mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-11-24 06:30:53 +07:00
7aa413def7
Signed-off-by: Ingo Molnar <mingo@elte.hu>
989 lines
22 KiB
C
989 lines
22 KiB
C
/*
|
|
* linux/mm/vmalloc.c
|
|
*
|
|
* Copyright (C) 1993 Linus Torvalds
|
|
* Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
|
|
* SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
|
|
* Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
|
|
* Numa awareness, Christoph Lameter, SGI, June 2005
|
|
*/
|
|
|
|
#include <linux/mm.h>
|
|
#include <linux/module.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/debugobjects.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/kallsyms.h>
|
|
|
|
#include <asm/uaccess.h>
|
|
#include <asm/tlbflush.h>
|
|
|
|
|
|
DEFINE_RWLOCK(vmlist_lock);
|
|
struct vm_struct *vmlist;
|
|
|
|
static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
|
|
int node, void *caller);
|
|
|
|
static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
|
|
{
|
|
pte_t *pte;
|
|
|
|
pte = pte_offset_kernel(pmd, addr);
|
|
do {
|
|
pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
|
|
WARN_ON(!pte_none(ptent) && !pte_present(ptent));
|
|
} while (pte++, addr += PAGE_SIZE, addr != end);
|
|
}
|
|
|
|
static inline void vunmap_pmd_range(pud_t *pud, unsigned long addr,
|
|
unsigned long end)
|
|
{
|
|
pmd_t *pmd;
|
|
unsigned long next;
|
|
|
|
pmd = pmd_offset(pud, addr);
|
|
do {
|
|
next = pmd_addr_end(addr, end);
|
|
if (pmd_none_or_clear_bad(pmd))
|
|
continue;
|
|
vunmap_pte_range(pmd, addr, next);
|
|
} while (pmd++, addr = next, addr != end);
|
|
}
|
|
|
|
static inline void vunmap_pud_range(pgd_t *pgd, unsigned long addr,
|
|
unsigned long end)
|
|
{
|
|
pud_t *pud;
|
|
unsigned long next;
|
|
|
|
pud = pud_offset(pgd, addr);
|
|
do {
|
|
next = pud_addr_end(addr, end);
|
|
if (pud_none_or_clear_bad(pud))
|
|
continue;
|
|
vunmap_pmd_range(pud, addr, next);
|
|
} while (pud++, addr = next, addr != end);
|
|
}
|
|
|
|
void unmap_kernel_range(unsigned long addr, unsigned long size)
|
|
{
|
|
pgd_t *pgd;
|
|
unsigned long next;
|
|
unsigned long start = addr;
|
|
unsigned long end = addr + size;
|
|
|
|
BUG_ON(addr >= end);
|
|
pgd = pgd_offset_k(addr);
|
|
flush_cache_vunmap(addr, end);
|
|
do {
|
|
next = pgd_addr_end(addr, end);
|
|
if (pgd_none_or_clear_bad(pgd))
|
|
continue;
|
|
vunmap_pud_range(pgd, addr, next);
|
|
} while (pgd++, addr = next, addr != end);
|
|
flush_tlb_kernel_range(start, end);
|
|
}
|
|
|
|
static void unmap_vm_area(struct vm_struct *area)
|
|
{
|
|
unmap_kernel_range((unsigned long)area->addr, area->size);
|
|
}
|
|
|
|
static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
|
|
unsigned long end, pgprot_t prot, struct page ***pages)
|
|
{
|
|
pte_t *pte;
|
|
|
|
pte = pte_alloc_kernel(pmd, addr);
|
|
if (!pte)
|
|
return -ENOMEM;
|
|
do {
|
|
struct page *page = **pages;
|
|
WARN_ON(!pte_none(*pte));
|
|
if (!page)
|
|
return -ENOMEM;
|
|
set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
|
|
(*pages)++;
|
|
} while (pte++, addr += PAGE_SIZE, addr != end);
|
|
return 0;
|
|
}
|
|
|
|
static inline int vmap_pmd_range(pud_t *pud, unsigned long addr,
|
|
unsigned long end, pgprot_t prot, struct page ***pages)
|
|
{
|
|
pmd_t *pmd;
|
|
unsigned long next;
|
|
|
|
pmd = pmd_alloc(&init_mm, pud, addr);
|
|
if (!pmd)
|
|
return -ENOMEM;
|
|
do {
|
|
next = pmd_addr_end(addr, end);
|
|
if (vmap_pte_range(pmd, addr, next, prot, pages))
|
|
return -ENOMEM;
|
|
} while (pmd++, addr = next, addr != end);
|
|
return 0;
|
|
}
|
|
|
|
static inline int vmap_pud_range(pgd_t *pgd, unsigned long addr,
|
|
unsigned long end, pgprot_t prot, struct page ***pages)
|
|
{
|
|
pud_t *pud;
|
|
unsigned long next;
|
|
|
|
pud = pud_alloc(&init_mm, pgd, addr);
|
|
if (!pud)
|
|
return -ENOMEM;
|
|
do {
|
|
next = pud_addr_end(addr, end);
|
|
if (vmap_pmd_range(pud, addr, next, prot, pages))
|
|
return -ENOMEM;
|
|
} while (pud++, addr = next, addr != end);
|
|
return 0;
|
|
}
|
|
|
|
int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
|
|
{
|
|
pgd_t *pgd;
|
|
unsigned long next;
|
|
unsigned long addr = (unsigned long) area->addr;
|
|
unsigned long end = addr + area->size - PAGE_SIZE;
|
|
int err;
|
|
|
|
BUG_ON(addr >= end);
|
|
pgd = pgd_offset_k(addr);
|
|
do {
|
|
next = pgd_addr_end(addr, end);
|
|
err = vmap_pud_range(pgd, addr, next, prot, pages);
|
|
if (err)
|
|
break;
|
|
} while (pgd++, addr = next, addr != end);
|
|
flush_cache_vmap((unsigned long) area->addr, end);
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL_GPL(map_vm_area);
|
|
|
|
/*
|
|
* Map a vmalloc()-space virtual address to the physical page.
|
|
*/
|
|
struct page *vmalloc_to_page(const void *vmalloc_addr)
|
|
{
|
|
unsigned long addr = (unsigned long) vmalloc_addr;
|
|
struct page *page = NULL;
|
|
pgd_t *pgd = pgd_offset_k(addr);
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
pte_t *ptep, pte;
|
|
|
|
/*
|
|
* XXX we might need to change this if we add VIRTUAL_BUG_ON for
|
|
* architectures that do not vmalloc module space
|
|
*/
|
|
VIRTUAL_BUG_ON(!is_vmalloc_addr(vmalloc_addr) &&
|
|
!is_module_address(addr));
|
|
|
|
if (!pgd_none(*pgd)) {
|
|
pud = pud_offset(pgd, addr);
|
|
if (!pud_none(*pud)) {
|
|
pmd = pmd_offset(pud, addr);
|
|
if (!pmd_none(*pmd)) {
|
|
ptep = pte_offset_map(pmd, addr);
|
|
pte = *ptep;
|
|
if (pte_present(pte))
|
|
page = pte_page(pte);
|
|
pte_unmap(ptep);
|
|
}
|
|
}
|
|
}
|
|
return page;
|
|
}
|
|
EXPORT_SYMBOL(vmalloc_to_page);
|
|
|
|
/*
|
|
* Map a vmalloc()-space virtual address to the physical page frame number.
|
|
*/
|
|
unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
|
|
{
|
|
return page_to_pfn(vmalloc_to_page(vmalloc_addr));
|
|
}
|
|
EXPORT_SYMBOL(vmalloc_to_pfn);
|
|
|
|
static struct vm_struct *
|
|
__get_vm_area_node(unsigned long size, unsigned long flags, unsigned long start,
|
|
unsigned long end, int node, gfp_t gfp_mask, void *caller)
|
|
{
|
|
struct vm_struct **p, *tmp, *area;
|
|
unsigned long align = 1;
|
|
unsigned long addr;
|
|
|
|
BUG_ON(in_interrupt());
|
|
if (flags & VM_IOREMAP) {
|
|
int bit = fls(size);
|
|
|
|
if (bit > IOREMAP_MAX_ORDER)
|
|
bit = IOREMAP_MAX_ORDER;
|
|
else if (bit < PAGE_SHIFT)
|
|
bit = PAGE_SHIFT;
|
|
|
|
align = 1ul << bit;
|
|
}
|
|
addr = ALIGN(start, align);
|
|
size = PAGE_ALIGN(size);
|
|
if (unlikely(!size))
|
|
return NULL;
|
|
|
|
area = kmalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
|
|
|
|
if (unlikely(!area))
|
|
return NULL;
|
|
|
|
/*
|
|
* We always allocate a guard page.
|
|
*/
|
|
size += PAGE_SIZE;
|
|
|
|
write_lock(&vmlist_lock);
|
|
for (p = &vmlist; (tmp = *p) != NULL ;p = &tmp->next) {
|
|
if ((unsigned long)tmp->addr < addr) {
|
|
if((unsigned long)tmp->addr + tmp->size >= addr)
|
|
addr = ALIGN(tmp->size +
|
|
(unsigned long)tmp->addr, align);
|
|
continue;
|
|
}
|
|
if ((size + addr) < addr)
|
|
goto out;
|
|
if (size + addr <= (unsigned long)tmp->addr)
|
|
goto found;
|
|
addr = ALIGN(tmp->size + (unsigned long)tmp->addr, align);
|
|
if (addr > end - size)
|
|
goto out;
|
|
}
|
|
if ((size + addr) < addr)
|
|
goto out;
|
|
if (addr > end - size)
|
|
goto out;
|
|
|
|
found:
|
|
area->next = *p;
|
|
*p = area;
|
|
|
|
area->flags = flags;
|
|
area->addr = (void *)addr;
|
|
area->size = size;
|
|
area->pages = NULL;
|
|
area->nr_pages = 0;
|
|
area->phys_addr = 0;
|
|
area->caller = caller;
|
|
write_unlock(&vmlist_lock);
|
|
|
|
return area;
|
|
|
|
out:
|
|
write_unlock(&vmlist_lock);
|
|
kfree(area);
|
|
if (printk_ratelimit())
|
|
printk(KERN_WARNING "allocation failed: out of vmalloc space - use vmalloc=<size> to increase size.\n");
|
|
return NULL;
|
|
}
|
|
|
|
struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
|
|
unsigned long start, unsigned long end)
|
|
{
|
|
return __get_vm_area_node(size, flags, start, end, -1, GFP_KERNEL,
|
|
__builtin_return_address(0));
|
|
}
|
|
EXPORT_SYMBOL_GPL(__get_vm_area);
|
|
|
|
/**
|
|
* get_vm_area - reserve a contiguous kernel virtual area
|
|
* @size: size of the area
|
|
* @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
|
|
*
|
|
* Search an area of @size in the kernel virtual mapping area,
|
|
* and reserved it for out purposes. Returns the area descriptor
|
|
* on success or %NULL on failure.
|
|
*/
|
|
struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
|
|
{
|
|
return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END,
|
|
-1, GFP_KERNEL, __builtin_return_address(0));
|
|
}
|
|
|
|
struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
|
|
void *caller)
|
|
{
|
|
return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END,
|
|
-1, GFP_KERNEL, caller);
|
|
}
|
|
|
|
struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags,
|
|
int node, gfp_t gfp_mask)
|
|
{
|
|
return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, node,
|
|
gfp_mask, __builtin_return_address(0));
|
|
}
|
|
|
|
/* Caller must hold vmlist_lock */
|
|
static struct vm_struct *__find_vm_area(const void *addr)
|
|
{
|
|
struct vm_struct *tmp;
|
|
|
|
for (tmp = vmlist; tmp != NULL; tmp = tmp->next) {
|
|
if (tmp->addr == addr)
|
|
break;
|
|
}
|
|
|
|
return tmp;
|
|
}
|
|
|
|
/* Caller must hold vmlist_lock */
|
|
static struct vm_struct *__remove_vm_area(const void *addr)
|
|
{
|
|
struct vm_struct **p, *tmp;
|
|
|
|
for (p = &vmlist ; (tmp = *p) != NULL ;p = &tmp->next) {
|
|
if (tmp->addr == addr)
|
|
goto found;
|
|
}
|
|
return NULL;
|
|
|
|
found:
|
|
unmap_vm_area(tmp);
|
|
*p = tmp->next;
|
|
|
|
/*
|
|
* Remove the guard page.
|
|
*/
|
|
tmp->size -= PAGE_SIZE;
|
|
return tmp;
|
|
}
|
|
|
|
/**
|
|
* remove_vm_area - find and remove a continuous kernel virtual area
|
|
* @addr: base address
|
|
*
|
|
* Search for the kernel VM area starting at @addr, and remove it.
|
|
* This function returns the found VM area, but using it is NOT safe
|
|
* on SMP machines, except for its size or flags.
|
|
*/
|
|
struct vm_struct *remove_vm_area(const void *addr)
|
|
{
|
|
struct vm_struct *v;
|
|
write_lock(&vmlist_lock);
|
|
v = __remove_vm_area(addr);
|
|
write_unlock(&vmlist_lock);
|
|
return v;
|
|
}
|
|
|
|
static void __vunmap(const void *addr, int deallocate_pages)
|
|
{
|
|
struct vm_struct *area;
|
|
|
|
if (!addr)
|
|
return;
|
|
|
|
if ((PAGE_SIZE-1) & (unsigned long)addr) {
|
|
printk(KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
|
|
WARN_ON(1);
|
|
return;
|
|
}
|
|
|
|
area = remove_vm_area(addr);
|
|
if (unlikely(!area)) {
|
|
printk(KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
|
|
addr);
|
|
WARN_ON(1);
|
|
return;
|
|
}
|
|
|
|
debug_check_no_locks_freed(addr, area->size);
|
|
debug_check_no_obj_freed(addr, area->size);
|
|
|
|
if (deallocate_pages) {
|
|
int i;
|
|
|
|
for (i = 0; i < area->nr_pages; i++) {
|
|
struct page *page = area->pages[i];
|
|
|
|
BUG_ON(!page);
|
|
__free_page(page);
|
|
}
|
|
|
|
if (area->flags & VM_VPAGES)
|
|
vfree(area->pages);
|
|
else
|
|
kfree(area->pages);
|
|
}
|
|
|
|
kfree(area);
|
|
return;
|
|
}
|
|
|
|
/**
|
|
* vfree - release memory allocated by vmalloc()
|
|
* @addr: memory base address
|
|
*
|
|
* Free the virtually continuous memory area starting at @addr, as
|
|
* obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
|
|
* NULL, no operation is performed.
|
|
*
|
|
* Must not be called in interrupt context.
|
|
*/
|
|
void vfree(const void *addr)
|
|
{
|
|
BUG_ON(in_interrupt());
|
|
__vunmap(addr, 1);
|
|
}
|
|
EXPORT_SYMBOL(vfree);
|
|
|
|
/**
|
|
* vunmap - release virtual mapping obtained by vmap()
|
|
* @addr: memory base address
|
|
*
|
|
* Free the virtually contiguous memory area starting at @addr,
|
|
* which was created from the page array passed to vmap().
|
|
*
|
|
* Must not be called in interrupt context.
|
|
*/
|
|
void vunmap(const void *addr)
|
|
{
|
|
BUG_ON(in_interrupt());
|
|
__vunmap(addr, 0);
|
|
}
|
|
EXPORT_SYMBOL(vunmap);
|
|
|
|
/**
|
|
* vmap - map an array of pages into virtually contiguous space
|
|
* @pages: array of page pointers
|
|
* @count: number of pages to map
|
|
* @flags: vm_area->flags
|
|
* @prot: page protection for the mapping
|
|
*
|
|
* Maps @count pages from @pages into contiguous kernel virtual
|
|
* space.
|
|
*/
|
|
void *vmap(struct page **pages, unsigned int count,
|
|
unsigned long flags, pgprot_t prot)
|
|
{
|
|
struct vm_struct *area;
|
|
|
|
if (count > num_physpages)
|
|
return NULL;
|
|
|
|
area = get_vm_area_caller((count << PAGE_SHIFT), flags,
|
|
__builtin_return_address(0));
|
|
if (!area)
|
|
return NULL;
|
|
|
|
if (map_vm_area(area, prot, &pages)) {
|
|
vunmap(area->addr);
|
|
return NULL;
|
|
}
|
|
|
|
return area->addr;
|
|
}
|
|
EXPORT_SYMBOL(vmap);
|
|
|
|
static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
|
|
pgprot_t prot, int node, void *caller)
|
|
{
|
|
struct page **pages;
|
|
unsigned int nr_pages, array_size, i;
|
|
|
|
nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
|
|
array_size = (nr_pages * sizeof(struct page *));
|
|
|
|
area->nr_pages = nr_pages;
|
|
/* Please note that the recursion is strictly bounded. */
|
|
if (array_size > PAGE_SIZE) {
|
|
pages = __vmalloc_node(array_size, gfp_mask | __GFP_ZERO,
|
|
PAGE_KERNEL, node, caller);
|
|
area->flags |= VM_VPAGES;
|
|
} else {
|
|
pages = kmalloc_node(array_size,
|
|
(gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO,
|
|
node);
|
|
}
|
|
area->pages = pages;
|
|
area->caller = caller;
|
|
if (!area->pages) {
|
|
remove_vm_area(area->addr);
|
|
kfree(area);
|
|
return NULL;
|
|
}
|
|
|
|
for (i = 0; i < area->nr_pages; i++) {
|
|
struct page *page;
|
|
|
|
if (node < 0)
|
|
page = alloc_page(gfp_mask);
|
|
else
|
|
page = alloc_pages_node(node, gfp_mask, 0);
|
|
|
|
if (unlikely(!page)) {
|
|
/* Successfully allocated i pages, free them in __vunmap() */
|
|
area->nr_pages = i;
|
|
goto fail;
|
|
}
|
|
area->pages[i] = page;
|
|
}
|
|
|
|
if (map_vm_area(area, prot, &pages))
|
|
goto fail;
|
|
return area->addr;
|
|
|
|
fail:
|
|
vfree(area->addr);
|
|
return NULL;
|
|
}
|
|
|
|
void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot)
|
|
{
|
|
return __vmalloc_area_node(area, gfp_mask, prot, -1,
|
|
__builtin_return_address(0));
|
|
}
|
|
|
|
/**
|
|
* __vmalloc_node - allocate virtually contiguous memory
|
|
* @size: allocation size
|
|
* @gfp_mask: flags for the page level allocator
|
|
* @prot: protection mask for the allocated pages
|
|
* @node: node to use for allocation or -1
|
|
* @caller: caller's return address
|
|
*
|
|
* Allocate enough pages to cover @size from the page level
|
|
* allocator with @gfp_mask flags. Map them into contiguous
|
|
* kernel virtual space, using a pagetable protection of @prot.
|
|
*/
|
|
static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
|
|
int node, void *caller)
|
|
{
|
|
struct vm_struct *area;
|
|
|
|
size = PAGE_ALIGN(size);
|
|
if (!size || (size >> PAGE_SHIFT) > num_physpages)
|
|
return NULL;
|
|
|
|
area = __get_vm_area_node(size, VM_ALLOC, VMALLOC_START, VMALLOC_END,
|
|
node, gfp_mask, caller);
|
|
|
|
if (!area)
|
|
return NULL;
|
|
|
|
return __vmalloc_area_node(area, gfp_mask, prot, node, caller);
|
|
}
|
|
|
|
void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
|
|
{
|
|
return __vmalloc_node(size, gfp_mask, prot, -1,
|
|
__builtin_return_address(0));
|
|
}
|
|
EXPORT_SYMBOL(__vmalloc);
|
|
|
|
/**
|
|
* vmalloc - allocate virtually contiguous memory
|
|
* @size: allocation size
|
|
* Allocate enough pages to cover @size from the page level
|
|
* allocator and map them into contiguous kernel virtual space.
|
|
*
|
|
* For tight control over page level allocator and protection flags
|
|
* use __vmalloc() instead.
|
|
*/
|
|
void *vmalloc(unsigned long size)
|
|
{
|
|
return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
|
|
-1, __builtin_return_address(0));
|
|
}
|
|
EXPORT_SYMBOL(vmalloc);
|
|
|
|
/**
|
|
* vmalloc_user - allocate zeroed virtually contiguous memory for userspace
|
|
* @size: allocation size
|
|
*
|
|
* The resulting memory area is zeroed so it can be mapped to userspace
|
|
* without leaking data.
|
|
*/
|
|
void *vmalloc_user(unsigned long size)
|
|
{
|
|
struct vm_struct *area;
|
|
void *ret;
|
|
|
|
ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, PAGE_KERNEL);
|
|
if (ret) {
|
|
write_lock(&vmlist_lock);
|
|
area = __find_vm_area(ret);
|
|
area->flags |= VM_USERMAP;
|
|
write_unlock(&vmlist_lock);
|
|
}
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(vmalloc_user);
|
|
|
|
/**
|
|
* vmalloc_node - allocate memory on a specific node
|
|
* @size: allocation size
|
|
* @node: numa node
|
|
*
|
|
* Allocate enough pages to cover @size from the page level
|
|
* allocator and map them into contiguous kernel virtual space.
|
|
*
|
|
* For tight control over page level allocator and protection flags
|
|
* use __vmalloc() instead.
|
|
*/
|
|
void *vmalloc_node(unsigned long size, int node)
|
|
{
|
|
return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
|
|
node, __builtin_return_address(0));
|
|
}
|
|
EXPORT_SYMBOL(vmalloc_node);
|
|
|
|
#ifndef PAGE_KERNEL_EXEC
|
|
# define PAGE_KERNEL_EXEC PAGE_KERNEL
|
|
#endif
|
|
|
|
/**
|
|
* vmalloc_exec - allocate virtually contiguous, executable memory
|
|
* @size: allocation size
|
|
*
|
|
* Kernel-internal function to allocate enough pages to cover @size
|
|
* the page level allocator and map them into contiguous and
|
|
* executable kernel virtual space.
|
|
*
|
|
* For tight control over page level allocator and protection flags
|
|
* use __vmalloc() instead.
|
|
*/
|
|
|
|
void *vmalloc_exec(unsigned long size)
|
|
{
|
|
return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
|
|
}
|
|
|
|
#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
|
|
#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
|
|
#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
|
|
#define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
|
|
#else
|
|
#define GFP_VMALLOC32 GFP_KERNEL
|
|
#endif
|
|
|
|
/**
|
|
* vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
|
|
* @size: allocation size
|
|
*
|
|
* Allocate enough 32bit PA addressable pages to cover @size from the
|
|
* page level allocator and map them into contiguous kernel virtual space.
|
|
*/
|
|
void *vmalloc_32(unsigned long size)
|
|
{
|
|
return __vmalloc(size, GFP_VMALLOC32, PAGE_KERNEL);
|
|
}
|
|
EXPORT_SYMBOL(vmalloc_32);
|
|
|
|
/**
|
|
* vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
|
|
* @size: allocation size
|
|
*
|
|
* The resulting memory area is 32bit addressable and zeroed so it can be
|
|
* mapped to userspace without leaking data.
|
|
*/
|
|
void *vmalloc_32_user(unsigned long size)
|
|
{
|
|
struct vm_struct *area;
|
|
void *ret;
|
|
|
|
ret = __vmalloc(size, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL);
|
|
if (ret) {
|
|
write_lock(&vmlist_lock);
|
|
area = __find_vm_area(ret);
|
|
area->flags |= VM_USERMAP;
|
|
write_unlock(&vmlist_lock);
|
|
}
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(vmalloc_32_user);
|
|
|
|
long vread(char *buf, char *addr, unsigned long count)
|
|
{
|
|
struct vm_struct *tmp;
|
|
char *vaddr, *buf_start = buf;
|
|
unsigned long n;
|
|
|
|
/* Don't allow overflow */
|
|
if ((unsigned long) addr + count < count)
|
|
count = -(unsigned long) addr;
|
|
|
|
read_lock(&vmlist_lock);
|
|
for (tmp = vmlist; tmp; tmp = tmp->next) {
|
|
vaddr = (char *) tmp->addr;
|
|
if (addr >= vaddr + tmp->size - PAGE_SIZE)
|
|
continue;
|
|
while (addr < vaddr) {
|
|
if (count == 0)
|
|
goto finished;
|
|
*buf = '\0';
|
|
buf++;
|
|
addr++;
|
|
count--;
|
|
}
|
|
n = vaddr + tmp->size - PAGE_SIZE - addr;
|
|
do {
|
|
if (count == 0)
|
|
goto finished;
|
|
*buf = *addr;
|
|
buf++;
|
|
addr++;
|
|
count--;
|
|
} while (--n > 0);
|
|
}
|
|
finished:
|
|
read_unlock(&vmlist_lock);
|
|
return buf - buf_start;
|
|
}
|
|
|
|
long vwrite(char *buf, char *addr, unsigned long count)
|
|
{
|
|
struct vm_struct *tmp;
|
|
char *vaddr, *buf_start = buf;
|
|
unsigned long n;
|
|
|
|
/* Don't allow overflow */
|
|
if ((unsigned long) addr + count < count)
|
|
count = -(unsigned long) addr;
|
|
|
|
read_lock(&vmlist_lock);
|
|
for (tmp = vmlist; tmp; tmp = tmp->next) {
|
|
vaddr = (char *) tmp->addr;
|
|
if (addr >= vaddr + tmp->size - PAGE_SIZE)
|
|
continue;
|
|
while (addr < vaddr) {
|
|
if (count == 0)
|
|
goto finished;
|
|
buf++;
|
|
addr++;
|
|
count--;
|
|
}
|
|
n = vaddr + tmp->size - PAGE_SIZE - addr;
|
|
do {
|
|
if (count == 0)
|
|
goto finished;
|
|
*addr = *buf;
|
|
buf++;
|
|
addr++;
|
|
count--;
|
|
} while (--n > 0);
|
|
}
|
|
finished:
|
|
read_unlock(&vmlist_lock);
|
|
return buf - buf_start;
|
|
}
|
|
|
|
/**
|
|
* remap_vmalloc_range - map vmalloc pages to userspace
|
|
* @vma: vma to cover (map full range of vma)
|
|
* @addr: vmalloc memory
|
|
* @pgoff: number of pages into addr before first page to map
|
|
*
|
|
* Returns: 0 for success, -Exxx on failure
|
|
*
|
|
* This function checks that addr is a valid vmalloc'ed area, and
|
|
* that it is big enough to cover the vma. Will return failure if
|
|
* that criteria isn't met.
|
|
*
|
|
* Similar to remap_pfn_range() (see mm/memory.c)
|
|
*/
|
|
int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
|
|
unsigned long pgoff)
|
|
{
|
|
struct vm_struct *area;
|
|
unsigned long uaddr = vma->vm_start;
|
|
unsigned long usize = vma->vm_end - vma->vm_start;
|
|
int ret;
|
|
|
|
if ((PAGE_SIZE-1) & (unsigned long)addr)
|
|
return -EINVAL;
|
|
|
|
read_lock(&vmlist_lock);
|
|
area = __find_vm_area(addr);
|
|
if (!area)
|
|
goto out_einval_locked;
|
|
|
|
if (!(area->flags & VM_USERMAP))
|
|
goto out_einval_locked;
|
|
|
|
if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
|
|
goto out_einval_locked;
|
|
read_unlock(&vmlist_lock);
|
|
|
|
addr += pgoff << PAGE_SHIFT;
|
|
do {
|
|
struct page *page = vmalloc_to_page(addr);
|
|
ret = vm_insert_page(vma, uaddr, page);
|
|
if (ret)
|
|
return ret;
|
|
|
|
uaddr += PAGE_SIZE;
|
|
addr += PAGE_SIZE;
|
|
usize -= PAGE_SIZE;
|
|
} while (usize > 0);
|
|
|
|
/* Prevent "things" like memory migration? VM_flags need a cleanup... */
|
|
vma->vm_flags |= VM_RESERVED;
|
|
|
|
return ret;
|
|
|
|
out_einval_locked:
|
|
read_unlock(&vmlist_lock);
|
|
return -EINVAL;
|
|
}
|
|
EXPORT_SYMBOL(remap_vmalloc_range);
|
|
|
|
/*
|
|
* Implement a stub for vmalloc_sync_all() if the architecture chose not to
|
|
* have one.
|
|
*/
|
|
void __attribute__((weak)) vmalloc_sync_all(void)
|
|
{
|
|
}
|
|
|
|
|
|
static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
|
|
{
|
|
/* apply_to_page_range() does all the hard work. */
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* alloc_vm_area - allocate a range of kernel address space
|
|
* @size: size of the area
|
|
*
|
|
* Returns: NULL on failure, vm_struct on success
|
|
*
|
|
* This function reserves a range of kernel address space, and
|
|
* allocates pagetables to map that range. No actual mappings
|
|
* are created. If the kernel address space is not shared
|
|
* between processes, it syncs the pagetable across all
|
|
* processes.
|
|
*/
|
|
struct vm_struct *alloc_vm_area(size_t size)
|
|
{
|
|
struct vm_struct *area;
|
|
|
|
area = get_vm_area_caller(size, VM_IOREMAP,
|
|
__builtin_return_address(0));
|
|
if (area == NULL)
|
|
return NULL;
|
|
|
|
/*
|
|
* This ensures that page tables are constructed for this region
|
|
* of kernel virtual address space and mapped into init_mm.
|
|
*/
|
|
if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
|
|
area->size, f, NULL)) {
|
|
free_vm_area(area);
|
|
return NULL;
|
|
}
|
|
|
|
/* Make sure the pagetables are constructed in process kernel
|
|
mappings */
|
|
vmalloc_sync_all();
|
|
|
|
return area;
|
|
}
|
|
EXPORT_SYMBOL_GPL(alloc_vm_area);
|
|
|
|
void free_vm_area(struct vm_struct *area)
|
|
{
|
|
struct vm_struct *ret;
|
|
ret = remove_vm_area(area->addr);
|
|
BUG_ON(ret != area);
|
|
kfree(area);
|
|
}
|
|
EXPORT_SYMBOL_GPL(free_vm_area);
|
|
|
|
|
|
#ifdef CONFIG_PROC_FS
|
|
static void *s_start(struct seq_file *m, loff_t *pos)
|
|
{
|
|
loff_t n = *pos;
|
|
struct vm_struct *v;
|
|
|
|
read_lock(&vmlist_lock);
|
|
v = vmlist;
|
|
while (n > 0 && v) {
|
|
n--;
|
|
v = v->next;
|
|
}
|
|
if (!n)
|
|
return v;
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
static void *s_next(struct seq_file *m, void *p, loff_t *pos)
|
|
{
|
|
struct vm_struct *v = p;
|
|
|
|
++*pos;
|
|
return v->next;
|
|
}
|
|
|
|
static void s_stop(struct seq_file *m, void *p)
|
|
{
|
|
read_unlock(&vmlist_lock);
|
|
}
|
|
|
|
static int s_show(struct seq_file *m, void *p)
|
|
{
|
|
struct vm_struct *v = p;
|
|
|
|
seq_printf(m, "0x%p-0x%p %7ld",
|
|
v->addr, v->addr + v->size, v->size);
|
|
|
|
if (v->caller) {
|
|
char buff[2 * KSYM_NAME_LEN];
|
|
|
|
seq_putc(m, ' ');
|
|
sprint_symbol(buff, (unsigned long)v->caller);
|
|
seq_puts(m, buff);
|
|
}
|
|
|
|
if (v->nr_pages)
|
|
seq_printf(m, " pages=%d", v->nr_pages);
|
|
|
|
if (v->phys_addr)
|
|
seq_printf(m, " phys=%lx", v->phys_addr);
|
|
|
|
if (v->flags & VM_IOREMAP)
|
|
seq_printf(m, " ioremap");
|
|
|
|
if (v->flags & VM_ALLOC)
|
|
seq_printf(m, " vmalloc");
|
|
|
|
if (v->flags & VM_MAP)
|
|
seq_printf(m, " vmap");
|
|
|
|
if (v->flags & VM_USERMAP)
|
|
seq_printf(m, " user");
|
|
|
|
if (v->flags & VM_VPAGES)
|
|
seq_printf(m, " vpages");
|
|
|
|
seq_putc(m, '\n');
|
|
return 0;
|
|
}
|
|
|
|
const struct seq_operations vmalloc_op = {
|
|
.start = s_start,
|
|
.next = s_next,
|
|
.stop = s_stop,
|
|
.show = s_show,
|
|
};
|
|
#endif
|
|
|