linux_dsm_epyc7002/drivers/net/can/pch_can.c
Oliver Hartkopp c971fa2ae4 can: Unify MTU settings for CAN interfaces
CAN interfaces only support MTU values of 16 (CAN 2.0) and 72 (CAN FD).
Setting the MTU to other values is pointless but it does not really hurt.
With the introduction of the CAN FD support in drivers/net/can a new
function to switch the MTU for CAN FD has been introduced.

This patch makes use of this can_change_mtu() function to check for correct
MTU settings also in legacy CAN (2.0) devices.

Signed-off-by: Oliver Hartkopp <socketcan@hartkopp.net>
Signed-off-by: Marc Kleine-Budde <mkl@pengutronix.de>
2014-03-17 09:20:16 +01:00

1280 lines
32 KiB
C

/*
* Copyright (C) 1999 - 2010 Intel Corporation.
* Copyright (C) 2010 LAPIS SEMICONDUCTOR CO., LTD.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/pci.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/netdevice.h>
#include <linux/skbuff.h>
#include <linux/can.h>
#include <linux/can/dev.h>
#include <linux/can/error.h>
#define PCH_CTRL_INIT BIT(0) /* The INIT bit of CANCONT register. */
#define PCH_CTRL_IE BIT(1) /* The IE bit of CAN control register */
#define PCH_CTRL_IE_SIE_EIE (BIT(3) | BIT(2) | BIT(1))
#define PCH_CTRL_CCE BIT(6)
#define PCH_CTRL_OPT BIT(7) /* The OPT bit of CANCONT register. */
#define PCH_OPT_SILENT BIT(3) /* The Silent bit of CANOPT reg. */
#define PCH_OPT_LBACK BIT(4) /* The LoopBack bit of CANOPT reg. */
#define PCH_CMASK_RX_TX_SET 0x00f3
#define PCH_CMASK_RX_TX_GET 0x0073
#define PCH_CMASK_ALL 0xff
#define PCH_CMASK_NEWDAT BIT(2)
#define PCH_CMASK_CLRINTPND BIT(3)
#define PCH_CMASK_CTRL BIT(4)
#define PCH_CMASK_ARB BIT(5)
#define PCH_CMASK_MASK BIT(6)
#define PCH_CMASK_RDWR BIT(7)
#define PCH_IF_MCONT_NEWDAT BIT(15)
#define PCH_IF_MCONT_MSGLOST BIT(14)
#define PCH_IF_MCONT_INTPND BIT(13)
#define PCH_IF_MCONT_UMASK BIT(12)
#define PCH_IF_MCONT_TXIE BIT(11)
#define PCH_IF_MCONT_RXIE BIT(10)
#define PCH_IF_MCONT_RMTEN BIT(9)
#define PCH_IF_MCONT_TXRQXT BIT(8)
#define PCH_IF_MCONT_EOB BIT(7)
#define PCH_IF_MCONT_DLC (BIT(0) | BIT(1) | BIT(2) | BIT(3))
#define PCH_MASK2_MDIR_MXTD (BIT(14) | BIT(15))
#define PCH_ID2_DIR BIT(13)
#define PCH_ID2_XTD BIT(14)
#define PCH_ID_MSGVAL BIT(15)
#define PCH_IF_CREQ_BUSY BIT(15)
#define PCH_STATUS_INT 0x8000
#define PCH_RP 0x00008000
#define PCH_REC 0x00007f00
#define PCH_TEC 0x000000ff
#define PCH_TX_OK BIT(3)
#define PCH_RX_OK BIT(4)
#define PCH_EPASSIV BIT(5)
#define PCH_EWARN BIT(6)
#define PCH_BUS_OFF BIT(7)
/* bit position of certain controller bits. */
#define PCH_BIT_BRP_SHIFT 0
#define PCH_BIT_SJW_SHIFT 6
#define PCH_BIT_TSEG1_SHIFT 8
#define PCH_BIT_TSEG2_SHIFT 12
#define PCH_BIT_BRPE_BRPE_SHIFT 6
#define PCH_MSK_BITT_BRP 0x3f
#define PCH_MSK_BRPE_BRPE 0x3c0
#define PCH_MSK_CTRL_IE_SIE_EIE 0x07
#define PCH_COUNTER_LIMIT 10
#define PCH_CAN_CLK 50000000 /* 50MHz */
/*
* Define the number of message object.
* PCH CAN communications are done via Message RAM.
* The Message RAM consists of 32 message objects.
*/
#define PCH_RX_OBJ_NUM 26
#define PCH_TX_OBJ_NUM 6
#define PCH_RX_OBJ_START 1
#define PCH_RX_OBJ_END PCH_RX_OBJ_NUM
#define PCH_TX_OBJ_START (PCH_RX_OBJ_END + 1)
#define PCH_TX_OBJ_END (PCH_RX_OBJ_NUM + PCH_TX_OBJ_NUM)
#define PCH_FIFO_THRESH 16
/* TxRqst2 show status of MsgObjNo.17~32 */
#define PCH_TREQ2_TX_MASK (((1 << PCH_TX_OBJ_NUM) - 1) <<\
(PCH_RX_OBJ_END - 16))
enum pch_ifreg {
PCH_RX_IFREG,
PCH_TX_IFREG,
};
enum pch_can_err {
PCH_STUF_ERR = 1,
PCH_FORM_ERR,
PCH_ACK_ERR,
PCH_BIT1_ERR,
PCH_BIT0_ERR,
PCH_CRC_ERR,
PCH_LEC_ALL,
};
enum pch_can_mode {
PCH_CAN_ENABLE,
PCH_CAN_DISABLE,
PCH_CAN_ALL,
PCH_CAN_NONE,
PCH_CAN_STOP,
PCH_CAN_RUN,
};
struct pch_can_if_regs {
u32 creq;
u32 cmask;
u32 mask1;
u32 mask2;
u32 id1;
u32 id2;
u32 mcont;
u32 data[4];
u32 rsv[13];
};
struct pch_can_regs {
u32 cont;
u32 stat;
u32 errc;
u32 bitt;
u32 intr;
u32 opt;
u32 brpe;
u32 reserve;
struct pch_can_if_regs ifregs[2]; /* [0]=if1 [1]=if2 */
u32 reserve1[8];
u32 treq1;
u32 treq2;
u32 reserve2[6];
u32 data1;
u32 data2;
u32 reserve3[6];
u32 canipend1;
u32 canipend2;
u32 reserve4[6];
u32 canmval1;
u32 canmval2;
u32 reserve5[37];
u32 srst;
};
struct pch_can_priv {
struct can_priv can;
struct pci_dev *dev;
u32 tx_enable[PCH_TX_OBJ_END];
u32 rx_enable[PCH_TX_OBJ_END];
u32 rx_link[PCH_TX_OBJ_END];
u32 int_enables;
struct net_device *ndev;
struct pch_can_regs __iomem *regs;
struct napi_struct napi;
int tx_obj; /* Point next Tx Obj index */
int use_msi;
};
static const struct can_bittiming_const pch_can_bittiming_const = {
.name = KBUILD_MODNAME,
.tseg1_min = 2,
.tseg1_max = 16,
.tseg2_min = 1,
.tseg2_max = 8,
.sjw_max = 4,
.brp_min = 1,
.brp_max = 1024, /* 6bit + extended 4bit */
.brp_inc = 1,
};
static DEFINE_PCI_DEVICE_TABLE(pch_pci_tbl) = {
{PCI_VENDOR_ID_INTEL, 0x8818, PCI_ANY_ID, PCI_ANY_ID,},
{0,}
};
MODULE_DEVICE_TABLE(pci, pch_pci_tbl);
static inline void pch_can_bit_set(void __iomem *addr, u32 mask)
{
iowrite32(ioread32(addr) | mask, addr);
}
static inline void pch_can_bit_clear(void __iomem *addr, u32 mask)
{
iowrite32(ioread32(addr) & ~mask, addr);
}
static void pch_can_set_run_mode(struct pch_can_priv *priv,
enum pch_can_mode mode)
{
switch (mode) {
case PCH_CAN_RUN:
pch_can_bit_clear(&priv->regs->cont, PCH_CTRL_INIT);
break;
case PCH_CAN_STOP:
pch_can_bit_set(&priv->regs->cont, PCH_CTRL_INIT);
break;
default:
netdev_err(priv->ndev, "%s -> Invalid Mode.\n", __func__);
break;
}
}
static void pch_can_set_optmode(struct pch_can_priv *priv)
{
u32 reg_val = ioread32(&priv->regs->opt);
if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)
reg_val |= PCH_OPT_SILENT;
if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK)
reg_val |= PCH_OPT_LBACK;
pch_can_bit_set(&priv->regs->cont, PCH_CTRL_OPT);
iowrite32(reg_val, &priv->regs->opt);
}
static void pch_can_rw_msg_obj(void __iomem *creq_addr, u32 num)
{
int counter = PCH_COUNTER_LIMIT;
u32 ifx_creq;
iowrite32(num, creq_addr);
while (counter) {
ifx_creq = ioread32(creq_addr) & PCH_IF_CREQ_BUSY;
if (!ifx_creq)
break;
counter--;
udelay(1);
}
if (!counter)
pr_err("%s:IF1 BUSY Flag is set forever.\n", __func__);
}
static void pch_can_set_int_enables(struct pch_can_priv *priv,
enum pch_can_mode interrupt_no)
{
switch (interrupt_no) {
case PCH_CAN_DISABLE:
pch_can_bit_clear(&priv->regs->cont, PCH_CTRL_IE);
break;
case PCH_CAN_ALL:
pch_can_bit_set(&priv->regs->cont, PCH_CTRL_IE_SIE_EIE);
break;
case PCH_CAN_NONE:
pch_can_bit_clear(&priv->regs->cont, PCH_CTRL_IE_SIE_EIE);
break;
default:
netdev_err(priv->ndev, "Invalid interrupt number.\n");
break;
}
}
static void pch_can_set_rxtx(struct pch_can_priv *priv, u32 buff_num,
int set, enum pch_ifreg dir)
{
u32 ie;
if (dir)
ie = PCH_IF_MCONT_TXIE;
else
ie = PCH_IF_MCONT_RXIE;
/* Reading the Msg buffer from Message RAM to IF1/2 registers. */
iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[dir].cmask);
pch_can_rw_msg_obj(&priv->regs->ifregs[dir].creq, buff_num);
/* Setting the IF1/2MASK1 register to access MsgVal and RxIE bits */
iowrite32(PCH_CMASK_RDWR | PCH_CMASK_ARB | PCH_CMASK_CTRL,
&priv->regs->ifregs[dir].cmask);
if (set) {
/* Setting the MsgVal and RxIE/TxIE bits */
pch_can_bit_set(&priv->regs->ifregs[dir].mcont, ie);
pch_can_bit_set(&priv->regs->ifregs[dir].id2, PCH_ID_MSGVAL);
} else {
/* Clearing the MsgVal and RxIE/TxIE bits */
pch_can_bit_clear(&priv->regs->ifregs[dir].mcont, ie);
pch_can_bit_clear(&priv->regs->ifregs[dir].id2, PCH_ID_MSGVAL);
}
pch_can_rw_msg_obj(&priv->regs->ifregs[dir].creq, buff_num);
}
static void pch_can_set_rx_all(struct pch_can_priv *priv, int set)
{
int i;
/* Traversing to obtain the object configured as receivers. */
for (i = PCH_RX_OBJ_START; i <= PCH_RX_OBJ_END; i++)
pch_can_set_rxtx(priv, i, set, PCH_RX_IFREG);
}
static void pch_can_set_tx_all(struct pch_can_priv *priv, int set)
{
int i;
/* Traversing to obtain the object configured as transmit object. */
for (i = PCH_TX_OBJ_START; i <= PCH_TX_OBJ_END; i++)
pch_can_set_rxtx(priv, i, set, PCH_TX_IFREG);
}
static u32 pch_can_int_pending(struct pch_can_priv *priv)
{
return ioread32(&priv->regs->intr) & 0xffff;
}
static void pch_can_clear_if_buffers(struct pch_can_priv *priv)
{
int i; /* Msg Obj ID (1~32) */
for (i = PCH_RX_OBJ_START; i <= PCH_TX_OBJ_END; i++) {
iowrite32(PCH_CMASK_RX_TX_SET, &priv->regs->ifregs[0].cmask);
iowrite32(0xffff, &priv->regs->ifregs[0].mask1);
iowrite32(0xffff, &priv->regs->ifregs[0].mask2);
iowrite32(0x0, &priv->regs->ifregs[0].id1);
iowrite32(0x0, &priv->regs->ifregs[0].id2);
iowrite32(0x0, &priv->regs->ifregs[0].mcont);
iowrite32(0x0, &priv->regs->ifregs[0].data[0]);
iowrite32(0x0, &priv->regs->ifregs[0].data[1]);
iowrite32(0x0, &priv->regs->ifregs[0].data[2]);
iowrite32(0x0, &priv->regs->ifregs[0].data[3]);
iowrite32(PCH_CMASK_RDWR | PCH_CMASK_MASK |
PCH_CMASK_ARB | PCH_CMASK_CTRL,
&priv->regs->ifregs[0].cmask);
pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, i);
}
}
static void pch_can_config_rx_tx_buffers(struct pch_can_priv *priv)
{
int i;
for (i = PCH_RX_OBJ_START; i <= PCH_RX_OBJ_END; i++) {
iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[0].cmask);
pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, i);
iowrite32(0x0, &priv->regs->ifregs[0].id1);
iowrite32(0x0, &priv->regs->ifregs[0].id2);
pch_can_bit_set(&priv->regs->ifregs[0].mcont,
PCH_IF_MCONT_UMASK);
/* In case FIFO mode, Last EoB of Rx Obj must be 1 */
if (i == PCH_RX_OBJ_END)
pch_can_bit_set(&priv->regs->ifregs[0].mcont,
PCH_IF_MCONT_EOB);
else
pch_can_bit_clear(&priv->regs->ifregs[0].mcont,
PCH_IF_MCONT_EOB);
iowrite32(0, &priv->regs->ifregs[0].mask1);
pch_can_bit_clear(&priv->regs->ifregs[0].mask2,
0x1fff | PCH_MASK2_MDIR_MXTD);
/* Setting CMASK for writing */
iowrite32(PCH_CMASK_RDWR | PCH_CMASK_MASK | PCH_CMASK_ARB |
PCH_CMASK_CTRL, &priv->regs->ifregs[0].cmask);
pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, i);
}
for (i = PCH_TX_OBJ_START; i <= PCH_TX_OBJ_END; i++) {
iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[1].cmask);
pch_can_rw_msg_obj(&priv->regs->ifregs[1].creq, i);
/* Resetting DIR bit for reception */
iowrite32(0x0, &priv->regs->ifregs[1].id1);
iowrite32(PCH_ID2_DIR, &priv->regs->ifregs[1].id2);
/* Setting EOB bit for transmitter */
iowrite32(PCH_IF_MCONT_EOB | PCH_IF_MCONT_UMASK,
&priv->regs->ifregs[1].mcont);
iowrite32(0, &priv->regs->ifregs[1].mask1);
pch_can_bit_clear(&priv->regs->ifregs[1].mask2, 0x1fff);
/* Setting CMASK for writing */
iowrite32(PCH_CMASK_RDWR | PCH_CMASK_MASK | PCH_CMASK_ARB |
PCH_CMASK_CTRL, &priv->regs->ifregs[1].cmask);
pch_can_rw_msg_obj(&priv->regs->ifregs[1].creq, i);
}
}
static void pch_can_init(struct pch_can_priv *priv)
{
/* Stopping the Can device. */
pch_can_set_run_mode(priv, PCH_CAN_STOP);
/* Clearing all the message object buffers. */
pch_can_clear_if_buffers(priv);
/* Configuring the respective message object as either rx/tx object. */
pch_can_config_rx_tx_buffers(priv);
/* Enabling the interrupts. */
pch_can_set_int_enables(priv, PCH_CAN_ALL);
}
static void pch_can_release(struct pch_can_priv *priv)
{
/* Stooping the CAN device. */
pch_can_set_run_mode(priv, PCH_CAN_STOP);
/* Disabling the interrupts. */
pch_can_set_int_enables(priv, PCH_CAN_NONE);
/* Disabling all the receive object. */
pch_can_set_rx_all(priv, 0);
/* Disabling all the transmit object. */
pch_can_set_tx_all(priv, 0);
}
/* This function clears interrupt(s) from the CAN device. */
static void pch_can_int_clr(struct pch_can_priv *priv, u32 mask)
{
/* Clear interrupt for transmit object */
if ((mask >= PCH_RX_OBJ_START) && (mask <= PCH_RX_OBJ_END)) {
/* Setting CMASK for clearing the reception interrupts. */
iowrite32(PCH_CMASK_RDWR | PCH_CMASK_CTRL | PCH_CMASK_ARB,
&priv->regs->ifregs[0].cmask);
/* Clearing the Dir bit. */
pch_can_bit_clear(&priv->regs->ifregs[0].id2, PCH_ID2_DIR);
/* Clearing NewDat & IntPnd */
pch_can_bit_clear(&priv->regs->ifregs[0].mcont,
PCH_IF_MCONT_NEWDAT | PCH_IF_MCONT_INTPND);
pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, mask);
} else if ((mask >= PCH_TX_OBJ_START) && (mask <= PCH_TX_OBJ_END)) {
/*
* Setting CMASK for clearing interrupts for frame transmission.
*/
iowrite32(PCH_CMASK_RDWR | PCH_CMASK_CTRL | PCH_CMASK_ARB,
&priv->regs->ifregs[1].cmask);
/* Resetting the ID registers. */
pch_can_bit_set(&priv->regs->ifregs[1].id2,
PCH_ID2_DIR | (0x7ff << 2));
iowrite32(0x0, &priv->regs->ifregs[1].id1);
/* Claring NewDat, TxRqst & IntPnd */
pch_can_bit_clear(&priv->regs->ifregs[1].mcont,
PCH_IF_MCONT_NEWDAT | PCH_IF_MCONT_INTPND |
PCH_IF_MCONT_TXRQXT);
pch_can_rw_msg_obj(&priv->regs->ifregs[1].creq, mask);
}
}
static void pch_can_reset(struct pch_can_priv *priv)
{
/* write to sw reset register */
iowrite32(1, &priv->regs->srst);
iowrite32(0, &priv->regs->srst);
}
static void pch_can_error(struct net_device *ndev, u32 status)
{
struct sk_buff *skb;
struct pch_can_priv *priv = netdev_priv(ndev);
struct can_frame *cf;
u32 errc, lec;
struct net_device_stats *stats = &(priv->ndev->stats);
enum can_state state = priv->can.state;
skb = alloc_can_err_skb(ndev, &cf);
if (!skb)
return;
if (status & PCH_BUS_OFF) {
pch_can_set_tx_all(priv, 0);
pch_can_set_rx_all(priv, 0);
state = CAN_STATE_BUS_OFF;
cf->can_id |= CAN_ERR_BUSOFF;
can_bus_off(ndev);
}
errc = ioread32(&priv->regs->errc);
/* Warning interrupt. */
if (status & PCH_EWARN) {
state = CAN_STATE_ERROR_WARNING;
priv->can.can_stats.error_warning++;
cf->can_id |= CAN_ERR_CRTL;
if (((errc & PCH_REC) >> 8) > 96)
cf->data[1] |= CAN_ERR_CRTL_RX_WARNING;
if ((errc & PCH_TEC) > 96)
cf->data[1] |= CAN_ERR_CRTL_TX_WARNING;
netdev_dbg(ndev,
"%s -> Error Counter is more than 96.\n", __func__);
}
/* Error passive interrupt. */
if (status & PCH_EPASSIV) {
priv->can.can_stats.error_passive++;
state = CAN_STATE_ERROR_PASSIVE;
cf->can_id |= CAN_ERR_CRTL;
if (errc & PCH_RP)
cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE;
if ((errc & PCH_TEC) > 127)
cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE;
netdev_dbg(ndev,
"%s -> CAN controller is ERROR PASSIVE .\n", __func__);
}
lec = status & PCH_LEC_ALL;
switch (lec) {
case PCH_STUF_ERR:
cf->data[2] |= CAN_ERR_PROT_STUFF;
priv->can.can_stats.bus_error++;
stats->rx_errors++;
break;
case PCH_FORM_ERR:
cf->data[2] |= CAN_ERR_PROT_FORM;
priv->can.can_stats.bus_error++;
stats->rx_errors++;
break;
case PCH_ACK_ERR:
cf->can_id |= CAN_ERR_ACK;
priv->can.can_stats.bus_error++;
stats->rx_errors++;
break;
case PCH_BIT1_ERR:
case PCH_BIT0_ERR:
cf->data[2] |= CAN_ERR_PROT_BIT;
priv->can.can_stats.bus_error++;
stats->rx_errors++;
break;
case PCH_CRC_ERR:
cf->data[3] |= CAN_ERR_PROT_LOC_CRC_SEQ |
CAN_ERR_PROT_LOC_CRC_DEL;
priv->can.can_stats.bus_error++;
stats->rx_errors++;
break;
case PCH_LEC_ALL: /* Written by CPU. No error status */
break;
}
cf->data[6] = errc & PCH_TEC;
cf->data[7] = (errc & PCH_REC) >> 8;
priv->can.state = state;
netif_receive_skb(skb);
stats->rx_packets++;
stats->rx_bytes += cf->can_dlc;
}
static irqreturn_t pch_can_interrupt(int irq, void *dev_id)
{
struct net_device *ndev = (struct net_device *)dev_id;
struct pch_can_priv *priv = netdev_priv(ndev);
if (!pch_can_int_pending(priv))
return IRQ_NONE;
pch_can_set_int_enables(priv, PCH_CAN_NONE);
napi_schedule(&priv->napi);
return IRQ_HANDLED;
}
static void pch_fifo_thresh(struct pch_can_priv *priv, int obj_id)
{
if (obj_id < PCH_FIFO_THRESH) {
iowrite32(PCH_CMASK_RDWR | PCH_CMASK_CTRL |
PCH_CMASK_ARB, &priv->regs->ifregs[0].cmask);
/* Clearing the Dir bit. */
pch_can_bit_clear(&priv->regs->ifregs[0].id2, PCH_ID2_DIR);
/* Clearing NewDat & IntPnd */
pch_can_bit_clear(&priv->regs->ifregs[0].mcont,
PCH_IF_MCONT_INTPND);
pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, obj_id);
} else if (obj_id > PCH_FIFO_THRESH) {
pch_can_int_clr(priv, obj_id);
} else if (obj_id == PCH_FIFO_THRESH) {
int cnt;
for (cnt = 0; cnt < PCH_FIFO_THRESH; cnt++)
pch_can_int_clr(priv, cnt + 1);
}
}
static void pch_can_rx_msg_lost(struct net_device *ndev, int obj_id)
{
struct pch_can_priv *priv = netdev_priv(ndev);
struct net_device_stats *stats = &(priv->ndev->stats);
struct sk_buff *skb;
struct can_frame *cf;
netdev_dbg(priv->ndev, "Msg Obj is overwritten.\n");
pch_can_bit_clear(&priv->regs->ifregs[0].mcont,
PCH_IF_MCONT_MSGLOST);
iowrite32(PCH_CMASK_RDWR | PCH_CMASK_CTRL,
&priv->regs->ifregs[0].cmask);
pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, obj_id);
skb = alloc_can_err_skb(ndev, &cf);
if (!skb)
return;
cf->can_id |= CAN_ERR_CRTL;
cf->data[1] = CAN_ERR_CRTL_RX_OVERFLOW;
stats->rx_over_errors++;
stats->rx_errors++;
netif_receive_skb(skb);
}
static int pch_can_rx_normal(struct net_device *ndev, u32 obj_num, int quota)
{
u32 reg;
canid_t id;
int rcv_pkts = 0;
struct sk_buff *skb;
struct can_frame *cf;
struct pch_can_priv *priv = netdev_priv(ndev);
struct net_device_stats *stats = &(priv->ndev->stats);
int i;
u32 id2;
u16 data_reg;
do {
/* Reading the message object from the Message RAM */
iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[0].cmask);
pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, obj_num);
/* Reading the MCONT register. */
reg = ioread32(&priv->regs->ifregs[0].mcont);
if (reg & PCH_IF_MCONT_EOB)
break;
/* If MsgLost bit set. */
if (reg & PCH_IF_MCONT_MSGLOST) {
pch_can_rx_msg_lost(ndev, obj_num);
rcv_pkts++;
quota--;
obj_num++;
continue;
} else if (!(reg & PCH_IF_MCONT_NEWDAT)) {
obj_num++;
continue;
}
skb = alloc_can_skb(priv->ndev, &cf);
if (!skb) {
netdev_err(ndev, "alloc_can_skb Failed\n");
return rcv_pkts;
}
/* Get Received data */
id2 = ioread32(&priv->regs->ifregs[0].id2);
if (id2 & PCH_ID2_XTD) {
id = (ioread32(&priv->regs->ifregs[0].id1) & 0xffff);
id |= (((id2) & 0x1fff) << 16);
cf->can_id = id | CAN_EFF_FLAG;
} else {
id = (id2 >> 2) & CAN_SFF_MASK;
cf->can_id = id;
}
if (id2 & PCH_ID2_DIR)
cf->can_id |= CAN_RTR_FLAG;
cf->can_dlc = get_can_dlc((ioread32(&priv->regs->
ifregs[0].mcont)) & 0xF);
for (i = 0; i < cf->can_dlc; i += 2) {
data_reg = ioread16(&priv->regs->ifregs[0].data[i / 2]);
cf->data[i] = data_reg;
cf->data[i + 1] = data_reg >> 8;
}
netif_receive_skb(skb);
rcv_pkts++;
stats->rx_packets++;
quota--;
stats->rx_bytes += cf->can_dlc;
pch_fifo_thresh(priv, obj_num);
obj_num++;
} while (quota > 0);
return rcv_pkts;
}
static void pch_can_tx_complete(struct net_device *ndev, u32 int_stat)
{
struct pch_can_priv *priv = netdev_priv(ndev);
struct net_device_stats *stats = &(priv->ndev->stats);
u32 dlc;
can_get_echo_skb(ndev, int_stat - PCH_RX_OBJ_END - 1);
iowrite32(PCH_CMASK_RX_TX_GET | PCH_CMASK_CLRINTPND,
&priv->regs->ifregs[1].cmask);
pch_can_rw_msg_obj(&priv->regs->ifregs[1].creq, int_stat);
dlc = get_can_dlc(ioread32(&priv->regs->ifregs[1].mcont) &
PCH_IF_MCONT_DLC);
stats->tx_bytes += dlc;
stats->tx_packets++;
if (int_stat == PCH_TX_OBJ_END)
netif_wake_queue(ndev);
}
static int pch_can_poll(struct napi_struct *napi, int quota)
{
struct net_device *ndev = napi->dev;
struct pch_can_priv *priv = netdev_priv(ndev);
u32 int_stat;
u32 reg_stat;
int quota_save = quota;
int_stat = pch_can_int_pending(priv);
if (!int_stat)
goto end;
if (int_stat == PCH_STATUS_INT) {
reg_stat = ioread32(&priv->regs->stat);
if ((reg_stat & (PCH_BUS_OFF | PCH_LEC_ALL)) &&
((reg_stat & PCH_LEC_ALL) != PCH_LEC_ALL)) {
pch_can_error(ndev, reg_stat);
quota--;
}
if (reg_stat & (PCH_TX_OK | PCH_RX_OK))
pch_can_bit_clear(&priv->regs->stat,
reg_stat & (PCH_TX_OK | PCH_RX_OK));
int_stat = pch_can_int_pending(priv);
}
if (quota == 0)
goto end;
if ((int_stat >= PCH_RX_OBJ_START) && (int_stat <= PCH_RX_OBJ_END)) {
quota -= pch_can_rx_normal(ndev, int_stat, quota);
} else if ((int_stat >= PCH_TX_OBJ_START) &&
(int_stat <= PCH_TX_OBJ_END)) {
/* Handle transmission interrupt */
pch_can_tx_complete(ndev, int_stat);
}
end:
napi_complete(napi);
pch_can_set_int_enables(priv, PCH_CAN_ALL);
return quota_save - quota;
}
static int pch_set_bittiming(struct net_device *ndev)
{
struct pch_can_priv *priv = netdev_priv(ndev);
const struct can_bittiming *bt = &priv->can.bittiming;
u32 canbit;
u32 bepe;
/* Setting the CCE bit for accessing the Can Timing register. */
pch_can_bit_set(&priv->regs->cont, PCH_CTRL_CCE);
canbit = (bt->brp - 1) & PCH_MSK_BITT_BRP;
canbit |= (bt->sjw - 1) << PCH_BIT_SJW_SHIFT;
canbit |= (bt->phase_seg1 + bt->prop_seg - 1) << PCH_BIT_TSEG1_SHIFT;
canbit |= (bt->phase_seg2 - 1) << PCH_BIT_TSEG2_SHIFT;
bepe = ((bt->brp - 1) & PCH_MSK_BRPE_BRPE) >> PCH_BIT_BRPE_BRPE_SHIFT;
iowrite32(canbit, &priv->regs->bitt);
iowrite32(bepe, &priv->regs->brpe);
pch_can_bit_clear(&priv->regs->cont, PCH_CTRL_CCE);
return 0;
}
static void pch_can_start(struct net_device *ndev)
{
struct pch_can_priv *priv = netdev_priv(ndev);
if (priv->can.state != CAN_STATE_STOPPED)
pch_can_reset(priv);
pch_set_bittiming(ndev);
pch_can_set_optmode(priv);
pch_can_set_tx_all(priv, 1);
pch_can_set_rx_all(priv, 1);
/* Setting the CAN to run mode. */
pch_can_set_run_mode(priv, PCH_CAN_RUN);
priv->can.state = CAN_STATE_ERROR_ACTIVE;
return;
}
static int pch_can_do_set_mode(struct net_device *ndev, enum can_mode mode)
{
int ret = 0;
switch (mode) {
case CAN_MODE_START:
pch_can_start(ndev);
netif_wake_queue(ndev);
break;
default:
ret = -EOPNOTSUPP;
break;
}
return ret;
}
static int pch_can_open(struct net_device *ndev)
{
struct pch_can_priv *priv = netdev_priv(ndev);
int retval;
/* Regstering the interrupt. */
retval = request_irq(priv->dev->irq, pch_can_interrupt, IRQF_SHARED,
ndev->name, ndev);
if (retval) {
netdev_err(ndev, "request_irq failed.\n");
goto req_irq_err;
}
/* Open common can device */
retval = open_candev(ndev);
if (retval) {
netdev_err(ndev, "open_candev() failed %d\n", retval);
goto err_open_candev;
}
pch_can_init(priv);
pch_can_start(ndev);
napi_enable(&priv->napi);
netif_start_queue(ndev);
return 0;
err_open_candev:
free_irq(priv->dev->irq, ndev);
req_irq_err:
pch_can_release(priv);
return retval;
}
static int pch_close(struct net_device *ndev)
{
struct pch_can_priv *priv = netdev_priv(ndev);
netif_stop_queue(ndev);
napi_disable(&priv->napi);
pch_can_release(priv);
free_irq(priv->dev->irq, ndev);
close_candev(ndev);
priv->can.state = CAN_STATE_STOPPED;
return 0;
}
static netdev_tx_t pch_xmit(struct sk_buff *skb, struct net_device *ndev)
{
struct pch_can_priv *priv = netdev_priv(ndev);
struct can_frame *cf = (struct can_frame *)skb->data;
int tx_obj_no;
int i;
u32 id2;
if (can_dropped_invalid_skb(ndev, skb))
return NETDEV_TX_OK;
tx_obj_no = priv->tx_obj;
if (priv->tx_obj == PCH_TX_OBJ_END) {
if (ioread32(&priv->regs->treq2) & PCH_TREQ2_TX_MASK)
netif_stop_queue(ndev);
priv->tx_obj = PCH_TX_OBJ_START;
} else {
priv->tx_obj++;
}
/* Setting the CMASK register. */
pch_can_bit_set(&priv->regs->ifregs[1].cmask, PCH_CMASK_ALL);
/* If ID extended is set. */
if (cf->can_id & CAN_EFF_FLAG) {
iowrite32(cf->can_id & 0xffff, &priv->regs->ifregs[1].id1);
id2 = ((cf->can_id >> 16) & 0x1fff) | PCH_ID2_XTD;
} else {
iowrite32(0, &priv->regs->ifregs[1].id1);
id2 = (cf->can_id & CAN_SFF_MASK) << 2;
}
id2 |= PCH_ID_MSGVAL;
/* If remote frame has to be transmitted.. */
if (!(cf->can_id & CAN_RTR_FLAG))
id2 |= PCH_ID2_DIR;
iowrite32(id2, &priv->regs->ifregs[1].id2);
/* Copy data to register */
for (i = 0; i < cf->can_dlc; i += 2) {
iowrite16(cf->data[i] | (cf->data[i + 1] << 8),
&priv->regs->ifregs[1].data[i / 2]);
}
can_put_echo_skb(skb, ndev, tx_obj_no - PCH_RX_OBJ_END - 1);
/* Set the size of the data. Update if2_mcont */
iowrite32(cf->can_dlc | PCH_IF_MCONT_NEWDAT | PCH_IF_MCONT_TXRQXT |
PCH_IF_MCONT_TXIE, &priv->regs->ifregs[1].mcont);
pch_can_rw_msg_obj(&priv->regs->ifregs[1].creq, tx_obj_no);
return NETDEV_TX_OK;
}
static const struct net_device_ops pch_can_netdev_ops = {
.ndo_open = pch_can_open,
.ndo_stop = pch_close,
.ndo_start_xmit = pch_xmit,
.ndo_change_mtu = can_change_mtu,
};
static void pch_can_remove(struct pci_dev *pdev)
{
struct net_device *ndev = pci_get_drvdata(pdev);
struct pch_can_priv *priv = netdev_priv(ndev);
unregister_candev(priv->ndev);
if (priv->use_msi)
pci_disable_msi(priv->dev);
pci_release_regions(pdev);
pci_disable_device(pdev);
pch_can_reset(priv);
pci_iounmap(pdev, priv->regs);
free_candev(priv->ndev);
}
#ifdef CONFIG_PM
static void pch_can_set_int_custom(struct pch_can_priv *priv)
{
/* Clearing the IE, SIE and EIE bits of Can control register. */
pch_can_bit_clear(&priv->regs->cont, PCH_CTRL_IE_SIE_EIE);
/* Appropriately setting them. */
pch_can_bit_set(&priv->regs->cont,
((priv->int_enables & PCH_MSK_CTRL_IE_SIE_EIE) << 1));
}
/* This function retrieves interrupt enabled for the CAN device. */
static u32 pch_can_get_int_enables(struct pch_can_priv *priv)
{
/* Obtaining the status of IE, SIE and EIE interrupt bits. */
return (ioread32(&priv->regs->cont) & PCH_CTRL_IE_SIE_EIE) >> 1;
}
static u32 pch_can_get_rxtx_ir(struct pch_can_priv *priv, u32 buff_num,
enum pch_ifreg dir)
{
u32 ie, enable;
if (dir)
ie = PCH_IF_MCONT_RXIE;
else
ie = PCH_IF_MCONT_TXIE;
iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[dir].cmask);
pch_can_rw_msg_obj(&priv->regs->ifregs[dir].creq, buff_num);
if (((ioread32(&priv->regs->ifregs[dir].id2)) & PCH_ID_MSGVAL) &&
((ioread32(&priv->regs->ifregs[dir].mcont)) & ie))
enable = 1;
else
enable = 0;
return enable;
}
static void pch_can_set_rx_buffer_link(struct pch_can_priv *priv,
u32 buffer_num, int set)
{
iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[0].cmask);
pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, buffer_num);
iowrite32(PCH_CMASK_RDWR | PCH_CMASK_CTRL,
&priv->regs->ifregs[0].cmask);
if (set)
pch_can_bit_clear(&priv->regs->ifregs[0].mcont,
PCH_IF_MCONT_EOB);
else
pch_can_bit_set(&priv->regs->ifregs[0].mcont, PCH_IF_MCONT_EOB);
pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, buffer_num);
}
static u32 pch_can_get_rx_buffer_link(struct pch_can_priv *priv, u32 buffer_num)
{
u32 link;
iowrite32(PCH_CMASK_RX_TX_GET, &priv->regs->ifregs[0].cmask);
pch_can_rw_msg_obj(&priv->regs->ifregs[0].creq, buffer_num);
if (ioread32(&priv->regs->ifregs[0].mcont) & PCH_IF_MCONT_EOB)
link = 0;
else
link = 1;
return link;
}
static int pch_can_get_buffer_status(struct pch_can_priv *priv)
{
return (ioread32(&priv->regs->treq1) & 0xffff) |
(ioread32(&priv->regs->treq2) << 16);
}
static int pch_can_suspend(struct pci_dev *pdev, pm_message_t state)
{
int i;
int retval;
u32 buf_stat; /* Variable for reading the transmit buffer status. */
int counter = PCH_COUNTER_LIMIT;
struct net_device *dev = pci_get_drvdata(pdev);
struct pch_can_priv *priv = netdev_priv(dev);
/* Stop the CAN controller */
pch_can_set_run_mode(priv, PCH_CAN_STOP);
/* Indicate that we are aboutto/in suspend */
priv->can.state = CAN_STATE_STOPPED;
/* Waiting for all transmission to complete. */
while (counter) {
buf_stat = pch_can_get_buffer_status(priv);
if (!buf_stat)
break;
counter--;
udelay(1);
}
if (!counter)
dev_err(&pdev->dev, "%s -> Transmission time out.\n", __func__);
/* Save interrupt configuration and then disable them */
priv->int_enables = pch_can_get_int_enables(priv);
pch_can_set_int_enables(priv, PCH_CAN_DISABLE);
/* Save Tx buffer enable state */
for (i = PCH_TX_OBJ_START; i <= PCH_TX_OBJ_END; i++)
priv->tx_enable[i - 1] = pch_can_get_rxtx_ir(priv, i,
PCH_TX_IFREG);
/* Disable all Transmit buffers */
pch_can_set_tx_all(priv, 0);
/* Save Rx buffer enable state */
for (i = PCH_RX_OBJ_START; i <= PCH_RX_OBJ_END; i++) {
priv->rx_enable[i - 1] = pch_can_get_rxtx_ir(priv, i,
PCH_RX_IFREG);
priv->rx_link[i - 1] = pch_can_get_rx_buffer_link(priv, i);
}
/* Disable all Receive buffers */
pch_can_set_rx_all(priv, 0);
retval = pci_save_state(pdev);
if (retval) {
dev_err(&pdev->dev, "pci_save_state failed.\n");
} else {
pci_enable_wake(pdev, PCI_D3hot, 0);
pci_disable_device(pdev);
pci_set_power_state(pdev, pci_choose_state(pdev, state));
}
return retval;
}
static int pch_can_resume(struct pci_dev *pdev)
{
int i;
int retval;
struct net_device *dev = pci_get_drvdata(pdev);
struct pch_can_priv *priv = netdev_priv(dev);
pci_set_power_state(pdev, PCI_D0);
pci_restore_state(pdev);
retval = pci_enable_device(pdev);
if (retval) {
dev_err(&pdev->dev, "pci_enable_device failed.\n");
return retval;
}
pci_enable_wake(pdev, PCI_D3hot, 0);
priv->can.state = CAN_STATE_ERROR_ACTIVE;
/* Disabling all interrupts. */
pch_can_set_int_enables(priv, PCH_CAN_DISABLE);
/* Setting the CAN device in Stop Mode. */
pch_can_set_run_mode(priv, PCH_CAN_STOP);
/* Configuring the transmit and receive buffers. */
pch_can_config_rx_tx_buffers(priv);
/* Restore the CAN state */
pch_set_bittiming(dev);
/* Listen/Active */
pch_can_set_optmode(priv);
/* Enabling the transmit buffer. */
for (i = PCH_TX_OBJ_START; i <= PCH_TX_OBJ_END; i++)
pch_can_set_rxtx(priv, i, priv->tx_enable[i - 1], PCH_TX_IFREG);
/* Configuring the receive buffer and enabling them. */
for (i = PCH_RX_OBJ_START; i <= PCH_RX_OBJ_END; i++) {
/* Restore buffer link */
pch_can_set_rx_buffer_link(priv, i, priv->rx_link[i - 1]);
/* Restore buffer enables */
pch_can_set_rxtx(priv, i, priv->rx_enable[i - 1], PCH_RX_IFREG);
}
/* Enable CAN Interrupts */
pch_can_set_int_custom(priv);
/* Restore Run Mode */
pch_can_set_run_mode(priv, PCH_CAN_RUN);
return retval;
}
#else
#define pch_can_suspend NULL
#define pch_can_resume NULL
#endif
static int pch_can_get_berr_counter(const struct net_device *dev,
struct can_berr_counter *bec)
{
struct pch_can_priv *priv = netdev_priv(dev);
u32 errc = ioread32(&priv->regs->errc);
bec->txerr = errc & PCH_TEC;
bec->rxerr = (errc & PCH_REC) >> 8;
return 0;
}
static int pch_can_probe(struct pci_dev *pdev,
const struct pci_device_id *id)
{
struct net_device *ndev;
struct pch_can_priv *priv;
int rc;
void __iomem *addr;
rc = pci_enable_device(pdev);
if (rc) {
dev_err(&pdev->dev, "Failed pci_enable_device %d\n", rc);
goto probe_exit_endev;
}
rc = pci_request_regions(pdev, KBUILD_MODNAME);
if (rc) {
dev_err(&pdev->dev, "Failed pci_request_regions %d\n", rc);
goto probe_exit_pcireq;
}
addr = pci_iomap(pdev, 1, 0);
if (!addr) {
rc = -EIO;
dev_err(&pdev->dev, "Failed pci_iomap\n");
goto probe_exit_ipmap;
}
ndev = alloc_candev(sizeof(struct pch_can_priv), PCH_TX_OBJ_END);
if (!ndev) {
rc = -ENOMEM;
dev_err(&pdev->dev, "Failed alloc_candev\n");
goto probe_exit_alloc_candev;
}
priv = netdev_priv(ndev);
priv->ndev = ndev;
priv->regs = addr;
priv->dev = pdev;
priv->can.bittiming_const = &pch_can_bittiming_const;
priv->can.do_set_mode = pch_can_do_set_mode;
priv->can.do_get_berr_counter = pch_can_get_berr_counter;
priv->can.ctrlmode_supported = CAN_CTRLMODE_LISTENONLY |
CAN_CTRLMODE_LOOPBACK;
priv->tx_obj = PCH_TX_OBJ_START; /* Point head of Tx Obj */
ndev->irq = pdev->irq;
ndev->flags |= IFF_ECHO;
pci_set_drvdata(pdev, ndev);
SET_NETDEV_DEV(ndev, &pdev->dev);
ndev->netdev_ops = &pch_can_netdev_ops;
priv->can.clock.freq = PCH_CAN_CLK; /* Hz */
netif_napi_add(ndev, &priv->napi, pch_can_poll, PCH_RX_OBJ_END);
rc = pci_enable_msi(priv->dev);
if (rc) {
netdev_err(ndev, "PCH CAN opened without MSI\n");
priv->use_msi = 0;
} else {
netdev_err(ndev, "PCH CAN opened with MSI\n");
pci_set_master(pdev);
priv->use_msi = 1;
}
rc = register_candev(ndev);
if (rc) {
dev_err(&pdev->dev, "Failed register_candev %d\n", rc);
goto probe_exit_reg_candev;
}
return 0;
probe_exit_reg_candev:
if (priv->use_msi)
pci_disable_msi(priv->dev);
free_candev(ndev);
probe_exit_alloc_candev:
pci_iounmap(pdev, addr);
probe_exit_ipmap:
pci_release_regions(pdev);
probe_exit_pcireq:
pci_disable_device(pdev);
probe_exit_endev:
return rc;
}
static struct pci_driver pch_can_pci_driver = {
.name = "pch_can",
.id_table = pch_pci_tbl,
.probe = pch_can_probe,
.remove = pch_can_remove,
.suspend = pch_can_suspend,
.resume = pch_can_resume,
};
module_pci_driver(pch_can_pci_driver);
MODULE_DESCRIPTION("Intel EG20T PCH CAN(Controller Area Network) Driver");
MODULE_LICENSE("GPL v2");
MODULE_VERSION("0.94");