linux_dsm_epyc7002/drivers/net/wireless/iwlwifi/pcie/rx.c
Johannes Berg 83f32a4b4a iwlwifi: pcie: get rid of q->n_bd
This variable always tracks a constant value (256) so there's
no need to have it. Removing it simplifies code generation,
reducing the .text size (by about 240 bytes on x86-64.)

Signed-off-by: Johannes Berg <johannes.berg@intel.com>
Signed-off-by: Emmanuel Grumbach <emmanuel.grumbach@intel.com>
2014-05-06 21:39:05 +03:00

1233 lines
37 KiB
C

/******************************************************************************
*
* Copyright(c) 2003 - 2014 Intel Corporation. All rights reserved.
*
* Portions of this file are derived from the ipw3945 project, as well
* as portions of the ieee80211 subsystem header files.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
*
* The full GNU General Public License is included in this distribution in the
* file called LICENSE.
*
* Contact Information:
* Intel Linux Wireless <ilw@linux.intel.com>
* Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*
*****************************************************************************/
#include <linux/sched.h>
#include <linux/wait.h>
#include <linux/gfp.h>
#include "iwl-prph.h"
#include "iwl-io.h"
#include "internal.h"
#include "iwl-op-mode.h"
/******************************************************************************
*
* RX path functions
*
******************************************************************************/
/*
* Rx theory of operation
*
* Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs),
* each of which point to Receive Buffers to be filled by the NIC. These get
* used not only for Rx frames, but for any command response or notification
* from the NIC. The driver and NIC manage the Rx buffers by means
* of indexes into the circular buffer.
*
* Rx Queue Indexes
* The host/firmware share two index registers for managing the Rx buffers.
*
* The READ index maps to the first position that the firmware may be writing
* to -- the driver can read up to (but not including) this position and get
* good data.
* The READ index is managed by the firmware once the card is enabled.
*
* The WRITE index maps to the last position the driver has read from -- the
* position preceding WRITE is the last slot the firmware can place a packet.
*
* The queue is empty (no good data) if WRITE = READ - 1, and is full if
* WRITE = READ.
*
* During initialization, the host sets up the READ queue position to the first
* INDEX position, and WRITE to the last (READ - 1 wrapped)
*
* When the firmware places a packet in a buffer, it will advance the READ index
* and fire the RX interrupt. The driver can then query the READ index and
* process as many packets as possible, moving the WRITE index forward as it
* resets the Rx queue buffers with new memory.
*
* The management in the driver is as follows:
* + A list of pre-allocated SKBs is stored in iwl->rxq->rx_free. When
* iwl->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
* to replenish the iwl->rxq->rx_free.
* + In iwl_pcie_rx_replenish (scheduled) if 'processed' != 'read' then the
* iwl->rxq is replenished and the READ INDEX is updated (updating the
* 'processed' and 'read' driver indexes as well)
* + A received packet is processed and handed to the kernel network stack,
* detached from the iwl->rxq. The driver 'processed' index is updated.
* + The Host/Firmware iwl->rxq is replenished at irq thread time from the
* rx_free list. If there are no allocated buffers in iwl->rxq->rx_free,
* the READ INDEX is not incremented and iwl->status(RX_STALLED) is set.
* If there were enough free buffers and RX_STALLED is set it is cleared.
*
*
* Driver sequence:
*
* iwl_rxq_alloc() Allocates rx_free
* iwl_pcie_rx_replenish() Replenishes rx_free list from rx_used, and calls
* iwl_pcie_rxq_restock
* iwl_pcie_rxq_restock() Moves available buffers from rx_free into Rx
* queue, updates firmware pointers, and updates
* the WRITE index. If insufficient rx_free buffers
* are available, schedules iwl_pcie_rx_replenish
*
* -- enable interrupts --
* ISR - iwl_rx() Detach iwl_rx_mem_buffers from pool up to the
* READ INDEX, detaching the SKB from the pool.
* Moves the packet buffer from queue to rx_used.
* Calls iwl_pcie_rxq_restock to refill any empty
* slots.
* ...
*
*/
/*
* iwl_rxq_space - Return number of free slots available in queue.
*/
static int iwl_rxq_space(const struct iwl_rxq *rxq)
{
/* Make sure RX_QUEUE_SIZE is a power of 2 */
BUILD_BUG_ON(RX_QUEUE_SIZE & (RX_QUEUE_SIZE - 1));
/*
* There can be up to (RX_QUEUE_SIZE - 1) free slots, to avoid ambiguity
* between empty and completely full queues.
* The following is equivalent to modulo by RX_QUEUE_SIZE and is well
* defined for negative dividends.
*/
return (rxq->read - rxq->write - 1) & (RX_QUEUE_SIZE - 1);
}
/*
* iwl_dma_addr2rbd_ptr - convert a DMA address to a uCode read buffer ptr
*/
static inline __le32 iwl_pcie_dma_addr2rbd_ptr(dma_addr_t dma_addr)
{
return cpu_to_le32((u32)(dma_addr >> 8));
}
/*
* iwl_pcie_rx_stop - stops the Rx DMA
*/
int iwl_pcie_rx_stop(struct iwl_trans *trans)
{
iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
return iwl_poll_direct_bit(trans, FH_MEM_RSSR_RX_STATUS_REG,
FH_RSSR_CHNL0_RX_STATUS_CHNL_IDLE, 1000);
}
/*
* iwl_pcie_rxq_inc_wr_ptr - Update the write pointer for the RX queue
*/
static void iwl_pcie_rxq_inc_wr_ptr(struct iwl_trans *trans)
{
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
struct iwl_rxq *rxq = &trans_pcie->rxq;
u32 reg;
lockdep_assert_held(&rxq->lock);
/*
* explicitly wake up the NIC if:
* 1. shadow registers aren't enabled
* 2. there is a chance that the NIC is asleep
*/
if (!trans->cfg->base_params->shadow_reg_enable &&
test_bit(STATUS_TPOWER_PMI, &trans->status)) {
reg = iwl_read32(trans, CSR_UCODE_DRV_GP1);
if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) {
IWL_DEBUG_INFO(trans, "Rx queue requesting wakeup, GP1 = 0x%x\n",
reg);
iwl_set_bit(trans, CSR_GP_CNTRL,
CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
rxq->need_update = true;
return;
}
}
rxq->write_actual = round_down(rxq->write, 8);
iwl_write32(trans, FH_RSCSR_CHNL0_WPTR, rxq->write_actual);
}
static void iwl_pcie_rxq_check_wrptr(struct iwl_trans *trans)
{
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
struct iwl_rxq *rxq = &trans_pcie->rxq;
spin_lock(&rxq->lock);
if (!rxq->need_update)
goto exit_unlock;
iwl_pcie_rxq_inc_wr_ptr(trans);
rxq->need_update = false;
exit_unlock:
spin_unlock(&rxq->lock);
}
/*
* iwl_pcie_rxq_restock - refill RX queue from pre-allocated pool
*
* If there are slots in the RX queue that need to be restocked,
* and we have free pre-allocated buffers, fill the ranks as much
* as we can, pulling from rx_free.
*
* This moves the 'write' index forward to catch up with 'processed', and
* also updates the memory address in the firmware to reference the new
* target buffer.
*/
static void iwl_pcie_rxq_restock(struct iwl_trans *trans)
{
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
struct iwl_rxq *rxq = &trans_pcie->rxq;
struct iwl_rx_mem_buffer *rxb;
/*
* If the device isn't enabled - not need to try to add buffers...
* This can happen when we stop the device and still have an interrupt
* pending. We stop the APM before we sync the interrupts because we
* have to (see comment there). On the other hand, since the APM is
* stopped, we cannot access the HW (in particular not prph).
* So don't try to restock if the APM has been already stopped.
*/
if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status))
return;
spin_lock(&rxq->lock);
while ((iwl_rxq_space(rxq) > 0) && (rxq->free_count)) {
/* The overwritten rxb must be a used one */
rxb = rxq->queue[rxq->write];
BUG_ON(rxb && rxb->page);
/* Get next free Rx buffer, remove from free list */
rxb = list_first_entry(&rxq->rx_free, struct iwl_rx_mem_buffer,
list);
list_del(&rxb->list);
/* Point to Rx buffer via next RBD in circular buffer */
rxq->bd[rxq->write] = iwl_pcie_dma_addr2rbd_ptr(rxb->page_dma);
rxq->queue[rxq->write] = rxb;
rxq->write = (rxq->write + 1) & RX_QUEUE_MASK;
rxq->free_count--;
}
spin_unlock(&rxq->lock);
/* If the pre-allocated buffer pool is dropping low, schedule to
* refill it */
if (rxq->free_count <= RX_LOW_WATERMARK)
schedule_work(&trans_pcie->rx_replenish);
/* If we've added more space for the firmware to place data, tell it.
* Increment device's write pointer in multiples of 8. */
if (rxq->write_actual != (rxq->write & ~0x7)) {
spin_lock(&rxq->lock);
iwl_pcie_rxq_inc_wr_ptr(trans);
spin_unlock(&rxq->lock);
}
}
/*
* iwl_pcie_rxq_alloc_rbs - allocate a page for each used RBD
*
* A used RBD is an Rx buffer that has been given to the stack. To use it again
* a page must be allocated and the RBD must point to the page. This function
* doesn't change the HW pointer but handles the list of pages that is used by
* iwl_pcie_rxq_restock. The latter function will update the HW to use the newly
* allocated buffers.
*/
static void iwl_pcie_rxq_alloc_rbs(struct iwl_trans *trans, gfp_t priority)
{
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
struct iwl_rxq *rxq = &trans_pcie->rxq;
struct iwl_rx_mem_buffer *rxb;
struct page *page;
gfp_t gfp_mask = priority;
while (1) {
spin_lock(&rxq->lock);
if (list_empty(&rxq->rx_used)) {
spin_unlock(&rxq->lock);
return;
}
spin_unlock(&rxq->lock);
if (rxq->free_count > RX_LOW_WATERMARK)
gfp_mask |= __GFP_NOWARN;
if (trans_pcie->rx_page_order > 0)
gfp_mask |= __GFP_COMP;
/* Alloc a new receive buffer */
page = alloc_pages(gfp_mask, trans_pcie->rx_page_order);
if (!page) {
if (net_ratelimit())
IWL_DEBUG_INFO(trans, "alloc_pages failed, "
"order: %d\n",
trans_pcie->rx_page_order);
if ((rxq->free_count <= RX_LOW_WATERMARK) &&
net_ratelimit())
IWL_CRIT(trans, "Failed to alloc_pages with %s."
"Only %u free buffers remaining.\n",
priority == GFP_ATOMIC ?
"GFP_ATOMIC" : "GFP_KERNEL",
rxq->free_count);
/* We don't reschedule replenish work here -- we will
* call the restock method and if it still needs
* more buffers it will schedule replenish */
return;
}
spin_lock(&rxq->lock);
if (list_empty(&rxq->rx_used)) {
spin_unlock(&rxq->lock);
__free_pages(page, trans_pcie->rx_page_order);
return;
}
rxb = list_first_entry(&rxq->rx_used, struct iwl_rx_mem_buffer,
list);
list_del(&rxb->list);
spin_unlock(&rxq->lock);
BUG_ON(rxb->page);
rxb->page = page;
/* Get physical address of the RB */
rxb->page_dma =
dma_map_page(trans->dev, page, 0,
PAGE_SIZE << trans_pcie->rx_page_order,
DMA_FROM_DEVICE);
if (dma_mapping_error(trans->dev, rxb->page_dma)) {
rxb->page = NULL;
spin_lock(&rxq->lock);
list_add(&rxb->list, &rxq->rx_used);
spin_unlock(&rxq->lock);
__free_pages(page, trans_pcie->rx_page_order);
return;
}
/* dma address must be no more than 36 bits */
BUG_ON(rxb->page_dma & ~DMA_BIT_MASK(36));
/* and also 256 byte aligned! */
BUG_ON(rxb->page_dma & DMA_BIT_MASK(8));
spin_lock(&rxq->lock);
list_add_tail(&rxb->list, &rxq->rx_free);
rxq->free_count++;
spin_unlock(&rxq->lock);
}
}
static void iwl_pcie_rxq_free_rbs(struct iwl_trans *trans)
{
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
struct iwl_rxq *rxq = &trans_pcie->rxq;
int i;
lockdep_assert_held(&rxq->lock);
for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
if (!rxq->pool[i].page)
continue;
dma_unmap_page(trans->dev, rxq->pool[i].page_dma,
PAGE_SIZE << trans_pcie->rx_page_order,
DMA_FROM_DEVICE);
__free_pages(rxq->pool[i].page, trans_pcie->rx_page_order);
rxq->pool[i].page = NULL;
}
}
/*
* iwl_pcie_rx_replenish - Move all used buffers from rx_used to rx_free
*
* When moving to rx_free an page is allocated for the slot.
*
* Also restock the Rx queue via iwl_pcie_rxq_restock.
* This is called as a scheduled work item (except for during initialization)
*/
static void iwl_pcie_rx_replenish(struct iwl_trans *trans, gfp_t gfp)
{
iwl_pcie_rxq_alloc_rbs(trans, gfp);
iwl_pcie_rxq_restock(trans);
}
static void iwl_pcie_rx_replenish_work(struct work_struct *data)
{
struct iwl_trans_pcie *trans_pcie =
container_of(data, struct iwl_trans_pcie, rx_replenish);
iwl_pcie_rx_replenish(trans_pcie->trans, GFP_KERNEL);
}
static int iwl_pcie_rx_alloc(struct iwl_trans *trans)
{
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
struct iwl_rxq *rxq = &trans_pcie->rxq;
struct device *dev = trans->dev;
memset(&trans_pcie->rxq, 0, sizeof(trans_pcie->rxq));
spin_lock_init(&rxq->lock);
if (WARN_ON(rxq->bd || rxq->rb_stts))
return -EINVAL;
/* Allocate the circular buffer of Read Buffer Descriptors (RBDs) */
rxq->bd = dma_zalloc_coherent(dev, sizeof(__le32) * RX_QUEUE_SIZE,
&rxq->bd_dma, GFP_KERNEL);
if (!rxq->bd)
goto err_bd;
/*Allocate the driver's pointer to receive buffer status */
rxq->rb_stts = dma_zalloc_coherent(dev, sizeof(*rxq->rb_stts),
&rxq->rb_stts_dma, GFP_KERNEL);
if (!rxq->rb_stts)
goto err_rb_stts;
return 0;
err_rb_stts:
dma_free_coherent(dev, sizeof(__le32) * RX_QUEUE_SIZE,
rxq->bd, rxq->bd_dma);
rxq->bd_dma = 0;
rxq->bd = NULL;
err_bd:
return -ENOMEM;
}
static void iwl_pcie_rx_hw_init(struct iwl_trans *trans, struct iwl_rxq *rxq)
{
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
u32 rb_size;
const u32 rfdnlog = RX_QUEUE_SIZE_LOG; /* 256 RBDs */
if (trans_pcie->rx_buf_size_8k)
rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_8K;
else
rb_size = FH_RCSR_RX_CONFIG_REG_VAL_RB_SIZE_4K;
/* Stop Rx DMA */
iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG, 0);
/* reset and flush pointers */
iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_RBDCB_WPTR, 0);
iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_FLUSH_RB_REQ, 0);
iwl_write_direct32(trans, FH_RSCSR_CHNL0_RDPTR, 0);
/* Reset driver's Rx queue write index */
iwl_write_direct32(trans, FH_RSCSR_CHNL0_RBDCB_WPTR_REG, 0);
/* Tell device where to find RBD circular buffer in DRAM */
iwl_write_direct32(trans, FH_RSCSR_CHNL0_RBDCB_BASE_REG,
(u32)(rxq->bd_dma >> 8));
/* Tell device where in DRAM to update its Rx status */
iwl_write_direct32(trans, FH_RSCSR_CHNL0_STTS_WPTR_REG,
rxq->rb_stts_dma >> 4);
/* Enable Rx DMA
* FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY is set because of HW bug in
* the credit mechanism in 5000 HW RX FIFO
* Direct rx interrupts to hosts
* Rx buffer size 4 or 8k
* RB timeout 0x10
* 256 RBDs
*/
iwl_write_direct32(trans, FH_MEM_RCSR_CHNL0_CONFIG_REG,
FH_RCSR_RX_CONFIG_CHNL_EN_ENABLE_VAL |
FH_RCSR_CHNL0_RX_IGNORE_RXF_EMPTY |
FH_RCSR_CHNL0_RX_CONFIG_IRQ_DEST_INT_HOST_VAL |
rb_size|
(RX_RB_TIMEOUT << FH_RCSR_RX_CONFIG_REG_IRQ_RBTH_POS)|
(rfdnlog << FH_RCSR_RX_CONFIG_RBDCB_SIZE_POS));
/* Set interrupt coalescing timer to default (2048 usecs) */
iwl_write8(trans, CSR_INT_COALESCING, IWL_HOST_INT_TIMEOUT_DEF);
/* W/A for interrupt coalescing bug in 7260 and 3160 */
if (trans->cfg->host_interrupt_operation_mode)
iwl_set_bit(trans, CSR_INT_COALESCING, IWL_HOST_INT_OPER_MODE);
}
static void iwl_pcie_rx_init_rxb_lists(struct iwl_rxq *rxq)
{
int i;
lockdep_assert_held(&rxq->lock);
INIT_LIST_HEAD(&rxq->rx_free);
INIT_LIST_HEAD(&rxq->rx_used);
rxq->free_count = 0;
for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
list_add(&rxq->pool[i].list, &rxq->rx_used);
}
int iwl_pcie_rx_init(struct iwl_trans *trans)
{
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
struct iwl_rxq *rxq = &trans_pcie->rxq;
int i, err;
if (!rxq->bd) {
err = iwl_pcie_rx_alloc(trans);
if (err)
return err;
}
spin_lock(&rxq->lock);
INIT_WORK(&trans_pcie->rx_replenish, iwl_pcie_rx_replenish_work);
/* free all first - we might be reconfigured for a different size */
iwl_pcie_rxq_free_rbs(trans);
iwl_pcie_rx_init_rxb_lists(rxq);
for (i = 0; i < RX_QUEUE_SIZE; i++)
rxq->queue[i] = NULL;
/* Set us so that we have processed and used all buffers, but have
* not restocked the Rx queue with fresh buffers */
rxq->read = rxq->write = 0;
rxq->write_actual = 0;
memset(rxq->rb_stts, 0, sizeof(*rxq->rb_stts));
spin_unlock(&rxq->lock);
iwl_pcie_rx_replenish(trans, GFP_KERNEL);
iwl_pcie_rx_hw_init(trans, rxq);
spin_lock(&rxq->lock);
iwl_pcie_rxq_inc_wr_ptr(trans);
spin_unlock(&rxq->lock);
return 0;
}
void iwl_pcie_rx_free(struct iwl_trans *trans)
{
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
struct iwl_rxq *rxq = &trans_pcie->rxq;
/*if rxq->bd is NULL, it means that nothing has been allocated,
* exit now */
if (!rxq->bd) {
IWL_DEBUG_INFO(trans, "Free NULL rx context\n");
return;
}
cancel_work_sync(&trans_pcie->rx_replenish);
spin_lock(&rxq->lock);
iwl_pcie_rxq_free_rbs(trans);
spin_unlock(&rxq->lock);
dma_free_coherent(trans->dev, sizeof(__le32) * RX_QUEUE_SIZE,
rxq->bd, rxq->bd_dma);
rxq->bd_dma = 0;
rxq->bd = NULL;
if (rxq->rb_stts)
dma_free_coherent(trans->dev,
sizeof(struct iwl_rb_status),
rxq->rb_stts, rxq->rb_stts_dma);
else
IWL_DEBUG_INFO(trans, "Free rxq->rb_stts which is NULL\n");
rxq->rb_stts_dma = 0;
rxq->rb_stts = NULL;
}
static void iwl_pcie_rx_handle_rb(struct iwl_trans *trans,
struct iwl_rx_mem_buffer *rxb)
{
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
struct iwl_rxq *rxq = &trans_pcie->rxq;
struct iwl_txq *txq = &trans_pcie->txq[trans_pcie->cmd_queue];
bool page_stolen = false;
int max_len = PAGE_SIZE << trans_pcie->rx_page_order;
u32 offset = 0;
if (WARN_ON(!rxb))
return;
dma_unmap_page(trans->dev, rxb->page_dma, max_len, DMA_FROM_DEVICE);
while (offset + sizeof(u32) + sizeof(struct iwl_cmd_header) < max_len) {
struct iwl_rx_packet *pkt;
struct iwl_device_cmd *cmd;
u16 sequence;
bool reclaim;
int index, cmd_index, err, len;
struct iwl_rx_cmd_buffer rxcb = {
._offset = offset,
._rx_page_order = trans_pcie->rx_page_order,
._page = rxb->page,
._page_stolen = false,
.truesize = max_len,
};
pkt = rxb_addr(&rxcb);
if (pkt->len_n_flags == cpu_to_le32(FH_RSCSR_FRAME_INVALID))
break;
IWL_DEBUG_RX(trans, "cmd at offset %d: %s (0x%.2x)\n",
rxcb._offset, get_cmd_string(trans_pcie, pkt->hdr.cmd),
pkt->hdr.cmd);
len = iwl_rx_packet_len(pkt);
len += sizeof(u32); /* account for status word */
trace_iwlwifi_dev_rx(trans->dev, trans, pkt, len);
trace_iwlwifi_dev_rx_data(trans->dev, trans, pkt, len);
/* Reclaim a command buffer only if this packet is a response
* to a (driver-originated) command.
* If the packet (e.g. Rx frame) originated from uCode,
* there is no command buffer to reclaim.
* Ucode should set SEQ_RX_FRAME bit if ucode-originated,
* but apparently a few don't get set; catch them here. */
reclaim = !(pkt->hdr.sequence & SEQ_RX_FRAME);
if (reclaim) {
int i;
for (i = 0; i < trans_pcie->n_no_reclaim_cmds; i++) {
if (trans_pcie->no_reclaim_cmds[i] ==
pkt->hdr.cmd) {
reclaim = false;
break;
}
}
}
sequence = le16_to_cpu(pkt->hdr.sequence);
index = SEQ_TO_INDEX(sequence);
cmd_index = get_cmd_index(&txq->q, index);
if (reclaim)
cmd = txq->entries[cmd_index].cmd;
else
cmd = NULL;
err = iwl_op_mode_rx(trans->op_mode, &rxcb, cmd);
if (reclaim) {
kfree(txq->entries[cmd_index].free_buf);
txq->entries[cmd_index].free_buf = NULL;
}
/*
* After here, we should always check rxcb._page_stolen,
* if it is true then one of the handlers took the page.
*/
if (reclaim) {
/* Invoke any callbacks, transfer the buffer to caller,
* and fire off the (possibly) blocking
* iwl_trans_send_cmd()
* as we reclaim the driver command queue */
if (!rxcb._page_stolen)
iwl_pcie_hcmd_complete(trans, &rxcb, err);
else
IWL_WARN(trans, "Claim null rxb?\n");
}
page_stolen |= rxcb._page_stolen;
offset += ALIGN(len, FH_RSCSR_FRAME_ALIGN);
}
/* page was stolen from us -- free our reference */
if (page_stolen) {
__free_pages(rxb->page, trans_pcie->rx_page_order);
rxb->page = NULL;
}
/* Reuse the page if possible. For notification packets and
* SKBs that fail to Rx correctly, add them back into the
* rx_free list for reuse later. */
if (rxb->page != NULL) {
rxb->page_dma =
dma_map_page(trans->dev, rxb->page, 0,
PAGE_SIZE << trans_pcie->rx_page_order,
DMA_FROM_DEVICE);
if (dma_mapping_error(trans->dev, rxb->page_dma)) {
/*
* free the page(s) as well to not break
* the invariant that the items on the used
* list have no page(s)
*/
__free_pages(rxb->page, trans_pcie->rx_page_order);
rxb->page = NULL;
list_add_tail(&rxb->list, &rxq->rx_used);
} else {
list_add_tail(&rxb->list, &rxq->rx_free);
rxq->free_count++;
}
} else
list_add_tail(&rxb->list, &rxq->rx_used);
}
/*
* iwl_pcie_rx_handle - Main entry function for receiving responses from fw
*/
static void iwl_pcie_rx_handle(struct iwl_trans *trans)
{
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
struct iwl_rxq *rxq = &trans_pcie->rxq;
u32 r, i;
u8 fill_rx = 0;
u32 count = 8;
int total_empty;
restart:
spin_lock(&rxq->lock);
/* uCode's read index (stored in shared DRAM) indicates the last Rx
* buffer that the driver may process (last buffer filled by ucode). */
r = le16_to_cpu(ACCESS_ONCE(rxq->rb_stts->closed_rb_num)) & 0x0FFF;
i = rxq->read;
/* Rx interrupt, but nothing sent from uCode */
if (i == r)
IWL_DEBUG_RX(trans, "HW = SW = %d\n", r);
/* calculate total frames need to be restock after handling RX */
total_empty = r - rxq->write_actual;
if (total_empty < 0)
total_empty += RX_QUEUE_SIZE;
if (total_empty > (RX_QUEUE_SIZE / 2))
fill_rx = 1;
while (i != r) {
struct iwl_rx_mem_buffer *rxb;
rxb = rxq->queue[i];
rxq->queue[i] = NULL;
IWL_DEBUG_RX(trans, "rxbuf: HW = %d, SW = %d (%p)\n",
r, i, rxb);
iwl_pcie_rx_handle_rb(trans, rxb);
i = (i + 1) & RX_QUEUE_MASK;
/* If there are a lot of unused frames,
* restock the Rx queue so ucode wont assert. */
if (fill_rx) {
count++;
if (count >= 8) {
rxq->read = i;
spin_unlock(&rxq->lock);
iwl_pcie_rx_replenish(trans, GFP_ATOMIC);
count = 0;
goto restart;
}
}
}
/* Backtrack one entry */
rxq->read = i;
spin_unlock(&rxq->lock);
if (fill_rx)
iwl_pcie_rx_replenish(trans, GFP_ATOMIC);
else
iwl_pcie_rxq_restock(trans);
if (trans_pcie->napi.poll)
napi_gro_flush(&trans_pcie->napi, false);
}
/*
* iwl_pcie_irq_handle_error - called for HW or SW error interrupt from card
*/
static void iwl_pcie_irq_handle_error(struct iwl_trans *trans)
{
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
/* W/A for WiFi/WiMAX coex and WiMAX own the RF */
if (trans->cfg->internal_wimax_coex &&
(!(iwl_read_prph(trans, APMG_CLK_CTRL_REG) &
APMS_CLK_VAL_MRB_FUNC_MODE) ||
(iwl_read_prph(trans, APMG_PS_CTRL_REG) &
APMG_PS_CTRL_VAL_RESET_REQ))) {
clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
iwl_op_mode_wimax_active(trans->op_mode);
wake_up(&trans_pcie->wait_command_queue);
return;
}
iwl_pcie_dump_csr(trans);
iwl_dump_fh(trans, NULL);
local_bh_disable();
/* The STATUS_FW_ERROR bit is set in this function. This must happen
* before we wake up the command caller, to ensure a proper cleanup. */
iwl_trans_fw_error(trans);
local_bh_enable();
clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
wake_up(&trans_pcie->wait_command_queue);
}
static u32 iwl_pcie_int_cause_non_ict(struct iwl_trans *trans)
{
u32 inta;
lockdep_assert_held(&IWL_TRANS_GET_PCIE_TRANS(trans)->irq_lock);
trace_iwlwifi_dev_irq(trans->dev);
/* Discover which interrupts are active/pending */
inta = iwl_read32(trans, CSR_INT);
/* the thread will service interrupts and re-enable them */
return inta;
}
/* a device (PCI-E) page is 4096 bytes long */
#define ICT_SHIFT 12
#define ICT_SIZE (1 << ICT_SHIFT)
#define ICT_COUNT (ICT_SIZE / sizeof(u32))
/* interrupt handler using ict table, with this interrupt driver will
* stop using INTA register to get device's interrupt, reading this register
* is expensive, device will write interrupts in ICT dram table, increment
* index then will fire interrupt to driver, driver will OR all ICT table
* entries from current index up to table entry with 0 value. the result is
* the interrupt we need to service, driver will set the entries back to 0 and
* set index.
*/
static u32 iwl_pcie_int_cause_ict(struct iwl_trans *trans)
{
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
u32 inta;
u32 val = 0;
u32 read;
trace_iwlwifi_dev_irq(trans->dev);
/* Ignore interrupt if there's nothing in NIC to service.
* This may be due to IRQ shared with another device,
* or due to sporadic interrupts thrown from our NIC. */
read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index, read);
if (!read)
return 0;
/*
* Collect all entries up to the first 0, starting from ict_index;
* note we already read at ict_index.
*/
do {
val |= read;
IWL_DEBUG_ISR(trans, "ICT index %d value 0x%08X\n",
trans_pcie->ict_index, read);
trans_pcie->ict_tbl[trans_pcie->ict_index] = 0;
trans_pcie->ict_index =
((trans_pcie->ict_index + 1) & (ICT_COUNT - 1));
read = le32_to_cpu(trans_pcie->ict_tbl[trans_pcie->ict_index]);
trace_iwlwifi_dev_ict_read(trans->dev, trans_pcie->ict_index,
read);
} while (read);
/* We should not get this value, just ignore it. */
if (val == 0xffffffff)
val = 0;
/*
* this is a w/a for a h/w bug. the h/w bug may cause the Rx bit
* (bit 15 before shifting it to 31) to clear when using interrupt
* coalescing. fortunately, bits 18 and 19 stay set when this happens
* so we use them to decide on the real state of the Rx bit.
* In order words, bit 15 is set if bit 18 or bit 19 are set.
*/
if (val & 0xC0000)
val |= 0x8000;
inta = (0xff & val) | ((0xff00 & val) << 16);
return inta;
}
irqreturn_t iwl_pcie_irq_handler(int irq, void *dev_id)
{
struct iwl_trans *trans = dev_id;
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
struct isr_statistics *isr_stats = &trans_pcie->isr_stats;
u32 inta = 0;
u32 handled = 0;
lock_map_acquire(&trans->sync_cmd_lockdep_map);
spin_lock(&trans_pcie->irq_lock);
/* dram interrupt table not set yet,
* use legacy interrupt.
*/
if (likely(trans_pcie->use_ict))
inta = iwl_pcie_int_cause_ict(trans);
else
inta = iwl_pcie_int_cause_non_ict(trans);
if (iwl_have_debug_level(IWL_DL_ISR)) {
IWL_DEBUG_ISR(trans,
"ISR inta 0x%08x, enabled 0x%08x(sw), enabled(hw) 0x%08x, fh 0x%08x\n",
inta, trans_pcie->inta_mask,
iwl_read32(trans, CSR_INT_MASK),
iwl_read32(trans, CSR_FH_INT_STATUS));
if (inta & (~trans_pcie->inta_mask))
IWL_DEBUG_ISR(trans,
"We got a masked interrupt (0x%08x)\n",
inta & (~trans_pcie->inta_mask));
}
inta &= trans_pcie->inta_mask;
/*
* Ignore interrupt if there's nothing in NIC to service.
* This may be due to IRQ shared with another device,
* or due to sporadic interrupts thrown from our NIC.
*/
if (unlikely(!inta)) {
IWL_DEBUG_ISR(trans, "Ignore interrupt, inta == 0\n");
/*
* Re-enable interrupts here since we don't
* have anything to service
*/
if (test_bit(STATUS_INT_ENABLED, &trans->status))
iwl_enable_interrupts(trans);
spin_unlock(&trans_pcie->irq_lock);
lock_map_release(&trans->sync_cmd_lockdep_map);
return IRQ_NONE;
}
if (unlikely(inta == 0xFFFFFFFF || (inta & 0xFFFFFFF0) == 0xa5a5a5a0)) {
/*
* Hardware disappeared. It might have
* already raised an interrupt.
*/
IWL_WARN(trans, "HARDWARE GONE?? INTA == 0x%08x\n", inta);
spin_unlock(&trans_pcie->irq_lock);
goto out;
}
/* Ack/clear/reset pending uCode interrupts.
* Note: Some bits in CSR_INT are "OR" of bits in CSR_FH_INT_STATUS,
*/
/* There is a hardware bug in the interrupt mask function that some
* interrupts (i.e. CSR_INT_BIT_SCD) can still be generated even if
* they are disabled in the CSR_INT_MASK register. Furthermore the
* ICT interrupt handling mechanism has another bug that might cause
* these unmasked interrupts fail to be detected. We workaround the
* hardware bugs here by ACKing all the possible interrupts so that
* interrupt coalescing can still be achieved.
*/
iwl_write32(trans, CSR_INT, inta | ~trans_pcie->inta_mask);
if (iwl_have_debug_level(IWL_DL_ISR))
IWL_DEBUG_ISR(trans, "inta 0x%08x, enabled 0x%08x\n",
inta, iwl_read32(trans, CSR_INT_MASK));
spin_unlock(&trans_pcie->irq_lock);
/* Now service all interrupt bits discovered above. */
if (inta & CSR_INT_BIT_HW_ERR) {
IWL_ERR(trans, "Hardware error detected. Restarting.\n");
/* Tell the device to stop sending interrupts */
iwl_disable_interrupts(trans);
isr_stats->hw++;
iwl_pcie_irq_handle_error(trans);
handled |= CSR_INT_BIT_HW_ERR;
goto out;
}
if (iwl_have_debug_level(IWL_DL_ISR)) {
/* NIC fires this, but we don't use it, redundant with WAKEUP */
if (inta & CSR_INT_BIT_SCD) {
IWL_DEBUG_ISR(trans,
"Scheduler finished to transmit the frame/frames.\n");
isr_stats->sch++;
}
/* Alive notification via Rx interrupt will do the real work */
if (inta & CSR_INT_BIT_ALIVE) {
IWL_DEBUG_ISR(trans, "Alive interrupt\n");
isr_stats->alive++;
}
}
/* Safely ignore these bits for debug checks below */
inta &= ~(CSR_INT_BIT_SCD | CSR_INT_BIT_ALIVE);
/* HW RF KILL switch toggled */
if (inta & CSR_INT_BIT_RF_KILL) {
bool hw_rfkill;
hw_rfkill = iwl_is_rfkill_set(trans);
IWL_WARN(trans, "RF_KILL bit toggled to %s.\n",
hw_rfkill ? "disable radio" : "enable radio");
isr_stats->rfkill++;
iwl_trans_pcie_rf_kill(trans, hw_rfkill);
if (hw_rfkill) {
set_bit(STATUS_RFKILL, &trans->status);
if (test_and_clear_bit(STATUS_SYNC_HCMD_ACTIVE,
&trans->status))
IWL_DEBUG_RF_KILL(trans,
"Rfkill while SYNC HCMD in flight\n");
wake_up(&trans_pcie->wait_command_queue);
} else {
clear_bit(STATUS_RFKILL, &trans->status);
}
handled |= CSR_INT_BIT_RF_KILL;
}
/* Chip got too hot and stopped itself */
if (inta & CSR_INT_BIT_CT_KILL) {
IWL_ERR(trans, "Microcode CT kill error detected.\n");
isr_stats->ctkill++;
handled |= CSR_INT_BIT_CT_KILL;
}
/* Error detected by uCode */
if (inta & CSR_INT_BIT_SW_ERR) {
IWL_ERR(trans, "Microcode SW error detected. "
" Restarting 0x%X.\n", inta);
isr_stats->sw++;
iwl_pcie_irq_handle_error(trans);
handled |= CSR_INT_BIT_SW_ERR;
}
/* uCode wakes up after power-down sleep */
if (inta & CSR_INT_BIT_WAKEUP) {
IWL_DEBUG_ISR(trans, "Wakeup interrupt\n");
iwl_pcie_rxq_check_wrptr(trans);
iwl_pcie_txq_check_wrptrs(trans);
isr_stats->wakeup++;
handled |= CSR_INT_BIT_WAKEUP;
}
/* All uCode command responses, including Tx command responses,
* Rx "responses" (frame-received notification), and other
* notifications from uCode come through here*/
if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX |
CSR_INT_BIT_RX_PERIODIC)) {
IWL_DEBUG_ISR(trans, "Rx interrupt\n");
if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX)) {
handled |= (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX);
iwl_write32(trans, CSR_FH_INT_STATUS,
CSR_FH_INT_RX_MASK);
}
if (inta & CSR_INT_BIT_RX_PERIODIC) {
handled |= CSR_INT_BIT_RX_PERIODIC;
iwl_write32(trans,
CSR_INT, CSR_INT_BIT_RX_PERIODIC);
}
/* Sending RX interrupt require many steps to be done in the
* the device:
* 1- write interrupt to current index in ICT table.
* 2- dma RX frame.
* 3- update RX shared data to indicate last write index.
* 4- send interrupt.
* This could lead to RX race, driver could receive RX interrupt
* but the shared data changes does not reflect this;
* periodic interrupt will detect any dangling Rx activity.
*/
/* Disable periodic interrupt; we use it as just a one-shot. */
iwl_write8(trans, CSR_INT_PERIODIC_REG,
CSR_INT_PERIODIC_DIS);
/*
* Enable periodic interrupt in 8 msec only if we received
* real RX interrupt (instead of just periodic int), to catch
* any dangling Rx interrupt. If it was just the periodic
* interrupt, there was no dangling Rx activity, and no need
* to extend the periodic interrupt; one-shot is enough.
*/
if (inta & (CSR_INT_BIT_FH_RX | CSR_INT_BIT_SW_RX))
iwl_write8(trans, CSR_INT_PERIODIC_REG,
CSR_INT_PERIODIC_ENA);
isr_stats->rx++;
local_bh_disable();
iwl_pcie_rx_handle(trans);
local_bh_enable();
}
/* This "Tx" DMA channel is used only for loading uCode */
if (inta & CSR_INT_BIT_FH_TX) {
iwl_write32(trans, CSR_FH_INT_STATUS, CSR_FH_INT_TX_MASK);
IWL_DEBUG_ISR(trans, "uCode load interrupt\n");
isr_stats->tx++;
handled |= CSR_INT_BIT_FH_TX;
/* Wake up uCode load routine, now that load is complete */
trans_pcie->ucode_write_complete = true;
wake_up(&trans_pcie->ucode_write_waitq);
}
if (inta & ~handled) {
IWL_ERR(trans, "Unhandled INTA bits 0x%08x\n", inta & ~handled);
isr_stats->unhandled++;
}
if (inta & ~(trans_pcie->inta_mask)) {
IWL_WARN(trans, "Disabled INTA bits 0x%08x were pending\n",
inta & ~trans_pcie->inta_mask);
}
/* Re-enable all interrupts */
/* only Re-enable if disabled by irq */
if (test_bit(STATUS_INT_ENABLED, &trans->status))
iwl_enable_interrupts(trans);
/* Re-enable RF_KILL if it occurred */
else if (handled & CSR_INT_BIT_RF_KILL)
iwl_enable_rfkill_int(trans);
out:
lock_map_release(&trans->sync_cmd_lockdep_map);
return IRQ_HANDLED;
}
/******************************************************************************
*
* ICT functions
*
******************************************************************************/
/* Free dram table */
void iwl_pcie_free_ict(struct iwl_trans *trans)
{
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
if (trans_pcie->ict_tbl) {
dma_free_coherent(trans->dev, ICT_SIZE,
trans_pcie->ict_tbl,
trans_pcie->ict_tbl_dma);
trans_pcie->ict_tbl = NULL;
trans_pcie->ict_tbl_dma = 0;
}
}
/*
* allocate dram shared table, it is an aligned memory
* block of ICT_SIZE.
* also reset all data related to ICT table interrupt.
*/
int iwl_pcie_alloc_ict(struct iwl_trans *trans)
{
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
trans_pcie->ict_tbl =
dma_zalloc_coherent(trans->dev, ICT_SIZE,
&trans_pcie->ict_tbl_dma,
GFP_KERNEL);
if (!trans_pcie->ict_tbl)
return -ENOMEM;
/* just an API sanity check ... it is guaranteed to be aligned */
if (WARN_ON(trans_pcie->ict_tbl_dma & (ICT_SIZE - 1))) {
iwl_pcie_free_ict(trans);
return -EINVAL;
}
IWL_DEBUG_ISR(trans, "ict dma addr %Lx ict vir addr %p\n",
(unsigned long long)trans_pcie->ict_tbl_dma,
trans_pcie->ict_tbl);
return 0;
}
/* Device is going up inform it about using ICT interrupt table,
* also we need to tell the driver to start using ICT interrupt.
*/
void iwl_pcie_reset_ict(struct iwl_trans *trans)
{
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
u32 val;
if (!trans_pcie->ict_tbl)
return;
spin_lock(&trans_pcie->irq_lock);
iwl_disable_interrupts(trans);
memset(trans_pcie->ict_tbl, 0, ICT_SIZE);
val = trans_pcie->ict_tbl_dma >> ICT_SHIFT;
val |= CSR_DRAM_INT_TBL_ENABLE;
val |= CSR_DRAM_INIT_TBL_WRAP_CHECK;
IWL_DEBUG_ISR(trans, "CSR_DRAM_INT_TBL_REG =0x%x\n", val);
iwl_write32(trans, CSR_DRAM_INT_TBL_REG, val);
trans_pcie->use_ict = true;
trans_pcie->ict_index = 0;
iwl_write32(trans, CSR_INT, trans_pcie->inta_mask);
iwl_enable_interrupts(trans);
spin_unlock(&trans_pcie->irq_lock);
}
/* Device is going down disable ict interrupt usage */
void iwl_pcie_disable_ict(struct iwl_trans *trans)
{
struct iwl_trans_pcie *trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
spin_lock(&trans_pcie->irq_lock);
trans_pcie->use_ict = false;
spin_unlock(&trans_pcie->irq_lock);
}
irqreturn_t iwl_pcie_isr(int irq, void *data)
{
struct iwl_trans *trans = data;
if (!trans)
return IRQ_NONE;
/* Disable (but don't clear!) interrupts here to avoid
* back-to-back ISRs and sporadic interrupts from our NIC.
* If we have something to service, the tasklet will re-enable ints.
* If we *don't* have something, we'll re-enable before leaving here.
*/
iwl_write32(trans, CSR_INT_MASK, 0x00000000);
return IRQ_WAKE_THREAD;
}