mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2025-01-25 15:39:47 +07:00
6cd10f8db3
Impact: build/boot fix for x86/Voyager
This change:
| commit 3d44223327
| Author: Jens Axboe <jens.axboe@oracle.com>
| Date: Thu Jun 26 11:21:34 2008 +0200
|
| Add generic helpers for arch IPI function calls
didn't wire up the voyager smp call function correctly, so do that
here. Also make CONFIG_USE_GENERIC_SMP_HELPERS a def_bool y again,
since we now use the generic helpers for every x86 architecture.
Signed-off-by: James Bottomley <James.Bottomley@HansenPartnership.com>
Cc: Jens Axboe <Jens.Axboe@oracle.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
1817 lines
50 KiB
C
1817 lines
50 KiB
C
/* -*- mode: c; c-basic-offset: 8 -*- */
|
|
|
|
/* Copyright (C) 1999,2001
|
|
*
|
|
* Author: J.E.J.Bottomley@HansenPartnership.com
|
|
*
|
|
* This file provides all the same external entries as smp.c but uses
|
|
* the voyager hal to provide the functionality
|
|
*/
|
|
#include <linux/cpu.h>
|
|
#include <linux/module.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/kernel_stat.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/mc146818rtc.h>
|
|
#include <linux/cache.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/init.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/completion.h>
|
|
#include <asm/desc.h>
|
|
#include <asm/voyager.h>
|
|
#include <asm/vic.h>
|
|
#include <asm/mtrr.h>
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/arch_hooks.h>
|
|
#include <asm/trampoline.h>
|
|
|
|
/* TLB state -- visible externally, indexed physically */
|
|
DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state, cpu_tlbstate) = { &init_mm, 0 };
|
|
|
|
/* CPU IRQ affinity -- set to all ones initially */
|
|
static unsigned long cpu_irq_affinity[NR_CPUS] __cacheline_aligned =
|
|
{[0 ... NR_CPUS-1] = ~0UL };
|
|
|
|
/* per CPU data structure (for /proc/cpuinfo et al), visible externally
|
|
* indexed physically */
|
|
DEFINE_PER_CPU_SHARED_ALIGNED(struct cpuinfo_x86, cpu_info);
|
|
EXPORT_PER_CPU_SYMBOL(cpu_info);
|
|
|
|
/* physical ID of the CPU used to boot the system */
|
|
unsigned char boot_cpu_id;
|
|
|
|
/* The memory line addresses for the Quad CPIs */
|
|
struct voyager_qic_cpi *voyager_quad_cpi_addr[NR_CPUS] __cacheline_aligned;
|
|
|
|
/* The masks for the Extended VIC processors, filled in by cat_init */
|
|
__u32 voyager_extended_vic_processors = 0;
|
|
|
|
/* Masks for the extended Quad processors which cannot be VIC booted */
|
|
__u32 voyager_allowed_boot_processors = 0;
|
|
|
|
/* The mask for the Quad Processors (both extended and non-extended) */
|
|
__u32 voyager_quad_processors = 0;
|
|
|
|
/* Total count of live CPUs, used in process.c to display
|
|
* the CPU information and in irq.c for the per CPU irq
|
|
* activity count. Finally exported by i386_ksyms.c */
|
|
static int voyager_extended_cpus = 1;
|
|
|
|
/* Used for the invalidate map that's also checked in the spinlock */
|
|
static volatile unsigned long smp_invalidate_needed;
|
|
|
|
/* Bitmask of currently online CPUs - used by setup.c for
|
|
/proc/cpuinfo, visible externally but still physical */
|
|
cpumask_t cpu_online_map = CPU_MASK_NONE;
|
|
EXPORT_SYMBOL(cpu_online_map);
|
|
|
|
/* Bitmask of CPUs present in the system - exported by i386_syms.c, used
|
|
* by scheduler but indexed physically */
|
|
cpumask_t phys_cpu_present_map = CPU_MASK_NONE;
|
|
|
|
/* The internal functions */
|
|
static void send_CPI(__u32 cpuset, __u8 cpi);
|
|
static void ack_CPI(__u8 cpi);
|
|
static int ack_QIC_CPI(__u8 cpi);
|
|
static void ack_special_QIC_CPI(__u8 cpi);
|
|
static void ack_VIC_CPI(__u8 cpi);
|
|
static void send_CPI_allbutself(__u8 cpi);
|
|
static void mask_vic_irq(unsigned int irq);
|
|
static void unmask_vic_irq(unsigned int irq);
|
|
static unsigned int startup_vic_irq(unsigned int irq);
|
|
static void enable_local_vic_irq(unsigned int irq);
|
|
static void disable_local_vic_irq(unsigned int irq);
|
|
static void before_handle_vic_irq(unsigned int irq);
|
|
static void after_handle_vic_irq(unsigned int irq);
|
|
static void set_vic_irq_affinity(unsigned int irq, cpumask_t mask);
|
|
static void ack_vic_irq(unsigned int irq);
|
|
static void vic_enable_cpi(void);
|
|
static void do_boot_cpu(__u8 cpuid);
|
|
static void do_quad_bootstrap(void);
|
|
static void initialize_secondary(void);
|
|
|
|
int hard_smp_processor_id(void);
|
|
int safe_smp_processor_id(void);
|
|
|
|
/* Inline functions */
|
|
static inline void send_one_QIC_CPI(__u8 cpu, __u8 cpi)
|
|
{
|
|
voyager_quad_cpi_addr[cpu]->qic_cpi[cpi].cpi =
|
|
(smp_processor_id() << 16) + cpi;
|
|
}
|
|
|
|
static inline void send_QIC_CPI(__u32 cpuset, __u8 cpi)
|
|
{
|
|
int cpu;
|
|
|
|
for_each_online_cpu(cpu) {
|
|
if (cpuset & (1 << cpu)) {
|
|
#ifdef VOYAGER_DEBUG
|
|
if (!cpu_online(cpu))
|
|
VDEBUG(("CPU%d sending cpi %d to CPU%d not in "
|
|
"cpu_online_map\n",
|
|
hard_smp_processor_id(), cpi, cpu));
|
|
#endif
|
|
send_one_QIC_CPI(cpu, cpi - QIC_CPI_OFFSET);
|
|
}
|
|
}
|
|
}
|
|
|
|
static inline void wrapper_smp_local_timer_interrupt(void)
|
|
{
|
|
irq_enter();
|
|
smp_local_timer_interrupt();
|
|
irq_exit();
|
|
}
|
|
|
|
static inline void send_one_CPI(__u8 cpu, __u8 cpi)
|
|
{
|
|
if (voyager_quad_processors & (1 << cpu))
|
|
send_one_QIC_CPI(cpu, cpi - QIC_CPI_OFFSET);
|
|
else
|
|
send_CPI(1 << cpu, cpi);
|
|
}
|
|
|
|
static inline void send_CPI_allbutself(__u8 cpi)
|
|
{
|
|
__u8 cpu = smp_processor_id();
|
|
__u32 mask = cpus_addr(cpu_online_map)[0] & ~(1 << cpu);
|
|
send_CPI(mask, cpi);
|
|
}
|
|
|
|
static inline int is_cpu_quad(void)
|
|
{
|
|
__u8 cpumask = inb(VIC_PROC_WHO_AM_I);
|
|
return ((cpumask & QUAD_IDENTIFIER) == QUAD_IDENTIFIER);
|
|
}
|
|
|
|
static inline int is_cpu_extended(void)
|
|
{
|
|
__u8 cpu = hard_smp_processor_id();
|
|
|
|
return (voyager_extended_vic_processors & (1 << cpu));
|
|
}
|
|
|
|
static inline int is_cpu_vic_boot(void)
|
|
{
|
|
__u8 cpu = hard_smp_processor_id();
|
|
|
|
return (voyager_extended_vic_processors
|
|
& voyager_allowed_boot_processors & (1 << cpu));
|
|
}
|
|
|
|
static inline void ack_CPI(__u8 cpi)
|
|
{
|
|
switch (cpi) {
|
|
case VIC_CPU_BOOT_CPI:
|
|
if (is_cpu_quad() && !is_cpu_vic_boot())
|
|
ack_QIC_CPI(cpi);
|
|
else
|
|
ack_VIC_CPI(cpi);
|
|
break;
|
|
case VIC_SYS_INT:
|
|
case VIC_CMN_INT:
|
|
/* These are slightly strange. Even on the Quad card,
|
|
* They are vectored as VIC CPIs */
|
|
if (is_cpu_quad())
|
|
ack_special_QIC_CPI(cpi);
|
|
else
|
|
ack_VIC_CPI(cpi);
|
|
break;
|
|
default:
|
|
printk("VOYAGER ERROR: CPI%d is in common CPI code\n", cpi);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* local variables */
|
|
|
|
/* The VIC IRQ descriptors -- these look almost identical to the
|
|
* 8259 IRQs except that masks and things must be kept per processor
|
|
*/
|
|
static struct irq_chip vic_chip = {
|
|
.name = "VIC",
|
|
.startup = startup_vic_irq,
|
|
.mask = mask_vic_irq,
|
|
.unmask = unmask_vic_irq,
|
|
.set_affinity = set_vic_irq_affinity,
|
|
};
|
|
|
|
/* used to count up as CPUs are brought on line (starts at 0) */
|
|
static int cpucount = 0;
|
|
|
|
/* The per cpu profile stuff - used in smp_local_timer_interrupt */
|
|
static DEFINE_PER_CPU(int, prof_multiplier) = 1;
|
|
static DEFINE_PER_CPU(int, prof_old_multiplier) = 1;
|
|
static DEFINE_PER_CPU(int, prof_counter) = 1;
|
|
|
|
/* the map used to check if a CPU has booted */
|
|
static __u32 cpu_booted_map;
|
|
|
|
/* the synchronize flag used to hold all secondary CPUs spinning in
|
|
* a tight loop until the boot sequence is ready for them */
|
|
static cpumask_t smp_commenced_mask = CPU_MASK_NONE;
|
|
|
|
/* This is for the new dynamic CPU boot code */
|
|
cpumask_t cpu_callin_map = CPU_MASK_NONE;
|
|
cpumask_t cpu_callout_map = CPU_MASK_NONE;
|
|
cpumask_t cpu_possible_map = CPU_MASK_NONE;
|
|
EXPORT_SYMBOL(cpu_possible_map);
|
|
|
|
/* The per processor IRQ masks (these are usually kept in sync) */
|
|
static __u16 vic_irq_mask[NR_CPUS] __cacheline_aligned;
|
|
|
|
/* the list of IRQs to be enabled by the VIC_ENABLE_IRQ_CPI */
|
|
static __u16 vic_irq_enable_mask[NR_CPUS] __cacheline_aligned = { 0 };
|
|
|
|
/* Lock for enable/disable of VIC interrupts */
|
|
static __cacheline_aligned DEFINE_SPINLOCK(vic_irq_lock);
|
|
|
|
/* The boot processor is correctly set up in PC mode when it
|
|
* comes up, but the secondaries need their master/slave 8259
|
|
* pairs initializing correctly */
|
|
|
|
/* Interrupt counters (per cpu) and total - used to try to
|
|
* even up the interrupt handling routines */
|
|
static long vic_intr_total = 0;
|
|
static long vic_intr_count[NR_CPUS] __cacheline_aligned = { 0 };
|
|
static unsigned long vic_tick[NR_CPUS] __cacheline_aligned = { 0 };
|
|
|
|
/* Since we can only use CPI0, we fake all the other CPIs */
|
|
static unsigned long vic_cpi_mailbox[NR_CPUS] __cacheline_aligned;
|
|
|
|
/* debugging routine to read the isr of the cpu's pic */
|
|
static inline __u16 vic_read_isr(void)
|
|
{
|
|
__u16 isr;
|
|
|
|
outb(0x0b, 0xa0);
|
|
isr = inb(0xa0) << 8;
|
|
outb(0x0b, 0x20);
|
|
isr |= inb(0x20);
|
|
|
|
return isr;
|
|
}
|
|
|
|
static __init void qic_setup(void)
|
|
{
|
|
if (!is_cpu_quad()) {
|
|
/* not a quad, no setup */
|
|
return;
|
|
}
|
|
outb(QIC_DEFAULT_MASK0, QIC_MASK_REGISTER0);
|
|
outb(QIC_CPI_ENABLE, QIC_MASK_REGISTER1);
|
|
|
|
if (is_cpu_extended()) {
|
|
/* the QIC duplicate of the VIC base register */
|
|
outb(VIC_DEFAULT_CPI_BASE, QIC_VIC_CPI_BASE_REGISTER);
|
|
outb(QIC_DEFAULT_CPI_BASE, QIC_CPI_BASE_REGISTER);
|
|
|
|
/* FIXME: should set up the QIC timer and memory parity
|
|
* error vectors here */
|
|
}
|
|
}
|
|
|
|
static __init void vic_setup_pic(void)
|
|
{
|
|
outb(1, VIC_REDIRECT_REGISTER_1);
|
|
/* clear the claim registers for dynamic routing */
|
|
outb(0, VIC_CLAIM_REGISTER_0);
|
|
outb(0, VIC_CLAIM_REGISTER_1);
|
|
|
|
outb(0, VIC_PRIORITY_REGISTER);
|
|
/* Set the Primary and Secondary Microchannel vector
|
|
* bases to be the same as the ordinary interrupts
|
|
*
|
|
* FIXME: This would be more efficient using separate
|
|
* vectors. */
|
|
outb(FIRST_EXTERNAL_VECTOR, VIC_PRIMARY_MC_BASE);
|
|
outb(FIRST_EXTERNAL_VECTOR, VIC_SECONDARY_MC_BASE);
|
|
/* Now initiallise the master PIC belonging to this CPU by
|
|
* sending the four ICWs */
|
|
|
|
/* ICW1: level triggered, ICW4 needed */
|
|
outb(0x19, 0x20);
|
|
|
|
/* ICW2: vector base */
|
|
outb(FIRST_EXTERNAL_VECTOR, 0x21);
|
|
|
|
/* ICW3: slave at line 2 */
|
|
outb(0x04, 0x21);
|
|
|
|
/* ICW4: 8086 mode */
|
|
outb(0x01, 0x21);
|
|
|
|
/* now the same for the slave PIC */
|
|
|
|
/* ICW1: level trigger, ICW4 needed */
|
|
outb(0x19, 0xA0);
|
|
|
|
/* ICW2: slave vector base */
|
|
outb(FIRST_EXTERNAL_VECTOR + 8, 0xA1);
|
|
|
|
/* ICW3: slave ID */
|
|
outb(0x02, 0xA1);
|
|
|
|
/* ICW4: 8086 mode */
|
|
outb(0x01, 0xA1);
|
|
}
|
|
|
|
static void do_quad_bootstrap(void)
|
|
{
|
|
if (is_cpu_quad() && is_cpu_vic_boot()) {
|
|
int i;
|
|
unsigned long flags;
|
|
__u8 cpuid = hard_smp_processor_id();
|
|
|
|
local_irq_save(flags);
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
/* FIXME: this would be >>3 &0x7 on the 32 way */
|
|
if (((cpuid >> 2) & 0x03) == i)
|
|
/* don't lower our own mask! */
|
|
continue;
|
|
|
|
/* masquerade as local Quad CPU */
|
|
outb(QIC_CPUID_ENABLE | i, QIC_PROCESSOR_ID);
|
|
/* enable the startup CPI */
|
|
outb(QIC_BOOT_CPI_MASK, QIC_MASK_REGISTER1);
|
|
/* restore cpu id */
|
|
outb(0, QIC_PROCESSOR_ID);
|
|
}
|
|
local_irq_restore(flags);
|
|
}
|
|
}
|
|
|
|
void prefill_possible_map(void)
|
|
{
|
|
/* This is empty on voyager because we need a much
|
|
* earlier detection which is done in find_smp_config */
|
|
}
|
|
|
|
/* Set up all the basic stuff: read the SMP config and make all the
|
|
* SMP information reflect only the boot cpu. All others will be
|
|
* brought on-line later. */
|
|
void __init find_smp_config(void)
|
|
{
|
|
int i;
|
|
|
|
boot_cpu_id = hard_smp_processor_id();
|
|
|
|
printk("VOYAGER SMP: Boot cpu is %d\n", boot_cpu_id);
|
|
|
|
/* initialize the CPU structures (moved from smp_boot_cpus) */
|
|
for (i = 0; i < NR_CPUS; i++) {
|
|
cpu_irq_affinity[i] = ~0;
|
|
}
|
|
cpu_online_map = cpumask_of_cpu(boot_cpu_id);
|
|
|
|
/* The boot CPU must be extended */
|
|
voyager_extended_vic_processors = 1 << boot_cpu_id;
|
|
/* initially, all of the first 8 CPUs can boot */
|
|
voyager_allowed_boot_processors = 0xff;
|
|
/* set up everything for just this CPU, we can alter
|
|
* this as we start the other CPUs later */
|
|
/* now get the CPU disposition from the extended CMOS */
|
|
cpus_addr(phys_cpu_present_map)[0] =
|
|
voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK);
|
|
cpus_addr(phys_cpu_present_map)[0] |=
|
|
voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK + 1) << 8;
|
|
cpus_addr(phys_cpu_present_map)[0] |=
|
|
voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK +
|
|
2) << 16;
|
|
cpus_addr(phys_cpu_present_map)[0] |=
|
|
voyager_extended_cmos_read(VOYAGER_PROCESSOR_PRESENT_MASK +
|
|
3) << 24;
|
|
cpu_possible_map = phys_cpu_present_map;
|
|
printk("VOYAGER SMP: phys_cpu_present_map = 0x%lx\n",
|
|
cpus_addr(phys_cpu_present_map)[0]);
|
|
/* Here we set up the VIC to enable SMP */
|
|
/* enable the CPIs by writing the base vector to their register */
|
|
outb(VIC_DEFAULT_CPI_BASE, VIC_CPI_BASE_REGISTER);
|
|
outb(1, VIC_REDIRECT_REGISTER_1);
|
|
/* set the claim registers for static routing --- Boot CPU gets
|
|
* all interrupts untill all other CPUs started */
|
|
outb(0xff, VIC_CLAIM_REGISTER_0);
|
|
outb(0xff, VIC_CLAIM_REGISTER_1);
|
|
/* Set the Primary and Secondary Microchannel vector
|
|
* bases to be the same as the ordinary interrupts
|
|
*
|
|
* FIXME: This would be more efficient using separate
|
|
* vectors. */
|
|
outb(FIRST_EXTERNAL_VECTOR, VIC_PRIMARY_MC_BASE);
|
|
outb(FIRST_EXTERNAL_VECTOR, VIC_SECONDARY_MC_BASE);
|
|
|
|
/* Finally tell the firmware that we're driving */
|
|
outb(inb(VOYAGER_SUS_IN_CONTROL_PORT) | VOYAGER_IN_CONTROL_FLAG,
|
|
VOYAGER_SUS_IN_CONTROL_PORT);
|
|
|
|
current_thread_info()->cpu = boot_cpu_id;
|
|
x86_write_percpu(cpu_number, boot_cpu_id);
|
|
}
|
|
|
|
/*
|
|
* The bootstrap kernel entry code has set these up. Save them
|
|
* for a given CPU, id is physical */
|
|
void __init smp_store_cpu_info(int id)
|
|
{
|
|
struct cpuinfo_x86 *c = &cpu_data(id);
|
|
|
|
*c = boot_cpu_data;
|
|
c->cpu_index = id;
|
|
|
|
identify_secondary_cpu(c);
|
|
}
|
|
|
|
/* Routine initially called when a non-boot CPU is brought online */
|
|
static void __init start_secondary(void *unused)
|
|
{
|
|
__u8 cpuid = hard_smp_processor_id();
|
|
|
|
cpu_init();
|
|
|
|
/* OK, we're in the routine */
|
|
ack_CPI(VIC_CPU_BOOT_CPI);
|
|
|
|
/* setup the 8259 master slave pair belonging to this CPU ---
|
|
* we won't actually receive any until the boot CPU
|
|
* relinquishes it's static routing mask */
|
|
vic_setup_pic();
|
|
|
|
qic_setup();
|
|
|
|
if (is_cpu_quad() && !is_cpu_vic_boot()) {
|
|
/* clear the boot CPI */
|
|
__u8 dummy;
|
|
|
|
dummy =
|
|
voyager_quad_cpi_addr[cpuid]->qic_cpi[VIC_CPU_BOOT_CPI].cpi;
|
|
printk("read dummy %d\n", dummy);
|
|
}
|
|
|
|
/* lower the mask to receive CPIs */
|
|
vic_enable_cpi();
|
|
|
|
VDEBUG(("VOYAGER SMP: CPU%d, stack at about %p\n", cpuid, &cpuid));
|
|
|
|
notify_cpu_starting(cpuid);
|
|
|
|
/* enable interrupts */
|
|
local_irq_enable();
|
|
|
|
/* get our bogomips */
|
|
calibrate_delay();
|
|
|
|
/* save our processor parameters */
|
|
smp_store_cpu_info(cpuid);
|
|
|
|
/* if we're a quad, we may need to bootstrap other CPUs */
|
|
do_quad_bootstrap();
|
|
|
|
/* FIXME: this is rather a poor hack to prevent the CPU
|
|
* activating softirqs while it's supposed to be waiting for
|
|
* permission to proceed. Without this, the new per CPU stuff
|
|
* in the softirqs will fail */
|
|
local_irq_disable();
|
|
cpu_set(cpuid, cpu_callin_map);
|
|
|
|
/* signal that we're done */
|
|
cpu_booted_map = 1;
|
|
|
|
while (!cpu_isset(cpuid, smp_commenced_mask))
|
|
rep_nop();
|
|
local_irq_enable();
|
|
|
|
local_flush_tlb();
|
|
|
|
cpu_set(cpuid, cpu_online_map);
|
|
wmb();
|
|
cpu_idle();
|
|
}
|
|
|
|
/* Routine to kick start the given CPU and wait for it to report ready
|
|
* (or timeout in startup). When this routine returns, the requested
|
|
* CPU is either fully running and configured or known to be dead.
|
|
*
|
|
* We call this routine sequentially 1 CPU at a time, so no need for
|
|
* locking */
|
|
|
|
static void __init do_boot_cpu(__u8 cpu)
|
|
{
|
|
struct task_struct *idle;
|
|
int timeout;
|
|
unsigned long flags;
|
|
int quad_boot = (1 << cpu) & voyager_quad_processors
|
|
& ~(voyager_extended_vic_processors
|
|
& voyager_allowed_boot_processors);
|
|
|
|
/* This is the format of the CPI IDT gate (in real mode) which
|
|
* we're hijacking to boot the CPU */
|
|
union IDTFormat {
|
|
struct seg {
|
|
__u16 Offset;
|
|
__u16 Segment;
|
|
} idt;
|
|
__u32 val;
|
|
} hijack_source;
|
|
|
|
__u32 *hijack_vector;
|
|
__u32 start_phys_address = setup_trampoline();
|
|
|
|
/* There's a clever trick to this: The linux trampoline is
|
|
* compiled to begin at absolute location zero, so make the
|
|
* address zero but have the data segment selector compensate
|
|
* for the actual address */
|
|
hijack_source.idt.Offset = start_phys_address & 0x000F;
|
|
hijack_source.idt.Segment = (start_phys_address >> 4) & 0xFFFF;
|
|
|
|
cpucount++;
|
|
alternatives_smp_switch(1);
|
|
|
|
idle = fork_idle(cpu);
|
|
if (IS_ERR(idle))
|
|
panic("failed fork for CPU%d", cpu);
|
|
idle->thread.ip = (unsigned long)start_secondary;
|
|
/* init_tasks (in sched.c) is indexed logically */
|
|
stack_start.sp = (void *)idle->thread.sp;
|
|
|
|
init_gdt(cpu);
|
|
per_cpu(current_task, cpu) = idle;
|
|
early_gdt_descr.address = (unsigned long)get_cpu_gdt_table(cpu);
|
|
irq_ctx_init(cpu);
|
|
|
|
/* Note: Don't modify initial ss override */
|
|
VDEBUG(("VOYAGER SMP: Booting CPU%d at 0x%lx[%x:%x], stack %p\n", cpu,
|
|
(unsigned long)hijack_source.val, hijack_source.idt.Segment,
|
|
hijack_source.idt.Offset, stack_start.sp));
|
|
|
|
/* init lowmem identity mapping */
|
|
clone_pgd_range(swapper_pg_dir, swapper_pg_dir + KERNEL_PGD_BOUNDARY,
|
|
min_t(unsigned long, KERNEL_PGD_PTRS, KERNEL_PGD_BOUNDARY));
|
|
flush_tlb_all();
|
|
|
|
if (quad_boot) {
|
|
printk("CPU %d: non extended Quad boot\n", cpu);
|
|
hijack_vector =
|
|
(__u32 *)
|
|
phys_to_virt((VIC_CPU_BOOT_CPI + QIC_DEFAULT_CPI_BASE) * 4);
|
|
*hijack_vector = hijack_source.val;
|
|
} else {
|
|
printk("CPU%d: extended VIC boot\n", cpu);
|
|
hijack_vector =
|
|
(__u32 *)
|
|
phys_to_virt((VIC_CPU_BOOT_CPI + VIC_DEFAULT_CPI_BASE) * 4);
|
|
*hijack_vector = hijack_source.val;
|
|
/* VIC errata, may also receive interrupt at this address */
|
|
hijack_vector =
|
|
(__u32 *)
|
|
phys_to_virt((VIC_CPU_BOOT_ERRATA_CPI +
|
|
VIC_DEFAULT_CPI_BASE) * 4);
|
|
*hijack_vector = hijack_source.val;
|
|
}
|
|
/* All non-boot CPUs start with interrupts fully masked. Need
|
|
* to lower the mask of the CPI we're about to send. We do
|
|
* this in the VIC by masquerading as the processor we're
|
|
* about to boot and lowering its interrupt mask */
|
|
local_irq_save(flags);
|
|
if (quad_boot) {
|
|
send_one_QIC_CPI(cpu, VIC_CPU_BOOT_CPI);
|
|
} else {
|
|
outb(VIC_CPU_MASQUERADE_ENABLE | cpu, VIC_PROCESSOR_ID);
|
|
/* here we're altering registers belonging to `cpu' */
|
|
|
|
outb(VIC_BOOT_INTERRUPT_MASK, 0x21);
|
|
/* now go back to our original identity */
|
|
outb(boot_cpu_id, VIC_PROCESSOR_ID);
|
|
|
|
/* and boot the CPU */
|
|
|
|
send_CPI((1 << cpu), VIC_CPU_BOOT_CPI);
|
|
}
|
|
cpu_booted_map = 0;
|
|
local_irq_restore(flags);
|
|
|
|
/* now wait for it to become ready (or timeout) */
|
|
for (timeout = 0; timeout < 50000; timeout++) {
|
|
if (cpu_booted_map)
|
|
break;
|
|
udelay(100);
|
|
}
|
|
/* reset the page table */
|
|
zap_low_mappings();
|
|
|
|
if (cpu_booted_map) {
|
|
VDEBUG(("CPU%d: Booted successfully, back in CPU %d\n",
|
|
cpu, smp_processor_id()));
|
|
|
|
printk("CPU%d: ", cpu);
|
|
print_cpu_info(&cpu_data(cpu));
|
|
wmb();
|
|
cpu_set(cpu, cpu_callout_map);
|
|
cpu_set(cpu, cpu_present_map);
|
|
} else {
|
|
printk("CPU%d FAILED TO BOOT: ", cpu);
|
|
if (*
|
|
((volatile unsigned char *)phys_to_virt(start_phys_address))
|
|
== 0xA5)
|
|
printk("Stuck.\n");
|
|
else
|
|
printk("Not responding.\n");
|
|
|
|
cpucount--;
|
|
}
|
|
}
|
|
|
|
void __init smp_boot_cpus(void)
|
|
{
|
|
int i;
|
|
|
|
/* CAT BUS initialisation must be done after the memory */
|
|
/* FIXME: The L4 has a catbus too, it just needs to be
|
|
* accessed in a totally different way */
|
|
if (voyager_level == 5) {
|
|
voyager_cat_init();
|
|
|
|
/* now that the cat has probed the Voyager System Bus, sanity
|
|
* check the cpu map */
|
|
if (((voyager_quad_processors | voyager_extended_vic_processors)
|
|
& cpus_addr(phys_cpu_present_map)[0]) !=
|
|
cpus_addr(phys_cpu_present_map)[0]) {
|
|
/* should panic */
|
|
printk("\n\n***WARNING*** "
|
|
"Sanity check of CPU present map FAILED\n");
|
|
}
|
|
} else if (voyager_level == 4)
|
|
voyager_extended_vic_processors =
|
|
cpus_addr(phys_cpu_present_map)[0];
|
|
|
|
/* this sets up the idle task to run on the current cpu */
|
|
voyager_extended_cpus = 1;
|
|
/* Remove the global_irq_holder setting, it triggers a BUG() on
|
|
* schedule at the moment */
|
|
//global_irq_holder = boot_cpu_id;
|
|
|
|
/* FIXME: Need to do something about this but currently only works
|
|
* on CPUs with a tsc which none of mine have.
|
|
smp_tune_scheduling();
|
|
*/
|
|
smp_store_cpu_info(boot_cpu_id);
|
|
/* setup the jump vector */
|
|
initial_code = (unsigned long)initialize_secondary;
|
|
printk("CPU%d: ", boot_cpu_id);
|
|
print_cpu_info(&cpu_data(boot_cpu_id));
|
|
|
|
if (is_cpu_quad()) {
|
|
/* booting on a Quad CPU */
|
|
printk("VOYAGER SMP: Boot CPU is Quad\n");
|
|
qic_setup();
|
|
do_quad_bootstrap();
|
|
}
|
|
|
|
/* enable our own CPIs */
|
|
vic_enable_cpi();
|
|
|
|
cpu_set(boot_cpu_id, cpu_online_map);
|
|
cpu_set(boot_cpu_id, cpu_callout_map);
|
|
|
|
/* loop over all the extended VIC CPUs and boot them. The
|
|
* Quad CPUs must be bootstrapped by their extended VIC cpu */
|
|
for (i = 0; i < NR_CPUS; i++) {
|
|
if (i == boot_cpu_id || !cpu_isset(i, phys_cpu_present_map))
|
|
continue;
|
|
do_boot_cpu(i);
|
|
/* This udelay seems to be needed for the Quad boots
|
|
* don't remove unless you know what you're doing */
|
|
udelay(1000);
|
|
}
|
|
/* we could compute the total bogomips here, but why bother?,
|
|
* Code added from smpboot.c */
|
|
{
|
|
unsigned long bogosum = 0;
|
|
|
|
for_each_online_cpu(i)
|
|
bogosum += cpu_data(i).loops_per_jiffy;
|
|
printk(KERN_INFO "Total of %d processors activated "
|
|
"(%lu.%02lu BogoMIPS).\n",
|
|
cpucount + 1, bogosum / (500000 / HZ),
|
|
(bogosum / (5000 / HZ)) % 100);
|
|
}
|
|
voyager_extended_cpus = hweight32(voyager_extended_vic_processors);
|
|
printk("VOYAGER: Extended (interrupt handling CPUs): "
|
|
"%d, non-extended: %d\n", voyager_extended_cpus,
|
|
num_booting_cpus() - voyager_extended_cpus);
|
|
/* that's it, switch to symmetric mode */
|
|
outb(0, VIC_PRIORITY_REGISTER);
|
|
outb(0, VIC_CLAIM_REGISTER_0);
|
|
outb(0, VIC_CLAIM_REGISTER_1);
|
|
|
|
VDEBUG(("VOYAGER SMP: Booted with %d CPUs\n", num_booting_cpus()));
|
|
}
|
|
|
|
/* Reload the secondary CPUs task structure (this function does not
|
|
* return ) */
|
|
static void __init initialize_secondary(void)
|
|
{
|
|
#if 0
|
|
// AC kernels only
|
|
set_current(hard_get_current());
|
|
#endif
|
|
|
|
/*
|
|
* We don't actually need to load the full TSS,
|
|
* basically just the stack pointer and the eip.
|
|
*/
|
|
|
|
asm volatile ("movl %0,%%esp\n\t"
|
|
"jmp *%1"::"r" (current->thread.sp),
|
|
"r"(current->thread.ip));
|
|
}
|
|
|
|
/* handle a Voyager SYS_INT -- If we don't, the base board will
|
|
* panic the system.
|
|
*
|
|
* System interrupts occur because some problem was detected on the
|
|
* various busses. To find out what you have to probe all the
|
|
* hardware via the CAT bus. FIXME: At the moment we do nothing. */
|
|
void smp_vic_sys_interrupt(struct pt_regs *regs)
|
|
{
|
|
ack_CPI(VIC_SYS_INT);
|
|
printk("Voyager SYSTEM INTERRUPT\n");
|
|
}
|
|
|
|
/* Handle a voyager CMN_INT; These interrupts occur either because of
|
|
* a system status change or because a single bit memory error
|
|
* occurred. FIXME: At the moment, ignore all this. */
|
|
void smp_vic_cmn_interrupt(struct pt_regs *regs)
|
|
{
|
|
static __u8 in_cmn_int = 0;
|
|
static DEFINE_SPINLOCK(cmn_int_lock);
|
|
|
|
/* common ints are broadcast, so make sure we only do this once */
|
|
_raw_spin_lock(&cmn_int_lock);
|
|
if (in_cmn_int)
|
|
goto unlock_end;
|
|
|
|
in_cmn_int++;
|
|
_raw_spin_unlock(&cmn_int_lock);
|
|
|
|
VDEBUG(("Voyager COMMON INTERRUPT\n"));
|
|
|
|
if (voyager_level == 5)
|
|
voyager_cat_do_common_interrupt();
|
|
|
|
_raw_spin_lock(&cmn_int_lock);
|
|
in_cmn_int = 0;
|
|
unlock_end:
|
|
_raw_spin_unlock(&cmn_int_lock);
|
|
ack_CPI(VIC_CMN_INT);
|
|
}
|
|
|
|
/*
|
|
* Reschedule call back. Nothing to do, all the work is done
|
|
* automatically when we return from the interrupt. */
|
|
static void smp_reschedule_interrupt(void)
|
|
{
|
|
/* do nothing */
|
|
}
|
|
|
|
static struct mm_struct *flush_mm;
|
|
static unsigned long flush_va;
|
|
static DEFINE_SPINLOCK(tlbstate_lock);
|
|
|
|
/*
|
|
* We cannot call mmdrop() because we are in interrupt context,
|
|
* instead update mm->cpu_vm_mask.
|
|
*
|
|
* We need to reload %cr3 since the page tables may be going
|
|
* away from under us..
|
|
*/
|
|
static inline void voyager_leave_mm(unsigned long cpu)
|
|
{
|
|
if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK)
|
|
BUG();
|
|
cpu_clear(cpu, per_cpu(cpu_tlbstate, cpu).active_mm->cpu_vm_mask);
|
|
load_cr3(swapper_pg_dir);
|
|
}
|
|
|
|
/*
|
|
* Invalidate call-back
|
|
*/
|
|
static void smp_invalidate_interrupt(void)
|
|
{
|
|
__u8 cpu = smp_processor_id();
|
|
|
|
if (!test_bit(cpu, &smp_invalidate_needed))
|
|
return;
|
|
/* This will flood messages. Don't uncomment unless you see
|
|
* Problems with cross cpu invalidation
|
|
VDEBUG(("VOYAGER SMP: CPU%d received INVALIDATE_CPI\n",
|
|
smp_processor_id()));
|
|
*/
|
|
|
|
if (flush_mm == per_cpu(cpu_tlbstate, cpu).active_mm) {
|
|
if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK) {
|
|
if (flush_va == TLB_FLUSH_ALL)
|
|
local_flush_tlb();
|
|
else
|
|
__flush_tlb_one(flush_va);
|
|
} else
|
|
voyager_leave_mm(cpu);
|
|
}
|
|
smp_mb__before_clear_bit();
|
|
clear_bit(cpu, &smp_invalidate_needed);
|
|
smp_mb__after_clear_bit();
|
|
}
|
|
|
|
/* All the new flush operations for 2.4 */
|
|
|
|
/* This routine is called with a physical cpu mask */
|
|
static void
|
|
voyager_flush_tlb_others(unsigned long cpumask, struct mm_struct *mm,
|
|
unsigned long va)
|
|
{
|
|
int stuck = 50000;
|
|
|
|
if (!cpumask)
|
|
BUG();
|
|
if ((cpumask & cpus_addr(cpu_online_map)[0]) != cpumask)
|
|
BUG();
|
|
if (cpumask & (1 << smp_processor_id()))
|
|
BUG();
|
|
if (!mm)
|
|
BUG();
|
|
|
|
spin_lock(&tlbstate_lock);
|
|
|
|
flush_mm = mm;
|
|
flush_va = va;
|
|
atomic_set_mask(cpumask, &smp_invalidate_needed);
|
|
/*
|
|
* We have to send the CPI only to
|
|
* CPUs affected.
|
|
*/
|
|
send_CPI(cpumask, VIC_INVALIDATE_CPI);
|
|
|
|
while (smp_invalidate_needed) {
|
|
mb();
|
|
if (--stuck == 0) {
|
|
printk("***WARNING*** Stuck doing invalidate CPI "
|
|
"(CPU%d)\n", smp_processor_id());
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Uncomment only to debug invalidation problems
|
|
VDEBUG(("VOYAGER SMP: Completed invalidate CPI (CPU%d)\n", cpu));
|
|
*/
|
|
|
|
flush_mm = NULL;
|
|
flush_va = 0;
|
|
spin_unlock(&tlbstate_lock);
|
|
}
|
|
|
|
void flush_tlb_current_task(void)
|
|
{
|
|
struct mm_struct *mm = current->mm;
|
|
unsigned long cpu_mask;
|
|
|
|
preempt_disable();
|
|
|
|
cpu_mask = cpus_addr(mm->cpu_vm_mask)[0] & ~(1 << smp_processor_id());
|
|
local_flush_tlb();
|
|
if (cpu_mask)
|
|
voyager_flush_tlb_others(cpu_mask, mm, TLB_FLUSH_ALL);
|
|
|
|
preempt_enable();
|
|
}
|
|
|
|
void flush_tlb_mm(struct mm_struct *mm)
|
|
{
|
|
unsigned long cpu_mask;
|
|
|
|
preempt_disable();
|
|
|
|
cpu_mask = cpus_addr(mm->cpu_vm_mask)[0] & ~(1 << smp_processor_id());
|
|
|
|
if (current->active_mm == mm) {
|
|
if (current->mm)
|
|
local_flush_tlb();
|
|
else
|
|
voyager_leave_mm(smp_processor_id());
|
|
}
|
|
if (cpu_mask)
|
|
voyager_flush_tlb_others(cpu_mask, mm, TLB_FLUSH_ALL);
|
|
|
|
preempt_enable();
|
|
}
|
|
|
|
void flush_tlb_page(struct vm_area_struct *vma, unsigned long va)
|
|
{
|
|
struct mm_struct *mm = vma->vm_mm;
|
|
unsigned long cpu_mask;
|
|
|
|
preempt_disable();
|
|
|
|
cpu_mask = cpus_addr(mm->cpu_vm_mask)[0] & ~(1 << smp_processor_id());
|
|
if (current->active_mm == mm) {
|
|
if (current->mm)
|
|
__flush_tlb_one(va);
|
|
else
|
|
voyager_leave_mm(smp_processor_id());
|
|
}
|
|
|
|
if (cpu_mask)
|
|
voyager_flush_tlb_others(cpu_mask, mm, va);
|
|
|
|
preempt_enable();
|
|
}
|
|
|
|
EXPORT_SYMBOL(flush_tlb_page);
|
|
|
|
/* enable the requested IRQs */
|
|
static void smp_enable_irq_interrupt(void)
|
|
{
|
|
__u8 irq;
|
|
__u8 cpu = get_cpu();
|
|
|
|
VDEBUG(("VOYAGER SMP: CPU%d enabling irq mask 0x%x\n", cpu,
|
|
vic_irq_enable_mask[cpu]));
|
|
|
|
spin_lock(&vic_irq_lock);
|
|
for (irq = 0; irq < 16; irq++) {
|
|
if (vic_irq_enable_mask[cpu] & (1 << irq))
|
|
enable_local_vic_irq(irq);
|
|
}
|
|
vic_irq_enable_mask[cpu] = 0;
|
|
spin_unlock(&vic_irq_lock);
|
|
|
|
put_cpu_no_resched();
|
|
}
|
|
|
|
/*
|
|
* CPU halt call-back
|
|
*/
|
|
static void smp_stop_cpu_function(void *dummy)
|
|
{
|
|
VDEBUG(("VOYAGER SMP: CPU%d is STOPPING\n", smp_processor_id()));
|
|
cpu_clear(smp_processor_id(), cpu_online_map);
|
|
local_irq_disable();
|
|
for (;;)
|
|
halt();
|
|
}
|
|
|
|
/* execute a thread on a new CPU. The function to be called must be
|
|
* previously set up. This is used to schedule a function for
|
|
* execution on all CPUs - set up the function then broadcast a
|
|
* function_interrupt CPI to come here on each CPU */
|
|
static void smp_call_function_interrupt(void)
|
|
{
|
|
irq_enter();
|
|
generic_smp_call_function_interrupt();
|
|
__get_cpu_var(irq_stat).irq_call_count++;
|
|
irq_exit();
|
|
}
|
|
|
|
static void smp_call_function_single_interrupt(void)
|
|
{
|
|
irq_enter();
|
|
generic_smp_call_function_single_interrupt();
|
|
__get_cpu_var(irq_stat).irq_call_count++;
|
|
irq_exit();
|
|
}
|
|
|
|
/* Sorry about the name. In an APIC based system, the APICs
|
|
* themselves are programmed to send a timer interrupt. This is used
|
|
* by linux to reschedule the processor. Voyager doesn't have this,
|
|
* so we use the system clock to interrupt one processor, which in
|
|
* turn, broadcasts a timer CPI to all the others --- we receive that
|
|
* CPI here. We don't use this actually for counting so losing
|
|
* ticks doesn't matter
|
|
*
|
|
* FIXME: For those CPUs which actually have a local APIC, we could
|
|
* try to use it to trigger this interrupt instead of having to
|
|
* broadcast the timer tick. Unfortunately, all my pentium DYADs have
|
|
* no local APIC, so I can't do this
|
|
*
|
|
* This function is currently a placeholder and is unused in the code */
|
|
void smp_apic_timer_interrupt(struct pt_regs *regs)
|
|
{
|
|
struct pt_regs *old_regs = set_irq_regs(regs);
|
|
wrapper_smp_local_timer_interrupt();
|
|
set_irq_regs(old_regs);
|
|
}
|
|
|
|
/* All of the QUAD interrupt GATES */
|
|
void smp_qic_timer_interrupt(struct pt_regs *regs)
|
|
{
|
|
struct pt_regs *old_regs = set_irq_regs(regs);
|
|
ack_QIC_CPI(QIC_TIMER_CPI);
|
|
wrapper_smp_local_timer_interrupt();
|
|
set_irq_regs(old_regs);
|
|
}
|
|
|
|
void smp_qic_invalidate_interrupt(struct pt_regs *regs)
|
|
{
|
|
ack_QIC_CPI(QIC_INVALIDATE_CPI);
|
|
smp_invalidate_interrupt();
|
|
}
|
|
|
|
void smp_qic_reschedule_interrupt(struct pt_regs *regs)
|
|
{
|
|
ack_QIC_CPI(QIC_RESCHEDULE_CPI);
|
|
smp_reschedule_interrupt();
|
|
}
|
|
|
|
void smp_qic_enable_irq_interrupt(struct pt_regs *regs)
|
|
{
|
|
ack_QIC_CPI(QIC_ENABLE_IRQ_CPI);
|
|
smp_enable_irq_interrupt();
|
|
}
|
|
|
|
void smp_qic_call_function_interrupt(struct pt_regs *regs)
|
|
{
|
|
ack_QIC_CPI(QIC_CALL_FUNCTION_CPI);
|
|
smp_call_function_interrupt();
|
|
}
|
|
|
|
void smp_qic_call_function_single_interrupt(struct pt_regs *regs)
|
|
{
|
|
ack_QIC_CPI(QIC_CALL_FUNCTION_SINGLE_CPI);
|
|
smp_call_function_single_interrupt();
|
|
}
|
|
|
|
void smp_vic_cpi_interrupt(struct pt_regs *regs)
|
|
{
|
|
struct pt_regs *old_regs = set_irq_regs(regs);
|
|
__u8 cpu = smp_processor_id();
|
|
|
|
if (is_cpu_quad())
|
|
ack_QIC_CPI(VIC_CPI_LEVEL0);
|
|
else
|
|
ack_VIC_CPI(VIC_CPI_LEVEL0);
|
|
|
|
if (test_and_clear_bit(VIC_TIMER_CPI, &vic_cpi_mailbox[cpu]))
|
|
wrapper_smp_local_timer_interrupt();
|
|
if (test_and_clear_bit(VIC_INVALIDATE_CPI, &vic_cpi_mailbox[cpu]))
|
|
smp_invalidate_interrupt();
|
|
if (test_and_clear_bit(VIC_RESCHEDULE_CPI, &vic_cpi_mailbox[cpu]))
|
|
smp_reschedule_interrupt();
|
|
if (test_and_clear_bit(VIC_ENABLE_IRQ_CPI, &vic_cpi_mailbox[cpu]))
|
|
smp_enable_irq_interrupt();
|
|
if (test_and_clear_bit(VIC_CALL_FUNCTION_CPI, &vic_cpi_mailbox[cpu]))
|
|
smp_call_function_interrupt();
|
|
if (test_and_clear_bit(VIC_CALL_FUNCTION_SINGLE_CPI, &vic_cpi_mailbox[cpu]))
|
|
smp_call_function_single_interrupt();
|
|
set_irq_regs(old_regs);
|
|
}
|
|
|
|
static void do_flush_tlb_all(void *info)
|
|
{
|
|
unsigned long cpu = smp_processor_id();
|
|
|
|
__flush_tlb_all();
|
|
if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_LAZY)
|
|
voyager_leave_mm(cpu);
|
|
}
|
|
|
|
/* flush the TLB of every active CPU in the system */
|
|
void flush_tlb_all(void)
|
|
{
|
|
on_each_cpu(do_flush_tlb_all, 0, 1);
|
|
}
|
|
|
|
/* send a reschedule CPI to one CPU by physical CPU number*/
|
|
static void voyager_smp_send_reschedule(int cpu)
|
|
{
|
|
send_one_CPI(cpu, VIC_RESCHEDULE_CPI);
|
|
}
|
|
|
|
int hard_smp_processor_id(void)
|
|
{
|
|
__u8 i;
|
|
__u8 cpumask = inb(VIC_PROC_WHO_AM_I);
|
|
if ((cpumask & QUAD_IDENTIFIER) == QUAD_IDENTIFIER)
|
|
return cpumask & 0x1F;
|
|
|
|
for (i = 0; i < 8; i++) {
|
|
if (cpumask & (1 << i))
|
|
return i;
|
|
}
|
|
printk("** WARNING ** Illegal cpuid returned by VIC: %d", cpumask);
|
|
return 0;
|
|
}
|
|
|
|
int safe_smp_processor_id(void)
|
|
{
|
|
return hard_smp_processor_id();
|
|
}
|
|
|
|
/* broadcast a halt to all other CPUs */
|
|
static void voyager_smp_send_stop(void)
|
|
{
|
|
smp_call_function(smp_stop_cpu_function, NULL, 1);
|
|
}
|
|
|
|
/* this function is triggered in time.c when a clock tick fires
|
|
* we need to re-broadcast the tick to all CPUs */
|
|
void smp_vic_timer_interrupt(void)
|
|
{
|
|
send_CPI_allbutself(VIC_TIMER_CPI);
|
|
smp_local_timer_interrupt();
|
|
}
|
|
|
|
/* local (per CPU) timer interrupt. It does both profiling and
|
|
* process statistics/rescheduling.
|
|
*
|
|
* We do profiling in every local tick, statistics/rescheduling
|
|
* happen only every 'profiling multiplier' ticks. The default
|
|
* multiplier is 1 and it can be changed by writing the new multiplier
|
|
* value into /proc/profile.
|
|
*/
|
|
void smp_local_timer_interrupt(void)
|
|
{
|
|
int cpu = smp_processor_id();
|
|
long weight;
|
|
|
|
profile_tick(CPU_PROFILING);
|
|
if (--per_cpu(prof_counter, cpu) <= 0) {
|
|
/*
|
|
* The multiplier may have changed since the last time we got
|
|
* to this point as a result of the user writing to
|
|
* /proc/profile. In this case we need to adjust the APIC
|
|
* timer accordingly.
|
|
*
|
|
* Interrupts are already masked off at this point.
|
|
*/
|
|
per_cpu(prof_counter, cpu) = per_cpu(prof_multiplier, cpu);
|
|
if (per_cpu(prof_counter, cpu) !=
|
|
per_cpu(prof_old_multiplier, cpu)) {
|
|
/* FIXME: need to update the vic timer tick here */
|
|
per_cpu(prof_old_multiplier, cpu) =
|
|
per_cpu(prof_counter, cpu);
|
|
}
|
|
|
|
update_process_times(user_mode_vm(get_irq_regs()));
|
|
}
|
|
|
|
if (((1 << cpu) & voyager_extended_vic_processors) == 0)
|
|
/* only extended VIC processors participate in
|
|
* interrupt distribution */
|
|
return;
|
|
|
|
/*
|
|
* We take the 'long' return path, and there every subsystem
|
|
* grabs the appropriate locks (kernel lock/ irq lock).
|
|
*
|
|
* we might want to decouple profiling from the 'long path',
|
|
* and do the profiling totally in assembly.
|
|
*
|
|
* Currently this isn't too much of an issue (performance wise),
|
|
* we can take more than 100K local irqs per second on a 100 MHz P5.
|
|
*/
|
|
|
|
if ((++vic_tick[cpu] & 0x7) != 0)
|
|
return;
|
|
/* get here every 16 ticks (about every 1/6 of a second) */
|
|
|
|
/* Change our priority to give someone else a chance at getting
|
|
* the IRQ. The algorithm goes like this:
|
|
*
|
|
* In the VIC, the dynamically routed interrupt is always
|
|
* handled by the lowest priority eligible (i.e. receiving
|
|
* interrupts) CPU. If >1 eligible CPUs are equal lowest, the
|
|
* lowest processor number gets it.
|
|
*
|
|
* The priority of a CPU is controlled by a special per-CPU
|
|
* VIC priority register which is 3 bits wide 0 being lowest
|
|
* and 7 highest priority..
|
|
*
|
|
* Therefore we subtract the average number of interrupts from
|
|
* the number we've fielded. If this number is negative, we
|
|
* lower the activity count and if it is positive, we raise
|
|
* it.
|
|
*
|
|
* I'm afraid this still leads to odd looking interrupt counts:
|
|
* the totals are all roughly equal, but the individual ones
|
|
* look rather skewed.
|
|
*
|
|
* FIXME: This algorithm is total crap when mixed with SMP
|
|
* affinity code since we now try to even up the interrupt
|
|
* counts when an affinity binding is keeping them on a
|
|
* particular CPU*/
|
|
weight = (vic_intr_count[cpu] * voyager_extended_cpus
|
|
- vic_intr_total) >> 4;
|
|
weight += 4;
|
|
if (weight > 7)
|
|
weight = 7;
|
|
if (weight < 0)
|
|
weight = 0;
|
|
|
|
outb((__u8) weight, VIC_PRIORITY_REGISTER);
|
|
|
|
#ifdef VOYAGER_DEBUG
|
|
if ((vic_tick[cpu] & 0xFFF) == 0) {
|
|
/* print this message roughly every 25 secs */
|
|
printk("VOYAGER SMP: vic_tick[%d] = %lu, weight = %ld\n",
|
|
cpu, vic_tick[cpu], weight);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/* setup the profiling timer */
|
|
int setup_profiling_timer(unsigned int multiplier)
|
|
{
|
|
int i;
|
|
|
|
if ((!multiplier))
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Set the new multiplier for each CPU. CPUs don't start using the
|
|
* new values until the next timer interrupt in which they do process
|
|
* accounting.
|
|
*/
|
|
for (i = 0; i < NR_CPUS; ++i)
|
|
per_cpu(prof_multiplier, i) = multiplier;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* This is a bit of a mess, but forced on us by the genirq changes
|
|
* there's no genirq handler that really does what voyager wants
|
|
* so hack it up with the simple IRQ handler */
|
|
static void handle_vic_irq(unsigned int irq, struct irq_desc *desc)
|
|
{
|
|
before_handle_vic_irq(irq);
|
|
handle_simple_irq(irq, desc);
|
|
after_handle_vic_irq(irq);
|
|
}
|
|
|
|
/* The CPIs are handled in the per cpu 8259s, so they must be
|
|
* enabled to be received: FIX: enabling the CPIs in the early
|
|
* boot sequence interferes with bug checking; enable them later
|
|
* on in smp_init */
|
|
#define VIC_SET_GATE(cpi, vector) \
|
|
set_intr_gate((cpi) + VIC_DEFAULT_CPI_BASE, (vector))
|
|
#define QIC_SET_GATE(cpi, vector) \
|
|
set_intr_gate((cpi) + QIC_DEFAULT_CPI_BASE, (vector))
|
|
|
|
void __init voyager_smp_intr_init(void)
|
|
{
|
|
int i;
|
|
|
|
/* initialize the per cpu irq mask to all disabled */
|
|
for (i = 0; i < NR_CPUS; i++)
|
|
vic_irq_mask[i] = 0xFFFF;
|
|
|
|
VIC_SET_GATE(VIC_CPI_LEVEL0, vic_cpi_interrupt);
|
|
|
|
VIC_SET_GATE(VIC_SYS_INT, vic_sys_interrupt);
|
|
VIC_SET_GATE(VIC_CMN_INT, vic_cmn_interrupt);
|
|
|
|
QIC_SET_GATE(QIC_TIMER_CPI, qic_timer_interrupt);
|
|
QIC_SET_GATE(QIC_INVALIDATE_CPI, qic_invalidate_interrupt);
|
|
QIC_SET_GATE(QIC_RESCHEDULE_CPI, qic_reschedule_interrupt);
|
|
QIC_SET_GATE(QIC_ENABLE_IRQ_CPI, qic_enable_irq_interrupt);
|
|
QIC_SET_GATE(QIC_CALL_FUNCTION_CPI, qic_call_function_interrupt);
|
|
|
|
/* now put the VIC descriptor into the first 48 IRQs
|
|
*
|
|
* This is for later: first 16 correspond to PC IRQs; next 16
|
|
* are Primary MC IRQs and final 16 are Secondary MC IRQs */
|
|
for (i = 0; i < 48; i++)
|
|
set_irq_chip_and_handler(i, &vic_chip, handle_vic_irq);
|
|
}
|
|
|
|
/* send a CPI at level cpi to a set of cpus in cpuset (set 1 bit per
|
|
* processor to receive CPI */
|
|
static void send_CPI(__u32 cpuset, __u8 cpi)
|
|
{
|
|
int cpu;
|
|
__u32 quad_cpuset = (cpuset & voyager_quad_processors);
|
|
|
|
if (cpi < VIC_START_FAKE_CPI) {
|
|
/* fake CPI are only used for booting, so send to the
|
|
* extended quads as well---Quads must be VIC booted */
|
|
outb((__u8) (cpuset), VIC_CPI_Registers[cpi]);
|
|
return;
|
|
}
|
|
if (quad_cpuset)
|
|
send_QIC_CPI(quad_cpuset, cpi);
|
|
cpuset &= ~quad_cpuset;
|
|
cpuset &= 0xff; /* only first 8 CPUs vaild for VIC CPI */
|
|
if (cpuset == 0)
|
|
return;
|
|
for_each_online_cpu(cpu) {
|
|
if (cpuset & (1 << cpu))
|
|
set_bit(cpi, &vic_cpi_mailbox[cpu]);
|
|
}
|
|
if (cpuset)
|
|
outb((__u8) cpuset, VIC_CPI_Registers[VIC_CPI_LEVEL0]);
|
|
}
|
|
|
|
/* Acknowledge receipt of CPI in the QIC, clear in QIC hardware and
|
|
* set the cache line to shared by reading it.
|
|
*
|
|
* DON'T make this inline otherwise the cache line read will be
|
|
* optimised away
|
|
* */
|
|
static int ack_QIC_CPI(__u8 cpi)
|
|
{
|
|
__u8 cpu = hard_smp_processor_id();
|
|
|
|
cpi &= 7;
|
|
|
|
outb(1 << cpi, QIC_INTERRUPT_CLEAR1);
|
|
return voyager_quad_cpi_addr[cpu]->qic_cpi[cpi].cpi;
|
|
}
|
|
|
|
static void ack_special_QIC_CPI(__u8 cpi)
|
|
{
|
|
switch (cpi) {
|
|
case VIC_CMN_INT:
|
|
outb(QIC_CMN_INT, QIC_INTERRUPT_CLEAR0);
|
|
break;
|
|
case VIC_SYS_INT:
|
|
outb(QIC_SYS_INT, QIC_INTERRUPT_CLEAR0);
|
|
break;
|
|
}
|
|
/* also clear at the VIC, just in case (nop for non-extended proc) */
|
|
ack_VIC_CPI(cpi);
|
|
}
|
|
|
|
/* Acknowledge receipt of CPI in the VIC (essentially an EOI) */
|
|
static void ack_VIC_CPI(__u8 cpi)
|
|
{
|
|
#ifdef VOYAGER_DEBUG
|
|
unsigned long flags;
|
|
__u16 isr;
|
|
__u8 cpu = smp_processor_id();
|
|
|
|
local_irq_save(flags);
|
|
isr = vic_read_isr();
|
|
if ((isr & (1 << (cpi & 7))) == 0) {
|
|
printk("VOYAGER SMP: CPU%d lost CPI%d\n", cpu, cpi);
|
|
}
|
|
#endif
|
|
/* send specific EOI; the two system interrupts have
|
|
* bit 4 set for a separate vector but behave as the
|
|
* corresponding 3 bit intr */
|
|
outb_p(0x60 | (cpi & 7), 0x20);
|
|
|
|
#ifdef VOYAGER_DEBUG
|
|
if ((vic_read_isr() & (1 << (cpi & 7))) != 0) {
|
|
printk("VOYAGER SMP: CPU%d still asserting CPI%d\n", cpu, cpi);
|
|
}
|
|
local_irq_restore(flags);
|
|
#endif
|
|
}
|
|
|
|
/* cribbed with thanks from irq.c */
|
|
#define __byte(x,y) (((unsigned char *)&(y))[x])
|
|
#define cached_21(cpu) (__byte(0,vic_irq_mask[cpu]))
|
|
#define cached_A1(cpu) (__byte(1,vic_irq_mask[cpu]))
|
|
|
|
static unsigned int startup_vic_irq(unsigned int irq)
|
|
{
|
|
unmask_vic_irq(irq);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* The enable and disable routines. This is where we run into
|
|
* conflicting architectural philosophy. Fundamentally, the voyager
|
|
* architecture does not expect to have to disable interrupts globally
|
|
* (the IRQ controllers belong to each CPU). The processor masquerade
|
|
* which is used to start the system shouldn't be used in a running OS
|
|
* since it will cause great confusion if two separate CPUs drive to
|
|
* the same IRQ controller (I know, I've tried it).
|
|
*
|
|
* The solution is a variant on the NCR lazy SPL design:
|
|
*
|
|
* 1) To disable an interrupt, do nothing (other than set the
|
|
* IRQ_DISABLED flag). This dares the interrupt actually to arrive.
|
|
*
|
|
* 2) If the interrupt dares to come in, raise the local mask against
|
|
* it (this will result in all the CPU masks being raised
|
|
* eventually).
|
|
*
|
|
* 3) To enable the interrupt, lower the mask on the local CPU and
|
|
* broadcast an Interrupt enable CPI which causes all other CPUs to
|
|
* adjust their masks accordingly. */
|
|
|
|
static void unmask_vic_irq(unsigned int irq)
|
|
{
|
|
/* linux doesn't to processor-irq affinity, so enable on
|
|
* all CPUs we know about */
|
|
int cpu = smp_processor_id(), real_cpu;
|
|
__u16 mask = (1 << irq);
|
|
__u32 processorList = 0;
|
|
unsigned long flags;
|
|
|
|
VDEBUG(("VOYAGER: unmask_vic_irq(%d) CPU%d affinity 0x%lx\n",
|
|
irq, cpu, cpu_irq_affinity[cpu]));
|
|
spin_lock_irqsave(&vic_irq_lock, flags);
|
|
for_each_online_cpu(real_cpu) {
|
|
if (!(voyager_extended_vic_processors & (1 << real_cpu)))
|
|
continue;
|
|
if (!(cpu_irq_affinity[real_cpu] & mask)) {
|
|
/* irq has no affinity for this CPU, ignore */
|
|
continue;
|
|
}
|
|
if (real_cpu == cpu) {
|
|
enable_local_vic_irq(irq);
|
|
} else if (vic_irq_mask[real_cpu] & mask) {
|
|
vic_irq_enable_mask[real_cpu] |= mask;
|
|
processorList |= (1 << real_cpu);
|
|
}
|
|
}
|
|
spin_unlock_irqrestore(&vic_irq_lock, flags);
|
|
if (processorList)
|
|
send_CPI(processorList, VIC_ENABLE_IRQ_CPI);
|
|
}
|
|
|
|
static void mask_vic_irq(unsigned int irq)
|
|
{
|
|
/* lazy disable, do nothing */
|
|
}
|
|
|
|
static void enable_local_vic_irq(unsigned int irq)
|
|
{
|
|
__u8 cpu = smp_processor_id();
|
|
__u16 mask = ~(1 << irq);
|
|
__u16 old_mask = vic_irq_mask[cpu];
|
|
|
|
vic_irq_mask[cpu] &= mask;
|
|
if (vic_irq_mask[cpu] == old_mask)
|
|
return;
|
|
|
|
VDEBUG(("VOYAGER DEBUG: Enabling irq %d in hardware on CPU %d\n",
|
|
irq, cpu));
|
|
|
|
if (irq & 8) {
|
|
outb_p(cached_A1(cpu), 0xA1);
|
|
(void)inb_p(0xA1);
|
|
} else {
|
|
outb_p(cached_21(cpu), 0x21);
|
|
(void)inb_p(0x21);
|
|
}
|
|
}
|
|
|
|
static void disable_local_vic_irq(unsigned int irq)
|
|
{
|
|
__u8 cpu = smp_processor_id();
|
|
__u16 mask = (1 << irq);
|
|
__u16 old_mask = vic_irq_mask[cpu];
|
|
|
|
if (irq == 7)
|
|
return;
|
|
|
|
vic_irq_mask[cpu] |= mask;
|
|
if (old_mask == vic_irq_mask[cpu])
|
|
return;
|
|
|
|
VDEBUG(("VOYAGER DEBUG: Disabling irq %d in hardware on CPU %d\n",
|
|
irq, cpu));
|
|
|
|
if (irq & 8) {
|
|
outb_p(cached_A1(cpu), 0xA1);
|
|
(void)inb_p(0xA1);
|
|
} else {
|
|
outb_p(cached_21(cpu), 0x21);
|
|
(void)inb_p(0x21);
|
|
}
|
|
}
|
|
|
|
/* The VIC is level triggered, so the ack can only be issued after the
|
|
* interrupt completes. However, we do Voyager lazy interrupt
|
|
* handling here: It is an extremely expensive operation to mask an
|
|
* interrupt in the vic, so we merely set a flag (IRQ_DISABLED). If
|
|
* this interrupt actually comes in, then we mask and ack here to push
|
|
* the interrupt off to another CPU */
|
|
static void before_handle_vic_irq(unsigned int irq)
|
|
{
|
|
irq_desc_t *desc = irq_to_desc(irq);
|
|
__u8 cpu = smp_processor_id();
|
|
|
|
_raw_spin_lock(&vic_irq_lock);
|
|
vic_intr_total++;
|
|
vic_intr_count[cpu]++;
|
|
|
|
if (!(cpu_irq_affinity[cpu] & (1 << irq))) {
|
|
/* The irq is not in our affinity mask, push it off
|
|
* onto another CPU */
|
|
VDEBUG(("VOYAGER DEBUG: affinity triggered disable of irq %d "
|
|
"on cpu %d\n", irq, cpu));
|
|
disable_local_vic_irq(irq);
|
|
/* set IRQ_INPROGRESS to prevent the handler in irq.c from
|
|
* actually calling the interrupt routine */
|
|
desc->status |= IRQ_REPLAY | IRQ_INPROGRESS;
|
|
} else if (desc->status & IRQ_DISABLED) {
|
|
/* Damn, the interrupt actually arrived, do the lazy
|
|
* disable thing. The interrupt routine in irq.c will
|
|
* not handle a IRQ_DISABLED interrupt, so nothing more
|
|
* need be done here */
|
|
VDEBUG(("VOYAGER DEBUG: lazy disable of irq %d on CPU %d\n",
|
|
irq, cpu));
|
|
disable_local_vic_irq(irq);
|
|
desc->status |= IRQ_REPLAY;
|
|
} else {
|
|
desc->status &= ~IRQ_REPLAY;
|
|
}
|
|
|
|
_raw_spin_unlock(&vic_irq_lock);
|
|
}
|
|
|
|
/* Finish the VIC interrupt: basically mask */
|
|
static void after_handle_vic_irq(unsigned int irq)
|
|
{
|
|
irq_desc_t *desc = irq_to_desc(irq);
|
|
|
|
_raw_spin_lock(&vic_irq_lock);
|
|
{
|
|
unsigned int status = desc->status & ~IRQ_INPROGRESS;
|
|
#ifdef VOYAGER_DEBUG
|
|
__u16 isr;
|
|
#endif
|
|
|
|
desc->status = status;
|
|
if ((status & IRQ_DISABLED))
|
|
disable_local_vic_irq(irq);
|
|
#ifdef VOYAGER_DEBUG
|
|
/* DEBUG: before we ack, check what's in progress */
|
|
isr = vic_read_isr();
|
|
if ((isr & (1 << irq) && !(status & IRQ_REPLAY)) == 0) {
|
|
int i;
|
|
__u8 cpu = smp_processor_id();
|
|
__u8 real_cpu;
|
|
int mask; /* Um... initialize me??? --RR */
|
|
|
|
printk("VOYAGER SMP: CPU%d lost interrupt %d\n",
|
|
cpu, irq);
|
|
for_each_possible_cpu(real_cpu, mask) {
|
|
|
|
outb(VIC_CPU_MASQUERADE_ENABLE | real_cpu,
|
|
VIC_PROCESSOR_ID);
|
|
isr = vic_read_isr();
|
|
if (isr & (1 << irq)) {
|
|
printk
|
|
("VOYAGER SMP: CPU%d ack irq %d\n",
|
|
real_cpu, irq);
|
|
ack_vic_irq(irq);
|
|
}
|
|
outb(cpu, VIC_PROCESSOR_ID);
|
|
}
|
|
}
|
|
#endif /* VOYAGER_DEBUG */
|
|
/* as soon as we ack, the interrupt is eligible for
|
|
* receipt by another CPU so everything must be in
|
|
* order here */
|
|
ack_vic_irq(irq);
|
|
if (status & IRQ_REPLAY) {
|
|
/* replay is set if we disable the interrupt
|
|
* in the before_handle_vic_irq() routine, so
|
|
* clear the in progress bit here to allow the
|
|
* next CPU to handle this correctly */
|
|
desc->status &= ~(IRQ_REPLAY | IRQ_INPROGRESS);
|
|
}
|
|
#ifdef VOYAGER_DEBUG
|
|
isr = vic_read_isr();
|
|
if ((isr & (1 << irq)) != 0)
|
|
printk("VOYAGER SMP: after_handle_vic_irq() after "
|
|
"ack irq=%d, isr=0x%x\n", irq, isr);
|
|
#endif /* VOYAGER_DEBUG */
|
|
}
|
|
_raw_spin_unlock(&vic_irq_lock);
|
|
|
|
/* All code after this point is out of the main path - the IRQ
|
|
* may be intercepted by another CPU if reasserted */
|
|
}
|
|
|
|
/* Linux processor - interrupt affinity manipulations.
|
|
*
|
|
* For each processor, we maintain a 32 bit irq affinity mask.
|
|
* Initially it is set to all 1's so every processor accepts every
|
|
* interrupt. In this call, we change the processor's affinity mask:
|
|
*
|
|
* Change from enable to disable:
|
|
*
|
|
* If the interrupt ever comes in to the processor, we will disable it
|
|
* and ack it to push it off to another CPU, so just accept the mask here.
|
|
*
|
|
* Change from disable to enable:
|
|
*
|
|
* change the mask and then do an interrupt enable CPI to re-enable on
|
|
* the selected processors */
|
|
|
|
void set_vic_irq_affinity(unsigned int irq, cpumask_t mask)
|
|
{
|
|
/* Only extended processors handle interrupts */
|
|
unsigned long real_mask;
|
|
unsigned long irq_mask = 1 << irq;
|
|
int cpu;
|
|
|
|
real_mask = cpus_addr(mask)[0] & voyager_extended_vic_processors;
|
|
|
|
if (cpus_addr(mask)[0] == 0)
|
|
/* can't have no CPUs to accept the interrupt -- extremely
|
|
* bad things will happen */
|
|
return;
|
|
|
|
if (irq == 0)
|
|
/* can't change the affinity of the timer IRQ. This
|
|
* is due to the constraint in the voyager
|
|
* architecture that the CPI also comes in on and IRQ
|
|
* line and we have chosen IRQ0 for this. If you
|
|
* raise the mask on this interrupt, the processor
|
|
* will no-longer be able to accept VIC CPIs */
|
|
return;
|
|
|
|
if (irq >= 32)
|
|
/* You can only have 32 interrupts in a voyager system
|
|
* (and 32 only if you have a secondary microchannel
|
|
* bus) */
|
|
return;
|
|
|
|
for_each_online_cpu(cpu) {
|
|
unsigned long cpu_mask = 1 << cpu;
|
|
|
|
if (cpu_mask & real_mask) {
|
|
/* enable the interrupt for this cpu */
|
|
cpu_irq_affinity[cpu] |= irq_mask;
|
|
} else {
|
|
/* disable the interrupt for this cpu */
|
|
cpu_irq_affinity[cpu] &= ~irq_mask;
|
|
}
|
|
}
|
|
/* this is magic, we now have the correct affinity maps, so
|
|
* enable the interrupt. This will send an enable CPI to
|
|
* those CPUs who need to enable it in their local masks,
|
|
* causing them to correct for the new affinity . If the
|
|
* interrupt is currently globally disabled, it will simply be
|
|
* disabled again as it comes in (voyager lazy disable). If
|
|
* the affinity map is tightened to disable the interrupt on a
|
|
* cpu, it will be pushed off when it comes in */
|
|
unmask_vic_irq(irq);
|
|
}
|
|
|
|
static void ack_vic_irq(unsigned int irq)
|
|
{
|
|
if (irq & 8) {
|
|
outb(0x62, 0x20); /* Specific EOI to cascade */
|
|
outb(0x60 | (irq & 7), 0xA0);
|
|
} else {
|
|
outb(0x60 | (irq & 7), 0x20);
|
|
}
|
|
}
|
|
|
|
/* enable the CPIs. In the VIC, the CPIs are delivered by the 8259
|
|
* but are not vectored by it. This means that the 8259 mask must be
|
|
* lowered to receive them */
|
|
static __init void vic_enable_cpi(void)
|
|
{
|
|
__u8 cpu = smp_processor_id();
|
|
|
|
/* just take a copy of the current mask (nop for boot cpu) */
|
|
vic_irq_mask[cpu] = vic_irq_mask[boot_cpu_id];
|
|
|
|
enable_local_vic_irq(VIC_CPI_LEVEL0);
|
|
enable_local_vic_irq(VIC_CPI_LEVEL1);
|
|
/* for sys int and cmn int */
|
|
enable_local_vic_irq(7);
|
|
|
|
if (is_cpu_quad()) {
|
|
outb(QIC_DEFAULT_MASK0, QIC_MASK_REGISTER0);
|
|
outb(QIC_CPI_ENABLE, QIC_MASK_REGISTER1);
|
|
VDEBUG(("VOYAGER SMP: QIC ENABLE CPI: CPU%d: MASK 0x%x\n",
|
|
cpu, QIC_CPI_ENABLE));
|
|
}
|
|
|
|
VDEBUG(("VOYAGER SMP: ENABLE CPI: CPU%d: MASK 0x%x\n",
|
|
cpu, vic_irq_mask[cpu]));
|
|
}
|
|
|
|
void voyager_smp_dump()
|
|
{
|
|
int old_cpu = smp_processor_id(), cpu;
|
|
|
|
/* dump the interrupt masks of each processor */
|
|
for_each_online_cpu(cpu) {
|
|
__u16 imr, isr, irr;
|
|
unsigned long flags;
|
|
|
|
local_irq_save(flags);
|
|
outb(VIC_CPU_MASQUERADE_ENABLE | cpu, VIC_PROCESSOR_ID);
|
|
imr = (inb(0xa1) << 8) | inb(0x21);
|
|
outb(0x0a, 0xa0);
|
|
irr = inb(0xa0) << 8;
|
|
outb(0x0a, 0x20);
|
|
irr |= inb(0x20);
|
|
outb(0x0b, 0xa0);
|
|
isr = inb(0xa0) << 8;
|
|
outb(0x0b, 0x20);
|
|
isr |= inb(0x20);
|
|
outb(old_cpu, VIC_PROCESSOR_ID);
|
|
local_irq_restore(flags);
|
|
printk("\tCPU%d: mask=0x%x, IMR=0x%x, IRR=0x%x, ISR=0x%x\n",
|
|
cpu, vic_irq_mask[cpu], imr, irr, isr);
|
|
#if 0
|
|
/* These lines are put in to try to unstick an un ack'd irq */
|
|
if (isr != 0) {
|
|
int irq;
|
|
for (irq = 0; irq < 16; irq++) {
|
|
if (isr & (1 << irq)) {
|
|
printk("\tCPU%d: ack irq %d\n",
|
|
cpu, irq);
|
|
local_irq_save(flags);
|
|
outb(VIC_CPU_MASQUERADE_ENABLE | cpu,
|
|
VIC_PROCESSOR_ID);
|
|
ack_vic_irq(irq);
|
|
outb(old_cpu, VIC_PROCESSOR_ID);
|
|
local_irq_restore(flags);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
void smp_voyager_power_off(void *dummy)
|
|
{
|
|
if (smp_processor_id() == boot_cpu_id)
|
|
voyager_power_off();
|
|
else
|
|
smp_stop_cpu_function(NULL);
|
|
}
|
|
|
|
static void __init voyager_smp_prepare_cpus(unsigned int max_cpus)
|
|
{
|
|
/* FIXME: ignore max_cpus for now */
|
|
smp_boot_cpus();
|
|
}
|
|
|
|
static void __cpuinit voyager_smp_prepare_boot_cpu(void)
|
|
{
|
|
init_gdt(smp_processor_id());
|
|
switch_to_new_gdt();
|
|
|
|
cpu_set(smp_processor_id(), cpu_online_map);
|
|
cpu_set(smp_processor_id(), cpu_callout_map);
|
|
cpu_set(smp_processor_id(), cpu_possible_map);
|
|
cpu_set(smp_processor_id(), cpu_present_map);
|
|
}
|
|
|
|
static int __cpuinit voyager_cpu_up(unsigned int cpu)
|
|
{
|
|
/* This only works at boot for x86. See "rewrite" above. */
|
|
if (cpu_isset(cpu, smp_commenced_mask))
|
|
return -ENOSYS;
|
|
|
|
/* In case one didn't come up */
|
|
if (!cpu_isset(cpu, cpu_callin_map))
|
|
return -EIO;
|
|
/* Unleash the CPU! */
|
|
cpu_set(cpu, smp_commenced_mask);
|
|
while (!cpu_online(cpu))
|
|
mb();
|
|
return 0;
|
|
}
|
|
|
|
static void __init voyager_smp_cpus_done(unsigned int max_cpus)
|
|
{
|
|
zap_low_mappings();
|
|
}
|
|
|
|
void __init smp_setup_processor_id(void)
|
|
{
|
|
current_thread_info()->cpu = hard_smp_processor_id();
|
|
x86_write_percpu(cpu_number, hard_smp_processor_id());
|
|
}
|
|
|
|
static void voyager_send_call_func(cpumask_t callmask)
|
|
{
|
|
__u32 mask = cpus_addr(callmask)[0] & ~(1 << smp_processor_id());
|
|
send_CPI(mask, VIC_CALL_FUNCTION_CPI);
|
|
}
|
|
|
|
static void voyager_send_call_func_single(int cpu)
|
|
{
|
|
send_CPI(1 << cpu, VIC_CALL_FUNCTION_SINGLE_CPI);
|
|
}
|
|
|
|
struct smp_ops smp_ops = {
|
|
.smp_prepare_boot_cpu = voyager_smp_prepare_boot_cpu,
|
|
.smp_prepare_cpus = voyager_smp_prepare_cpus,
|
|
.cpu_up = voyager_cpu_up,
|
|
.smp_cpus_done = voyager_smp_cpus_done,
|
|
|
|
.smp_send_stop = voyager_smp_send_stop,
|
|
.smp_send_reschedule = voyager_smp_send_reschedule,
|
|
|
|
.send_call_func_ipi = voyager_send_call_func,
|
|
.send_call_func_single_ipi = voyager_send_call_func_single,
|
|
};
|