->net_stats;
if (bp->stats_blk == NULL) {
return net_stats;
}
net_stats->rx_packets =
GET_NET_STATS(stats_blk->stat_IfHCInUcastPkts) +
GET_NET_STATS(stats_blk->stat_IfHCInMulticastPkts) +
GET_NET_STATS(stats_blk->stat_IfHCInBroadcastPkts);
net_stats->tx_packets =
GET_NET_STATS(stats_blk->stat_IfHCOutUcastPkts) +
GET_NET_STATS(stats_blk->stat_IfHCOutMulticastPkts) +
GET_NET_STATS(stats_blk->stat_IfHCOutBroadcastPkts);
net_stats->rx_bytes =
GET_NET_STATS(stats_blk->stat_IfHCInOctets);
net_stats->tx_bytes =
GET_NET_STATS(stats_blk->stat_IfHCOutOctets);
net_stats->multicast =
GET_NET_STATS(stats_blk->stat_IfHCOutMulticastPkts);
net_stats->collisions =
(unsigned long) stats_blk->stat_EtherStatsCollisions;
net_stats->rx_length_errors =
(unsigned long) (stats_blk->stat_EtherStatsUndersizePkts +
stats_blk->stat_EtherStatsOverrsizePkts);
net_stats->rx_over_errors =
(unsigned long) stats_blk->stat_IfInMBUFDiscards;
net_stats->rx_frame_errors =
(unsigned long) stats_blk->stat_Dot3StatsAlignmentErrors;
net_stats->rx_crc_errors =
(unsigned long) stats_blk->stat_Dot3StatsFCSErrors;
net_stats->rx_errors = net_stats->rx_length_errors +
net_stats->rx_over_errors + net_stats->rx_frame_errors +
net_stats->rx_crc_errors;
net_stats->tx_aborted_errors =
(unsigned long) (stats_blk->stat_Dot3StatsExcessiveCollisions +
stats_blk->stat_Dot3StatsLateCollisions);
if ((CHIP_NUM(bp) == CHIP_NUM_5706) ||
(CHIP_ID(bp) == CHIP_ID_5708_A0))
net_stats->tx_carrier_errors = 0;
else {
net_stats->tx_carrier_errors =
(unsigned long)
stats_blk->stat_Dot3StatsCarrierSenseErrors;
}
net_stats->tx_errors =
(unsigned long)
stats_blk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors
+
net_stats->tx_aborted_errors +
net_stats->tx_carrier_errors;
net_stats->rx_missed_errors =
(unsigned long) (stats_blk->stat_IfInMBUFDiscards +
stats_blk->stat_FwRxDrop);
return net_stats;
}
/* All ethtool functions called with rtnl_lock */
static int
bnx2_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct bnx2 *bp = netdev_priv(dev);
int support_serdes = 0, support_copper = 0;
cmd->supported = SUPPORTED_Autoneg;
if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
support_serdes = 1;
support_copper = 1;
} else if (bp->phy_port == PORT_FIBRE)
support_serdes = 1;
else
support_copper = 1;
if (support_serdes) {
cmd->supported |= SUPPORTED_1000baseT_Full |
SUPPORTED_FIBRE;
if (bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE)
cmd->supported |= SUPPORTED_2500baseX_Full;
}
if (support_copper) {
cmd->supported |= SUPPORTED_10baseT_Half |
SUPPORTED_10baseT_Full |
SUPPORTED_100baseT_Half |
SUPPORTED_100baseT_Full |
SUPPORTED_1000baseT_Full |
SUPPORTED_TP;
}
spin_lock_bh(&bp->phy_lock);
cmd->port = bp->phy_port;
cmd->advertising = bp->advertising;
if (bp->autoneg & AUTONEG_SPEED) {
cmd->autoneg = AUTONEG_ENABLE;
}
else {
cmd->autoneg = AUTONEG_DISABLE;
}
if (netif_carrier_ok(dev)) {
cmd->speed = bp->line_speed;
cmd->duplex = bp->duplex;
}
else {
cmd->speed = -1;
cmd->duplex = -1;
}
spin_unlock_bh(&bp->phy_lock);
cmd->transceiver = XCVR_INTERNAL;
cmd->phy_address = bp->phy_addr;
return 0;
}
static int
bnx2_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
{
struct bnx2 *bp = netdev_priv(dev);
u8 autoneg = bp->autoneg;
u8 req_duplex = bp->req_duplex;
u16 req_line_speed = bp->req_line_speed;
u32 advertising = bp->advertising;
int err = -EINVAL;
spin_lock_bh(&bp->phy_lock);
if (cmd->port != PORT_TP && cmd->port != PORT_FIBRE)
goto err_out_unlock;
if (cmd->port != bp->phy_port &&
!(bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP))
goto err_out_unlock;
/* If device is down, we can store the settings only if the user
* is setting the currently active port.
*/
if (!netif_running(dev) && cmd->port != bp->phy_port)
goto err_out_unlock;
if (cmd->autoneg == AUTONEG_ENABLE) {
autoneg |= AUTONEG_SPEED;
cmd->advertising &= ETHTOOL_ALL_COPPER_SPEED;
/* allow advertising 1 speed */
if ((cmd->advertising == ADVERTISED_10baseT_Half) ||
(cmd->advertising == ADVERTISED_10baseT_Full) ||
(cmd->advertising == ADVERTISED_100baseT_Half) ||
(cmd->advertising == ADVERTISED_100baseT_Full)) {
if (cmd->port == PORT_FIBRE)
goto err_out_unlock;
advertising = cmd->advertising;
} else if (cmd->advertising == ADVERTISED_2500baseX_Full) {
if (!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE) ||
(cmd->port == PORT_TP))
goto err_out_unlock;
} else if (cmd->advertising == ADVERTISED_1000baseT_Full)
advertising = cmd->advertising;
else if (cmd->advertising == ADVERTISED_1000baseT_Half)
goto err_out_unlock;
else {
if (cmd->port == PORT_FIBRE)
advertising = ETHTOOL_ALL_FIBRE_SPEED;
else
advertising = ETHTOOL_ALL_COPPER_SPEED;
}
advertising |= ADVERTISED_Autoneg;
}
else {
if (cmd->port == PORT_FIBRE) {
if ((cmd->speed != SPEED_1000 &&
cmd->speed != SPEED_2500) ||
(cmd->duplex != DUPLEX_FULL))
goto err_out_unlock;
if (cmd->speed == SPEED_2500 &&
!(bp->phy_flags & BNX2_PHY_FLAG_2_5G_CAPABLE))
goto err_out_unlock;
}
else if (cmd->speed == SPEED_1000 || cmd->speed == SPEED_2500)
goto err_out_unlock;
autoneg &= ~AUTONEG_SPEED;
req_line_speed = cmd->speed;
req_duplex = cmd->duplex;
advertising = 0;
}
bp->autoneg = autoneg;
bp->advertising = advertising;
bp->req_line_speed = req_line_speed;
bp->req_duplex = req_duplex;
err = 0;
/* If device is down, the new settings will be picked up when it is
* brought up.
*/
if (netif_running(dev))
err = bnx2_setup_phy(bp, cmd->port);
err_out_unlock:
spin_unlock_bh(&bp->phy_lock);
return err;
}
static void
bnx2_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
{
struct bnx2 *bp = netdev_priv(dev);
strcpy(info->driver, DRV_MODULE_NAME);
strcpy(info->version, DRV_MODULE_VERSION);
strcpy(info->bus_info, pci_name(bp->pdev));
strcpy(info->fw_version, bp->fw_version);
}
#define BNX2_REGDUMP_LEN (32 * 1024)
static int
bnx2_get_regs_len(struct net_device *dev)
{
return BNX2_REGDUMP_LEN;
}
static void
bnx2_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *_p)
{
u32 *p = _p, i, offset;
u8 *orig_p = _p;
struct bnx2 *bp = netdev_priv(dev);
u32 reg_boundaries[] = { 0x0000, 0x0098, 0x0400, 0x045c,
0x0800, 0x0880, 0x0c00, 0x0c10,
0x0c30, 0x0d08, 0x1000, 0x101c,
0x1040, 0x1048, 0x1080, 0x10a4,
0x1400, 0x1490, 0x1498, 0x14f0,
0x1500, 0x155c, 0x1580, 0x15dc,
0x1600, 0x1658, 0x1680, 0x16d8,
0x1800, 0x1820, 0x1840, 0x1854,
0x1880, 0x1894, 0x1900, 0x1984,
0x1c00, 0x1c0c, 0x1c40, 0x1c54,
0x1c80, 0x1c94, 0x1d00, 0x1d84,
0x2000, 0x2030, 0x23c0, 0x2400,
0x2800, 0x2820, 0x2830, 0x2850,
0x2b40, 0x2c10, 0x2fc0, 0x3058,
0x3c00, 0x3c94, 0x4000, 0x4010,
0x4080, 0x4090, 0x43c0, 0x4458,
0x4c00, 0x4c18, 0x4c40, 0x4c54,
0x4fc0, 0x5010, 0x53c0, 0x5444,
0x5c00, 0x5c18, 0x5c80, 0x5c90,
0x5fc0, 0x6000, 0x6400, 0x6428,
0x6800, 0x6848, 0x684c, 0x6860,
0x6888, 0x6910, 0x8000 };
regs->version = 0;
memset(p, 0, BNX2_REGDUMP_LEN);
if (!netif_running(bp->dev))
return;
i = 0;
offset = reg_boundaries[0];
p += offset;
while (offset < BNX2_REGDUMP_LEN) {
*p++ = REG_RD(bp, offset);
offset += 4;
if (offset == reg_boundaries[i + 1]) {
offset = reg_boundaries[i + 2];
p = (u32 *) (orig_p + offset);
i += 2;
}
}
}
static void
bnx2_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
{
struct bnx2 *bp = netdev_priv(dev);
if (bp->flags & BNX2_FLAG_NO_WOL) {
wol->supported = 0;
wol->wolopts = 0;
}
else {
wol->supported = WAKE_MAGIC;
if (bp->wol)
wol->wolopts = WAKE_MAGIC;
else
wol->wolopts = 0;
}
memset(&wol->sopass, 0, sizeof(wol->sopass));
}
static int
bnx2_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
{
struct bnx2 *bp = netdev_priv(dev);
if (wol->wolopts & ~WAKE_MAGIC)
return -EINVAL;
if (wol->wolopts & WAKE_MAGIC) {
if (bp->flags & BNX2_FLAG_NO_WOL)
return -EINVAL;
bp->wol = 1;
}
else {
bp->wol = 0;
}
return 0;
}
static int
bnx2_nway_reset(struct net_device *dev)
{
struct bnx2 *bp = netdev_priv(dev);
u32 bmcr;
if (!(bp->autoneg & AUTONEG_SPEED)) {
return -EINVAL;
}
spin_lock_bh(&bp->phy_lock);
if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP) {
int rc;
rc = bnx2_setup_remote_phy(bp, bp->phy_port);
spin_unlock_bh(&bp->phy_lock);
return rc;
}
/* Force a link down visible on the other side */
if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
bnx2_write_phy(bp, bp->mii_bmcr, BMCR_LOOPBACK);
spin_unlock_bh(&bp->phy_lock);
msleep(20);
spin_lock_bh(&bp->phy_lock);
bp->current_interval = SERDES_AN_TIMEOUT;
bp->serdes_an_pending = 1;
mod_timer(&bp->timer, jiffies + bp->current_interval);
}
bnx2_read_phy(bp, bp->mii_bmcr, &bmcr);
bmcr &= ~BMCR_LOOPBACK;
bnx2_write_phy(bp, bp->mii_bmcr, bmcr | BMCR_ANRESTART | BMCR_ANENABLE);
spin_unlock_bh(&bp->phy_lock);
return 0;
}
static int
bnx2_get_eeprom_len(struct net_device *dev)
{
struct bnx2 *bp = netdev_priv(dev);
if (bp->flash_info == NULL)
return 0;
return (int) bp->flash_size;
}
static int
bnx2_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
u8 *eebuf)
{
struct bnx2 *bp = netdev_priv(dev);
int rc;
/* parameters already validated in ethtool_get_eeprom */
rc = bnx2_nvram_read(bp, eeprom->offset, eebuf, eeprom->len);
return rc;
}
static int
bnx2_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
u8 *eebuf)
{
struct bnx2 *bp = netdev_priv(dev);
int rc;
/* parameters already validated in ethtool_set_eeprom */
rc = bnx2_nvram_write(bp, eeprom->offset, eebuf, eeprom->len);
return rc;
}
static int
bnx2_get_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
{
struct bnx2 *bp = netdev_priv(dev);
memset(coal, 0, sizeof(struct ethtool_coalesce));
coal->rx_coalesce_usecs = bp->rx_ticks;
coal->rx_max_coalesced_frames = bp->rx_quick_cons_trip;
coal->rx_coalesce_usecs_irq = bp->rx_ticks_int;
coal->rx_max_coalesced_frames_irq = bp->rx_quick_cons_trip_int;
coal->tx_coalesce_usecs = bp->tx_ticks;
coal->tx_max_coalesced_frames = bp->tx_quick_cons_trip;
coal->tx_coalesce_usecs_irq = bp->tx_ticks_int;
coal->tx_max_coalesced_frames_irq = bp->tx_quick_cons_trip_int;
coal->stats_block_coalesce_usecs = bp->stats_ticks;
return 0;
}
static int
bnx2_set_coalesce(struct net_device *dev, struct ethtool_coalesce *coal)
{
struct bnx2 *bp = netdev_priv(dev);
bp->rx_ticks = (u16) coal->rx_coalesce_usecs;
if (bp->rx_ticks > 0x3ff) bp->rx_ticks = 0x3ff;
bp->rx_quick_cons_trip = (u16) coal->rx_max_coalesced_frames;
if (bp->rx_quick_cons_trip > 0xff) bp->rx_quick_cons_trip = 0xff;
bp->rx_ticks_int = (u16) coal->rx_coalesce_usecs_irq;
if (bp->rx_ticks_int > 0x3ff) bp->rx_ticks_int = 0x3ff;
bp->rx_quick_cons_trip_int = (u16) coal->rx_max_coalesced_frames_irq;
if (bp->rx_quick_cons_trip_int > 0xff)
bp->rx_quick_cons_trip_int = 0xff;
bp->tx_ticks = (u16) coal->tx_coalesce_usecs;
if (bp->tx_ticks > 0x3ff) bp->tx_ticks = 0x3ff;
bp->tx_quick_cons_trip = (u16) coal->tx_max_coalesced_frames;
if (bp->tx_quick_cons_trip > 0xff) bp->tx_quick_cons_trip = 0xff;
bp->tx_ticks_int = (u16) coal->tx_coalesce_usecs_irq;
if (bp->tx_ticks_int > 0x3ff) bp->tx_ticks_int = 0x3ff;
bp->tx_quick_cons_trip_int = (u16) coal->tx_max_coalesced_frames_irq;
if (bp->tx_quick_cons_trip_int > 0xff) bp->tx_quick_cons_trip_int =
0xff;
bp->stats_ticks = coal->stats_block_coalesce_usecs;
if (CHIP_NUM(bp) == CHIP_NUM_5708) {
if (bp->stats_ticks != 0 && bp->stats_ticks != USEC_PER_SEC)
bp->stats_ticks = USEC_PER_SEC;
}
if (bp->stats_ticks > BNX2_HC_STATS_TICKS_HC_STAT_TICKS)
bp->stats_ticks = BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
bp->stats_ticks &= BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
if (netif_running(bp->dev)) {
bnx2_netif_stop(bp);
bnx2_init_nic(bp, 0);
bnx2_netif_start(bp);
}
return 0;
}
static void
bnx2_get_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
{
struct bnx2 *bp = netdev_priv(dev);
ering->rx_max_pending = MAX_TOTAL_RX_DESC_CNT;
ering->rx_mini_max_pending = 0;
ering->rx_jumbo_max_pending = MAX_TOTAL_RX_PG_DESC_CNT;
ering->rx_pending = bp->rx_ring_size;
ering->rx_mini_pending = 0;
ering->rx_jumbo_pending = bp->rx_pg_ring_size;
ering->tx_max_pending = MAX_TX_DESC_CNT;
ering->tx_pending = bp->tx_ring_size;
}
static int
bnx2_change_ring_size(struct bnx2 *bp, u32 rx, u32 tx)
{
if (netif_running(bp->dev)) {
bnx2_netif_stop(bp);
bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_RESET);
bnx2_free_skbs(bp);
bnx2_free_mem(bp);
}
bnx2_set_rx_ring_size(bp, rx);
bp->tx_ring_size = tx;
if (netif_running(bp->dev)) {
int rc;
rc = bnx2_alloc_mem(bp);
if (rc)
return rc;
bnx2_init_nic(bp, 0);
bnx2_netif_start(bp);
}
return 0;
}
static int
bnx2_set_ringparam(struct net_device *dev, struct ethtool_ringparam *ering)
{
struct bnx2 *bp = netdev_priv(dev);
int rc;
if ((ering->rx_pending > MAX_TOTAL_RX_DESC_CNT) ||
(ering->tx_pending > MAX_TX_DESC_CNT) ||
(ering->tx_pending <= MAX_SKB_FRAGS)) {
return -EINVAL;
}
rc = bnx2_change_ring_size(bp, ering->rx_pending, ering->tx_pending);
return rc;
}
static void
bnx2_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
{
struct bnx2 *bp = netdev_priv(dev);
epause->autoneg = ((bp->autoneg & AUTONEG_FLOW_CTRL) != 0);
epause->rx_pause = ((bp->flow_ctrl & FLOW_CTRL_RX) != 0);
epause->tx_pause = ((bp->flow_ctrl & FLOW_CTRL_TX) != 0);
}
static int
bnx2_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam *epause)
{
struct bnx2 *bp = netdev_priv(dev);
bp->req_flow_ctrl = 0;
if (epause->rx_pause)
bp->req_flow_ctrl |= FLOW_CTRL_RX;
if (epause->tx_pause)
bp->req_flow_ctrl |= FLOW_CTRL_TX;
if (epause->autoneg) {
bp->autoneg |= AUTONEG_FLOW_CTRL;
}
else {
bp->autoneg &= ~AUTONEG_FLOW_CTRL;
}
spin_lock_bh(&bp->phy_lock);
bnx2_setup_phy(bp, bp->phy_port);
spin_unlock_bh(&bp->phy_lock);
return 0;
}
static u32
bnx2_get_rx_csum(struct net_device *dev)
{
struct bnx2 *bp = netdev_priv(dev);
return bp->rx_csum;
}
static int
bnx2_set_rx_csum(struct net_device *dev, u32 data)
{
struct bnx2 *bp = netdev_priv(dev);
bp->rx_csum = data;
return 0;
}
static int
bnx2_set_tso(struct net_device *dev, u32 data)
{
struct bnx2 *bp = netdev_priv(dev);
if (data) {
dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
if (CHIP_NUM(bp) == CHIP_NUM_5709)
dev->features |= NETIF_F_TSO6;
} else
dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6 |
NETIF_F_TSO_ECN);
return 0;
}
#define BNX2_NUM_STATS 46
static struct {
char string[ETH_GSTRING_LEN];
} bnx2_stats_str_arr[BNX2_NUM_STATS] = {
{ "rx_bytes" },
{ "rx_error_bytes" },
{ "tx_bytes" },
{ "tx_error_bytes" },
{ "rx_ucast_packets" },
{ "rx_mcast_packets" },
{ "rx_bcast_packets" },
{ "tx_ucast_packets" },
{ "tx_mcast_packets" },
{ "tx_bcast_packets" },
{ "tx_mac_errors" },
{ "tx_carrier_errors" },
{ "rx_crc_errors" },
{ "rx_align_errors" },
{ "tx_single_collisions" },
{ "tx_multi_collisions" },
{ "tx_deferred" },
{ "tx_excess_collisions" },
{ "tx_late_collisions" },
{ "tx_total_collisions" },
{ "rx_fragments" },
{ "rx_jabbers" },
{ "rx_undersize_packets" },
{ "rx_oversize_packets" },
{ "rx_64_byte_packets" },
{ "rx_65_to_127_byte_packets" },
{ "rx_128_to_255_byte_packets" },
{ "rx_256_to_511_byte_packets" },
{ "rx_512_to_1023_byte_packets" },
{ "rx_1024_to_1522_byte_packets" },
{ "rx_1523_to_9022_byte_packets" },
{ "tx_64_byte_packets" },
{ "tx_65_to_127_byte_packets" },
{ "tx_128_to_255_byte_packets" },
{ "tx_256_to_511_byte_packets" },
{ "tx_512_to_1023_byte_packets" },
{ "tx_1024_to_1522_byte_packets" },
{ "tx_1523_to_9022_byte_packets" },
{ "rx_xon_frames" },
{ "rx_xoff_frames" },
{ "tx_xon_frames" },
{ "tx_xoff_frames" },
{ "rx_mac_ctrl_frames" },
{ "rx_filtered_packets" },
{ "rx_discards" },
{ "rx_fw_discards" },
};
#define STATS_OFFSET32(offset_name) (offsetof(struct statistics_block, offset_name) / 4)
static const unsigned long bnx2_stats_offset_arr[BNX2_NUM_STATS] = {
STATS_OFFSET32(stat_IfHCInOctets_hi),
STATS_OFFSET32(stat_IfHCInBadOctets_hi),
STATS_OFFSET32(stat_IfHCOutOctets_hi),
STATS_OFFSET32(stat_IfHCOutBadOctets_hi),
STATS_OFFSET32(stat_IfHCInUcastPkts_hi),
STATS_OFFSET32(stat_IfHCInMulticastPkts_hi),
STATS_OFFSET32(stat_IfHCInBroadcastPkts_hi),
STATS_OFFSET32(stat_IfHCOutUcastPkts_hi),
STATS_OFFSET32(stat_IfHCOutMulticastPkts_hi),
STATS_OFFSET32(stat_IfHCOutBroadcastPkts_hi),
STATS_OFFSET32(stat_emac_tx_stat_dot3statsinternalmactransmiterrors),
STATS_OFFSET32(stat_Dot3StatsCarrierSenseErrors),
STATS_OFFSET32(stat_Dot3StatsFCSErrors),
STATS_OFFSET32(stat_Dot3StatsAlignmentErrors),
STATS_OFFSET32(stat_Dot3StatsSingleCollisionFrames),
STATS_OFFSET32(stat_Dot3StatsMultipleCollisionFrames),
STATS_OFFSET32(stat_Dot3StatsDeferredTransmissions),
STATS_OFFSET32(stat_Dot3StatsExcessiveCollisions),
STATS_OFFSET32(stat_Dot3StatsLateCollisions),
STATS_OFFSET32(stat_EtherStatsCollisions),
STATS_OFFSET32(stat_EtherStatsFragments),
STATS_OFFSET32(stat_EtherStatsJabbers),
STATS_OFFSET32(stat_EtherStatsUndersizePkts),
STATS_OFFSET32(stat_EtherStatsOverrsizePkts),
STATS_OFFSET32(stat_EtherStatsPktsRx64Octets),
STATS_OFFSET32(stat_EtherStatsPktsRx65Octetsto127Octets),
STATS_OFFSET32(stat_EtherStatsPktsRx128Octetsto255Octets),
STATS_OFFSET32(stat_EtherStatsPktsRx256Octetsto511Octets),
STATS_OFFSET32(stat_EtherStatsPktsRx512Octetsto1023Octets),
STATS_OFFSET32(stat_EtherStatsPktsRx1024Octetsto1522Octets),
STATS_OFFSET32(stat_EtherStatsPktsRx1523Octetsto9022Octets),
STATS_OFFSET32(stat_EtherStatsPktsTx64Octets),
STATS_OFFSET32(stat_EtherStatsPktsTx65Octetsto127Octets),
STATS_OFFSET32(stat_EtherStatsPktsTx128Octetsto255Octets),
STATS_OFFSET32(stat_EtherStatsPktsTx256Octetsto511Octets),
STATS_OFFSET32(stat_EtherStatsPktsTx512Octetsto1023Octets),
STATS_OFFSET32(stat_EtherStatsPktsTx1024Octetsto1522Octets),
STATS_OFFSET32(stat_EtherStatsPktsTx1523Octetsto9022Octets),
STATS_OFFSET32(stat_XonPauseFramesReceived),
STATS_OFFSET32(stat_XoffPauseFramesReceived),
STATS_OFFSET32(stat_OutXonSent),
STATS_OFFSET32(stat_OutXoffSent),
STATS_OFFSET32(stat_MacControlFramesReceived),
STATS_OFFSET32(stat_IfInFramesL2FilterDiscards),
STATS_OFFSET32(stat_IfInMBUFDiscards),
STATS_OFFSET32(stat_FwRxDrop),
};
/* stat_IfHCInBadOctets and stat_Dot3StatsCarrierSenseErrors are
* skipped because of errata.
*/
static u8 bnx2_5706_stats_len_arr[BNX2_NUM_STATS] = {
8,0,8,8,8,8,8,8,8,8,
4,0,4,4,4,4,4,4,4,4,
4,4,4,4,4,4,4,4,4,4,
4,4,4,4,4,4,4,4,4,4,
4,4,4,4,4,4,
};
static u8 bnx2_5708_stats_len_arr[BNX2_NUM_STATS] = {
8,0,8,8,8,8,8,8,8,8,
4,4,4,4,4,4,4,4,4,4,
4,4,4,4,4,4,4,4,4,4,
4,4,4,4,4,4,4,4,4,4,
4,4,4,4,4,4,
};
#define BNX2_NUM_TESTS 6
static struct {
char string[ETH_GSTRING_LEN];
} bnx2_tests_str_arr[BNX2_NUM_TESTS] = {
{ "register_test (offline)" },
{ "memory_test (offline)" },
{ "loopback_test (offline)" },
{ "nvram_test (online)" },
{ "interrupt_test (online)" },
{ "link_test (online)" },
};
static int
bnx2_get_sset_count(struct net_device *dev, int sset)
{
switch (sset) {
case ETH_SS_TEST:
return BNX2_NUM_TESTS;
case ETH_SS_STATS:
return BNX2_NUM_STATS;
default:
return -EOPNOTSUPP;
}
}
static void
bnx2_self_test(struct net_device *dev, struct ethtool_test *etest, u64 *buf)
{
struct bnx2 *bp = netdev_priv(dev);
memset(buf, 0, sizeof(u64) * BNX2_NUM_TESTS);
if (etest->flags & ETH_TEST_FL_OFFLINE) {
int i;
bnx2_netif_stop(bp);
bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_DIAG);
bnx2_free_skbs(bp);
if (bnx2_test_registers(bp) != 0) {
buf[0] = 1;
etest->flags |= ETH_TEST_FL_FAILED;
}
if (bnx2_test_memory(bp) != 0) {
buf[1] = 1;
etest->flags |= ETH_TEST_FL_FAILED;
}
if ((buf[2] = bnx2_test_loopback(bp)) != 0)
etest->flags |= ETH_TEST_FL_FAILED;
if (!netif_running(bp->dev)) {
bnx2_reset_chip(bp, BNX2_DRV_MSG_CODE_RESET);
}
else {
bnx2_init_nic(bp, 1);
bnx2_netif_start(bp);
}
/* wait for link up */
for (i = 0; i < 7; i++) {
if (bp->link_up)
break;
msleep_interruptible(1000);
}
}
if (bnx2_test_nvram(bp) != 0) {
buf[3] = 1;
etest->flags |= ETH_TEST_FL_FAILED;
}
if (bnx2_test_intr(bp) != 0) {
buf[4] = 1;
etest->flags |= ETH_TEST_FL_FAILED;
}
if (bnx2_test_link(bp) != 0) {
buf[5] = 1;
etest->flags |= ETH_TEST_FL_FAILED;
}
}
static void
bnx2_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
{
switch (stringset) {
case ETH_SS_STATS:
memcpy(buf, bnx2_stats_str_arr,
sizeof(bnx2_stats_str_arr));
break;
case ETH_SS_TEST:
memcpy(buf, bnx2_tests_str_arr,
sizeof(bnx2_tests_str_arr));
break;
}
}
static void
bnx2_get_ethtool_stats(struct net_device *dev,
struct ethtool_stats *stats, u64 *buf)
{
struct bnx2 *bp = netdev_priv(dev);
int i;
u32 *hw_stats = (u32 *) bp->stats_blk;
u8 *stats_len_arr = NULL;
if (hw_stats == NULL) {
memset(buf, 0, sizeof(u64) * BNX2_NUM_STATS);
return;
}
if ((CHIP_ID(bp) == CHIP_ID_5706_A0) ||
(CHIP_ID(bp) == CHIP_ID_5706_A1) ||
(CHIP_ID(bp) == CHIP_ID_5706_A2) ||
(CHIP_ID(bp) == CHIP_ID_5708_A0))
stats_len_arr = bnx2_5706_stats_len_arr;
else
stats_len_arr = bnx2_5708_stats_len_arr;
for (i = 0; i < BNX2_NUM_STATS; i++) {
if (stats_len_arr[i] == 0) {
/* skip this counter */
buf[i] = 0;
continue;
}
if (stats_len_arr[i] == 4) {
/* 4-byte counter */
buf[i] = (u64)
*(hw_stats + bnx2_stats_offset_arr[i]);
continue;
}
/* 8-byte counter */
buf[i] = (((u64) *(hw_stats +
bnx2_stats_offset_arr[i])) << 32) +
*(hw_stats + bnx2_stats_offset_arr[i] + 1);
}
}
static int
bnx2_phys_id(struct net_device *dev, u32 data)
{
struct bnx2 *bp = netdev_priv(dev);
int i;
u32 save;
if (data == 0)
data = 2;
save = REG_RD(bp, BNX2_MISC_CFG);
REG_WR(bp, BNX2_MISC_CFG, BNX2_MISC_CFG_LEDMODE_MAC);
for (i = 0; i < (data * 2); i++) {
if ((i % 2) == 0) {
REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE);
}
else {
REG_WR(bp, BNX2_EMAC_LED, BNX2_EMAC_LED_OVERRIDE |
BNX2_EMAC_LED_1000MB_OVERRIDE |
BNX2_EMAC_LED_100MB_OVERRIDE |
BNX2_EMAC_LED_10MB_OVERRIDE |
BNX2_EMAC_LED_TRAFFIC_OVERRIDE |
BNX2_EMAC_LED_TRAFFIC);
}
msleep_interruptible(500);
if (signal_pending(current))
break;
}
REG_WR(bp, BNX2_EMAC_LED, 0);
REG_WR(bp, BNX2_MISC_CFG, save);
return 0;
}
static int
bnx2_set_tx_csum(struct net_device *dev, u32 data)
{
struct bnx2 *bp = netdev_priv(dev);
if (CHIP_NUM(bp) == CHIP_NUM_5709)
return (ethtool_op_set_tx_ipv6_csum(dev, data));
else
return (ethtool_op_set_tx_csum(dev, data));
}
static const struct ethtool_ops bnx2_ethtool_ops = {
.get_settings = bnx2_get_settings,
.set_settings = bnx2_set_settings,
.get_drvinfo = bnx2_get_drvinfo,
.get_regs_len = bnx2_get_regs_len,
.get_regs = bnx2_get_regs,
.get_wol = bnx2_get_wol,
.set_wol = bnx2_set_wol,
.nway_reset = bnx2_nway_reset,
.get_link = ethtool_op_get_link,
.get_eeprom_len = bnx2_get_eeprom_len,
.get_eeprom = bnx2_get_eeprom,
.set_eeprom = bnx2_set_eeprom,
.get_coalesce = bnx2_get_coalesce,
.set_coalesce = bnx2_set_coalesce,
.get_ringparam = bnx2_get_ringparam,
.set_ringparam = bnx2_set_ringparam,
.get_pauseparam = bnx2_get_pauseparam,
.set_pauseparam = bnx2_set_pauseparam,
.get_rx_csum = bnx2_get_rx_csum,
.set_rx_csum = bnx2_set_rx_csum,
.set_tx_csum = bnx2_set_tx_csum,
.set_sg = ethtool_op_set_sg,
.set_tso = bnx2_set_tso,
.self_test = bnx2_self_test,
.get_strings = bnx2_get_strings,
.phys_id = bnx2_phys_id,
.get_ethtool_stats = bnx2_get_ethtool_stats,
.get_sset_count = bnx2_get_sset_count,
};
/* Called with rtnl_lock */
static int
bnx2_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
struct mii_ioctl_data *data = if_mii(ifr);
struct bnx2 *bp = netdev_priv(dev);
int err;
switch(cmd) {
case SIOCGMIIPHY:
data->phy_id = bp->phy_addr;
/* fallthru */
case SIOCGMIIREG: {
u32 mii_regval;
if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
return -EOPNOTSUPP;
if (!netif_running(dev))
return -EAGAIN;
spin_lock_bh(&bp->phy_lock);
err = bnx2_read_phy(bp, data->reg_num & 0x1f, &mii_regval);
spin_unlock_bh(&bp->phy_lock);
data->val_out = mii_regval;
return err;
}
case SIOCSMIIREG:
if (!capable(CAP_NET_ADMIN))
return -EPERM;
if (bp->phy_flags & BNX2_PHY_FLAG_REMOTE_PHY_CAP)
return -EOPNOTSUPP;
if (!netif_running(dev))
return -EAGAIN;
spin_lock_bh(&bp->phy_lock);
err = bnx2_write_phy(bp, data->reg_num & 0x1f, data->val_in);
spin_unlock_bh(&bp->phy_lock);
return err;
default:
/* do nothing */
break;
}
return -EOPNOTSUPP;
}
/* Called with rtnl_lock */
static int
bnx2_change_mac_addr(struct net_device *dev, void *p)
{
struct sockaddr *addr = p;
struct bnx2 *bp = netdev_priv(dev);
if (!is_valid_ether_addr(addr->sa_data))
return -EINVAL;
memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
if (netif_running(dev))
bnx2_set_mac_addr(bp);
return 0;
}
/* Called with rtnl_lock */
static int
bnx2_change_mtu(struct net_device *dev, int new_mtu)
{
struct bnx2 *bp = netdev_priv(dev);
if (((new_mtu + ETH_HLEN) > MAX_ETHERNET_JUMBO_PACKET_SIZE) ||
((new_mtu + ETH_HLEN) < MIN_ETHERNET_PACKET_SIZE))
return -EINVAL;
dev->mtu = new_mtu;
return (bnx2_change_ring_size(bp, bp->rx_ring_size, bp->tx_ring_size));
}
#if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
static void
poll_bnx2(struct net_device *dev)
{
struct bnx2 *bp = netdev_priv(dev);
disable_irq(bp->pdev->irq);
bnx2_interrupt(bp->pdev->irq, dev);
enable_irq(bp->pdev->irq);
}
#endif
static void __devinit
bnx2_get_5709_media(struct bnx2 *bp)
{
u32 val = REG_RD(bp, BNX2_MISC_DUAL_MEDIA_CTRL);
u32 bond_id = val & BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID;
u32 strap;
if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_C)
return;
else if (bond_id == BNX2_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
return;
}
if (val & BNX2_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
else
strap = (val & BNX2_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP) >> 8;
if (PCI_FUNC(bp->pdev->devfn) == 0) {
switch (strap) {
case 0x4:
case 0x5:
case 0x6:
bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
return;
}
} else {
switch (strap) {
case 0x1:
case 0x2:
case 0x4:
bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
return;
}
}
}
static void __devinit
bnx2_get_pci_speed(struct bnx2 *bp)
{
u32 reg;
reg = REG_RD(bp, BNX2_PCICFG_MISC_STATUS);
if (reg & BNX2_PCICFG_MISC_STATUS_PCIX_DET) {
u32 clkreg;
bp->flags |= BNX2_FLAG_PCIX;
clkreg = REG_RD(bp, BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS);
clkreg &= BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
switch (clkreg) {
case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
bp->bus_speed_mhz = 133;
break;
case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
bp->bus_speed_mhz = 100;
break;
case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
bp->bus_speed_mhz = 66;
break;
case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
bp->bus_speed_mhz = 50;
break;
case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
case BNX2_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
bp->bus_speed_mhz = 33;
break;
}
}
else {
if (reg & BNX2_PCICFG_MISC_STATUS_M66EN)
bp->bus_speed_mhz = 66;
else
bp->bus_speed_mhz = 33;
}
if (reg & BNX2_PCICFG_MISC_STATUS_32BIT_DET)
bp->flags |= BNX2_FLAG_PCI_32BIT;
}
static int __devinit
bnx2_init_board(struct pci_dev *pdev, struct net_device *dev)
{
struct bnx2 *bp;
unsigned long mem_len;
int rc, i, j;
u32 reg;
u64 dma_mask, persist_dma_mask;
SET_NETDEV_DEV(dev, &pdev->dev);
bp = netdev_priv(dev);
bp->flags = 0;
bp->phy_flags = 0;
/* enable device (incl. PCI PM wakeup), and bus-mastering */
rc = pci_enable_device(pdev);
if (rc) {
dev_err(&pdev->dev, "Cannot enable PCI device, aborting.\n");
goto err_out;
}
if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
dev_err(&pdev->dev,
"Cannot find PCI device base address, aborting.\n");
rc = -ENODEV;
goto err_out_disable;
}
rc = pci_request_regions(pdev, DRV_MODULE_NAME);
if (rc) {
dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting.\n");
goto err_out_disable;
}
pci_set_master(pdev);
pci_save_state(pdev);
bp->pm_cap = pci_find_capability(pdev, PCI_CAP_ID_PM);
if (bp->pm_cap == 0) {
dev_err(&pdev->dev,
"Cannot find power management capability, aborting.\n");
rc = -EIO;
goto err_out_release;
}
bp->dev = dev;
bp->pdev = pdev;
spin_lock_init(&bp->phy_lock);
spin_lock_init(&bp->indirect_lock);
INIT_WORK(&bp->reset_task, bnx2_reset_task);
dev->base_addr = dev->mem_start = pci_resource_start(pdev, 0);
mem_len = MB_GET_CID_ADDR(TX_TSS_CID + 1);
dev->mem_end = dev->mem_start + mem_len;
dev->irq = pdev->irq;
bp->regview = ioremap_nocache(dev->base_addr, mem_len);
if (!bp->regview) {
dev_err(&pdev->dev, "Cannot map register space, aborting.\n");
rc = -ENOMEM;
goto err_out_release;
}
/* Configure byte swap and enable write to the reg_window registers.
* Rely on CPU to do target byte swapping on big endian systems
* The chip's target access swapping will not swap all accesses
*/
pci_write_config_dword(bp->pdev, BNX2_PCICFG_MISC_CONFIG,
BNX2_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
BNX2_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
bnx2_set_power_state(bp, PCI_D0);
bp->chip_id = REG_RD(bp, BNX2_MISC_ID);
if (CHIP_NUM(bp) == CHIP_NUM_5709) {
if (pci_find_capability(pdev, PCI_CAP_ID_EXP) == 0) {
dev_err(&pdev->dev,
"Cannot find PCIE capability, aborting.\n");
rc = -EIO;
goto err_out_unmap;
}
bp->flags |= BNX2_FLAG_PCIE;
if (CHIP_REV(bp) == CHIP_REV_Ax)
bp->flags |= BNX2_FLAG_JUMBO_BROKEN;
} else {
bp->pcix_cap = pci_find_capability(pdev, PCI_CAP_ID_PCIX);
if (bp->pcix_cap == 0) {
dev_err(&pdev->dev,
"Cannot find PCIX capability, aborting.\n");
rc = -EIO;
goto err_out_unmap;
}
}
if (CHIP_NUM(bp) == CHIP_NUM_5709 && CHIP_REV(bp) != CHIP_REV_Ax) {
if (pci_find_capability(pdev, PCI_CAP_ID_MSIX))
bp->flags |= BNX2_FLAG_MSIX_CAP;
}
if (CHIP_ID(bp) != CHIP_ID_5706_A0 && CHIP_ID(bp) != CHIP_ID_5706_A1) {
if (pci_find_capability(pdev, PCI_CAP_ID_MSI))
bp->flags |= BNX2_FLAG_MSI_CAP;
}
/* 5708 cannot support DMA addresses > 40-bit. */
if (CHIP_NUM(bp) == CHIP_NUM_5708)
persist_dma_mask = dma_mask = DMA_40BIT_MASK;
else
persist_dma_mask = dma_mask = DMA_64BIT_MASK;
/* Configure DMA attributes. */
if (pci_set_dma_mask(pdev, dma_mask) == 0) {
dev->features |= NETIF_F_HIGHDMA;
rc = pci_set_consistent_dma_mask(pdev, persist_dma_mask);
if (rc) {
dev_err(&pdev->dev,
"pci_set_consistent_dma_mask failed, aborting.\n");
goto err_out_unmap;
}
} else if ((rc = pci_set_dma_mask(pdev, DMA_32BIT_MASK)) != 0) {
dev_err(&pdev->dev, "System does not support DMA, aborting.\n");
goto err_out_unmap;
}
if (!(bp->flags & BNX2_FLAG_PCIE))
bnx2_get_pci_speed(bp);
/* 5706A0 may falsely detect SERR and PERR. */
if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
reg = REG_RD(bp, PCI_COMMAND);
reg &= ~(PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
REG_WR(bp, PCI_COMMAND, reg);
}
else if ((CHIP_ID(bp) == CHIP_ID_5706_A1) &&
!(bp->flags & BNX2_FLAG_PCIX)) {
dev_err(&pdev->dev,
"5706 A1 can only be used in a PCIX bus, aborting.\n");
goto err_out_unmap;
}
bnx2_init_nvram(bp);
reg = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_SIGNATURE);
if ((reg & BNX2_SHM_HDR_SIGNATURE_SIG_MASK) ==
BNX2_SHM_HDR_SIGNATURE_SIG) {
u32 off = PCI_FUNC(pdev->devfn) << 2;
bp->shmem_base = bnx2_reg_rd_ind(bp, BNX2_SHM_HDR_ADDR_0 + off);
} else
bp->shmem_base = HOST_VIEW_SHMEM_BASE;
/* Get the permanent MAC address. First we need to make sure the
* firmware is actually running.
*/
reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_SIGNATURE);
if ((reg & BNX2_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
BNX2_DEV_INFO_SIGNATURE_MAGIC) {
dev_err(&pdev->dev, "Firmware not running, aborting.\n");
rc = -ENODEV;
goto err_out_unmap;
}
reg = bnx2_shmem_rd(bp, BNX2_DEV_INFO_BC_REV);
for (i = 0, j = 0; i < 3; i++) {
u8 num, k, skip0;
num = (u8) (reg >> (24 - (i * 8)));
for (k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
if (num >= k || !skip0 || k == 1) {
bp->fw_version[j++] = (num / k) + '0';
skip0 = 0;
}
}
if (i != 2)
bp->fw_version[j++] = '.';
}
reg = bnx2_shmem_rd(bp, BNX2_PORT_FEATURE);
if (reg & BNX2_PORT_FEATURE_WOL_ENABLED)
bp->wol = 1;
if (reg & BNX2_PORT_FEATURE_ASF_ENABLED) {
bp->flags |= BNX2_FLAG_ASF_ENABLE;
for (i = 0; i < 30; i++) {
reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
if (reg & BNX2_CONDITION_MFW_RUN_MASK)
break;
msleep(10);
}
}
reg = bnx2_shmem_rd(bp, BNX2_BC_STATE_CONDITION);
reg &= BNX2_CONDITION_MFW_RUN_MASK;
if (reg != BNX2_CONDITION_MFW_RUN_UNKNOWN &&
reg != BNX2_CONDITION_MFW_RUN_NONE) {
int i;
u32 addr = bnx2_shmem_rd(bp, BNX2_MFW_VER_PTR);
bp->fw_version[j++] = ' ';
for (i = 0; i < 3; i++) {
reg = bnx2_reg_rd_ind(bp, addr + i * 4);
reg = swab32(reg);
memcpy(&bp->fw_version[j], &reg, 4);
j += 4;
}
}
reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_UPPER);
bp->mac_addr[0] = (u8) (reg >> 8);
bp->mac_addr[1] = (u8) reg;
reg = bnx2_shmem_rd(bp, BNX2_PORT_HW_CFG_MAC_LOWER);
bp->mac_addr[2] = (u8) (reg >> 24);
bp->mac_addr[3] = (u8) (reg >> 16);
bp->mac_addr[4] = (u8) (reg >> 8);
bp->mac_addr[5] = (u8) reg;
bp->tx_ring_size = MAX_TX_DESC_CNT;
bnx2_set_rx_ring_size(bp, 255);
bp->rx_csum = 1;
bp->tx_quick_cons_trip_int = 20;
bp->tx_quick_cons_trip = 20;
bp->tx_ticks_int = 80;
bp->tx_ticks = 80;
bp->rx_quick_cons_trip_int = 6;
bp->rx_quick_cons_trip = 6;
bp->rx_ticks_int = 18;
bp->rx_ticks = 18;
bp->stats_ticks = USEC_PER_SEC & BNX2_HC_STATS_TICKS_HC_STAT_TICKS;
bp->timer_interval = HZ;
bp->current_interval = HZ;
bp->phy_addr = 1;
/* Disable WOL support if we are running on a SERDES chip. */
if (CHIP_NUM(bp) == CHIP_NUM_5709)
bnx2_get_5709_media(bp);
else if (CHIP_BOND_ID(bp) & CHIP_BOND_ID_SERDES_BIT)
bp->phy_flags |= BNX2_PHY_FLAG_SERDES;
bp->phy_port = PORT_TP;
if (bp->phy_flags & BNX2_PHY_FLAG_SERDES) {
bp->phy_port = PORT_FIBRE;
reg = bnx2_shmem_rd(bp, BNX2_SHARED_HW_CFG_CONFIG);
if (!(reg & BNX2_SHARED_HW_CFG_GIG_LINK_ON_VAUX)) {
bp->flags |= BNX2_FLAG_NO_WOL;
bp->wol = 0;
}
if (CHIP_NUM(bp) == CHIP_NUM_5706) {
/* Don't do parallel detect on this board because of
* some board problems. The link will not go down
* if we do parallel detect.
*/
if (pdev->subsystem_vendor == PCI_VENDOR_ID_HP &&
pdev->subsystem_device == 0x310c)
bp->phy_flags |= BNX2_PHY_FLAG_NO_PARALLEL;
} else {
bp->phy_addr = 2;
if (reg & BNX2_SHARED_HW_CFG_PHY_2_5G)
bp->phy_flags |= BNX2_PHY_FLAG_2_5G_CAPABLE;
}
} else if (CHIP_NUM(bp) == CHIP_NUM_5706 ||
CHIP_NUM(bp) == CHIP_NUM_5708)
bp->phy_flags |= BNX2_PHY_FLAG_CRC_FIX;
else if (CHIP_NUM(bp) == CHIP_NUM_5709 &&
(CHIP_REV(bp) == CHIP_REV_Ax ||
CHIP_REV(bp) == CHIP_REV_Bx))
bp->phy_flags |= BNX2_PHY_FLAG_DIS_EARLY_DAC;
bnx2_init_fw_cap(bp);
if ((CHIP_ID(bp) == CHIP_ID_5708_A0) ||
(CHIP_ID(bp) == CHIP_ID_5708_B0) ||
(CHIP_ID(bp) == CHIP_ID_5708_B1)) {
bp->flags |= BNX2_FLAG_NO_WOL;
bp->wol = 0;
}
if (CHIP_ID(bp) == CHIP_ID_5706_A0) {
bp->tx_quick_cons_trip_int =
bp->tx_quick_cons_trip;
bp->tx_ticks_int = bp->tx_ticks;
bp->rx_quick_cons_trip_int =
bp->rx_quick_cons_trip;
bp->rx_ticks_int = bp->rx_ticks;
bp->comp_prod_trip_int = bp->comp_prod_trip;
bp->com_ticks_int = bp->com_ticks;
bp->cmd_ticks_int = bp->cmd_ticks;
}
/* Disable MSI on 5706 if AMD 8132 bridge is found.
*
* MSI is defined to be 32-bit write. The 5706 does 64-bit MSI writes
* with byte enables disabled on the unused 32-bit word. This is legal
* but causes problems on the AMD 8132 which will eventually stop
* responding after a while.
*
* AMD believes this incompatibility is unique to the 5706, and
* prefers to locally disable MSI rather than globally disabling it.
*/
if (CHIP_NUM(bp) == CHIP_NUM_5706 && disable_msi == 0) {
struct pci_dev *amd_8132 = NULL;
while ((amd_8132 = pci_get_device(PCI_VENDOR_ID_AMD,
PCI_DEVICE_ID_AMD_8132_BRIDGE,
amd_8132))) {
if (amd_8132->revision >= 0x10 &&
amd_8132->revision <= 0x13) {
disable_msi = 1;
pci_dev_put(amd_8132);
break;
}
}
}
bnx2_set_default_link(bp);
bp->req_flow_ctrl = FLOW_CTRL_RX | FLOW_CTRL_TX;
init_timer(&bp->timer);
bp->timer.expires = RUN_AT(bp->timer_interval);
bp->timer.data = (unsigned long) bp;
bp->timer.function = bnx2_timer;
return 0;
err_out_unmap:
if (bp->regview) {
iounmap(bp->regview);
bp->regview = NULL;
}
err_out_release:
pci_release_regions(pdev);
err_out_disable:
pci_disable_device(pdev);
pci_set_drvdata(pdev, NULL);
err_out:
return rc;
}
static char * __devinit
bnx2_bus_string(struct bnx2 *bp, char *str)
{
char *s = str;
if (bp->flags & BNX2_FLAG_PCIE) {
s += sprintf(s, "PCI Express");
} else {
s += sprintf(s, "PCI");
if (bp->flags & BNX2_FLAG_PCIX)
s += sprintf(s, "-X");
if (bp->flags & BNX2_FLAG_PCI_32BIT)
s += sprintf(s, " 32-bit");
else
s += sprintf(s, " 64-bit");
s += sprintf(s, " %dMHz", bp->bus_speed_mhz);
}
return str;
}
static void __devinit
bnx2_init_napi(struct bnx2 *bp)
{
int i;
for (i = 0; i < BNX2_MAX_MSIX_VEC; i++) {
struct bnx2_napi *bnapi = &bp->bnx2_napi[i];
int (*poll)(struct napi_struct *, int);
if (i == 0)
poll = bnx2_poll;
else
poll = bnx2_poll_msix;
netif_napi_add(bp->dev, &bp->bnx2_napi[i].napi, poll, 64);
bnapi->bp = bp;
}
}
static int __devinit
bnx2_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
{
static int version_printed = 0;
struct net_device *dev = NULL;
struct bnx2 *bp;
int rc;
char str[40];
DECLARE_MAC_BUF(mac);
if (version_printed++ == 0)
printk(KERN_INFO "%s", version);
/* dev zeroed in init_etherdev */
dev = alloc_etherdev(sizeof(*bp));
if (!dev)
return -ENOMEM;
rc = bnx2_init_board(pdev, dev);
if (rc < 0) {
free_netdev(dev);
return rc;
}
dev->open = bnx2_open;
dev->hard_start_xmit = bnx2_start_xmit;
dev->stop = bnx2_close;
dev->get_stats = bnx2_get_stats;
dev->set_multicast_list = bnx2_set_rx_mode;
dev->do_ioctl = bnx2_ioctl;
dev->set_mac_address = bnx2_change_mac_addr;
dev->change_mtu = bnx2_change_mtu;
dev->tx_timeout = bnx2_tx_timeout;
dev->watchdog_timeo = TX_TIMEOUT;
#ifdef BCM_VLAN
dev->vlan_rx_register = bnx2_vlan_rx_register;
#endif
dev->ethtool_ops = &bnx2_ethtool_ops;
bp = netdev_priv(dev);
bnx2_init_napi(bp);
#if defined(HAVE_POLL_CONTROLLER) || defined(CONFIG_NET_POLL_CONTROLLER)
dev->poll_controller = poll_bnx2;
#endif
pci_set_drvdata(pdev, dev);
memcpy(dev->dev_addr, bp->mac_addr, 6);
memcpy(dev->perm_addr, bp->mac_addr, 6);
bp->name = board_info[ent->driver_data].name;
dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
if (CHIP_NUM(bp) == CHIP_NUM_5709)
dev->features |= NETIF_F_IPV6_CSUM;
#ifdef BCM_VLAN
dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
#endif
dev->features |= NETIF_F_TSO | NETIF_F_TSO_ECN;
if (CHIP_NUM(bp) == CHIP_NUM_5709)
dev->features |= NETIF_F_TSO6;
if ((rc = register_netdev(dev))) {
dev_err(&pdev->dev, "Cannot register net device\n");
if (bp->regview)
iounmap(bp->regview);
pci_release_regions(pdev);
pci_disable_device(pdev);
pci_set_drvdata(pdev, NULL);
free_netdev(dev);
return rc;
}
printk(KERN_INFO "%s: %s (%c%d) %s found at mem %lx, "
"IRQ %d, node addr %s\n",
dev->name,
bp->name,
((CHIP_ID(bp) & 0xf000) >> 12) + 'A',
((CHIP_ID(bp) & 0x0ff0) >> 4),
bnx2_bus_string(bp, str),
dev->base_addr,
bp->pdev->irq, print_mac(mac, dev->dev_addr));
return 0;
}
static void __devexit
bnx2_remove_one(struct pci_dev *pdev)
{
struct net_device *dev = pci_get_drvdata(pdev);
struct bnx2 *bp = netdev_priv(dev);
flush_scheduled_work();
unregister_netdev(dev);
if (bp->regview)
iounmap(bp->regview);
free_netdev(dev);
pci_release_regions(pdev);
pci_disable_device(pdev);
pci_set_drvdata(pdev, NULL);
}
static int
bnx2_suspend(struct pci_dev *pdev, pm_message_t state)
{
struct net_device *dev = pci_get_drvdata(pdev);
struct bnx2 *bp = netdev_priv(dev);
u32 reset_code;
/* PCI register 4 needs to be saved whether netif_running() or not.
* MSI address and data need to be saved if using MSI and
* netif_running().
*/
pci_save_state(pdev);
if (!netif_running(dev))
return 0;
flush_scheduled_work();
bnx2_netif_stop(bp);
netif_device_detach(dev);
del_timer_sync(&bp->timer);
if (bp->flags & BNX2_FLAG_NO_WOL)
reset_code = BNX2_DRV_MSG_CODE_UNLOAD_LNK_DN;
else if (bp->wol)
reset_code = BNX2_DRV_MSG_CODE_SUSPEND_WOL;
else
reset_code = BNX2_DRV_MSG_CODE_SUSPEND_NO_WOL;
bnx2_reset_chip(bp, reset_code);
bnx2_free_skbs(bp);
bnx2_set_power_state(bp, pci_choose_state(pdev, state));
return 0;
}
static int
bnx2_resume(struct pci_dev *pdev)
{
struct net_device *dev = pci_get_drvdata(pdev);
struct bnx2 *bp = netdev_priv(dev);
pci_restore_state(pdev);
if (!netif_running(dev))
return 0;
bnx2_set_power_state(bp, PCI_D0);
netif_device_attach(dev);
bnx2_init_nic(bp, 1);
bnx2_netif_start(bp);
return 0;
}
/**
* bnx2_io_error_detected - called when PCI error is detected
* @pdev: Pointer to PCI device
* @state: The current pci connection state
*
* This function is called after a PCI bus error affecting
* this device has been detected.
*/
static pci_ers_result_t bnx2_io_error_detected(struct pci_dev *pdev,
pci_channel_state_t state)
{
struct net_device *dev = pci_get_drvdata(pdev);
struct bnx2 *bp = netdev_priv(dev);
rtnl_lock();
netif_device_detach(dev);
if (netif_running(dev)) {
bnx2_netif_stop(bp);
del_timer_sync(&bp->timer);
bnx2_reset_nic(bp, BNX2_DRV_MSG_CODE_RESET);
}
pci_disable_device(pdev);
rtnl_unlock();
/* Request a slot slot reset. */
return PCI_ERS_RESULT_NEED_RESET;
}
/**
* bnx2_io_slot_reset - called after the pci bus has been reset.
* @pdev: Pointer to PCI device
*
* Restart the card from scratch, as if from a cold-boot.
*/
static pci_ers_result_t bnx2_io_slot_reset(struct pci_dev *pdev)
{
struct net_device *dev = pci_get_drvdata(pdev);
struct bnx2 *bp = netdev_priv(dev);
rtnl_lock();
if (pci_enable_device(pdev)) {
dev_err(&pdev->dev,
"Cannot re-enable PCI device after reset.\n");
rtnl_unlock();
return PCI_ERS_RESULT_DISCONNECT;
}
pci_set_master(pdev);
pci_restore_state(pdev);
if (netif_running(dev)) {
bnx2_set_power_state(bp, PCI_D0);
bnx2_init_nic(bp, 1);
}
rtnl_unlock();
return PCI_ERS_RESULT_RECOVERED;
}
/**
* bnx2_io_resume - called when traffic can start flowing again.
* @pdev: Pointer to PCI device
*
* This callback is called when the error recovery driver tells us that
* its OK to resume normal operation.
*/
static void bnx2_io_resume(struct pci_dev *pdev)
{
struct net_device *dev = pci_get_drvdata(pdev);
struct bnx2 *bp = netdev_priv(dev);
rtnl_lock();
if (netif_running(dev))
bnx2_netif_start(bp);
netif_device_attach(dev);
rtnl_unlock();
}
static struct pci_error_handlers bnx2_err_handler = {
.error_detected = bnx2_io_error_detected,
.slot_reset = bnx2_io_slot_reset,
.resume = bnx2_io_resume,
};
static struct pci_driver bnx2_pci_driver = {
.name = DRV_MODULE_NAME,
.id_table = bnx2_pci_tbl,
.probe = bnx2_init_one,
.remove = __devexit_p(bnx2_remove_one),
.suspend = bnx2_suspend,
.resume = bnx2_resume,
.err_handler = &bnx2_err_handler,
};
static int __init bnx2_init(void)
{
return pci_register_driver(&bnx2_pci_driver);
}
static void __exit bnx2_cleanup(void)
{
pci_unregister_driver(&bnx2_pci_driver);
}
module_init(bnx2_init);
module_exit(bnx2_cleanup);