mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-21 18:17:12 +07:00
de68e4daea
It is the same as machine_kexec_prepare(), but is called after segments are loaded. This way, can do processing work with already loaded relocation segments. One such example is arm64: it has to have segments loaded in order to create a page table, but it cannot do it during kexec time, because at that time allocations won't be possible anymore. Signed-off-by: Pavel Tatashin <pasha.tatashin@soleen.com> Acked-by: Dave Young <dyoung@redhat.com> Signed-off-by: Will Deacon <will@kernel.org>
1222 lines
31 KiB
C
1222 lines
31 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* kexec.c - kexec system call core code.
|
|
* Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com>
|
|
*/
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/capability.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/file.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/kexec.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/list.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/syscalls.h>
|
|
#include <linux/reboot.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/hardirq.h>
|
|
#include <linux/elf.h>
|
|
#include <linux/elfcore.h>
|
|
#include <linux/utsname.h>
|
|
#include <linux/numa.h>
|
|
#include <linux/suspend.h>
|
|
#include <linux/device.h>
|
|
#include <linux/freezer.h>
|
|
#include <linux/pm.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/io.h>
|
|
#include <linux/console.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/syscore_ops.h>
|
|
#include <linux/compiler.h>
|
|
#include <linux/hugetlb.h>
|
|
#include <linux/frame.h>
|
|
|
|
#include <asm/page.h>
|
|
#include <asm/sections.h>
|
|
|
|
#include <crypto/hash.h>
|
|
#include <crypto/sha.h>
|
|
#include "kexec_internal.h"
|
|
|
|
DEFINE_MUTEX(kexec_mutex);
|
|
|
|
/* Per cpu memory for storing cpu states in case of system crash. */
|
|
note_buf_t __percpu *crash_notes;
|
|
|
|
/* Flag to indicate we are going to kexec a new kernel */
|
|
bool kexec_in_progress = false;
|
|
|
|
|
|
/* Location of the reserved area for the crash kernel */
|
|
struct resource crashk_res = {
|
|
.name = "Crash kernel",
|
|
.start = 0,
|
|
.end = 0,
|
|
.flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
|
|
.desc = IORES_DESC_CRASH_KERNEL
|
|
};
|
|
struct resource crashk_low_res = {
|
|
.name = "Crash kernel",
|
|
.start = 0,
|
|
.end = 0,
|
|
.flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
|
|
.desc = IORES_DESC_CRASH_KERNEL
|
|
};
|
|
|
|
int kexec_should_crash(struct task_struct *p)
|
|
{
|
|
/*
|
|
* If crash_kexec_post_notifiers is enabled, don't run
|
|
* crash_kexec() here yet, which must be run after panic
|
|
* notifiers in panic().
|
|
*/
|
|
if (crash_kexec_post_notifiers)
|
|
return 0;
|
|
/*
|
|
* There are 4 panic() calls in do_exit() path, each of which
|
|
* corresponds to each of these 4 conditions.
|
|
*/
|
|
if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
int kexec_crash_loaded(void)
|
|
{
|
|
return !!kexec_crash_image;
|
|
}
|
|
EXPORT_SYMBOL_GPL(kexec_crash_loaded);
|
|
|
|
/*
|
|
* When kexec transitions to the new kernel there is a one-to-one
|
|
* mapping between physical and virtual addresses. On processors
|
|
* where you can disable the MMU this is trivial, and easy. For
|
|
* others it is still a simple predictable page table to setup.
|
|
*
|
|
* In that environment kexec copies the new kernel to its final
|
|
* resting place. This means I can only support memory whose
|
|
* physical address can fit in an unsigned long. In particular
|
|
* addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
|
|
* If the assembly stub has more restrictive requirements
|
|
* KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
|
|
* defined more restrictively in <asm/kexec.h>.
|
|
*
|
|
* The code for the transition from the current kernel to the
|
|
* the new kernel is placed in the control_code_buffer, whose size
|
|
* is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single
|
|
* page of memory is necessary, but some architectures require more.
|
|
* Because this memory must be identity mapped in the transition from
|
|
* virtual to physical addresses it must live in the range
|
|
* 0 - TASK_SIZE, as only the user space mappings are arbitrarily
|
|
* modifiable.
|
|
*
|
|
* The assembly stub in the control code buffer is passed a linked list
|
|
* of descriptor pages detailing the source pages of the new kernel,
|
|
* and the destination addresses of those source pages. As this data
|
|
* structure is not used in the context of the current OS, it must
|
|
* be self-contained.
|
|
*
|
|
* The code has been made to work with highmem pages and will use a
|
|
* destination page in its final resting place (if it happens
|
|
* to allocate it). The end product of this is that most of the
|
|
* physical address space, and most of RAM can be used.
|
|
*
|
|
* Future directions include:
|
|
* - allocating a page table with the control code buffer identity
|
|
* mapped, to simplify machine_kexec and make kexec_on_panic more
|
|
* reliable.
|
|
*/
|
|
|
|
/*
|
|
* KIMAGE_NO_DEST is an impossible destination address..., for
|
|
* allocating pages whose destination address we do not care about.
|
|
*/
|
|
#define KIMAGE_NO_DEST (-1UL)
|
|
#define PAGE_COUNT(x) (((x) + PAGE_SIZE - 1) >> PAGE_SHIFT)
|
|
|
|
static struct page *kimage_alloc_page(struct kimage *image,
|
|
gfp_t gfp_mask,
|
|
unsigned long dest);
|
|
|
|
int sanity_check_segment_list(struct kimage *image)
|
|
{
|
|
int i;
|
|
unsigned long nr_segments = image->nr_segments;
|
|
unsigned long total_pages = 0;
|
|
unsigned long nr_pages = totalram_pages();
|
|
|
|
/*
|
|
* Verify we have good destination addresses. The caller is
|
|
* responsible for making certain we don't attempt to load
|
|
* the new image into invalid or reserved areas of RAM. This
|
|
* just verifies it is an address we can use.
|
|
*
|
|
* Since the kernel does everything in page size chunks ensure
|
|
* the destination addresses are page aligned. Too many
|
|
* special cases crop of when we don't do this. The most
|
|
* insidious is getting overlapping destination addresses
|
|
* simply because addresses are changed to page size
|
|
* granularity.
|
|
*/
|
|
for (i = 0; i < nr_segments; i++) {
|
|
unsigned long mstart, mend;
|
|
|
|
mstart = image->segment[i].mem;
|
|
mend = mstart + image->segment[i].memsz;
|
|
if (mstart > mend)
|
|
return -EADDRNOTAVAIL;
|
|
if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
|
|
return -EADDRNOTAVAIL;
|
|
if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
|
|
return -EADDRNOTAVAIL;
|
|
}
|
|
|
|
/* Verify our destination addresses do not overlap.
|
|
* If we alloed overlapping destination addresses
|
|
* through very weird things can happen with no
|
|
* easy explanation as one segment stops on another.
|
|
*/
|
|
for (i = 0; i < nr_segments; i++) {
|
|
unsigned long mstart, mend;
|
|
unsigned long j;
|
|
|
|
mstart = image->segment[i].mem;
|
|
mend = mstart + image->segment[i].memsz;
|
|
for (j = 0; j < i; j++) {
|
|
unsigned long pstart, pend;
|
|
|
|
pstart = image->segment[j].mem;
|
|
pend = pstart + image->segment[j].memsz;
|
|
/* Do the segments overlap ? */
|
|
if ((mend > pstart) && (mstart < pend))
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
/* Ensure our buffer sizes are strictly less than
|
|
* our memory sizes. This should always be the case,
|
|
* and it is easier to check up front than to be surprised
|
|
* later on.
|
|
*/
|
|
for (i = 0; i < nr_segments; i++) {
|
|
if (image->segment[i].bufsz > image->segment[i].memsz)
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Verify that no more than half of memory will be consumed. If the
|
|
* request from userspace is too large, a large amount of time will be
|
|
* wasted allocating pages, which can cause a soft lockup.
|
|
*/
|
|
for (i = 0; i < nr_segments; i++) {
|
|
if (PAGE_COUNT(image->segment[i].memsz) > nr_pages / 2)
|
|
return -EINVAL;
|
|
|
|
total_pages += PAGE_COUNT(image->segment[i].memsz);
|
|
}
|
|
|
|
if (total_pages > nr_pages / 2)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Verify we have good destination addresses. Normally
|
|
* the caller is responsible for making certain we don't
|
|
* attempt to load the new image into invalid or reserved
|
|
* areas of RAM. But crash kernels are preloaded into a
|
|
* reserved area of ram. We must ensure the addresses
|
|
* are in the reserved area otherwise preloading the
|
|
* kernel could corrupt things.
|
|
*/
|
|
|
|
if (image->type == KEXEC_TYPE_CRASH) {
|
|
for (i = 0; i < nr_segments; i++) {
|
|
unsigned long mstart, mend;
|
|
|
|
mstart = image->segment[i].mem;
|
|
mend = mstart + image->segment[i].memsz - 1;
|
|
/* Ensure we are within the crash kernel limits */
|
|
if ((mstart < phys_to_boot_phys(crashk_res.start)) ||
|
|
(mend > phys_to_boot_phys(crashk_res.end)))
|
|
return -EADDRNOTAVAIL;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct kimage *do_kimage_alloc_init(void)
|
|
{
|
|
struct kimage *image;
|
|
|
|
/* Allocate a controlling structure */
|
|
image = kzalloc(sizeof(*image), GFP_KERNEL);
|
|
if (!image)
|
|
return NULL;
|
|
|
|
image->head = 0;
|
|
image->entry = &image->head;
|
|
image->last_entry = &image->head;
|
|
image->control_page = ~0; /* By default this does not apply */
|
|
image->type = KEXEC_TYPE_DEFAULT;
|
|
|
|
/* Initialize the list of control pages */
|
|
INIT_LIST_HEAD(&image->control_pages);
|
|
|
|
/* Initialize the list of destination pages */
|
|
INIT_LIST_HEAD(&image->dest_pages);
|
|
|
|
/* Initialize the list of unusable pages */
|
|
INIT_LIST_HEAD(&image->unusable_pages);
|
|
|
|
return image;
|
|
}
|
|
|
|
int kimage_is_destination_range(struct kimage *image,
|
|
unsigned long start,
|
|
unsigned long end)
|
|
{
|
|
unsigned long i;
|
|
|
|
for (i = 0; i < image->nr_segments; i++) {
|
|
unsigned long mstart, mend;
|
|
|
|
mstart = image->segment[i].mem;
|
|
mend = mstart + image->segment[i].memsz;
|
|
if ((end > mstart) && (start < mend))
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
|
|
{
|
|
struct page *pages;
|
|
|
|
if (fatal_signal_pending(current))
|
|
return NULL;
|
|
pages = alloc_pages(gfp_mask & ~__GFP_ZERO, order);
|
|
if (pages) {
|
|
unsigned int count, i;
|
|
|
|
pages->mapping = NULL;
|
|
set_page_private(pages, order);
|
|
count = 1 << order;
|
|
for (i = 0; i < count; i++)
|
|
SetPageReserved(pages + i);
|
|
|
|
arch_kexec_post_alloc_pages(page_address(pages), count,
|
|
gfp_mask);
|
|
|
|
if (gfp_mask & __GFP_ZERO)
|
|
for (i = 0; i < count; i++)
|
|
clear_highpage(pages + i);
|
|
}
|
|
|
|
return pages;
|
|
}
|
|
|
|
static void kimage_free_pages(struct page *page)
|
|
{
|
|
unsigned int order, count, i;
|
|
|
|
order = page_private(page);
|
|
count = 1 << order;
|
|
|
|
arch_kexec_pre_free_pages(page_address(page), count);
|
|
|
|
for (i = 0; i < count; i++)
|
|
ClearPageReserved(page + i);
|
|
__free_pages(page, order);
|
|
}
|
|
|
|
void kimage_free_page_list(struct list_head *list)
|
|
{
|
|
struct page *page, *next;
|
|
|
|
list_for_each_entry_safe(page, next, list, lru) {
|
|
list_del(&page->lru);
|
|
kimage_free_pages(page);
|
|
}
|
|
}
|
|
|
|
static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
|
|
unsigned int order)
|
|
{
|
|
/* Control pages are special, they are the intermediaries
|
|
* that are needed while we copy the rest of the pages
|
|
* to their final resting place. As such they must
|
|
* not conflict with either the destination addresses
|
|
* or memory the kernel is already using.
|
|
*
|
|
* The only case where we really need more than one of
|
|
* these are for architectures where we cannot disable
|
|
* the MMU and must instead generate an identity mapped
|
|
* page table for all of the memory.
|
|
*
|
|
* At worst this runs in O(N) of the image size.
|
|
*/
|
|
struct list_head extra_pages;
|
|
struct page *pages;
|
|
unsigned int count;
|
|
|
|
count = 1 << order;
|
|
INIT_LIST_HEAD(&extra_pages);
|
|
|
|
/* Loop while I can allocate a page and the page allocated
|
|
* is a destination page.
|
|
*/
|
|
do {
|
|
unsigned long pfn, epfn, addr, eaddr;
|
|
|
|
pages = kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP, order);
|
|
if (!pages)
|
|
break;
|
|
pfn = page_to_boot_pfn(pages);
|
|
epfn = pfn + count;
|
|
addr = pfn << PAGE_SHIFT;
|
|
eaddr = epfn << PAGE_SHIFT;
|
|
if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
|
|
kimage_is_destination_range(image, addr, eaddr)) {
|
|
list_add(&pages->lru, &extra_pages);
|
|
pages = NULL;
|
|
}
|
|
} while (!pages);
|
|
|
|
if (pages) {
|
|
/* Remember the allocated page... */
|
|
list_add(&pages->lru, &image->control_pages);
|
|
|
|
/* Because the page is already in it's destination
|
|
* location we will never allocate another page at
|
|
* that address. Therefore kimage_alloc_pages
|
|
* will not return it (again) and we don't need
|
|
* to give it an entry in image->segment[].
|
|
*/
|
|
}
|
|
/* Deal with the destination pages I have inadvertently allocated.
|
|
*
|
|
* Ideally I would convert multi-page allocations into single
|
|
* page allocations, and add everything to image->dest_pages.
|
|
*
|
|
* For now it is simpler to just free the pages.
|
|
*/
|
|
kimage_free_page_list(&extra_pages);
|
|
|
|
return pages;
|
|
}
|
|
|
|
static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
|
|
unsigned int order)
|
|
{
|
|
/* Control pages are special, they are the intermediaries
|
|
* that are needed while we copy the rest of the pages
|
|
* to their final resting place. As such they must
|
|
* not conflict with either the destination addresses
|
|
* or memory the kernel is already using.
|
|
*
|
|
* Control pages are also the only pags we must allocate
|
|
* when loading a crash kernel. All of the other pages
|
|
* are specified by the segments and we just memcpy
|
|
* into them directly.
|
|
*
|
|
* The only case where we really need more than one of
|
|
* these are for architectures where we cannot disable
|
|
* the MMU and must instead generate an identity mapped
|
|
* page table for all of the memory.
|
|
*
|
|
* Given the low demand this implements a very simple
|
|
* allocator that finds the first hole of the appropriate
|
|
* size in the reserved memory region, and allocates all
|
|
* of the memory up to and including the hole.
|
|
*/
|
|
unsigned long hole_start, hole_end, size;
|
|
struct page *pages;
|
|
|
|
pages = NULL;
|
|
size = (1 << order) << PAGE_SHIFT;
|
|
hole_start = (image->control_page + (size - 1)) & ~(size - 1);
|
|
hole_end = hole_start + size - 1;
|
|
while (hole_end <= crashk_res.end) {
|
|
unsigned long i;
|
|
|
|
cond_resched();
|
|
|
|
if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT)
|
|
break;
|
|
/* See if I overlap any of the segments */
|
|
for (i = 0; i < image->nr_segments; i++) {
|
|
unsigned long mstart, mend;
|
|
|
|
mstart = image->segment[i].mem;
|
|
mend = mstart + image->segment[i].memsz - 1;
|
|
if ((hole_end >= mstart) && (hole_start <= mend)) {
|
|
/* Advance the hole to the end of the segment */
|
|
hole_start = (mend + (size - 1)) & ~(size - 1);
|
|
hole_end = hole_start + size - 1;
|
|
break;
|
|
}
|
|
}
|
|
/* If I don't overlap any segments I have found my hole! */
|
|
if (i == image->nr_segments) {
|
|
pages = pfn_to_page(hole_start >> PAGE_SHIFT);
|
|
image->control_page = hole_end;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Ensure that these pages are decrypted if SME is enabled. */
|
|
if (pages)
|
|
arch_kexec_post_alloc_pages(page_address(pages), 1 << order, 0);
|
|
|
|
return pages;
|
|
}
|
|
|
|
|
|
struct page *kimage_alloc_control_pages(struct kimage *image,
|
|
unsigned int order)
|
|
{
|
|
struct page *pages = NULL;
|
|
|
|
switch (image->type) {
|
|
case KEXEC_TYPE_DEFAULT:
|
|
pages = kimage_alloc_normal_control_pages(image, order);
|
|
break;
|
|
case KEXEC_TYPE_CRASH:
|
|
pages = kimage_alloc_crash_control_pages(image, order);
|
|
break;
|
|
}
|
|
|
|
return pages;
|
|
}
|
|
|
|
int kimage_crash_copy_vmcoreinfo(struct kimage *image)
|
|
{
|
|
struct page *vmcoreinfo_page;
|
|
void *safecopy;
|
|
|
|
if (image->type != KEXEC_TYPE_CRASH)
|
|
return 0;
|
|
|
|
/*
|
|
* For kdump, allocate one vmcoreinfo safe copy from the
|
|
* crash memory. as we have arch_kexec_protect_crashkres()
|
|
* after kexec syscall, we naturally protect it from write
|
|
* (even read) access under kernel direct mapping. But on
|
|
* the other hand, we still need to operate it when crash
|
|
* happens to generate vmcoreinfo note, hereby we rely on
|
|
* vmap for this purpose.
|
|
*/
|
|
vmcoreinfo_page = kimage_alloc_control_pages(image, 0);
|
|
if (!vmcoreinfo_page) {
|
|
pr_warn("Could not allocate vmcoreinfo buffer\n");
|
|
return -ENOMEM;
|
|
}
|
|
safecopy = vmap(&vmcoreinfo_page, 1, VM_MAP, PAGE_KERNEL);
|
|
if (!safecopy) {
|
|
pr_warn("Could not vmap vmcoreinfo buffer\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
image->vmcoreinfo_data_copy = safecopy;
|
|
crash_update_vmcoreinfo_safecopy(safecopy);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
|
|
{
|
|
if (*image->entry != 0)
|
|
image->entry++;
|
|
|
|
if (image->entry == image->last_entry) {
|
|
kimage_entry_t *ind_page;
|
|
struct page *page;
|
|
|
|
page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
|
|
if (!page)
|
|
return -ENOMEM;
|
|
|
|
ind_page = page_address(page);
|
|
*image->entry = virt_to_boot_phys(ind_page) | IND_INDIRECTION;
|
|
image->entry = ind_page;
|
|
image->last_entry = ind_page +
|
|
((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
|
|
}
|
|
*image->entry = entry;
|
|
image->entry++;
|
|
*image->entry = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int kimage_set_destination(struct kimage *image,
|
|
unsigned long destination)
|
|
{
|
|
int result;
|
|
|
|
destination &= PAGE_MASK;
|
|
result = kimage_add_entry(image, destination | IND_DESTINATION);
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
static int kimage_add_page(struct kimage *image, unsigned long page)
|
|
{
|
|
int result;
|
|
|
|
page &= PAGE_MASK;
|
|
result = kimage_add_entry(image, page | IND_SOURCE);
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
static void kimage_free_extra_pages(struct kimage *image)
|
|
{
|
|
/* Walk through and free any extra destination pages I may have */
|
|
kimage_free_page_list(&image->dest_pages);
|
|
|
|
/* Walk through and free any unusable pages I have cached */
|
|
kimage_free_page_list(&image->unusable_pages);
|
|
|
|
}
|
|
|
|
int __weak machine_kexec_post_load(struct kimage *image)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
void kimage_terminate(struct kimage *image)
|
|
{
|
|
if (*image->entry != 0)
|
|
image->entry++;
|
|
|
|
*image->entry = IND_DONE;
|
|
}
|
|
|
|
#define for_each_kimage_entry(image, ptr, entry) \
|
|
for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
|
|
ptr = (entry & IND_INDIRECTION) ? \
|
|
boot_phys_to_virt((entry & PAGE_MASK)) : ptr + 1)
|
|
|
|
static void kimage_free_entry(kimage_entry_t entry)
|
|
{
|
|
struct page *page;
|
|
|
|
page = boot_pfn_to_page(entry >> PAGE_SHIFT);
|
|
kimage_free_pages(page);
|
|
}
|
|
|
|
void kimage_free(struct kimage *image)
|
|
{
|
|
kimage_entry_t *ptr, entry;
|
|
kimage_entry_t ind = 0;
|
|
|
|
if (!image)
|
|
return;
|
|
|
|
if (image->vmcoreinfo_data_copy) {
|
|
crash_update_vmcoreinfo_safecopy(NULL);
|
|
vunmap(image->vmcoreinfo_data_copy);
|
|
}
|
|
|
|
kimage_free_extra_pages(image);
|
|
for_each_kimage_entry(image, ptr, entry) {
|
|
if (entry & IND_INDIRECTION) {
|
|
/* Free the previous indirection page */
|
|
if (ind & IND_INDIRECTION)
|
|
kimage_free_entry(ind);
|
|
/* Save this indirection page until we are
|
|
* done with it.
|
|
*/
|
|
ind = entry;
|
|
} else if (entry & IND_SOURCE)
|
|
kimage_free_entry(entry);
|
|
}
|
|
/* Free the final indirection page */
|
|
if (ind & IND_INDIRECTION)
|
|
kimage_free_entry(ind);
|
|
|
|
/* Handle any machine specific cleanup */
|
|
machine_kexec_cleanup(image);
|
|
|
|
/* Free the kexec control pages... */
|
|
kimage_free_page_list(&image->control_pages);
|
|
|
|
/*
|
|
* Free up any temporary buffers allocated. This might hit if
|
|
* error occurred much later after buffer allocation.
|
|
*/
|
|
if (image->file_mode)
|
|
kimage_file_post_load_cleanup(image);
|
|
|
|
kfree(image);
|
|
}
|
|
|
|
static kimage_entry_t *kimage_dst_used(struct kimage *image,
|
|
unsigned long page)
|
|
{
|
|
kimage_entry_t *ptr, entry;
|
|
unsigned long destination = 0;
|
|
|
|
for_each_kimage_entry(image, ptr, entry) {
|
|
if (entry & IND_DESTINATION)
|
|
destination = entry & PAGE_MASK;
|
|
else if (entry & IND_SOURCE) {
|
|
if (page == destination)
|
|
return ptr;
|
|
destination += PAGE_SIZE;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static struct page *kimage_alloc_page(struct kimage *image,
|
|
gfp_t gfp_mask,
|
|
unsigned long destination)
|
|
{
|
|
/*
|
|
* Here we implement safeguards to ensure that a source page
|
|
* is not copied to its destination page before the data on
|
|
* the destination page is no longer useful.
|
|
*
|
|
* To do this we maintain the invariant that a source page is
|
|
* either its own destination page, or it is not a
|
|
* destination page at all.
|
|
*
|
|
* That is slightly stronger than required, but the proof
|
|
* that no problems will not occur is trivial, and the
|
|
* implementation is simply to verify.
|
|
*
|
|
* When allocating all pages normally this algorithm will run
|
|
* in O(N) time, but in the worst case it will run in O(N^2)
|
|
* time. If the runtime is a problem the data structures can
|
|
* be fixed.
|
|
*/
|
|
struct page *page;
|
|
unsigned long addr;
|
|
|
|
/*
|
|
* Walk through the list of destination pages, and see if I
|
|
* have a match.
|
|
*/
|
|
list_for_each_entry(page, &image->dest_pages, lru) {
|
|
addr = page_to_boot_pfn(page) << PAGE_SHIFT;
|
|
if (addr == destination) {
|
|
list_del(&page->lru);
|
|
return page;
|
|
}
|
|
}
|
|
page = NULL;
|
|
while (1) {
|
|
kimage_entry_t *old;
|
|
|
|
/* Allocate a page, if we run out of memory give up */
|
|
page = kimage_alloc_pages(gfp_mask, 0);
|
|
if (!page)
|
|
return NULL;
|
|
/* If the page cannot be used file it away */
|
|
if (page_to_boot_pfn(page) >
|
|
(KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
|
|
list_add(&page->lru, &image->unusable_pages);
|
|
continue;
|
|
}
|
|
addr = page_to_boot_pfn(page) << PAGE_SHIFT;
|
|
|
|
/* If it is the destination page we want use it */
|
|
if (addr == destination)
|
|
break;
|
|
|
|
/* If the page is not a destination page use it */
|
|
if (!kimage_is_destination_range(image, addr,
|
|
addr + PAGE_SIZE))
|
|
break;
|
|
|
|
/*
|
|
* I know that the page is someones destination page.
|
|
* See if there is already a source page for this
|
|
* destination page. And if so swap the source pages.
|
|
*/
|
|
old = kimage_dst_used(image, addr);
|
|
if (old) {
|
|
/* If so move it */
|
|
unsigned long old_addr;
|
|
struct page *old_page;
|
|
|
|
old_addr = *old & PAGE_MASK;
|
|
old_page = boot_pfn_to_page(old_addr >> PAGE_SHIFT);
|
|
copy_highpage(page, old_page);
|
|
*old = addr | (*old & ~PAGE_MASK);
|
|
|
|
/* The old page I have found cannot be a
|
|
* destination page, so return it if it's
|
|
* gfp_flags honor the ones passed in.
|
|
*/
|
|
if (!(gfp_mask & __GFP_HIGHMEM) &&
|
|
PageHighMem(old_page)) {
|
|
kimage_free_pages(old_page);
|
|
continue;
|
|
}
|
|
addr = old_addr;
|
|
page = old_page;
|
|
break;
|
|
}
|
|
/* Place the page on the destination list, to be used later */
|
|
list_add(&page->lru, &image->dest_pages);
|
|
}
|
|
|
|
return page;
|
|
}
|
|
|
|
static int kimage_load_normal_segment(struct kimage *image,
|
|
struct kexec_segment *segment)
|
|
{
|
|
unsigned long maddr;
|
|
size_t ubytes, mbytes;
|
|
int result;
|
|
unsigned char __user *buf = NULL;
|
|
unsigned char *kbuf = NULL;
|
|
|
|
result = 0;
|
|
if (image->file_mode)
|
|
kbuf = segment->kbuf;
|
|
else
|
|
buf = segment->buf;
|
|
ubytes = segment->bufsz;
|
|
mbytes = segment->memsz;
|
|
maddr = segment->mem;
|
|
|
|
result = kimage_set_destination(image, maddr);
|
|
if (result < 0)
|
|
goto out;
|
|
|
|
while (mbytes) {
|
|
struct page *page;
|
|
char *ptr;
|
|
size_t uchunk, mchunk;
|
|
|
|
page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
|
|
if (!page) {
|
|
result = -ENOMEM;
|
|
goto out;
|
|
}
|
|
result = kimage_add_page(image, page_to_boot_pfn(page)
|
|
<< PAGE_SHIFT);
|
|
if (result < 0)
|
|
goto out;
|
|
|
|
ptr = kmap(page);
|
|
/* Start with a clear page */
|
|
clear_page(ptr);
|
|
ptr += maddr & ~PAGE_MASK;
|
|
mchunk = min_t(size_t, mbytes,
|
|
PAGE_SIZE - (maddr & ~PAGE_MASK));
|
|
uchunk = min(ubytes, mchunk);
|
|
|
|
/* For file based kexec, source pages are in kernel memory */
|
|
if (image->file_mode)
|
|
memcpy(ptr, kbuf, uchunk);
|
|
else
|
|
result = copy_from_user(ptr, buf, uchunk);
|
|
kunmap(page);
|
|
if (result) {
|
|
result = -EFAULT;
|
|
goto out;
|
|
}
|
|
ubytes -= uchunk;
|
|
maddr += mchunk;
|
|
if (image->file_mode)
|
|
kbuf += mchunk;
|
|
else
|
|
buf += mchunk;
|
|
mbytes -= mchunk;
|
|
|
|
cond_resched();
|
|
}
|
|
out:
|
|
return result;
|
|
}
|
|
|
|
static int kimage_load_crash_segment(struct kimage *image,
|
|
struct kexec_segment *segment)
|
|
{
|
|
/* For crash dumps kernels we simply copy the data from
|
|
* user space to it's destination.
|
|
* We do things a page at a time for the sake of kmap.
|
|
*/
|
|
unsigned long maddr;
|
|
size_t ubytes, mbytes;
|
|
int result;
|
|
unsigned char __user *buf = NULL;
|
|
unsigned char *kbuf = NULL;
|
|
|
|
result = 0;
|
|
if (image->file_mode)
|
|
kbuf = segment->kbuf;
|
|
else
|
|
buf = segment->buf;
|
|
ubytes = segment->bufsz;
|
|
mbytes = segment->memsz;
|
|
maddr = segment->mem;
|
|
while (mbytes) {
|
|
struct page *page;
|
|
char *ptr;
|
|
size_t uchunk, mchunk;
|
|
|
|
page = boot_pfn_to_page(maddr >> PAGE_SHIFT);
|
|
if (!page) {
|
|
result = -ENOMEM;
|
|
goto out;
|
|
}
|
|
arch_kexec_post_alloc_pages(page_address(page), 1, 0);
|
|
ptr = kmap(page);
|
|
ptr += maddr & ~PAGE_MASK;
|
|
mchunk = min_t(size_t, mbytes,
|
|
PAGE_SIZE - (maddr & ~PAGE_MASK));
|
|
uchunk = min(ubytes, mchunk);
|
|
if (mchunk > uchunk) {
|
|
/* Zero the trailing part of the page */
|
|
memset(ptr + uchunk, 0, mchunk - uchunk);
|
|
}
|
|
|
|
/* For file based kexec, source pages are in kernel memory */
|
|
if (image->file_mode)
|
|
memcpy(ptr, kbuf, uchunk);
|
|
else
|
|
result = copy_from_user(ptr, buf, uchunk);
|
|
kexec_flush_icache_page(page);
|
|
kunmap(page);
|
|
arch_kexec_pre_free_pages(page_address(page), 1);
|
|
if (result) {
|
|
result = -EFAULT;
|
|
goto out;
|
|
}
|
|
ubytes -= uchunk;
|
|
maddr += mchunk;
|
|
if (image->file_mode)
|
|
kbuf += mchunk;
|
|
else
|
|
buf += mchunk;
|
|
mbytes -= mchunk;
|
|
|
|
cond_resched();
|
|
}
|
|
out:
|
|
return result;
|
|
}
|
|
|
|
int kimage_load_segment(struct kimage *image,
|
|
struct kexec_segment *segment)
|
|
{
|
|
int result = -ENOMEM;
|
|
|
|
switch (image->type) {
|
|
case KEXEC_TYPE_DEFAULT:
|
|
result = kimage_load_normal_segment(image, segment);
|
|
break;
|
|
case KEXEC_TYPE_CRASH:
|
|
result = kimage_load_crash_segment(image, segment);
|
|
break;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
struct kimage *kexec_image;
|
|
struct kimage *kexec_crash_image;
|
|
int kexec_load_disabled;
|
|
|
|
/*
|
|
* No panic_cpu check version of crash_kexec(). This function is called
|
|
* only when panic_cpu holds the current CPU number; this is the only CPU
|
|
* which processes crash_kexec routines.
|
|
*/
|
|
void __noclone __crash_kexec(struct pt_regs *regs)
|
|
{
|
|
/* Take the kexec_mutex here to prevent sys_kexec_load
|
|
* running on one cpu from replacing the crash kernel
|
|
* we are using after a panic on a different cpu.
|
|
*
|
|
* If the crash kernel was not located in a fixed area
|
|
* of memory the xchg(&kexec_crash_image) would be
|
|
* sufficient. But since I reuse the memory...
|
|
*/
|
|
if (mutex_trylock(&kexec_mutex)) {
|
|
if (kexec_crash_image) {
|
|
struct pt_regs fixed_regs;
|
|
|
|
crash_setup_regs(&fixed_regs, regs);
|
|
crash_save_vmcoreinfo();
|
|
machine_crash_shutdown(&fixed_regs);
|
|
machine_kexec(kexec_crash_image);
|
|
}
|
|
mutex_unlock(&kexec_mutex);
|
|
}
|
|
}
|
|
STACK_FRAME_NON_STANDARD(__crash_kexec);
|
|
|
|
void crash_kexec(struct pt_regs *regs)
|
|
{
|
|
int old_cpu, this_cpu;
|
|
|
|
/*
|
|
* Only one CPU is allowed to execute the crash_kexec() code as with
|
|
* panic(). Otherwise parallel calls of panic() and crash_kexec()
|
|
* may stop each other. To exclude them, we use panic_cpu here too.
|
|
*/
|
|
this_cpu = raw_smp_processor_id();
|
|
old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu);
|
|
if (old_cpu == PANIC_CPU_INVALID) {
|
|
/* This is the 1st CPU which comes here, so go ahead. */
|
|
printk_safe_flush_on_panic();
|
|
__crash_kexec(regs);
|
|
|
|
/*
|
|
* Reset panic_cpu to allow another panic()/crash_kexec()
|
|
* call.
|
|
*/
|
|
atomic_set(&panic_cpu, PANIC_CPU_INVALID);
|
|
}
|
|
}
|
|
|
|
size_t crash_get_memory_size(void)
|
|
{
|
|
size_t size = 0;
|
|
|
|
mutex_lock(&kexec_mutex);
|
|
if (crashk_res.end != crashk_res.start)
|
|
size = resource_size(&crashk_res);
|
|
mutex_unlock(&kexec_mutex);
|
|
return size;
|
|
}
|
|
|
|
void __weak crash_free_reserved_phys_range(unsigned long begin,
|
|
unsigned long end)
|
|
{
|
|
unsigned long addr;
|
|
|
|
for (addr = begin; addr < end; addr += PAGE_SIZE)
|
|
free_reserved_page(boot_pfn_to_page(addr >> PAGE_SHIFT));
|
|
}
|
|
|
|
int crash_shrink_memory(unsigned long new_size)
|
|
{
|
|
int ret = 0;
|
|
unsigned long start, end;
|
|
unsigned long old_size;
|
|
struct resource *ram_res;
|
|
|
|
mutex_lock(&kexec_mutex);
|
|
|
|
if (kexec_crash_image) {
|
|
ret = -ENOENT;
|
|
goto unlock;
|
|
}
|
|
start = crashk_res.start;
|
|
end = crashk_res.end;
|
|
old_size = (end == 0) ? 0 : end - start + 1;
|
|
if (new_size >= old_size) {
|
|
ret = (new_size == old_size) ? 0 : -EINVAL;
|
|
goto unlock;
|
|
}
|
|
|
|
ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
|
|
if (!ram_res) {
|
|
ret = -ENOMEM;
|
|
goto unlock;
|
|
}
|
|
|
|
start = roundup(start, KEXEC_CRASH_MEM_ALIGN);
|
|
end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN);
|
|
|
|
crash_free_reserved_phys_range(end, crashk_res.end);
|
|
|
|
if ((start == end) && (crashk_res.parent != NULL))
|
|
release_resource(&crashk_res);
|
|
|
|
ram_res->start = end;
|
|
ram_res->end = crashk_res.end;
|
|
ram_res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
|
|
ram_res->name = "System RAM";
|
|
|
|
crashk_res.end = end - 1;
|
|
|
|
insert_resource(&iomem_resource, ram_res);
|
|
|
|
unlock:
|
|
mutex_unlock(&kexec_mutex);
|
|
return ret;
|
|
}
|
|
|
|
void crash_save_cpu(struct pt_regs *regs, int cpu)
|
|
{
|
|
struct elf_prstatus prstatus;
|
|
u32 *buf;
|
|
|
|
if ((cpu < 0) || (cpu >= nr_cpu_ids))
|
|
return;
|
|
|
|
/* Using ELF notes here is opportunistic.
|
|
* I need a well defined structure format
|
|
* for the data I pass, and I need tags
|
|
* on the data to indicate what information I have
|
|
* squirrelled away. ELF notes happen to provide
|
|
* all of that, so there is no need to invent something new.
|
|
*/
|
|
buf = (u32 *)per_cpu_ptr(crash_notes, cpu);
|
|
if (!buf)
|
|
return;
|
|
memset(&prstatus, 0, sizeof(prstatus));
|
|
prstatus.pr_pid = current->pid;
|
|
elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
|
|
buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
|
|
&prstatus, sizeof(prstatus));
|
|
final_note(buf);
|
|
}
|
|
|
|
static int __init crash_notes_memory_init(void)
|
|
{
|
|
/* Allocate memory for saving cpu registers. */
|
|
size_t size, align;
|
|
|
|
/*
|
|
* crash_notes could be allocated across 2 vmalloc pages when percpu
|
|
* is vmalloc based . vmalloc doesn't guarantee 2 continuous vmalloc
|
|
* pages are also on 2 continuous physical pages. In this case the
|
|
* 2nd part of crash_notes in 2nd page could be lost since only the
|
|
* starting address and size of crash_notes are exported through sysfs.
|
|
* Here round up the size of crash_notes to the nearest power of two
|
|
* and pass it to __alloc_percpu as align value. This can make sure
|
|
* crash_notes is allocated inside one physical page.
|
|
*/
|
|
size = sizeof(note_buf_t);
|
|
align = min(roundup_pow_of_two(sizeof(note_buf_t)), PAGE_SIZE);
|
|
|
|
/*
|
|
* Break compile if size is bigger than PAGE_SIZE since crash_notes
|
|
* definitely will be in 2 pages with that.
|
|
*/
|
|
BUILD_BUG_ON(size > PAGE_SIZE);
|
|
|
|
crash_notes = __alloc_percpu(size, align);
|
|
if (!crash_notes) {
|
|
pr_warn("Memory allocation for saving cpu register states failed\n");
|
|
return -ENOMEM;
|
|
}
|
|
return 0;
|
|
}
|
|
subsys_initcall(crash_notes_memory_init);
|
|
|
|
|
|
/*
|
|
* Move into place and start executing a preloaded standalone
|
|
* executable. If nothing was preloaded return an error.
|
|
*/
|
|
int kernel_kexec(void)
|
|
{
|
|
int error = 0;
|
|
|
|
if (!mutex_trylock(&kexec_mutex))
|
|
return -EBUSY;
|
|
if (!kexec_image) {
|
|
error = -EINVAL;
|
|
goto Unlock;
|
|
}
|
|
|
|
#ifdef CONFIG_KEXEC_JUMP
|
|
if (kexec_image->preserve_context) {
|
|
lock_system_sleep();
|
|
pm_prepare_console();
|
|
error = freeze_processes();
|
|
if (error) {
|
|
error = -EBUSY;
|
|
goto Restore_console;
|
|
}
|
|
suspend_console();
|
|
error = dpm_suspend_start(PMSG_FREEZE);
|
|
if (error)
|
|
goto Resume_console;
|
|
/* At this point, dpm_suspend_start() has been called,
|
|
* but *not* dpm_suspend_end(). We *must* call
|
|
* dpm_suspend_end() now. Otherwise, drivers for
|
|
* some devices (e.g. interrupt controllers) become
|
|
* desynchronized with the actual state of the
|
|
* hardware at resume time, and evil weirdness ensues.
|
|
*/
|
|
error = dpm_suspend_end(PMSG_FREEZE);
|
|
if (error)
|
|
goto Resume_devices;
|
|
error = suspend_disable_secondary_cpus();
|
|
if (error)
|
|
goto Enable_cpus;
|
|
local_irq_disable();
|
|
error = syscore_suspend();
|
|
if (error)
|
|
goto Enable_irqs;
|
|
} else
|
|
#endif
|
|
{
|
|
kexec_in_progress = true;
|
|
kernel_restart_prepare(NULL);
|
|
migrate_to_reboot_cpu();
|
|
|
|
/*
|
|
* migrate_to_reboot_cpu() disables CPU hotplug assuming that
|
|
* no further code needs to use CPU hotplug (which is true in
|
|
* the reboot case). However, the kexec path depends on using
|
|
* CPU hotplug again; so re-enable it here.
|
|
*/
|
|
cpu_hotplug_enable();
|
|
pr_notice("Starting new kernel\n");
|
|
machine_shutdown();
|
|
}
|
|
|
|
machine_kexec(kexec_image);
|
|
|
|
#ifdef CONFIG_KEXEC_JUMP
|
|
if (kexec_image->preserve_context) {
|
|
syscore_resume();
|
|
Enable_irqs:
|
|
local_irq_enable();
|
|
Enable_cpus:
|
|
suspend_enable_secondary_cpus();
|
|
dpm_resume_start(PMSG_RESTORE);
|
|
Resume_devices:
|
|
dpm_resume_end(PMSG_RESTORE);
|
|
Resume_console:
|
|
resume_console();
|
|
thaw_processes();
|
|
Restore_console:
|
|
pm_restore_console();
|
|
unlock_system_sleep();
|
|
}
|
|
#endif
|
|
|
|
Unlock:
|
|
mutex_unlock(&kexec_mutex);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Protection mechanism for crashkernel reserved memory after
|
|
* the kdump kernel is loaded.
|
|
*
|
|
* Provide an empty default implementation here -- architecture
|
|
* code may override this
|
|
*/
|
|
void __weak arch_kexec_protect_crashkres(void)
|
|
{}
|
|
|
|
void __weak arch_kexec_unprotect_crashkres(void)
|
|
{}
|