linux_dsm_epyc7002/arch/powerpc/kernel/eeh_event.c
Thomas Gleixner 1a59d1b8e0 treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 156
Based on 1 normalized pattern(s):

  this program is free software you can redistribute it and or modify
  it under the terms of the gnu general public license as published by
  the free software foundation either version 2 of the license or at
  your option any later version this program is distributed in the
  hope that it will be useful but without any warranty without even
  the implied warranty of merchantability or fitness for a particular
  purpose see the gnu general public license for more details you
  should have received a copy of the gnu general public license along
  with this program if not write to the free software foundation inc
  59 temple place suite 330 boston ma 02111 1307 usa

extracted by the scancode license scanner the SPDX license identifier

  GPL-2.0-or-later

has been chosen to replace the boilerplate/reference in 1334 file(s).

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Richard Fontana <rfontana@redhat.com>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190527070033.113240726@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-30 11:26:35 -07:00

194 lines
4.8 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
*
* Copyright (c) 2005 Linas Vepstas <linas@linas.org>
*/
#include <linux/delay.h>
#include <linux/list.h>
#include <linux/sched.h>
#include <linux/semaphore.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include <linux/kthread.h>
#include <asm/eeh_event.h>
#include <asm/ppc-pci.h>
/** Overview:
* EEH error states may be detected within exception handlers;
* however, the recovery processing needs to occur asynchronously
* in a normal kernel context and not an interrupt context.
* This pair of routines creates an event and queues it onto a
* work-queue, where a worker thread can drive recovery.
*/
static DEFINE_SPINLOCK(eeh_eventlist_lock);
static DECLARE_COMPLETION(eeh_eventlist_event);
static LIST_HEAD(eeh_eventlist);
/**
* eeh_event_handler - Dispatch EEH events.
* @dummy - unused
*
* The detection of a frozen slot can occur inside an interrupt,
* where it can be hard to do anything about it. The goal of this
* routine is to pull these detection events out of the context
* of the interrupt handler, and re-dispatch them for processing
* at a later time in a normal context.
*/
static int eeh_event_handler(void * dummy)
{
unsigned long flags;
struct eeh_event *event;
struct eeh_pe *pe;
while (!kthread_should_stop()) {
if (wait_for_completion_interruptible(&eeh_eventlist_event))
break;
/* Fetch EEH event from the queue */
spin_lock_irqsave(&eeh_eventlist_lock, flags);
event = NULL;
if (!list_empty(&eeh_eventlist)) {
event = list_entry(eeh_eventlist.next,
struct eeh_event, list);
list_del(&event->list);
}
spin_unlock_irqrestore(&eeh_eventlist_lock, flags);
if (!event)
continue;
/* We might have event without binding PE */
pe = event->pe;
if (pe) {
if (pe->type & EEH_PE_PHB)
pr_info("EEH: Detected error on PHB#%x\n",
pe->phb->global_number);
else
pr_info("EEH: Detected PCI bus error on "
"PHB#%x-PE#%x\n",
pe->phb->global_number, pe->addr);
eeh_handle_normal_event(pe);
} else {
eeh_handle_special_event();
}
kfree(event);
}
return 0;
}
/**
* eeh_event_init - Start kernel thread to handle EEH events
*
* This routine is called to start the kernel thread for processing
* EEH event.
*/
int eeh_event_init(void)
{
struct task_struct *t;
int ret = 0;
t = kthread_run(eeh_event_handler, NULL, "eehd");
if (IS_ERR(t)) {
ret = PTR_ERR(t);
pr_err("%s: Failed to start EEH daemon (%d)\n",
__func__, ret);
return ret;
}
return 0;
}
/**
* eeh_send_failure_event - Generate a PCI error event
* @pe: EEH PE
*
* This routine can be called within an interrupt context;
* the actual event will be delivered in a normal context
* (from a workqueue).
*/
int __eeh_send_failure_event(struct eeh_pe *pe)
{
unsigned long flags;
struct eeh_event *event;
event = kzalloc(sizeof(*event), GFP_ATOMIC);
if (!event) {
pr_err("EEH: out of memory, event not handled\n");
return -ENOMEM;
}
event->pe = pe;
/* We may or may not be called in an interrupt context */
spin_lock_irqsave(&eeh_eventlist_lock, flags);
list_add(&event->list, &eeh_eventlist);
spin_unlock_irqrestore(&eeh_eventlist_lock, flags);
/* For EEH deamon to knick in */
complete(&eeh_eventlist_event);
return 0;
}
int eeh_send_failure_event(struct eeh_pe *pe)
{
/*
* If we've manually supressed recovery events via debugfs
* then just drop it on the floor.
*/
if (eeh_debugfs_no_recover) {
pr_err("EEH: Event dropped due to no_recover setting\n");
return 0;
}
return __eeh_send_failure_event(pe);
}
/**
* eeh_remove_event - Remove EEH event from the queue
* @pe: Event binding to the PE
* @force: Event will be removed unconditionally
*
* On PowerNV platform, we might have subsequent coming events
* is part of the former one. For that case, those subsequent
* coming events are totally duplicated and unnecessary, thus
* they should be removed.
*/
void eeh_remove_event(struct eeh_pe *pe, bool force)
{
unsigned long flags;
struct eeh_event *event, *tmp;
/*
* If we have NULL PE passed in, we have dead IOC
* or we're sure we can report all existing errors
* by the caller.
*
* With "force", the event with associated PE that
* have been isolated, the event won't be removed
* to avoid event lost.
*/
spin_lock_irqsave(&eeh_eventlist_lock, flags);
list_for_each_entry_safe(event, tmp, &eeh_eventlist, list) {
if (!force && event->pe &&
(event->pe->state & EEH_PE_ISOLATED))
continue;
if (!pe) {
list_del(&event->list);
kfree(event);
} else if (pe->type & EEH_PE_PHB) {
if (event->pe && event->pe->phb == pe->phb) {
list_del(&event->list);
kfree(event);
}
} else if (event->pe == pe) {
list_del(&event->list);
kfree(event);
}
}
spin_unlock_irqrestore(&eeh_eventlist_lock, flags);
}