linux_dsm_epyc7002/drivers/mmc/host/sdhci.c
Baolin Wang c6303c5d52 mmc: sdhci-sprd: Fix the incorrect soft reset operation when runtime resuming
The SD host controller specification defines 3 types software reset:
software reset for data line, software reset for command line and software
reset for all. Software reset for all means this reset affects the entire
Host controller except for the card detection circuit.

In sdhci_runtime_resume_host() we always do a software "reset for all",
which causes the Spreadtrum variant controller to work abnormally after
resuming. To fix the problem, let's do a software reset for the data and
the command part, rather than "for all".

However, as sdhci_runtime_resume() is a common sdhci function and we don't
want to change the behaviour for other variants, let's introduce a new
in-parameter for it. This enables the caller to decide if a "reset for all"
shall be done or not.

Signed-off-by: Baolin Wang <baolin.wang@linaro.org>
Fixes: fb8bd90f83 ("mmc: sdhci-sprd: Add Spreadtrum's initial host controller")
Cc: stable@vger.kernel.org
Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org>
2019-08-06 18:59:14 +02:00

4423 lines
114 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* linux/drivers/mmc/host/sdhci.c - Secure Digital Host Controller Interface driver
*
* Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
*
* Thanks to the following companies for their support:
*
* - JMicron (hardware and technical support)
*/
#include <linux/delay.h>
#include <linux/ktime.h>
#include <linux/highmem.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/dma-mapping.h>
#include <linux/slab.h>
#include <linux/scatterlist.h>
#include <linux/sizes.h>
#include <linux/swiotlb.h>
#include <linux/regulator/consumer.h>
#include <linux/pm_runtime.h>
#include <linux/of.h>
#include <linux/leds.h>
#include <linux/mmc/mmc.h>
#include <linux/mmc/host.h>
#include <linux/mmc/card.h>
#include <linux/mmc/sdio.h>
#include <linux/mmc/slot-gpio.h>
#include "sdhci.h"
#define DRIVER_NAME "sdhci"
#define DBG(f, x...) \
pr_debug("%s: " DRIVER_NAME ": " f, mmc_hostname(host->mmc), ## x)
#define SDHCI_DUMP(f, x...) \
pr_err("%s: " DRIVER_NAME ": " f, mmc_hostname(host->mmc), ## x)
#define MAX_TUNING_LOOP 40
static unsigned int debug_quirks = 0;
static unsigned int debug_quirks2;
static void sdhci_finish_data(struct sdhci_host *);
static void sdhci_enable_preset_value(struct sdhci_host *host, bool enable);
void sdhci_dumpregs(struct sdhci_host *host)
{
SDHCI_DUMP("============ SDHCI REGISTER DUMP ===========\n");
SDHCI_DUMP("Sys addr: 0x%08x | Version: 0x%08x\n",
sdhci_readl(host, SDHCI_DMA_ADDRESS),
sdhci_readw(host, SDHCI_HOST_VERSION));
SDHCI_DUMP("Blk size: 0x%08x | Blk cnt: 0x%08x\n",
sdhci_readw(host, SDHCI_BLOCK_SIZE),
sdhci_readw(host, SDHCI_BLOCK_COUNT));
SDHCI_DUMP("Argument: 0x%08x | Trn mode: 0x%08x\n",
sdhci_readl(host, SDHCI_ARGUMENT),
sdhci_readw(host, SDHCI_TRANSFER_MODE));
SDHCI_DUMP("Present: 0x%08x | Host ctl: 0x%08x\n",
sdhci_readl(host, SDHCI_PRESENT_STATE),
sdhci_readb(host, SDHCI_HOST_CONTROL));
SDHCI_DUMP("Power: 0x%08x | Blk gap: 0x%08x\n",
sdhci_readb(host, SDHCI_POWER_CONTROL),
sdhci_readb(host, SDHCI_BLOCK_GAP_CONTROL));
SDHCI_DUMP("Wake-up: 0x%08x | Clock: 0x%08x\n",
sdhci_readb(host, SDHCI_WAKE_UP_CONTROL),
sdhci_readw(host, SDHCI_CLOCK_CONTROL));
SDHCI_DUMP("Timeout: 0x%08x | Int stat: 0x%08x\n",
sdhci_readb(host, SDHCI_TIMEOUT_CONTROL),
sdhci_readl(host, SDHCI_INT_STATUS));
SDHCI_DUMP("Int enab: 0x%08x | Sig enab: 0x%08x\n",
sdhci_readl(host, SDHCI_INT_ENABLE),
sdhci_readl(host, SDHCI_SIGNAL_ENABLE));
SDHCI_DUMP("ACmd stat: 0x%08x | Slot int: 0x%08x\n",
sdhci_readw(host, SDHCI_AUTO_CMD_STATUS),
sdhci_readw(host, SDHCI_SLOT_INT_STATUS));
SDHCI_DUMP("Caps: 0x%08x | Caps_1: 0x%08x\n",
sdhci_readl(host, SDHCI_CAPABILITIES),
sdhci_readl(host, SDHCI_CAPABILITIES_1));
SDHCI_DUMP("Cmd: 0x%08x | Max curr: 0x%08x\n",
sdhci_readw(host, SDHCI_COMMAND),
sdhci_readl(host, SDHCI_MAX_CURRENT));
SDHCI_DUMP("Resp[0]: 0x%08x | Resp[1]: 0x%08x\n",
sdhci_readl(host, SDHCI_RESPONSE),
sdhci_readl(host, SDHCI_RESPONSE + 4));
SDHCI_DUMP("Resp[2]: 0x%08x | Resp[3]: 0x%08x\n",
sdhci_readl(host, SDHCI_RESPONSE + 8),
sdhci_readl(host, SDHCI_RESPONSE + 12));
SDHCI_DUMP("Host ctl2: 0x%08x\n",
sdhci_readw(host, SDHCI_HOST_CONTROL2));
if (host->flags & SDHCI_USE_ADMA) {
if (host->flags & SDHCI_USE_64_BIT_DMA) {
SDHCI_DUMP("ADMA Err: 0x%08x | ADMA Ptr: 0x%08x%08x\n",
sdhci_readl(host, SDHCI_ADMA_ERROR),
sdhci_readl(host, SDHCI_ADMA_ADDRESS_HI),
sdhci_readl(host, SDHCI_ADMA_ADDRESS));
} else {
SDHCI_DUMP("ADMA Err: 0x%08x | ADMA Ptr: 0x%08x\n",
sdhci_readl(host, SDHCI_ADMA_ERROR),
sdhci_readl(host, SDHCI_ADMA_ADDRESS));
}
}
SDHCI_DUMP("============================================\n");
}
EXPORT_SYMBOL_GPL(sdhci_dumpregs);
/*****************************************************************************\
* *
* Low level functions *
* *
\*****************************************************************************/
static void sdhci_do_enable_v4_mode(struct sdhci_host *host)
{
u16 ctrl2;
ctrl2 = sdhci_readw(host, SDHCI_HOST_CONTROL2);
if (ctrl2 & SDHCI_CTRL_V4_MODE)
return;
ctrl2 |= SDHCI_CTRL_V4_MODE;
sdhci_writew(host, ctrl2, SDHCI_HOST_CONTROL2);
}
/*
* This can be called before sdhci_add_host() by Vendor's host controller
* driver to enable v4 mode if supported.
*/
void sdhci_enable_v4_mode(struct sdhci_host *host)
{
host->v4_mode = true;
sdhci_do_enable_v4_mode(host);
}
EXPORT_SYMBOL_GPL(sdhci_enable_v4_mode);
static inline bool sdhci_data_line_cmd(struct mmc_command *cmd)
{
return cmd->data || cmd->flags & MMC_RSP_BUSY;
}
static void sdhci_set_card_detection(struct sdhci_host *host, bool enable)
{
u32 present;
if ((host->quirks & SDHCI_QUIRK_BROKEN_CARD_DETECTION) ||
!mmc_card_is_removable(host->mmc))
return;
if (enable) {
present = sdhci_readl(host, SDHCI_PRESENT_STATE) &
SDHCI_CARD_PRESENT;
host->ier |= present ? SDHCI_INT_CARD_REMOVE :
SDHCI_INT_CARD_INSERT;
} else {
host->ier &= ~(SDHCI_INT_CARD_REMOVE | SDHCI_INT_CARD_INSERT);
}
sdhci_writel(host, host->ier, SDHCI_INT_ENABLE);
sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE);
}
static void sdhci_enable_card_detection(struct sdhci_host *host)
{
sdhci_set_card_detection(host, true);
}
static void sdhci_disable_card_detection(struct sdhci_host *host)
{
sdhci_set_card_detection(host, false);
}
static void sdhci_runtime_pm_bus_on(struct sdhci_host *host)
{
if (host->bus_on)
return;
host->bus_on = true;
pm_runtime_get_noresume(host->mmc->parent);
}
static void sdhci_runtime_pm_bus_off(struct sdhci_host *host)
{
if (!host->bus_on)
return;
host->bus_on = false;
pm_runtime_put_noidle(host->mmc->parent);
}
void sdhci_reset(struct sdhci_host *host, u8 mask)
{
ktime_t timeout;
sdhci_writeb(host, mask, SDHCI_SOFTWARE_RESET);
if (mask & SDHCI_RESET_ALL) {
host->clock = 0;
/* Reset-all turns off SD Bus Power */
if (host->quirks2 & SDHCI_QUIRK2_CARD_ON_NEEDS_BUS_ON)
sdhci_runtime_pm_bus_off(host);
}
/* Wait max 100 ms */
timeout = ktime_add_ms(ktime_get(), 100);
/* hw clears the bit when it's done */
while (1) {
bool timedout = ktime_after(ktime_get(), timeout);
if (!(sdhci_readb(host, SDHCI_SOFTWARE_RESET) & mask))
break;
if (timedout) {
pr_err("%s: Reset 0x%x never completed.\n",
mmc_hostname(host->mmc), (int)mask);
sdhci_dumpregs(host);
return;
}
udelay(10);
}
}
EXPORT_SYMBOL_GPL(sdhci_reset);
static void sdhci_do_reset(struct sdhci_host *host, u8 mask)
{
if (host->quirks & SDHCI_QUIRK_NO_CARD_NO_RESET) {
struct mmc_host *mmc = host->mmc;
if (!mmc->ops->get_cd(mmc))
return;
}
host->ops->reset(host, mask);
if (mask & SDHCI_RESET_ALL) {
if (host->flags & (SDHCI_USE_SDMA | SDHCI_USE_ADMA)) {
if (host->ops->enable_dma)
host->ops->enable_dma(host);
}
/* Resetting the controller clears many */
host->preset_enabled = false;
}
}
static void sdhci_set_default_irqs(struct sdhci_host *host)
{
host->ier = SDHCI_INT_BUS_POWER | SDHCI_INT_DATA_END_BIT |
SDHCI_INT_DATA_CRC | SDHCI_INT_DATA_TIMEOUT |
SDHCI_INT_INDEX | SDHCI_INT_END_BIT | SDHCI_INT_CRC |
SDHCI_INT_TIMEOUT | SDHCI_INT_DATA_END |
SDHCI_INT_RESPONSE;
if (host->tuning_mode == SDHCI_TUNING_MODE_2 ||
host->tuning_mode == SDHCI_TUNING_MODE_3)
host->ier |= SDHCI_INT_RETUNE;
sdhci_writel(host, host->ier, SDHCI_INT_ENABLE);
sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE);
}
static void sdhci_config_dma(struct sdhci_host *host)
{
u8 ctrl;
u16 ctrl2;
if (host->version < SDHCI_SPEC_200)
return;
ctrl = sdhci_readb(host, SDHCI_HOST_CONTROL);
/*
* Always adjust the DMA selection as some controllers
* (e.g. JMicron) can't do PIO properly when the selection
* is ADMA.
*/
ctrl &= ~SDHCI_CTRL_DMA_MASK;
if (!(host->flags & SDHCI_REQ_USE_DMA))
goto out;
/* Note if DMA Select is zero then SDMA is selected */
if (host->flags & SDHCI_USE_ADMA)
ctrl |= SDHCI_CTRL_ADMA32;
if (host->flags & SDHCI_USE_64_BIT_DMA) {
/*
* If v4 mode, all supported DMA can be 64-bit addressing if
* controller supports 64-bit system address, otherwise only
* ADMA can support 64-bit addressing.
*/
if (host->v4_mode) {
ctrl2 = sdhci_readw(host, SDHCI_HOST_CONTROL2);
ctrl2 |= SDHCI_CTRL_64BIT_ADDR;
sdhci_writew(host, ctrl2, SDHCI_HOST_CONTROL2);
} else if (host->flags & SDHCI_USE_ADMA) {
/*
* Don't need to undo SDHCI_CTRL_ADMA32 in order to
* set SDHCI_CTRL_ADMA64.
*/
ctrl |= SDHCI_CTRL_ADMA64;
}
}
out:
sdhci_writeb(host, ctrl, SDHCI_HOST_CONTROL);
}
static void sdhci_init(struct sdhci_host *host, int soft)
{
struct mmc_host *mmc = host->mmc;
if (soft)
sdhci_do_reset(host, SDHCI_RESET_CMD | SDHCI_RESET_DATA);
else
sdhci_do_reset(host, SDHCI_RESET_ALL);
if (host->v4_mode)
sdhci_do_enable_v4_mode(host);
sdhci_set_default_irqs(host);
host->cqe_on = false;
if (soft) {
/* force clock reconfiguration */
host->clock = 0;
mmc->ops->set_ios(mmc, &mmc->ios);
}
}
static void sdhci_reinit(struct sdhci_host *host)
{
sdhci_init(host, 0);
sdhci_enable_card_detection(host);
}
static void __sdhci_led_activate(struct sdhci_host *host)
{
u8 ctrl;
if (host->quirks & SDHCI_QUIRK_NO_LED)
return;
ctrl = sdhci_readb(host, SDHCI_HOST_CONTROL);
ctrl |= SDHCI_CTRL_LED;
sdhci_writeb(host, ctrl, SDHCI_HOST_CONTROL);
}
static void __sdhci_led_deactivate(struct sdhci_host *host)
{
u8 ctrl;
if (host->quirks & SDHCI_QUIRK_NO_LED)
return;
ctrl = sdhci_readb(host, SDHCI_HOST_CONTROL);
ctrl &= ~SDHCI_CTRL_LED;
sdhci_writeb(host, ctrl, SDHCI_HOST_CONTROL);
}
#if IS_REACHABLE(CONFIG_LEDS_CLASS)
static void sdhci_led_control(struct led_classdev *led,
enum led_brightness brightness)
{
struct sdhci_host *host = container_of(led, struct sdhci_host, led);
unsigned long flags;
spin_lock_irqsave(&host->lock, flags);
if (host->runtime_suspended)
goto out;
if (brightness == LED_OFF)
__sdhci_led_deactivate(host);
else
__sdhci_led_activate(host);
out:
spin_unlock_irqrestore(&host->lock, flags);
}
static int sdhci_led_register(struct sdhci_host *host)
{
struct mmc_host *mmc = host->mmc;
if (host->quirks & SDHCI_QUIRK_NO_LED)
return 0;
snprintf(host->led_name, sizeof(host->led_name),
"%s::", mmc_hostname(mmc));
host->led.name = host->led_name;
host->led.brightness = LED_OFF;
host->led.default_trigger = mmc_hostname(mmc);
host->led.brightness_set = sdhci_led_control;
return led_classdev_register(mmc_dev(mmc), &host->led);
}
static void sdhci_led_unregister(struct sdhci_host *host)
{
if (host->quirks & SDHCI_QUIRK_NO_LED)
return;
led_classdev_unregister(&host->led);
}
static inline void sdhci_led_activate(struct sdhci_host *host)
{
}
static inline void sdhci_led_deactivate(struct sdhci_host *host)
{
}
#else
static inline int sdhci_led_register(struct sdhci_host *host)
{
return 0;
}
static inline void sdhci_led_unregister(struct sdhci_host *host)
{
}
static inline void sdhci_led_activate(struct sdhci_host *host)
{
__sdhci_led_activate(host);
}
static inline void sdhci_led_deactivate(struct sdhci_host *host)
{
__sdhci_led_deactivate(host);
}
#endif
static void sdhci_mod_timer(struct sdhci_host *host, struct mmc_request *mrq,
unsigned long timeout)
{
if (sdhci_data_line_cmd(mrq->cmd))
mod_timer(&host->data_timer, timeout);
else
mod_timer(&host->timer, timeout);
}
static void sdhci_del_timer(struct sdhci_host *host, struct mmc_request *mrq)
{
if (sdhci_data_line_cmd(mrq->cmd))
del_timer(&host->data_timer);
else
del_timer(&host->timer);
}
static inline bool sdhci_has_requests(struct sdhci_host *host)
{
return host->cmd || host->data_cmd;
}
/*****************************************************************************\
* *
* Core functions *
* *
\*****************************************************************************/
static void sdhci_read_block_pio(struct sdhci_host *host)
{
unsigned long flags;
size_t blksize, len, chunk;
u32 uninitialized_var(scratch);
u8 *buf;
DBG("PIO reading\n");
blksize = host->data->blksz;
chunk = 0;
local_irq_save(flags);
while (blksize) {
BUG_ON(!sg_miter_next(&host->sg_miter));
len = min(host->sg_miter.length, blksize);
blksize -= len;
host->sg_miter.consumed = len;
buf = host->sg_miter.addr;
while (len) {
if (chunk == 0) {
scratch = sdhci_readl(host, SDHCI_BUFFER);
chunk = 4;
}
*buf = scratch & 0xFF;
buf++;
scratch >>= 8;
chunk--;
len--;
}
}
sg_miter_stop(&host->sg_miter);
local_irq_restore(flags);
}
static void sdhci_write_block_pio(struct sdhci_host *host)
{
unsigned long flags;
size_t blksize, len, chunk;
u32 scratch;
u8 *buf;
DBG("PIO writing\n");
blksize = host->data->blksz;
chunk = 0;
scratch = 0;
local_irq_save(flags);
while (blksize) {
BUG_ON(!sg_miter_next(&host->sg_miter));
len = min(host->sg_miter.length, blksize);
blksize -= len;
host->sg_miter.consumed = len;
buf = host->sg_miter.addr;
while (len) {
scratch |= (u32)*buf << (chunk * 8);
buf++;
chunk++;
len--;
if ((chunk == 4) || ((len == 0) && (blksize == 0))) {
sdhci_writel(host, scratch, SDHCI_BUFFER);
chunk = 0;
scratch = 0;
}
}
}
sg_miter_stop(&host->sg_miter);
local_irq_restore(flags);
}
static void sdhci_transfer_pio(struct sdhci_host *host)
{
u32 mask;
if (host->blocks == 0)
return;
if (host->data->flags & MMC_DATA_READ)
mask = SDHCI_DATA_AVAILABLE;
else
mask = SDHCI_SPACE_AVAILABLE;
/*
* Some controllers (JMicron JMB38x) mess up the buffer bits
* for transfers < 4 bytes. As long as it is just one block,
* we can ignore the bits.
*/
if ((host->quirks & SDHCI_QUIRK_BROKEN_SMALL_PIO) &&
(host->data->blocks == 1))
mask = ~0;
while (sdhci_readl(host, SDHCI_PRESENT_STATE) & mask) {
if (host->quirks & SDHCI_QUIRK_PIO_NEEDS_DELAY)
udelay(100);
if (host->data->flags & MMC_DATA_READ)
sdhci_read_block_pio(host);
else
sdhci_write_block_pio(host);
host->blocks--;
if (host->blocks == 0)
break;
}
DBG("PIO transfer complete.\n");
}
static int sdhci_pre_dma_transfer(struct sdhci_host *host,
struct mmc_data *data, int cookie)
{
int sg_count;
/*
* If the data buffers are already mapped, return the previous
* dma_map_sg() result.
*/
if (data->host_cookie == COOKIE_PRE_MAPPED)
return data->sg_count;
/* Bounce write requests to the bounce buffer */
if (host->bounce_buffer) {
unsigned int length = data->blksz * data->blocks;
if (length > host->bounce_buffer_size) {
pr_err("%s: asked for transfer of %u bytes exceeds bounce buffer %u bytes\n",
mmc_hostname(host->mmc), length,
host->bounce_buffer_size);
return -EIO;
}
if (mmc_get_dma_dir(data) == DMA_TO_DEVICE) {
/* Copy the data to the bounce buffer */
sg_copy_to_buffer(data->sg, data->sg_len,
host->bounce_buffer,
length);
}
/* Switch ownership to the DMA */
dma_sync_single_for_device(host->mmc->parent,
host->bounce_addr,
host->bounce_buffer_size,
mmc_get_dma_dir(data));
/* Just a dummy value */
sg_count = 1;
} else {
/* Just access the data directly from memory */
sg_count = dma_map_sg(mmc_dev(host->mmc),
data->sg, data->sg_len,
mmc_get_dma_dir(data));
}
if (sg_count == 0)
return -ENOSPC;
data->sg_count = sg_count;
data->host_cookie = cookie;
return sg_count;
}
static char *sdhci_kmap_atomic(struct scatterlist *sg, unsigned long *flags)
{
local_irq_save(*flags);
return kmap_atomic(sg_page(sg)) + sg->offset;
}
static void sdhci_kunmap_atomic(void *buffer, unsigned long *flags)
{
kunmap_atomic(buffer);
local_irq_restore(*flags);
}
void sdhci_adma_write_desc(struct sdhci_host *host, void **desc,
dma_addr_t addr, int len, unsigned int cmd)
{
struct sdhci_adma2_64_desc *dma_desc = *desc;
/* 32-bit and 64-bit descriptors have these members in same position */
dma_desc->cmd = cpu_to_le16(cmd);
dma_desc->len = cpu_to_le16(len);
dma_desc->addr_lo = cpu_to_le32((u32)addr);
if (host->flags & SDHCI_USE_64_BIT_DMA)
dma_desc->addr_hi = cpu_to_le32((u64)addr >> 32);
*desc += host->desc_sz;
}
EXPORT_SYMBOL_GPL(sdhci_adma_write_desc);
static inline void __sdhci_adma_write_desc(struct sdhci_host *host,
void **desc, dma_addr_t addr,
int len, unsigned int cmd)
{
if (host->ops->adma_write_desc)
host->ops->adma_write_desc(host, desc, addr, len, cmd);
else
sdhci_adma_write_desc(host, desc, addr, len, cmd);
}
static void sdhci_adma_mark_end(void *desc)
{
struct sdhci_adma2_64_desc *dma_desc = desc;
/* 32-bit and 64-bit descriptors have 'cmd' in same position */
dma_desc->cmd |= cpu_to_le16(ADMA2_END);
}
static void sdhci_adma_table_pre(struct sdhci_host *host,
struct mmc_data *data, int sg_count)
{
struct scatterlist *sg;
unsigned long flags;
dma_addr_t addr, align_addr;
void *desc, *align;
char *buffer;
int len, offset, i;
/*
* The spec does not specify endianness of descriptor table.
* We currently guess that it is LE.
*/
host->sg_count = sg_count;
desc = host->adma_table;
align = host->align_buffer;
align_addr = host->align_addr;
for_each_sg(data->sg, sg, host->sg_count, i) {
addr = sg_dma_address(sg);
len = sg_dma_len(sg);
/*
* The SDHCI specification states that ADMA addresses must
* be 32-bit aligned. If they aren't, then we use a bounce
* buffer for the (up to three) bytes that screw up the
* alignment.
*/
offset = (SDHCI_ADMA2_ALIGN - (addr & SDHCI_ADMA2_MASK)) &
SDHCI_ADMA2_MASK;
if (offset) {
if (data->flags & MMC_DATA_WRITE) {
buffer = sdhci_kmap_atomic(sg, &flags);
memcpy(align, buffer, offset);
sdhci_kunmap_atomic(buffer, &flags);
}
/* tran, valid */
__sdhci_adma_write_desc(host, &desc, align_addr,
offset, ADMA2_TRAN_VALID);
BUG_ON(offset > 65536);
align += SDHCI_ADMA2_ALIGN;
align_addr += SDHCI_ADMA2_ALIGN;
addr += offset;
len -= offset;
}
BUG_ON(len > 65536);
/* tran, valid */
if (len)
__sdhci_adma_write_desc(host, &desc, addr, len,
ADMA2_TRAN_VALID);
/*
* If this triggers then we have a calculation bug
* somewhere. :/
*/
WARN_ON((desc - host->adma_table) >= host->adma_table_sz);
}
if (host->quirks & SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC) {
/* Mark the last descriptor as the terminating descriptor */
if (desc != host->adma_table) {
desc -= host->desc_sz;
sdhci_adma_mark_end(desc);
}
} else {
/* Add a terminating entry - nop, end, valid */
__sdhci_adma_write_desc(host, &desc, 0, 0, ADMA2_NOP_END_VALID);
}
}
static void sdhci_adma_table_post(struct sdhci_host *host,
struct mmc_data *data)
{
struct scatterlist *sg;
int i, size;
void *align;
char *buffer;
unsigned long flags;
if (data->flags & MMC_DATA_READ) {
bool has_unaligned = false;
/* Do a quick scan of the SG list for any unaligned mappings */
for_each_sg(data->sg, sg, host->sg_count, i)
if (sg_dma_address(sg) & SDHCI_ADMA2_MASK) {
has_unaligned = true;
break;
}
if (has_unaligned) {
dma_sync_sg_for_cpu(mmc_dev(host->mmc), data->sg,
data->sg_len, DMA_FROM_DEVICE);
align = host->align_buffer;
for_each_sg(data->sg, sg, host->sg_count, i) {
if (sg_dma_address(sg) & SDHCI_ADMA2_MASK) {
size = SDHCI_ADMA2_ALIGN -
(sg_dma_address(sg) & SDHCI_ADMA2_MASK);
buffer = sdhci_kmap_atomic(sg, &flags);
memcpy(buffer, align, size);
sdhci_kunmap_atomic(buffer, &flags);
align += SDHCI_ADMA2_ALIGN;
}
}
}
}
}
static dma_addr_t sdhci_sdma_address(struct sdhci_host *host)
{
if (host->bounce_buffer)
return host->bounce_addr;
else
return sg_dma_address(host->data->sg);
}
static void sdhci_set_sdma_addr(struct sdhci_host *host, dma_addr_t addr)
{
if (host->v4_mode) {
sdhci_writel(host, addr, SDHCI_ADMA_ADDRESS);
if (host->flags & SDHCI_USE_64_BIT_DMA)
sdhci_writel(host, (u64)addr >> 32, SDHCI_ADMA_ADDRESS_HI);
} else {
sdhci_writel(host, addr, SDHCI_DMA_ADDRESS);
}
}
static unsigned int sdhci_target_timeout(struct sdhci_host *host,
struct mmc_command *cmd,
struct mmc_data *data)
{
unsigned int target_timeout;
/* timeout in us */
if (!data) {
target_timeout = cmd->busy_timeout * 1000;
} else {
target_timeout = DIV_ROUND_UP(data->timeout_ns, 1000);
if (host->clock && data->timeout_clks) {
unsigned long long val;
/*
* data->timeout_clks is in units of clock cycles.
* host->clock is in Hz. target_timeout is in us.
* Hence, us = 1000000 * cycles / Hz. Round up.
*/
val = 1000000ULL * data->timeout_clks;
if (do_div(val, host->clock))
target_timeout++;
target_timeout += val;
}
}
return target_timeout;
}
static void sdhci_calc_sw_timeout(struct sdhci_host *host,
struct mmc_command *cmd)
{
struct mmc_data *data = cmd->data;
struct mmc_host *mmc = host->mmc;
struct mmc_ios *ios = &mmc->ios;
unsigned char bus_width = 1 << ios->bus_width;
unsigned int blksz;
unsigned int freq;
u64 target_timeout;
u64 transfer_time;
target_timeout = sdhci_target_timeout(host, cmd, data);
target_timeout *= NSEC_PER_USEC;
if (data) {
blksz = data->blksz;
freq = host->mmc->actual_clock ? : host->clock;
transfer_time = (u64)blksz * NSEC_PER_SEC * (8 / bus_width);
do_div(transfer_time, freq);
/* multiply by '2' to account for any unknowns */
transfer_time = transfer_time * 2;
/* calculate timeout for the entire data */
host->data_timeout = data->blocks * target_timeout +
transfer_time;
} else {
host->data_timeout = target_timeout;
}
if (host->data_timeout)
host->data_timeout += MMC_CMD_TRANSFER_TIME;
}
static u8 sdhci_calc_timeout(struct sdhci_host *host, struct mmc_command *cmd,
bool *too_big)
{
u8 count;
struct mmc_data *data;
unsigned target_timeout, current_timeout;
*too_big = true;
/*
* If the host controller provides us with an incorrect timeout
* value, just skip the check and use 0xE. The hardware may take
* longer to time out, but that's much better than having a too-short
* timeout value.
*/
if (host->quirks & SDHCI_QUIRK_BROKEN_TIMEOUT_VAL)
return 0xE;
/* Unspecified command, asume max */
if (cmd == NULL)
return 0xE;
data = cmd->data;
/* Unspecified timeout, assume max */
if (!data && !cmd->busy_timeout)
return 0xE;
/* timeout in us */
target_timeout = sdhci_target_timeout(host, cmd, data);
/*
* Figure out needed cycles.
* We do this in steps in order to fit inside a 32 bit int.
* The first step is the minimum timeout, which will have a
* minimum resolution of 6 bits:
* (1) 2^13*1000 > 2^22,
* (2) host->timeout_clk < 2^16
* =>
* (1) / (2) > 2^6
*/
count = 0;
current_timeout = (1 << 13) * 1000 / host->timeout_clk;
while (current_timeout < target_timeout) {
count++;
current_timeout <<= 1;
if (count >= 0xF)
break;
}
if (count >= 0xF) {
if (!(host->quirks2 & SDHCI_QUIRK2_DISABLE_HW_TIMEOUT))
DBG("Too large timeout 0x%x requested for CMD%d!\n",
count, cmd->opcode);
count = 0xE;
} else {
*too_big = false;
}
return count;
}
static void sdhci_set_transfer_irqs(struct sdhci_host *host)
{
u32 pio_irqs = SDHCI_INT_DATA_AVAIL | SDHCI_INT_SPACE_AVAIL;
u32 dma_irqs = SDHCI_INT_DMA_END | SDHCI_INT_ADMA_ERROR;
if (host->flags & SDHCI_REQ_USE_DMA)
host->ier = (host->ier & ~pio_irqs) | dma_irqs;
else
host->ier = (host->ier & ~dma_irqs) | pio_irqs;
if (host->flags & (SDHCI_AUTO_CMD23 | SDHCI_AUTO_CMD12))
host->ier |= SDHCI_INT_AUTO_CMD_ERR;
else
host->ier &= ~SDHCI_INT_AUTO_CMD_ERR;
sdhci_writel(host, host->ier, SDHCI_INT_ENABLE);
sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE);
}
static void sdhci_set_data_timeout_irq(struct sdhci_host *host, bool enable)
{
if (enable)
host->ier |= SDHCI_INT_DATA_TIMEOUT;
else
host->ier &= ~SDHCI_INT_DATA_TIMEOUT;
sdhci_writel(host, host->ier, SDHCI_INT_ENABLE);
sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE);
}
static void sdhci_set_timeout(struct sdhci_host *host, struct mmc_command *cmd)
{
u8 count;
if (host->ops->set_timeout) {
host->ops->set_timeout(host, cmd);
} else {
bool too_big = false;
count = sdhci_calc_timeout(host, cmd, &too_big);
if (too_big &&
host->quirks2 & SDHCI_QUIRK2_DISABLE_HW_TIMEOUT) {
sdhci_calc_sw_timeout(host, cmd);
sdhci_set_data_timeout_irq(host, false);
} else if (!(host->ier & SDHCI_INT_DATA_TIMEOUT)) {
sdhci_set_data_timeout_irq(host, true);
}
sdhci_writeb(host, count, SDHCI_TIMEOUT_CONTROL);
}
}
static void sdhci_prepare_data(struct sdhci_host *host, struct mmc_command *cmd)
{
struct mmc_data *data = cmd->data;
host->data_timeout = 0;
if (sdhci_data_line_cmd(cmd))
sdhci_set_timeout(host, cmd);
if (!data)
return;
WARN_ON(host->data);
/* Sanity checks */
BUG_ON(data->blksz * data->blocks > 524288);
BUG_ON(data->blksz > host->mmc->max_blk_size);
BUG_ON(data->blocks > 65535);
host->data = data;
host->data_early = 0;
host->data->bytes_xfered = 0;
if (host->flags & (SDHCI_USE_SDMA | SDHCI_USE_ADMA)) {
struct scatterlist *sg;
unsigned int length_mask, offset_mask;
int i;
host->flags |= SDHCI_REQ_USE_DMA;
/*
* FIXME: This doesn't account for merging when mapping the
* scatterlist.
*
* The assumption here being that alignment and lengths are
* the same after DMA mapping to device address space.
*/
length_mask = 0;
offset_mask = 0;
if (host->flags & SDHCI_USE_ADMA) {
if (host->quirks & SDHCI_QUIRK_32BIT_ADMA_SIZE) {
length_mask = 3;
/*
* As we use up to 3 byte chunks to work
* around alignment problems, we need to
* check the offset as well.
*/
offset_mask = 3;
}
} else {
if (host->quirks & SDHCI_QUIRK_32BIT_DMA_SIZE)
length_mask = 3;
if (host->quirks & SDHCI_QUIRK_32BIT_DMA_ADDR)
offset_mask = 3;
}
if (unlikely(length_mask | offset_mask)) {
for_each_sg(data->sg, sg, data->sg_len, i) {
if (sg->length & length_mask) {
DBG("Reverting to PIO because of transfer size (%d)\n",
sg->length);
host->flags &= ~SDHCI_REQ_USE_DMA;
break;
}
if (sg->offset & offset_mask) {
DBG("Reverting to PIO because of bad alignment\n");
host->flags &= ~SDHCI_REQ_USE_DMA;
break;
}
}
}
}
if (host->flags & SDHCI_REQ_USE_DMA) {
int sg_cnt = sdhci_pre_dma_transfer(host, data, COOKIE_MAPPED);
if (sg_cnt <= 0) {
/*
* This only happens when someone fed
* us an invalid request.
*/
WARN_ON(1);
host->flags &= ~SDHCI_REQ_USE_DMA;
} else if (host->flags & SDHCI_USE_ADMA) {
sdhci_adma_table_pre(host, data, sg_cnt);
sdhci_writel(host, host->adma_addr, SDHCI_ADMA_ADDRESS);
if (host->flags & SDHCI_USE_64_BIT_DMA)
sdhci_writel(host,
(u64)host->adma_addr >> 32,
SDHCI_ADMA_ADDRESS_HI);
} else {
WARN_ON(sg_cnt != 1);
sdhci_set_sdma_addr(host, sdhci_sdma_address(host));
}
}
sdhci_config_dma(host);
if (!(host->flags & SDHCI_REQ_USE_DMA)) {
int flags;
flags = SG_MITER_ATOMIC;
if (host->data->flags & MMC_DATA_READ)
flags |= SG_MITER_TO_SG;
else
flags |= SG_MITER_FROM_SG;
sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
host->blocks = data->blocks;
}
sdhci_set_transfer_irqs(host);
/* Set the DMA boundary value and block size */
sdhci_writew(host, SDHCI_MAKE_BLKSZ(host->sdma_boundary, data->blksz),
SDHCI_BLOCK_SIZE);
/*
* For Version 4.10 onwards, if v4 mode is enabled, 32-bit Block Count
* can be supported, in that case 16-bit block count register must be 0.
*/
if (host->version >= SDHCI_SPEC_410 && host->v4_mode &&
(host->quirks2 & SDHCI_QUIRK2_USE_32BIT_BLK_CNT)) {
if (sdhci_readw(host, SDHCI_BLOCK_COUNT))
sdhci_writew(host, 0, SDHCI_BLOCK_COUNT);
sdhci_writew(host, data->blocks, SDHCI_32BIT_BLK_CNT);
} else {
sdhci_writew(host, data->blocks, SDHCI_BLOCK_COUNT);
}
}
static inline bool sdhci_auto_cmd12(struct sdhci_host *host,
struct mmc_request *mrq)
{
return !mrq->sbc && (host->flags & SDHCI_AUTO_CMD12) &&
!mrq->cap_cmd_during_tfr;
}
static inline void sdhci_auto_cmd_select(struct sdhci_host *host,
struct mmc_command *cmd,
u16 *mode)
{
bool use_cmd12 = sdhci_auto_cmd12(host, cmd->mrq) &&
(cmd->opcode != SD_IO_RW_EXTENDED);
bool use_cmd23 = cmd->mrq->sbc && (host->flags & SDHCI_AUTO_CMD23);
u16 ctrl2;
/*
* In case of Version 4.10 or later, use of 'Auto CMD Auto
* Select' is recommended rather than use of 'Auto CMD12
* Enable' or 'Auto CMD23 Enable'.
*/
if (host->version >= SDHCI_SPEC_410 && (use_cmd12 || use_cmd23)) {
*mode |= SDHCI_TRNS_AUTO_SEL;
ctrl2 = sdhci_readw(host, SDHCI_HOST_CONTROL2);
if (use_cmd23)
ctrl2 |= SDHCI_CMD23_ENABLE;
else
ctrl2 &= ~SDHCI_CMD23_ENABLE;
sdhci_writew(host, ctrl2, SDHCI_HOST_CONTROL2);
return;
}
/*
* If we are sending CMD23, CMD12 never gets sent
* on successful completion (so no Auto-CMD12).
*/
if (use_cmd12)
*mode |= SDHCI_TRNS_AUTO_CMD12;
else if (use_cmd23)
*mode |= SDHCI_TRNS_AUTO_CMD23;
}
static void sdhci_set_transfer_mode(struct sdhci_host *host,
struct mmc_command *cmd)
{
u16 mode = 0;
struct mmc_data *data = cmd->data;
if (data == NULL) {
if (host->quirks2 &
SDHCI_QUIRK2_CLEAR_TRANSFERMODE_REG_BEFORE_CMD) {
/* must not clear SDHCI_TRANSFER_MODE when tuning */
if (cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200)
sdhci_writew(host, 0x0, SDHCI_TRANSFER_MODE);
} else {
/* clear Auto CMD settings for no data CMDs */
mode = sdhci_readw(host, SDHCI_TRANSFER_MODE);
sdhci_writew(host, mode & ~(SDHCI_TRNS_AUTO_CMD12 |
SDHCI_TRNS_AUTO_CMD23), SDHCI_TRANSFER_MODE);
}
return;
}
WARN_ON(!host->data);
if (!(host->quirks2 & SDHCI_QUIRK2_SUPPORT_SINGLE))
mode = SDHCI_TRNS_BLK_CNT_EN;
if (mmc_op_multi(cmd->opcode) || data->blocks > 1) {
mode = SDHCI_TRNS_BLK_CNT_EN | SDHCI_TRNS_MULTI;
sdhci_auto_cmd_select(host, cmd, &mode);
if (cmd->mrq->sbc && (host->flags & SDHCI_AUTO_CMD23))
sdhci_writel(host, cmd->mrq->sbc->arg, SDHCI_ARGUMENT2);
}
if (data->flags & MMC_DATA_READ)
mode |= SDHCI_TRNS_READ;
if (host->flags & SDHCI_REQ_USE_DMA)
mode |= SDHCI_TRNS_DMA;
sdhci_writew(host, mode, SDHCI_TRANSFER_MODE);
}
static bool sdhci_needs_reset(struct sdhci_host *host, struct mmc_request *mrq)
{
return (!(host->flags & SDHCI_DEVICE_DEAD) &&
((mrq->cmd && mrq->cmd->error) ||
(mrq->sbc && mrq->sbc->error) ||
(mrq->data && mrq->data->stop && mrq->data->stop->error) ||
(host->quirks & SDHCI_QUIRK_RESET_AFTER_REQUEST)));
}
static void __sdhci_finish_mrq(struct sdhci_host *host, struct mmc_request *mrq)
{
int i;
if (host->cmd && host->cmd->mrq == mrq)
host->cmd = NULL;
if (host->data_cmd && host->data_cmd->mrq == mrq)
host->data_cmd = NULL;
if (host->data && host->data->mrq == mrq)
host->data = NULL;
if (sdhci_needs_reset(host, mrq))
host->pending_reset = true;
for (i = 0; i < SDHCI_MAX_MRQS; i++) {
if (host->mrqs_done[i] == mrq) {
WARN_ON(1);
return;
}
}
for (i = 0; i < SDHCI_MAX_MRQS; i++) {
if (!host->mrqs_done[i]) {
host->mrqs_done[i] = mrq;
break;
}
}
WARN_ON(i >= SDHCI_MAX_MRQS);
sdhci_del_timer(host, mrq);
if (!sdhci_has_requests(host))
sdhci_led_deactivate(host);
}
static void sdhci_finish_mrq(struct sdhci_host *host, struct mmc_request *mrq)
{
__sdhci_finish_mrq(host, mrq);
queue_work(host->complete_wq, &host->complete_work);
}
static void sdhci_finish_data(struct sdhci_host *host)
{
struct mmc_command *data_cmd = host->data_cmd;
struct mmc_data *data = host->data;
host->data = NULL;
host->data_cmd = NULL;
/*
* The controller needs a reset of internal state machines upon error
* conditions.
*/
if (data->error) {
if (!host->cmd || host->cmd == data_cmd)
sdhci_do_reset(host, SDHCI_RESET_CMD);
sdhci_do_reset(host, SDHCI_RESET_DATA);
}
if ((host->flags & (SDHCI_REQ_USE_DMA | SDHCI_USE_ADMA)) ==
(SDHCI_REQ_USE_DMA | SDHCI_USE_ADMA))
sdhci_adma_table_post(host, data);
/*
* The specification states that the block count register must
* be updated, but it does not specify at what point in the
* data flow. That makes the register entirely useless to read
* back so we have to assume that nothing made it to the card
* in the event of an error.
*/
if (data->error)
data->bytes_xfered = 0;
else
data->bytes_xfered = data->blksz * data->blocks;
/*
* Need to send CMD12 if -
* a) open-ended multiblock transfer (no CMD23)
* b) error in multiblock transfer
*/
if (data->stop &&
(data->error ||
!data->mrq->sbc)) {
/*
* 'cap_cmd_during_tfr' request must not use the command line
* after mmc_command_done() has been called. It is upper layer's
* responsibility to send the stop command if required.
*/
if (data->mrq->cap_cmd_during_tfr) {
__sdhci_finish_mrq(host, data->mrq);
} else {
/* Avoid triggering warning in sdhci_send_command() */
host->cmd = NULL;
sdhci_send_command(host, data->stop);
}
} else {
__sdhci_finish_mrq(host, data->mrq);
}
}
void sdhci_send_command(struct sdhci_host *host, struct mmc_command *cmd)
{
int flags;
u32 mask;
unsigned long timeout;
WARN_ON(host->cmd);
/* Initially, a command has no error */
cmd->error = 0;
if ((host->quirks2 & SDHCI_QUIRK2_STOP_WITH_TC) &&
cmd->opcode == MMC_STOP_TRANSMISSION)
cmd->flags |= MMC_RSP_BUSY;
/* Wait max 10 ms */
timeout = 10;
mask = SDHCI_CMD_INHIBIT;
if (sdhci_data_line_cmd(cmd))
mask |= SDHCI_DATA_INHIBIT;
/* We shouldn't wait for data inihibit for stop commands, even
though they might use busy signaling */
if (cmd->mrq->data && (cmd == cmd->mrq->data->stop))
mask &= ~SDHCI_DATA_INHIBIT;
while (sdhci_readl(host, SDHCI_PRESENT_STATE) & mask) {
if (timeout == 0) {
pr_err("%s: Controller never released inhibit bit(s).\n",
mmc_hostname(host->mmc));
sdhci_dumpregs(host);
cmd->error = -EIO;
sdhci_finish_mrq(host, cmd->mrq);
return;
}
timeout--;
mdelay(1);
}
host->cmd = cmd;
if (sdhci_data_line_cmd(cmd)) {
WARN_ON(host->data_cmd);
host->data_cmd = cmd;
}
sdhci_prepare_data(host, cmd);
sdhci_writel(host, cmd->arg, SDHCI_ARGUMENT);
sdhci_set_transfer_mode(host, cmd);
if ((cmd->flags & MMC_RSP_136) && (cmd->flags & MMC_RSP_BUSY)) {
pr_err("%s: Unsupported response type!\n",
mmc_hostname(host->mmc));
cmd->error = -EINVAL;
sdhci_finish_mrq(host, cmd->mrq);
return;
}
if (!(cmd->flags & MMC_RSP_PRESENT))
flags = SDHCI_CMD_RESP_NONE;
else if (cmd->flags & MMC_RSP_136)
flags = SDHCI_CMD_RESP_LONG;
else if (cmd->flags & MMC_RSP_BUSY)
flags = SDHCI_CMD_RESP_SHORT_BUSY;
else
flags = SDHCI_CMD_RESP_SHORT;
if (cmd->flags & MMC_RSP_CRC)
flags |= SDHCI_CMD_CRC;
if (cmd->flags & MMC_RSP_OPCODE)
flags |= SDHCI_CMD_INDEX;
/* CMD19 is special in that the Data Present Select should be set */
if (cmd->data || cmd->opcode == MMC_SEND_TUNING_BLOCK ||
cmd->opcode == MMC_SEND_TUNING_BLOCK_HS200)
flags |= SDHCI_CMD_DATA;
timeout = jiffies;
if (host->data_timeout)
timeout += nsecs_to_jiffies(host->data_timeout);
else if (!cmd->data && cmd->busy_timeout > 9000)
timeout += DIV_ROUND_UP(cmd->busy_timeout, 1000) * HZ + HZ;
else
timeout += 10 * HZ;
sdhci_mod_timer(host, cmd->mrq, timeout);
sdhci_writew(host, SDHCI_MAKE_CMD(cmd->opcode, flags), SDHCI_COMMAND);
}
EXPORT_SYMBOL_GPL(sdhci_send_command);
static void sdhci_read_rsp_136(struct sdhci_host *host, struct mmc_command *cmd)
{
int i, reg;
for (i = 0; i < 4; i++) {
reg = SDHCI_RESPONSE + (3 - i) * 4;
cmd->resp[i] = sdhci_readl(host, reg);
}
if (host->quirks2 & SDHCI_QUIRK2_RSP_136_HAS_CRC)
return;
/* CRC is stripped so we need to do some shifting */
for (i = 0; i < 4; i++) {
cmd->resp[i] <<= 8;
if (i != 3)
cmd->resp[i] |= cmd->resp[i + 1] >> 24;
}
}
static void sdhci_finish_command(struct sdhci_host *host)
{
struct mmc_command *cmd = host->cmd;
host->cmd = NULL;
if (cmd->flags & MMC_RSP_PRESENT) {
if (cmd->flags & MMC_RSP_136) {
sdhci_read_rsp_136(host, cmd);
} else {
cmd->resp[0] = sdhci_readl(host, SDHCI_RESPONSE);
}
}
if (cmd->mrq->cap_cmd_during_tfr && cmd == cmd->mrq->cmd)
mmc_command_done(host->mmc, cmd->mrq);
/*
* The host can send and interrupt when the busy state has
* ended, allowing us to wait without wasting CPU cycles.
* The busy signal uses DAT0 so this is similar to waiting
* for data to complete.
*
* Note: The 1.0 specification is a bit ambiguous about this
* feature so there might be some problems with older
* controllers.
*/
if (cmd->flags & MMC_RSP_BUSY) {
if (cmd->data) {
DBG("Cannot wait for busy signal when also doing a data transfer");
} else if (!(host->quirks & SDHCI_QUIRK_NO_BUSY_IRQ) &&
cmd == host->data_cmd) {
/* Command complete before busy is ended */
return;
}
}
/* Finished CMD23, now send actual command. */
if (cmd == cmd->mrq->sbc) {
sdhci_send_command(host, cmd->mrq->cmd);
} else {
/* Processed actual command. */
if (host->data && host->data_early)
sdhci_finish_data(host);
if (!cmd->data)
__sdhci_finish_mrq(host, cmd->mrq);
}
}
static u16 sdhci_get_preset_value(struct sdhci_host *host)
{
u16 preset = 0;
switch (host->timing) {
case MMC_TIMING_UHS_SDR12:
preset = sdhci_readw(host, SDHCI_PRESET_FOR_SDR12);
break;
case MMC_TIMING_UHS_SDR25:
preset = sdhci_readw(host, SDHCI_PRESET_FOR_SDR25);
break;
case MMC_TIMING_UHS_SDR50:
preset = sdhci_readw(host, SDHCI_PRESET_FOR_SDR50);
break;
case MMC_TIMING_UHS_SDR104:
case MMC_TIMING_MMC_HS200:
preset = sdhci_readw(host, SDHCI_PRESET_FOR_SDR104);
break;
case MMC_TIMING_UHS_DDR50:
case MMC_TIMING_MMC_DDR52:
preset = sdhci_readw(host, SDHCI_PRESET_FOR_DDR50);
break;
case MMC_TIMING_MMC_HS400:
preset = sdhci_readw(host, SDHCI_PRESET_FOR_HS400);
break;
default:
pr_warn("%s: Invalid UHS-I mode selected\n",
mmc_hostname(host->mmc));
preset = sdhci_readw(host, SDHCI_PRESET_FOR_SDR12);
break;
}
return preset;
}
u16 sdhci_calc_clk(struct sdhci_host *host, unsigned int clock,
unsigned int *actual_clock)
{
int div = 0; /* Initialized for compiler warning */
int real_div = div, clk_mul = 1;
u16 clk = 0;
bool switch_base_clk = false;
if (host->version >= SDHCI_SPEC_300) {
if (host->preset_enabled) {
u16 pre_val;
clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL);
pre_val = sdhci_get_preset_value(host);
div = (pre_val & SDHCI_PRESET_SDCLK_FREQ_MASK)
>> SDHCI_PRESET_SDCLK_FREQ_SHIFT;
if (host->clk_mul &&
(pre_val & SDHCI_PRESET_CLKGEN_SEL_MASK)) {
clk = SDHCI_PROG_CLOCK_MODE;
real_div = div + 1;
clk_mul = host->clk_mul;
} else {
real_div = max_t(int, 1, div << 1);
}
goto clock_set;
}
/*
* Check if the Host Controller supports Programmable Clock
* Mode.
*/
if (host->clk_mul) {
for (div = 1; div <= 1024; div++) {
if ((host->max_clk * host->clk_mul / div)
<= clock)
break;
}
if ((host->max_clk * host->clk_mul / div) <= clock) {
/*
* Set Programmable Clock Mode in the Clock
* Control register.
*/
clk = SDHCI_PROG_CLOCK_MODE;
real_div = div;
clk_mul = host->clk_mul;
div--;
} else {
/*
* Divisor can be too small to reach clock
* speed requirement. Then use the base clock.
*/
switch_base_clk = true;
}
}
if (!host->clk_mul || switch_base_clk) {
/* Version 3.00 divisors must be a multiple of 2. */
if (host->max_clk <= clock)
div = 1;
else {
for (div = 2; div < SDHCI_MAX_DIV_SPEC_300;
div += 2) {
if ((host->max_clk / div) <= clock)
break;
}
}
real_div = div;
div >>= 1;
if ((host->quirks2 & SDHCI_QUIRK2_CLOCK_DIV_ZERO_BROKEN)
&& !div && host->max_clk <= 25000000)
div = 1;
}
} else {
/* Version 2.00 divisors must be a power of 2. */
for (div = 1; div < SDHCI_MAX_DIV_SPEC_200; div *= 2) {
if ((host->max_clk / div) <= clock)
break;
}
real_div = div;
div >>= 1;
}
clock_set:
if (real_div)
*actual_clock = (host->max_clk * clk_mul) / real_div;
clk |= (div & SDHCI_DIV_MASK) << SDHCI_DIVIDER_SHIFT;
clk |= ((div & SDHCI_DIV_HI_MASK) >> SDHCI_DIV_MASK_LEN)
<< SDHCI_DIVIDER_HI_SHIFT;
return clk;
}
EXPORT_SYMBOL_GPL(sdhci_calc_clk);
void sdhci_enable_clk(struct sdhci_host *host, u16 clk)
{
ktime_t timeout;
clk |= SDHCI_CLOCK_INT_EN;
sdhci_writew(host, clk, SDHCI_CLOCK_CONTROL);
/* Wait max 20 ms */
timeout = ktime_add_ms(ktime_get(), 20);
while (1) {
bool timedout = ktime_after(ktime_get(), timeout);
clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL);
if (clk & SDHCI_CLOCK_INT_STABLE)
break;
if (timedout) {
pr_err("%s: Internal clock never stabilised.\n",
mmc_hostname(host->mmc));
sdhci_dumpregs(host);
return;
}
udelay(10);
}
clk |= SDHCI_CLOCK_CARD_EN;
sdhci_writew(host, clk, SDHCI_CLOCK_CONTROL);
}
EXPORT_SYMBOL_GPL(sdhci_enable_clk);
void sdhci_set_clock(struct sdhci_host *host, unsigned int clock)
{
u16 clk;
host->mmc->actual_clock = 0;
sdhci_writew(host, 0, SDHCI_CLOCK_CONTROL);
if (clock == 0)
return;
clk = sdhci_calc_clk(host, clock, &host->mmc->actual_clock);
sdhci_enable_clk(host, clk);
}
EXPORT_SYMBOL_GPL(sdhci_set_clock);
static void sdhci_set_power_reg(struct sdhci_host *host, unsigned char mode,
unsigned short vdd)
{
struct mmc_host *mmc = host->mmc;
mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, vdd);
if (mode != MMC_POWER_OFF)
sdhci_writeb(host, SDHCI_POWER_ON, SDHCI_POWER_CONTROL);
else
sdhci_writeb(host, 0, SDHCI_POWER_CONTROL);
}
void sdhci_set_power_noreg(struct sdhci_host *host, unsigned char mode,
unsigned short vdd)
{
u8 pwr = 0;
if (mode != MMC_POWER_OFF) {
switch (1 << vdd) {
case MMC_VDD_165_195:
/*
* Without a regulator, SDHCI does not support 2.0v
* so we only get here if the driver deliberately
* added the 2.0v range to ocr_avail. Map it to 1.8v
* for the purpose of turning on the power.
*/
case MMC_VDD_20_21:
pwr = SDHCI_POWER_180;
break;
case MMC_VDD_29_30:
case MMC_VDD_30_31:
pwr = SDHCI_POWER_300;
break;
case MMC_VDD_32_33:
case MMC_VDD_33_34:
pwr = SDHCI_POWER_330;
break;
default:
WARN(1, "%s: Invalid vdd %#x\n",
mmc_hostname(host->mmc), vdd);
break;
}
}
if (host->pwr == pwr)
return;
host->pwr = pwr;
if (pwr == 0) {
sdhci_writeb(host, 0, SDHCI_POWER_CONTROL);
if (host->quirks2 & SDHCI_QUIRK2_CARD_ON_NEEDS_BUS_ON)
sdhci_runtime_pm_bus_off(host);
} else {
/*
* Spec says that we should clear the power reg before setting
* a new value. Some controllers don't seem to like this though.
*/
if (!(host->quirks & SDHCI_QUIRK_SINGLE_POWER_WRITE))
sdhci_writeb(host, 0, SDHCI_POWER_CONTROL);
/*
* At least the Marvell CaFe chip gets confused if we set the
* voltage and set turn on power at the same time, so set the
* voltage first.
*/
if (host->quirks & SDHCI_QUIRK_NO_SIMULT_VDD_AND_POWER)
sdhci_writeb(host, pwr, SDHCI_POWER_CONTROL);
pwr |= SDHCI_POWER_ON;
sdhci_writeb(host, pwr, SDHCI_POWER_CONTROL);
if (host->quirks2 & SDHCI_QUIRK2_CARD_ON_NEEDS_BUS_ON)
sdhci_runtime_pm_bus_on(host);
/*
* Some controllers need an extra 10ms delay of 10ms before
* they can apply clock after applying power
*/
if (host->quirks & SDHCI_QUIRK_DELAY_AFTER_POWER)
mdelay(10);
}
}
EXPORT_SYMBOL_GPL(sdhci_set_power_noreg);
void sdhci_set_power(struct sdhci_host *host, unsigned char mode,
unsigned short vdd)
{
if (IS_ERR(host->mmc->supply.vmmc))
sdhci_set_power_noreg(host, mode, vdd);
else
sdhci_set_power_reg(host, mode, vdd);
}
EXPORT_SYMBOL_GPL(sdhci_set_power);
/*****************************************************************************\
* *
* MMC callbacks *
* *
\*****************************************************************************/
void sdhci_request(struct mmc_host *mmc, struct mmc_request *mrq)
{
struct sdhci_host *host;
int present;
unsigned long flags;
host = mmc_priv(mmc);
/* Firstly check card presence */
present = mmc->ops->get_cd(mmc);
spin_lock_irqsave(&host->lock, flags);
sdhci_led_activate(host);
/*
* Ensure we don't send the STOP for non-SET_BLOCK_COUNTED
* requests if Auto-CMD12 is enabled.
*/
if (sdhci_auto_cmd12(host, mrq)) {
if (mrq->stop) {
mrq->data->stop = NULL;
mrq->stop = NULL;
}
}
if (!present || host->flags & SDHCI_DEVICE_DEAD) {
mrq->cmd->error = -ENOMEDIUM;
sdhci_finish_mrq(host, mrq);
} else {
if (mrq->sbc && !(host->flags & SDHCI_AUTO_CMD23))
sdhci_send_command(host, mrq->sbc);
else
sdhci_send_command(host, mrq->cmd);
}
spin_unlock_irqrestore(&host->lock, flags);
}
EXPORT_SYMBOL_GPL(sdhci_request);
void sdhci_set_bus_width(struct sdhci_host *host, int width)
{
u8 ctrl;
ctrl = sdhci_readb(host, SDHCI_HOST_CONTROL);
if (width == MMC_BUS_WIDTH_8) {
ctrl &= ~SDHCI_CTRL_4BITBUS;
ctrl |= SDHCI_CTRL_8BITBUS;
} else {
if (host->mmc->caps & MMC_CAP_8_BIT_DATA)
ctrl &= ~SDHCI_CTRL_8BITBUS;
if (width == MMC_BUS_WIDTH_4)
ctrl |= SDHCI_CTRL_4BITBUS;
else
ctrl &= ~SDHCI_CTRL_4BITBUS;
}
sdhci_writeb(host, ctrl, SDHCI_HOST_CONTROL);
}
EXPORT_SYMBOL_GPL(sdhci_set_bus_width);
void sdhci_set_uhs_signaling(struct sdhci_host *host, unsigned timing)
{
u16 ctrl_2;
ctrl_2 = sdhci_readw(host, SDHCI_HOST_CONTROL2);
/* Select Bus Speed Mode for host */
ctrl_2 &= ~SDHCI_CTRL_UHS_MASK;
if ((timing == MMC_TIMING_MMC_HS200) ||
(timing == MMC_TIMING_UHS_SDR104))
ctrl_2 |= SDHCI_CTRL_UHS_SDR104;
else if (timing == MMC_TIMING_UHS_SDR12)
ctrl_2 |= SDHCI_CTRL_UHS_SDR12;
else if (timing == MMC_TIMING_UHS_SDR25)
ctrl_2 |= SDHCI_CTRL_UHS_SDR25;
else if (timing == MMC_TIMING_UHS_SDR50)
ctrl_2 |= SDHCI_CTRL_UHS_SDR50;
else if ((timing == MMC_TIMING_UHS_DDR50) ||
(timing == MMC_TIMING_MMC_DDR52))
ctrl_2 |= SDHCI_CTRL_UHS_DDR50;
else if (timing == MMC_TIMING_MMC_HS400)
ctrl_2 |= SDHCI_CTRL_HS400; /* Non-standard */
sdhci_writew(host, ctrl_2, SDHCI_HOST_CONTROL2);
}
EXPORT_SYMBOL_GPL(sdhci_set_uhs_signaling);
void sdhci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct sdhci_host *host = mmc_priv(mmc);
u8 ctrl;
if (ios->power_mode == MMC_POWER_UNDEFINED)
return;
if (host->flags & SDHCI_DEVICE_DEAD) {
if (!IS_ERR(mmc->supply.vmmc) &&
ios->power_mode == MMC_POWER_OFF)
mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0);
return;
}
/*
* Reset the chip on each power off.
* Should clear out any weird states.
*/
if (ios->power_mode == MMC_POWER_OFF) {
sdhci_writel(host, 0, SDHCI_SIGNAL_ENABLE);
sdhci_reinit(host);
}
if (host->version >= SDHCI_SPEC_300 &&
(ios->power_mode == MMC_POWER_UP) &&
!(host->quirks2 & SDHCI_QUIRK2_PRESET_VALUE_BROKEN))
sdhci_enable_preset_value(host, false);
if (!ios->clock || ios->clock != host->clock) {
host->ops->set_clock(host, ios->clock);
host->clock = ios->clock;
if (host->quirks & SDHCI_QUIRK_DATA_TIMEOUT_USES_SDCLK &&
host->clock) {
host->timeout_clk = host->mmc->actual_clock ?
host->mmc->actual_clock / 1000 :
host->clock / 1000;
host->mmc->max_busy_timeout =
host->ops->get_max_timeout_count ?
host->ops->get_max_timeout_count(host) :
1 << 27;
host->mmc->max_busy_timeout /= host->timeout_clk;
}
}
if (host->ops->set_power)
host->ops->set_power(host, ios->power_mode, ios->vdd);
else
sdhci_set_power(host, ios->power_mode, ios->vdd);
if (host->ops->platform_send_init_74_clocks)
host->ops->platform_send_init_74_clocks(host, ios->power_mode);
host->ops->set_bus_width(host, ios->bus_width);
ctrl = sdhci_readb(host, SDHCI_HOST_CONTROL);
if (!(host->quirks & SDHCI_QUIRK_NO_HISPD_BIT)) {
if (ios->timing == MMC_TIMING_SD_HS ||
ios->timing == MMC_TIMING_MMC_HS ||
ios->timing == MMC_TIMING_MMC_HS400 ||
ios->timing == MMC_TIMING_MMC_HS200 ||
ios->timing == MMC_TIMING_MMC_DDR52 ||
ios->timing == MMC_TIMING_UHS_SDR50 ||
ios->timing == MMC_TIMING_UHS_SDR104 ||
ios->timing == MMC_TIMING_UHS_DDR50 ||
ios->timing == MMC_TIMING_UHS_SDR25)
ctrl |= SDHCI_CTRL_HISPD;
else
ctrl &= ~SDHCI_CTRL_HISPD;
}
if (host->version >= SDHCI_SPEC_300) {
u16 clk, ctrl_2;
if (!host->preset_enabled) {
sdhci_writeb(host, ctrl, SDHCI_HOST_CONTROL);
/*
* We only need to set Driver Strength if the
* preset value enable is not set.
*/
ctrl_2 = sdhci_readw(host, SDHCI_HOST_CONTROL2);
ctrl_2 &= ~SDHCI_CTRL_DRV_TYPE_MASK;
if (ios->drv_type == MMC_SET_DRIVER_TYPE_A)
ctrl_2 |= SDHCI_CTRL_DRV_TYPE_A;
else if (ios->drv_type == MMC_SET_DRIVER_TYPE_B)
ctrl_2 |= SDHCI_CTRL_DRV_TYPE_B;
else if (ios->drv_type == MMC_SET_DRIVER_TYPE_C)
ctrl_2 |= SDHCI_CTRL_DRV_TYPE_C;
else if (ios->drv_type == MMC_SET_DRIVER_TYPE_D)
ctrl_2 |= SDHCI_CTRL_DRV_TYPE_D;
else {
pr_warn("%s: invalid driver type, default to driver type B\n",
mmc_hostname(mmc));
ctrl_2 |= SDHCI_CTRL_DRV_TYPE_B;
}
sdhci_writew(host, ctrl_2, SDHCI_HOST_CONTROL2);
} else {
/*
* According to SDHC Spec v3.00, if the Preset Value
* Enable in the Host Control 2 register is set, we
* need to reset SD Clock Enable before changing High
* Speed Enable to avoid generating clock gliches.
*/
/* Reset SD Clock Enable */
clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL);
clk &= ~SDHCI_CLOCK_CARD_EN;
sdhci_writew(host, clk, SDHCI_CLOCK_CONTROL);
sdhci_writeb(host, ctrl, SDHCI_HOST_CONTROL);
/* Re-enable SD Clock */
host->ops->set_clock(host, host->clock);
}
/* Reset SD Clock Enable */
clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL);
clk &= ~SDHCI_CLOCK_CARD_EN;
sdhci_writew(host, clk, SDHCI_CLOCK_CONTROL);
host->ops->set_uhs_signaling(host, ios->timing);
host->timing = ios->timing;
if (!(host->quirks2 & SDHCI_QUIRK2_PRESET_VALUE_BROKEN) &&
((ios->timing == MMC_TIMING_UHS_SDR12) ||
(ios->timing == MMC_TIMING_UHS_SDR25) ||
(ios->timing == MMC_TIMING_UHS_SDR50) ||
(ios->timing == MMC_TIMING_UHS_SDR104) ||
(ios->timing == MMC_TIMING_UHS_DDR50) ||
(ios->timing == MMC_TIMING_MMC_DDR52))) {
u16 preset;
sdhci_enable_preset_value(host, true);
preset = sdhci_get_preset_value(host);
ios->drv_type = (preset & SDHCI_PRESET_DRV_MASK)
>> SDHCI_PRESET_DRV_SHIFT;
}
/* Re-enable SD Clock */
host->ops->set_clock(host, host->clock);
} else
sdhci_writeb(host, ctrl, SDHCI_HOST_CONTROL);
/*
* Some (ENE) controllers go apeshit on some ios operation,
* signalling timeout and CRC errors even on CMD0. Resetting
* it on each ios seems to solve the problem.
*/
if (host->quirks & SDHCI_QUIRK_RESET_CMD_DATA_ON_IOS)
sdhci_do_reset(host, SDHCI_RESET_CMD | SDHCI_RESET_DATA);
}
EXPORT_SYMBOL_GPL(sdhci_set_ios);
static int sdhci_get_cd(struct mmc_host *mmc)
{
struct sdhci_host *host = mmc_priv(mmc);
int gpio_cd = mmc_gpio_get_cd(mmc);
if (host->flags & SDHCI_DEVICE_DEAD)
return 0;
/* If nonremovable, assume that the card is always present. */
if (!mmc_card_is_removable(host->mmc))
return 1;
/*
* Try slot gpio detect, if defined it take precedence
* over build in controller functionality
*/
if (gpio_cd >= 0)
return !!gpio_cd;
/* If polling, assume that the card is always present. */
if (host->quirks & SDHCI_QUIRK_BROKEN_CARD_DETECTION)
return 1;
/* Host native card detect */
return !!(sdhci_readl(host, SDHCI_PRESENT_STATE) & SDHCI_CARD_PRESENT);
}
static int sdhci_check_ro(struct sdhci_host *host)
{
unsigned long flags;
int is_readonly;
spin_lock_irqsave(&host->lock, flags);
if (host->flags & SDHCI_DEVICE_DEAD)
is_readonly = 0;
else if (host->ops->get_ro)
is_readonly = host->ops->get_ro(host);
else if (mmc_can_gpio_ro(host->mmc))
is_readonly = mmc_gpio_get_ro(host->mmc);
else
is_readonly = !(sdhci_readl(host, SDHCI_PRESENT_STATE)
& SDHCI_WRITE_PROTECT);
spin_unlock_irqrestore(&host->lock, flags);
/* This quirk needs to be replaced by a callback-function later */
return host->quirks & SDHCI_QUIRK_INVERTED_WRITE_PROTECT ?
!is_readonly : is_readonly;
}
#define SAMPLE_COUNT 5
static int sdhci_get_ro(struct mmc_host *mmc)
{
struct sdhci_host *host = mmc_priv(mmc);
int i, ro_count;
if (!(host->quirks & SDHCI_QUIRK_UNSTABLE_RO_DETECT))
return sdhci_check_ro(host);
ro_count = 0;
for (i = 0; i < SAMPLE_COUNT; i++) {
if (sdhci_check_ro(host)) {
if (++ro_count > SAMPLE_COUNT / 2)
return 1;
}
msleep(30);
}
return 0;
}
static void sdhci_hw_reset(struct mmc_host *mmc)
{
struct sdhci_host *host = mmc_priv(mmc);
if (host->ops && host->ops->hw_reset)
host->ops->hw_reset(host);
}
static void sdhci_enable_sdio_irq_nolock(struct sdhci_host *host, int enable)
{
if (!(host->flags & SDHCI_DEVICE_DEAD)) {
if (enable)
host->ier |= SDHCI_INT_CARD_INT;
else
host->ier &= ~SDHCI_INT_CARD_INT;
sdhci_writel(host, host->ier, SDHCI_INT_ENABLE);
sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE);
}
}
void sdhci_enable_sdio_irq(struct mmc_host *mmc, int enable)
{
struct sdhci_host *host = mmc_priv(mmc);
unsigned long flags;
if (enable)
pm_runtime_get_noresume(host->mmc->parent);
spin_lock_irqsave(&host->lock, flags);
if (enable)
host->flags |= SDHCI_SDIO_IRQ_ENABLED;
else
host->flags &= ~SDHCI_SDIO_IRQ_ENABLED;
sdhci_enable_sdio_irq_nolock(host, enable);
spin_unlock_irqrestore(&host->lock, flags);
if (!enable)
pm_runtime_put_noidle(host->mmc->parent);
}
EXPORT_SYMBOL_GPL(sdhci_enable_sdio_irq);
static void sdhci_ack_sdio_irq(struct mmc_host *mmc)
{
struct sdhci_host *host = mmc_priv(mmc);
unsigned long flags;
spin_lock_irqsave(&host->lock, flags);
if (host->flags & SDHCI_SDIO_IRQ_ENABLED)
sdhci_enable_sdio_irq_nolock(host, true);
spin_unlock_irqrestore(&host->lock, flags);
}
int sdhci_start_signal_voltage_switch(struct mmc_host *mmc,
struct mmc_ios *ios)
{
struct sdhci_host *host = mmc_priv(mmc);
u16 ctrl;
int ret;
/*
* Signal Voltage Switching is only applicable for Host Controllers
* v3.00 and above.
*/
if (host->version < SDHCI_SPEC_300)
return 0;
ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
switch (ios->signal_voltage) {
case MMC_SIGNAL_VOLTAGE_330:
if (!(host->flags & SDHCI_SIGNALING_330))
return -EINVAL;
/* Set 1.8V Signal Enable in the Host Control2 register to 0 */
ctrl &= ~SDHCI_CTRL_VDD_180;
sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2);
if (!IS_ERR(mmc->supply.vqmmc)) {
ret = mmc_regulator_set_vqmmc(mmc, ios);
if (ret) {
pr_warn("%s: Switching to 3.3V signalling voltage failed\n",
mmc_hostname(mmc));
return -EIO;
}
}
/* Wait for 5ms */
usleep_range(5000, 5500);
/* 3.3V regulator output should be stable within 5 ms */
ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
if (!(ctrl & SDHCI_CTRL_VDD_180))
return 0;
pr_warn("%s: 3.3V regulator output did not became stable\n",
mmc_hostname(mmc));
return -EAGAIN;
case MMC_SIGNAL_VOLTAGE_180:
if (!(host->flags & SDHCI_SIGNALING_180))
return -EINVAL;
if (!IS_ERR(mmc->supply.vqmmc)) {
ret = mmc_regulator_set_vqmmc(mmc, ios);
if (ret) {
pr_warn("%s: Switching to 1.8V signalling voltage failed\n",
mmc_hostname(mmc));
return -EIO;
}
}
/*
* Enable 1.8V Signal Enable in the Host Control2
* register
*/
ctrl |= SDHCI_CTRL_VDD_180;
sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2);
/* Some controller need to do more when switching */
if (host->ops->voltage_switch)
host->ops->voltage_switch(host);
/* 1.8V regulator output should be stable within 5 ms */
ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
if (ctrl & SDHCI_CTRL_VDD_180)
return 0;
pr_warn("%s: 1.8V regulator output did not became stable\n",
mmc_hostname(mmc));
return -EAGAIN;
case MMC_SIGNAL_VOLTAGE_120:
if (!(host->flags & SDHCI_SIGNALING_120))
return -EINVAL;
if (!IS_ERR(mmc->supply.vqmmc)) {
ret = mmc_regulator_set_vqmmc(mmc, ios);
if (ret) {
pr_warn("%s: Switching to 1.2V signalling voltage failed\n",
mmc_hostname(mmc));
return -EIO;
}
}
return 0;
default:
/* No signal voltage switch required */
return 0;
}
}
EXPORT_SYMBOL_GPL(sdhci_start_signal_voltage_switch);
static int sdhci_card_busy(struct mmc_host *mmc)
{
struct sdhci_host *host = mmc_priv(mmc);
u32 present_state;
/* Check whether DAT[0] is 0 */
present_state = sdhci_readl(host, SDHCI_PRESENT_STATE);
return !(present_state & SDHCI_DATA_0_LVL_MASK);
}
static int sdhci_prepare_hs400_tuning(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct sdhci_host *host = mmc_priv(mmc);
unsigned long flags;
spin_lock_irqsave(&host->lock, flags);
host->flags |= SDHCI_HS400_TUNING;
spin_unlock_irqrestore(&host->lock, flags);
return 0;
}
void sdhci_start_tuning(struct sdhci_host *host)
{
u16 ctrl;
ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
ctrl |= SDHCI_CTRL_EXEC_TUNING;
if (host->quirks2 & SDHCI_QUIRK2_TUNING_WORK_AROUND)
ctrl |= SDHCI_CTRL_TUNED_CLK;
sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2);
/*
* As per the Host Controller spec v3.00, tuning command
* generates Buffer Read Ready interrupt, so enable that.
*
* Note: The spec clearly says that when tuning sequence
* is being performed, the controller does not generate
* interrupts other than Buffer Read Ready interrupt. But
* to make sure we don't hit a controller bug, we _only_
* enable Buffer Read Ready interrupt here.
*/
sdhci_writel(host, SDHCI_INT_DATA_AVAIL, SDHCI_INT_ENABLE);
sdhci_writel(host, SDHCI_INT_DATA_AVAIL, SDHCI_SIGNAL_ENABLE);
}
EXPORT_SYMBOL_GPL(sdhci_start_tuning);
void sdhci_end_tuning(struct sdhci_host *host)
{
sdhci_writel(host, host->ier, SDHCI_INT_ENABLE);
sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE);
}
EXPORT_SYMBOL_GPL(sdhci_end_tuning);
void sdhci_reset_tuning(struct sdhci_host *host)
{
u16 ctrl;
ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
ctrl &= ~SDHCI_CTRL_TUNED_CLK;
ctrl &= ~SDHCI_CTRL_EXEC_TUNING;
sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2);
}
EXPORT_SYMBOL_GPL(sdhci_reset_tuning);
static void sdhci_abort_tuning(struct sdhci_host *host, u32 opcode)
{
sdhci_reset_tuning(host);
sdhci_do_reset(host, SDHCI_RESET_CMD);
sdhci_do_reset(host, SDHCI_RESET_DATA);
sdhci_end_tuning(host);
mmc_abort_tuning(host->mmc, opcode);
}
/*
* We use sdhci_send_tuning() because mmc_send_tuning() is not a good fit. SDHCI
* tuning command does not have a data payload (or rather the hardware does it
* automatically) so mmc_send_tuning() will return -EIO. Also the tuning command
* interrupt setup is different to other commands and there is no timeout
* interrupt so special handling is needed.
*/
void sdhci_send_tuning(struct sdhci_host *host, u32 opcode)
{
struct mmc_host *mmc = host->mmc;
struct mmc_command cmd = {};
struct mmc_request mrq = {};
unsigned long flags;
u32 b = host->sdma_boundary;
spin_lock_irqsave(&host->lock, flags);
cmd.opcode = opcode;
cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC;
cmd.mrq = &mrq;
mrq.cmd = &cmd;
/*
* In response to CMD19, the card sends 64 bytes of tuning
* block to the Host Controller. So we set the block size
* to 64 here.
*/
if (cmd.opcode == MMC_SEND_TUNING_BLOCK_HS200 &&
mmc->ios.bus_width == MMC_BUS_WIDTH_8)
sdhci_writew(host, SDHCI_MAKE_BLKSZ(b, 128), SDHCI_BLOCK_SIZE);
else
sdhci_writew(host, SDHCI_MAKE_BLKSZ(b, 64), SDHCI_BLOCK_SIZE);
/*
* The tuning block is sent by the card to the host controller.
* So we set the TRNS_READ bit in the Transfer Mode register.
* This also takes care of setting DMA Enable and Multi Block
* Select in the same register to 0.
*/
sdhci_writew(host, SDHCI_TRNS_READ, SDHCI_TRANSFER_MODE);
sdhci_send_command(host, &cmd);
host->cmd = NULL;
sdhci_del_timer(host, &mrq);
host->tuning_done = 0;
spin_unlock_irqrestore(&host->lock, flags);
/* Wait for Buffer Read Ready interrupt */
wait_event_timeout(host->buf_ready_int, (host->tuning_done == 1),
msecs_to_jiffies(50));
}
EXPORT_SYMBOL_GPL(sdhci_send_tuning);
static int __sdhci_execute_tuning(struct sdhci_host *host, u32 opcode)
{
int i;
/*
* Issue opcode repeatedly till Execute Tuning is set to 0 or the number
* of loops reaches tuning loop count.
*/
for (i = 0; i < host->tuning_loop_count; i++) {
u16 ctrl;
sdhci_send_tuning(host, opcode);
if (!host->tuning_done) {
pr_info("%s: Tuning timeout, falling back to fixed sampling clock\n",
mmc_hostname(host->mmc));
sdhci_abort_tuning(host, opcode);
return -ETIMEDOUT;
}
/* Spec does not require a delay between tuning cycles */
if (host->tuning_delay > 0)
mdelay(host->tuning_delay);
ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
if (!(ctrl & SDHCI_CTRL_EXEC_TUNING)) {
if (ctrl & SDHCI_CTRL_TUNED_CLK)
return 0; /* Success! */
break;
}
}
pr_info("%s: Tuning failed, falling back to fixed sampling clock\n",
mmc_hostname(host->mmc));
sdhci_reset_tuning(host);
return -EAGAIN;
}
int sdhci_execute_tuning(struct mmc_host *mmc, u32 opcode)
{
struct sdhci_host *host = mmc_priv(mmc);
int err = 0;
unsigned int tuning_count = 0;
bool hs400_tuning;
hs400_tuning = host->flags & SDHCI_HS400_TUNING;
if (host->tuning_mode == SDHCI_TUNING_MODE_1)
tuning_count = host->tuning_count;
/*
* The Host Controller needs tuning in case of SDR104 and DDR50
* mode, and for SDR50 mode when Use Tuning for SDR50 is set in
* the Capabilities register.
* If the Host Controller supports the HS200 mode then the
* tuning function has to be executed.
*/
switch (host->timing) {
/* HS400 tuning is done in HS200 mode */
case MMC_TIMING_MMC_HS400:
err = -EINVAL;
goto out;
case MMC_TIMING_MMC_HS200:
/*
* Periodic re-tuning for HS400 is not expected to be needed, so
* disable it here.
*/
if (hs400_tuning)
tuning_count = 0;
break;
case MMC_TIMING_UHS_SDR104:
case MMC_TIMING_UHS_DDR50:
break;
case MMC_TIMING_UHS_SDR50:
if (host->flags & SDHCI_SDR50_NEEDS_TUNING)
break;
/* FALLTHROUGH */
default:
goto out;
}
if (host->ops->platform_execute_tuning) {
err = host->ops->platform_execute_tuning(host, opcode);
goto out;
}
host->mmc->retune_period = tuning_count;
if (host->tuning_delay < 0)
host->tuning_delay = opcode == MMC_SEND_TUNING_BLOCK;
sdhci_start_tuning(host);
host->tuning_err = __sdhci_execute_tuning(host, opcode);
sdhci_end_tuning(host);
out:
host->flags &= ~SDHCI_HS400_TUNING;
return err;
}
EXPORT_SYMBOL_GPL(sdhci_execute_tuning);
static void sdhci_enable_preset_value(struct sdhci_host *host, bool enable)
{
/* Host Controller v3.00 defines preset value registers */
if (host->version < SDHCI_SPEC_300)
return;
/*
* We only enable or disable Preset Value if they are not already
* enabled or disabled respectively. Otherwise, we bail out.
*/
if (host->preset_enabled != enable) {
u16 ctrl = sdhci_readw(host, SDHCI_HOST_CONTROL2);
if (enable)
ctrl |= SDHCI_CTRL_PRESET_VAL_ENABLE;
else
ctrl &= ~SDHCI_CTRL_PRESET_VAL_ENABLE;
sdhci_writew(host, ctrl, SDHCI_HOST_CONTROL2);
if (enable)
host->flags |= SDHCI_PV_ENABLED;
else
host->flags &= ~SDHCI_PV_ENABLED;
host->preset_enabled = enable;
}
}
static void sdhci_post_req(struct mmc_host *mmc, struct mmc_request *mrq,
int err)
{
struct sdhci_host *host = mmc_priv(mmc);
struct mmc_data *data = mrq->data;
if (data->host_cookie != COOKIE_UNMAPPED)
dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len,
mmc_get_dma_dir(data));
data->host_cookie = COOKIE_UNMAPPED;
}
static void sdhci_pre_req(struct mmc_host *mmc, struct mmc_request *mrq)
{
struct sdhci_host *host = mmc_priv(mmc);
mrq->data->host_cookie = COOKIE_UNMAPPED;
/*
* No pre-mapping in the pre hook if we're using the bounce buffer,
* for that we would need two bounce buffers since one buffer is
* in flight when this is getting called.
*/
if (host->flags & SDHCI_REQ_USE_DMA && !host->bounce_buffer)
sdhci_pre_dma_transfer(host, mrq->data, COOKIE_PRE_MAPPED);
}
static void sdhci_error_out_mrqs(struct sdhci_host *host, int err)
{
if (host->data_cmd) {
host->data_cmd->error = err;
sdhci_finish_mrq(host, host->data_cmd->mrq);
}
if (host->cmd) {
host->cmd->error = err;
sdhci_finish_mrq(host, host->cmd->mrq);
}
}
static void sdhci_card_event(struct mmc_host *mmc)
{
struct sdhci_host *host = mmc_priv(mmc);
unsigned long flags;
int present;
/* First check if client has provided their own card event */
if (host->ops->card_event)
host->ops->card_event(host);
present = mmc->ops->get_cd(mmc);
spin_lock_irqsave(&host->lock, flags);
/* Check sdhci_has_requests() first in case we are runtime suspended */
if (sdhci_has_requests(host) && !present) {
pr_err("%s: Card removed during transfer!\n",
mmc_hostname(host->mmc));
pr_err("%s: Resetting controller.\n",
mmc_hostname(host->mmc));
sdhci_do_reset(host, SDHCI_RESET_CMD);
sdhci_do_reset(host, SDHCI_RESET_DATA);
sdhci_error_out_mrqs(host, -ENOMEDIUM);
}
spin_unlock_irqrestore(&host->lock, flags);
}
static const struct mmc_host_ops sdhci_ops = {
.request = sdhci_request,
.post_req = sdhci_post_req,
.pre_req = sdhci_pre_req,
.set_ios = sdhci_set_ios,
.get_cd = sdhci_get_cd,
.get_ro = sdhci_get_ro,
.hw_reset = sdhci_hw_reset,
.enable_sdio_irq = sdhci_enable_sdio_irq,
.ack_sdio_irq = sdhci_ack_sdio_irq,
.start_signal_voltage_switch = sdhci_start_signal_voltage_switch,
.prepare_hs400_tuning = sdhci_prepare_hs400_tuning,
.execute_tuning = sdhci_execute_tuning,
.card_event = sdhci_card_event,
.card_busy = sdhci_card_busy,
};
/*****************************************************************************\
* *
* Request done *
* *
\*****************************************************************************/
static bool sdhci_request_done(struct sdhci_host *host)
{
unsigned long flags;
struct mmc_request *mrq;
int i;
spin_lock_irqsave(&host->lock, flags);
for (i = 0; i < SDHCI_MAX_MRQS; i++) {
mrq = host->mrqs_done[i];
if (mrq)
break;
}
if (!mrq) {
spin_unlock_irqrestore(&host->lock, flags);
return true;
}
/*
* Always unmap the data buffers if they were mapped by
* sdhci_prepare_data() whenever we finish with a request.
* This avoids leaking DMA mappings on error.
*/
if (host->flags & SDHCI_REQ_USE_DMA) {
struct mmc_data *data = mrq->data;
if (data && data->host_cookie == COOKIE_MAPPED) {
if (host->bounce_buffer) {
/*
* On reads, copy the bounced data into the
* sglist
*/
if (mmc_get_dma_dir(data) == DMA_FROM_DEVICE) {
unsigned int length = data->bytes_xfered;
if (length > host->bounce_buffer_size) {
pr_err("%s: bounce buffer is %u bytes but DMA claims to have transferred %u bytes\n",
mmc_hostname(host->mmc),
host->bounce_buffer_size,
data->bytes_xfered);
/* Cap it down and continue */
length = host->bounce_buffer_size;
}
dma_sync_single_for_cpu(
host->mmc->parent,
host->bounce_addr,
host->bounce_buffer_size,
DMA_FROM_DEVICE);
sg_copy_from_buffer(data->sg,
data->sg_len,
host->bounce_buffer,
length);
} else {
/* No copying, just switch ownership */
dma_sync_single_for_cpu(
host->mmc->parent,
host->bounce_addr,
host->bounce_buffer_size,
mmc_get_dma_dir(data));
}
} else {
/* Unmap the raw data */
dma_unmap_sg(mmc_dev(host->mmc), data->sg,
data->sg_len,
mmc_get_dma_dir(data));
}
data->host_cookie = COOKIE_UNMAPPED;
}
}
/*
* The controller needs a reset of internal state machines
* upon error conditions.
*/
if (sdhci_needs_reset(host, mrq)) {
/*
* Do not finish until command and data lines are available for
* reset. Note there can only be one other mrq, so it cannot
* also be in mrqs_done, otherwise host->cmd and host->data_cmd
* would both be null.
*/
if (host->cmd || host->data_cmd) {
spin_unlock_irqrestore(&host->lock, flags);
return true;
}
/* Some controllers need this kick or reset won't work here */
if (host->quirks & SDHCI_QUIRK_CLOCK_BEFORE_RESET)
/* This is to force an update */
host->ops->set_clock(host, host->clock);
/* Spec says we should do both at the same time, but Ricoh
controllers do not like that. */
sdhci_do_reset(host, SDHCI_RESET_CMD);
sdhci_do_reset(host, SDHCI_RESET_DATA);
host->pending_reset = false;
}
host->mrqs_done[i] = NULL;
spin_unlock_irqrestore(&host->lock, flags);
mmc_request_done(host->mmc, mrq);
return false;
}
static void sdhci_complete_work(struct work_struct *work)
{
struct sdhci_host *host = container_of(work, struct sdhci_host,
complete_work);
while (!sdhci_request_done(host))
;
}
static void sdhci_timeout_timer(struct timer_list *t)
{
struct sdhci_host *host;
unsigned long flags;
host = from_timer(host, t, timer);
spin_lock_irqsave(&host->lock, flags);
if (host->cmd && !sdhci_data_line_cmd(host->cmd)) {
pr_err("%s: Timeout waiting for hardware cmd interrupt.\n",
mmc_hostname(host->mmc));
sdhci_dumpregs(host);
host->cmd->error = -ETIMEDOUT;
sdhci_finish_mrq(host, host->cmd->mrq);
}
spin_unlock_irqrestore(&host->lock, flags);
}
static void sdhci_timeout_data_timer(struct timer_list *t)
{
struct sdhci_host *host;
unsigned long flags;
host = from_timer(host, t, data_timer);
spin_lock_irqsave(&host->lock, flags);
if (host->data || host->data_cmd ||
(host->cmd && sdhci_data_line_cmd(host->cmd))) {
pr_err("%s: Timeout waiting for hardware interrupt.\n",
mmc_hostname(host->mmc));
sdhci_dumpregs(host);
if (host->data) {
host->data->error = -ETIMEDOUT;
sdhci_finish_data(host);
queue_work(host->complete_wq, &host->complete_work);
} else if (host->data_cmd) {
host->data_cmd->error = -ETIMEDOUT;
sdhci_finish_mrq(host, host->data_cmd->mrq);
} else {
host->cmd->error = -ETIMEDOUT;
sdhci_finish_mrq(host, host->cmd->mrq);
}
}
spin_unlock_irqrestore(&host->lock, flags);
}
/*****************************************************************************\
* *
* Interrupt handling *
* *
\*****************************************************************************/
static void sdhci_cmd_irq(struct sdhci_host *host, u32 intmask, u32 *intmask_p)
{
/* Handle auto-CMD12 error */
if (intmask & SDHCI_INT_AUTO_CMD_ERR && host->data_cmd) {
struct mmc_request *mrq = host->data_cmd->mrq;
u16 auto_cmd_status = sdhci_readw(host, SDHCI_AUTO_CMD_STATUS);
int data_err_bit = (auto_cmd_status & SDHCI_AUTO_CMD_TIMEOUT) ?
SDHCI_INT_DATA_TIMEOUT :
SDHCI_INT_DATA_CRC;
/* Treat auto-CMD12 error the same as data error */
if (!mrq->sbc && (host->flags & SDHCI_AUTO_CMD12)) {
*intmask_p |= data_err_bit;
return;
}
}
if (!host->cmd) {
/*
* SDHCI recovers from errors by resetting the cmd and data
* circuits. Until that is done, there very well might be more
* interrupts, so ignore them in that case.
*/
if (host->pending_reset)
return;
pr_err("%s: Got command interrupt 0x%08x even though no command operation was in progress.\n",
mmc_hostname(host->mmc), (unsigned)intmask);
sdhci_dumpregs(host);
return;
}
if (intmask & (SDHCI_INT_TIMEOUT | SDHCI_INT_CRC |
SDHCI_INT_END_BIT | SDHCI_INT_INDEX)) {
if (intmask & SDHCI_INT_TIMEOUT)
host->cmd->error = -ETIMEDOUT;
else
host->cmd->error = -EILSEQ;
/* Treat data command CRC error the same as data CRC error */
if (host->cmd->data &&
(intmask & (SDHCI_INT_CRC | SDHCI_INT_TIMEOUT)) ==
SDHCI_INT_CRC) {
host->cmd = NULL;
*intmask_p |= SDHCI_INT_DATA_CRC;
return;
}
__sdhci_finish_mrq(host, host->cmd->mrq);
return;
}
/* Handle auto-CMD23 error */
if (intmask & SDHCI_INT_AUTO_CMD_ERR) {
struct mmc_request *mrq = host->cmd->mrq;
u16 auto_cmd_status = sdhci_readw(host, SDHCI_AUTO_CMD_STATUS);
int err = (auto_cmd_status & SDHCI_AUTO_CMD_TIMEOUT) ?
-ETIMEDOUT :
-EILSEQ;
if (mrq->sbc && (host->flags & SDHCI_AUTO_CMD23)) {
mrq->sbc->error = err;
__sdhci_finish_mrq(host, mrq);
return;
}
}
if (intmask & SDHCI_INT_RESPONSE)
sdhci_finish_command(host);
}
static void sdhci_adma_show_error(struct sdhci_host *host)
{
void *desc = host->adma_table;
sdhci_dumpregs(host);
while (true) {
struct sdhci_adma2_64_desc *dma_desc = desc;
if (host->flags & SDHCI_USE_64_BIT_DMA)
DBG("%p: DMA 0x%08x%08x, LEN 0x%04x, Attr=0x%02x\n",
desc, le32_to_cpu(dma_desc->addr_hi),
le32_to_cpu(dma_desc->addr_lo),
le16_to_cpu(dma_desc->len),
le16_to_cpu(dma_desc->cmd));
else
DBG("%p: DMA 0x%08x, LEN 0x%04x, Attr=0x%02x\n",
desc, le32_to_cpu(dma_desc->addr_lo),
le16_to_cpu(dma_desc->len),
le16_to_cpu(dma_desc->cmd));
desc += host->desc_sz;
if (dma_desc->cmd & cpu_to_le16(ADMA2_END))
break;
}
}
static void sdhci_data_irq(struct sdhci_host *host, u32 intmask)
{
u32 command;
/* CMD19 generates _only_ Buffer Read Ready interrupt */
if (intmask & SDHCI_INT_DATA_AVAIL) {
command = SDHCI_GET_CMD(sdhci_readw(host, SDHCI_COMMAND));
if (command == MMC_SEND_TUNING_BLOCK ||
command == MMC_SEND_TUNING_BLOCK_HS200) {
host->tuning_done = 1;
wake_up(&host->buf_ready_int);
return;
}
}
if (!host->data) {
struct mmc_command *data_cmd = host->data_cmd;
/*
* The "data complete" interrupt is also used to
* indicate that a busy state has ended. See comment
* above in sdhci_cmd_irq().
*/
if (data_cmd && (data_cmd->flags & MMC_RSP_BUSY)) {
if (intmask & SDHCI_INT_DATA_TIMEOUT) {
host->data_cmd = NULL;
data_cmd->error = -ETIMEDOUT;
__sdhci_finish_mrq(host, data_cmd->mrq);
return;
}
if (intmask & SDHCI_INT_DATA_END) {
host->data_cmd = NULL;
/*
* Some cards handle busy-end interrupt
* before the command completed, so make
* sure we do things in the proper order.
*/
if (host->cmd == data_cmd)
return;
__sdhci_finish_mrq(host, data_cmd->mrq);
return;
}
}
/*
* SDHCI recovers from errors by resetting the cmd and data
* circuits. Until that is done, there very well might be more
* interrupts, so ignore them in that case.
*/
if (host->pending_reset)
return;
pr_err("%s: Got data interrupt 0x%08x even though no data operation was in progress.\n",
mmc_hostname(host->mmc), (unsigned)intmask);
sdhci_dumpregs(host);
return;
}
if (intmask & SDHCI_INT_DATA_TIMEOUT)
host->data->error = -ETIMEDOUT;
else if (intmask & SDHCI_INT_DATA_END_BIT)
host->data->error = -EILSEQ;
else if ((intmask & SDHCI_INT_DATA_CRC) &&
SDHCI_GET_CMD(sdhci_readw(host, SDHCI_COMMAND))
!= MMC_BUS_TEST_R)
host->data->error = -EILSEQ;
else if (intmask & SDHCI_INT_ADMA_ERROR) {
pr_err("%s: ADMA error\n", mmc_hostname(host->mmc));
sdhci_adma_show_error(host);
host->data->error = -EIO;
if (host->ops->adma_workaround)
host->ops->adma_workaround(host, intmask);
}
if (host->data->error)
sdhci_finish_data(host);
else {
if (intmask & (SDHCI_INT_DATA_AVAIL | SDHCI_INT_SPACE_AVAIL))
sdhci_transfer_pio(host);
/*
* We currently don't do anything fancy with DMA
* boundaries, but as we can't disable the feature
* we need to at least restart the transfer.
*
* According to the spec sdhci_readl(host, SDHCI_DMA_ADDRESS)
* should return a valid address to continue from, but as
* some controllers are faulty, don't trust them.
*/
if (intmask & SDHCI_INT_DMA_END) {
dma_addr_t dmastart, dmanow;
dmastart = sdhci_sdma_address(host);
dmanow = dmastart + host->data->bytes_xfered;
/*
* Force update to the next DMA block boundary.
*/
dmanow = (dmanow &
~((dma_addr_t)SDHCI_DEFAULT_BOUNDARY_SIZE - 1)) +
SDHCI_DEFAULT_BOUNDARY_SIZE;
host->data->bytes_xfered = dmanow - dmastart;
DBG("DMA base %pad, transferred 0x%06x bytes, next %pad\n",
&dmastart, host->data->bytes_xfered, &dmanow);
sdhci_set_sdma_addr(host, dmanow);
}
if (intmask & SDHCI_INT_DATA_END) {
if (host->cmd == host->data_cmd) {
/*
* Data managed to finish before the
* command completed. Make sure we do
* things in the proper order.
*/
host->data_early = 1;
} else {
sdhci_finish_data(host);
}
}
}
}
static inline bool sdhci_defer_done(struct sdhci_host *host,
struct mmc_request *mrq)
{
struct mmc_data *data = mrq->data;
return host->pending_reset ||
((host->flags & SDHCI_REQ_USE_DMA) && data &&
data->host_cookie == COOKIE_MAPPED);
}
static irqreturn_t sdhci_irq(int irq, void *dev_id)
{
struct mmc_request *mrqs_done[SDHCI_MAX_MRQS] = {0};
irqreturn_t result = IRQ_NONE;
struct sdhci_host *host = dev_id;
u32 intmask, mask, unexpected = 0;
int max_loops = 16;
int i;
spin_lock(&host->lock);
if (host->runtime_suspended && !sdhci_sdio_irq_enabled(host)) {
spin_unlock(&host->lock);
return IRQ_NONE;
}
intmask = sdhci_readl(host, SDHCI_INT_STATUS);
if (!intmask || intmask == 0xffffffff) {
result = IRQ_NONE;
goto out;
}
do {
DBG("IRQ status 0x%08x\n", intmask);
if (host->ops->irq) {
intmask = host->ops->irq(host, intmask);
if (!intmask)
goto cont;
}
/* Clear selected interrupts. */
mask = intmask & (SDHCI_INT_CMD_MASK | SDHCI_INT_DATA_MASK |
SDHCI_INT_BUS_POWER);
sdhci_writel(host, mask, SDHCI_INT_STATUS);
if (intmask & (SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE)) {
u32 present = sdhci_readl(host, SDHCI_PRESENT_STATE) &
SDHCI_CARD_PRESENT;
/*
* There is a observation on i.mx esdhc. INSERT
* bit will be immediately set again when it gets
* cleared, if a card is inserted. We have to mask
* the irq to prevent interrupt storm which will
* freeze the system. And the REMOVE gets the
* same situation.
*
* More testing are needed here to ensure it works
* for other platforms though.
*/
host->ier &= ~(SDHCI_INT_CARD_INSERT |
SDHCI_INT_CARD_REMOVE);
host->ier |= present ? SDHCI_INT_CARD_REMOVE :
SDHCI_INT_CARD_INSERT;
sdhci_writel(host, host->ier, SDHCI_INT_ENABLE);
sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE);
sdhci_writel(host, intmask & (SDHCI_INT_CARD_INSERT |
SDHCI_INT_CARD_REMOVE), SDHCI_INT_STATUS);
host->thread_isr |= intmask & (SDHCI_INT_CARD_INSERT |
SDHCI_INT_CARD_REMOVE);
result = IRQ_WAKE_THREAD;
}
if (intmask & SDHCI_INT_CMD_MASK)
sdhci_cmd_irq(host, intmask & SDHCI_INT_CMD_MASK, &intmask);
if (intmask & SDHCI_INT_DATA_MASK)
sdhci_data_irq(host, intmask & SDHCI_INT_DATA_MASK);
if (intmask & SDHCI_INT_BUS_POWER)
pr_err("%s: Card is consuming too much power!\n",
mmc_hostname(host->mmc));
if (intmask & SDHCI_INT_RETUNE)
mmc_retune_needed(host->mmc);
if ((intmask & SDHCI_INT_CARD_INT) &&
(host->ier & SDHCI_INT_CARD_INT)) {
sdhci_enable_sdio_irq_nolock(host, false);
sdio_signal_irq(host->mmc);
}
intmask &= ~(SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE |
SDHCI_INT_CMD_MASK | SDHCI_INT_DATA_MASK |
SDHCI_INT_ERROR | SDHCI_INT_BUS_POWER |
SDHCI_INT_RETUNE | SDHCI_INT_CARD_INT);
if (intmask) {
unexpected |= intmask;
sdhci_writel(host, intmask, SDHCI_INT_STATUS);
}
cont:
if (result == IRQ_NONE)
result = IRQ_HANDLED;
intmask = sdhci_readl(host, SDHCI_INT_STATUS);
} while (intmask && --max_loops);
/* Determine if mrqs can be completed immediately */
for (i = 0; i < SDHCI_MAX_MRQS; i++) {
struct mmc_request *mrq = host->mrqs_done[i];
if (!mrq)
continue;
if (sdhci_defer_done(host, mrq)) {
result = IRQ_WAKE_THREAD;
} else {
mrqs_done[i] = mrq;
host->mrqs_done[i] = NULL;
}
}
out:
spin_unlock(&host->lock);
/* Process mrqs ready for immediate completion */
for (i = 0; i < SDHCI_MAX_MRQS; i++) {
if (mrqs_done[i])
mmc_request_done(host->mmc, mrqs_done[i]);
}
if (unexpected) {
pr_err("%s: Unexpected interrupt 0x%08x.\n",
mmc_hostname(host->mmc), unexpected);
sdhci_dumpregs(host);
}
return result;
}
static irqreturn_t sdhci_thread_irq(int irq, void *dev_id)
{
struct sdhci_host *host = dev_id;
unsigned long flags;
u32 isr;
while (!sdhci_request_done(host))
;
spin_lock_irqsave(&host->lock, flags);
isr = host->thread_isr;
host->thread_isr = 0;
spin_unlock_irqrestore(&host->lock, flags);
if (isr & (SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE)) {
struct mmc_host *mmc = host->mmc;
mmc->ops->card_event(mmc);
mmc_detect_change(mmc, msecs_to_jiffies(200));
}
return IRQ_HANDLED;
}
/*****************************************************************************\
* *
* Suspend/resume *
* *
\*****************************************************************************/
#ifdef CONFIG_PM
static bool sdhci_cd_irq_can_wakeup(struct sdhci_host *host)
{
return mmc_card_is_removable(host->mmc) &&
!(host->quirks & SDHCI_QUIRK_BROKEN_CARD_DETECTION) &&
!mmc_can_gpio_cd(host->mmc);
}
/*
* To enable wakeup events, the corresponding events have to be enabled in
* the Interrupt Status Enable register too. See 'Table 1-6: Wakeup Signal
* Table' in the SD Host Controller Standard Specification.
* It is useless to restore SDHCI_INT_ENABLE state in
* sdhci_disable_irq_wakeups() since it will be set by
* sdhci_enable_card_detection() or sdhci_init().
*/
static bool sdhci_enable_irq_wakeups(struct sdhci_host *host)
{
u8 mask = SDHCI_WAKE_ON_INSERT | SDHCI_WAKE_ON_REMOVE |
SDHCI_WAKE_ON_INT;
u32 irq_val = 0;
u8 wake_val = 0;
u8 val;
if (sdhci_cd_irq_can_wakeup(host)) {
wake_val |= SDHCI_WAKE_ON_INSERT | SDHCI_WAKE_ON_REMOVE;
irq_val |= SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE;
}
if (mmc_card_wake_sdio_irq(host->mmc)) {
wake_val |= SDHCI_WAKE_ON_INT;
irq_val |= SDHCI_INT_CARD_INT;
}
if (!irq_val)
return false;
val = sdhci_readb(host, SDHCI_WAKE_UP_CONTROL);
val &= ~mask;
val |= wake_val;
sdhci_writeb(host, val, SDHCI_WAKE_UP_CONTROL);
sdhci_writel(host, irq_val, SDHCI_INT_ENABLE);
host->irq_wake_enabled = !enable_irq_wake(host->irq);
return host->irq_wake_enabled;
}
static void sdhci_disable_irq_wakeups(struct sdhci_host *host)
{
u8 val;
u8 mask = SDHCI_WAKE_ON_INSERT | SDHCI_WAKE_ON_REMOVE
| SDHCI_WAKE_ON_INT;
val = sdhci_readb(host, SDHCI_WAKE_UP_CONTROL);
val &= ~mask;
sdhci_writeb(host, val, SDHCI_WAKE_UP_CONTROL);
disable_irq_wake(host->irq);
host->irq_wake_enabled = false;
}
int sdhci_suspend_host(struct sdhci_host *host)
{
sdhci_disable_card_detection(host);
mmc_retune_timer_stop(host->mmc);
if (!device_may_wakeup(mmc_dev(host->mmc)) ||
!sdhci_enable_irq_wakeups(host)) {
host->ier = 0;
sdhci_writel(host, 0, SDHCI_INT_ENABLE);
sdhci_writel(host, 0, SDHCI_SIGNAL_ENABLE);
free_irq(host->irq, host);
}
return 0;
}
EXPORT_SYMBOL_GPL(sdhci_suspend_host);
int sdhci_resume_host(struct sdhci_host *host)
{
struct mmc_host *mmc = host->mmc;
int ret = 0;
if (host->flags & (SDHCI_USE_SDMA | SDHCI_USE_ADMA)) {
if (host->ops->enable_dma)
host->ops->enable_dma(host);
}
if ((host->mmc->pm_flags & MMC_PM_KEEP_POWER) &&
(host->quirks2 & SDHCI_QUIRK2_HOST_OFF_CARD_ON)) {
/* Card keeps power but host controller does not */
sdhci_init(host, 0);
host->pwr = 0;
host->clock = 0;
mmc->ops->set_ios(mmc, &mmc->ios);
} else {
sdhci_init(host, (host->mmc->pm_flags & MMC_PM_KEEP_POWER));
}
if (host->irq_wake_enabled) {
sdhci_disable_irq_wakeups(host);
} else {
ret = request_threaded_irq(host->irq, sdhci_irq,
sdhci_thread_irq, IRQF_SHARED,
mmc_hostname(host->mmc), host);
if (ret)
return ret;
}
sdhci_enable_card_detection(host);
return ret;
}
EXPORT_SYMBOL_GPL(sdhci_resume_host);
int sdhci_runtime_suspend_host(struct sdhci_host *host)
{
unsigned long flags;
mmc_retune_timer_stop(host->mmc);
spin_lock_irqsave(&host->lock, flags);
host->ier &= SDHCI_INT_CARD_INT;
sdhci_writel(host, host->ier, SDHCI_INT_ENABLE);
sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE);
spin_unlock_irqrestore(&host->lock, flags);
synchronize_hardirq(host->irq);
spin_lock_irqsave(&host->lock, flags);
host->runtime_suspended = true;
spin_unlock_irqrestore(&host->lock, flags);
return 0;
}
EXPORT_SYMBOL_GPL(sdhci_runtime_suspend_host);
int sdhci_runtime_resume_host(struct sdhci_host *host, int soft_reset)
{
struct mmc_host *mmc = host->mmc;
unsigned long flags;
int host_flags = host->flags;
if (host_flags & (SDHCI_USE_SDMA | SDHCI_USE_ADMA)) {
if (host->ops->enable_dma)
host->ops->enable_dma(host);
}
sdhci_init(host, soft_reset);
if (mmc->ios.power_mode != MMC_POWER_UNDEFINED &&
mmc->ios.power_mode != MMC_POWER_OFF) {
/* Force clock and power re-program */
host->pwr = 0;
host->clock = 0;
mmc->ops->start_signal_voltage_switch(mmc, &mmc->ios);
mmc->ops->set_ios(mmc, &mmc->ios);
if ((host_flags & SDHCI_PV_ENABLED) &&
!(host->quirks2 & SDHCI_QUIRK2_PRESET_VALUE_BROKEN)) {
spin_lock_irqsave(&host->lock, flags);
sdhci_enable_preset_value(host, true);
spin_unlock_irqrestore(&host->lock, flags);
}
if ((mmc->caps2 & MMC_CAP2_HS400_ES) &&
mmc->ops->hs400_enhanced_strobe)
mmc->ops->hs400_enhanced_strobe(mmc, &mmc->ios);
}
spin_lock_irqsave(&host->lock, flags);
host->runtime_suspended = false;
/* Enable SDIO IRQ */
if (host->flags & SDHCI_SDIO_IRQ_ENABLED)
sdhci_enable_sdio_irq_nolock(host, true);
/* Enable Card Detection */
sdhci_enable_card_detection(host);
spin_unlock_irqrestore(&host->lock, flags);
return 0;
}
EXPORT_SYMBOL_GPL(sdhci_runtime_resume_host);
#endif /* CONFIG_PM */
/*****************************************************************************\
* *
* Command Queue Engine (CQE) helpers *
* *
\*****************************************************************************/
void sdhci_cqe_enable(struct mmc_host *mmc)
{
struct sdhci_host *host = mmc_priv(mmc);
unsigned long flags;
u8 ctrl;
spin_lock_irqsave(&host->lock, flags);
ctrl = sdhci_readb(host, SDHCI_HOST_CONTROL);
ctrl &= ~SDHCI_CTRL_DMA_MASK;
/*
* Host from V4.10 supports ADMA3 DMA type.
* ADMA3 performs integrated descriptor which is more suitable
* for cmd queuing to fetch both command and transfer descriptors.
*/
if (host->v4_mode && (host->caps1 & SDHCI_CAN_DO_ADMA3))
ctrl |= SDHCI_CTRL_ADMA3;
else if (host->flags & SDHCI_USE_64_BIT_DMA)
ctrl |= SDHCI_CTRL_ADMA64;
else
ctrl |= SDHCI_CTRL_ADMA32;
sdhci_writeb(host, ctrl, SDHCI_HOST_CONTROL);
sdhci_writew(host, SDHCI_MAKE_BLKSZ(host->sdma_boundary, 512),
SDHCI_BLOCK_SIZE);
/* Set maximum timeout */
sdhci_set_timeout(host, NULL);
host->ier = host->cqe_ier;
sdhci_writel(host, host->ier, SDHCI_INT_ENABLE);
sdhci_writel(host, host->ier, SDHCI_SIGNAL_ENABLE);
host->cqe_on = true;
pr_debug("%s: sdhci: CQE on, IRQ mask %#x, IRQ status %#x\n",
mmc_hostname(mmc), host->ier,
sdhci_readl(host, SDHCI_INT_STATUS));
spin_unlock_irqrestore(&host->lock, flags);
}
EXPORT_SYMBOL_GPL(sdhci_cqe_enable);
void sdhci_cqe_disable(struct mmc_host *mmc, bool recovery)
{
struct sdhci_host *host = mmc_priv(mmc);
unsigned long flags;
spin_lock_irqsave(&host->lock, flags);
sdhci_set_default_irqs(host);
host->cqe_on = false;
if (recovery) {
sdhci_do_reset(host, SDHCI_RESET_CMD);
sdhci_do_reset(host, SDHCI_RESET_DATA);
}
pr_debug("%s: sdhci: CQE off, IRQ mask %#x, IRQ status %#x\n",
mmc_hostname(mmc), host->ier,
sdhci_readl(host, SDHCI_INT_STATUS));
spin_unlock_irqrestore(&host->lock, flags);
}
EXPORT_SYMBOL_GPL(sdhci_cqe_disable);
bool sdhci_cqe_irq(struct sdhci_host *host, u32 intmask, int *cmd_error,
int *data_error)
{
u32 mask;
if (!host->cqe_on)
return false;
if (intmask & (SDHCI_INT_INDEX | SDHCI_INT_END_BIT | SDHCI_INT_CRC))
*cmd_error = -EILSEQ;
else if (intmask & SDHCI_INT_TIMEOUT)
*cmd_error = -ETIMEDOUT;
else
*cmd_error = 0;
if (intmask & (SDHCI_INT_DATA_END_BIT | SDHCI_INT_DATA_CRC))
*data_error = -EILSEQ;
else if (intmask & SDHCI_INT_DATA_TIMEOUT)
*data_error = -ETIMEDOUT;
else if (intmask & SDHCI_INT_ADMA_ERROR)
*data_error = -EIO;
else
*data_error = 0;
/* Clear selected interrupts. */
mask = intmask & host->cqe_ier;
sdhci_writel(host, mask, SDHCI_INT_STATUS);
if (intmask & SDHCI_INT_BUS_POWER)
pr_err("%s: Card is consuming too much power!\n",
mmc_hostname(host->mmc));
intmask &= ~(host->cqe_ier | SDHCI_INT_ERROR);
if (intmask) {
sdhci_writel(host, intmask, SDHCI_INT_STATUS);
pr_err("%s: CQE: Unexpected interrupt 0x%08x.\n",
mmc_hostname(host->mmc), intmask);
sdhci_dumpregs(host);
}
return true;
}
EXPORT_SYMBOL_GPL(sdhci_cqe_irq);
/*****************************************************************************\
* *
* Device allocation/registration *
* *
\*****************************************************************************/
struct sdhci_host *sdhci_alloc_host(struct device *dev,
size_t priv_size)
{
struct mmc_host *mmc;
struct sdhci_host *host;
WARN_ON(dev == NULL);
mmc = mmc_alloc_host(sizeof(struct sdhci_host) + priv_size, dev);
if (!mmc)
return ERR_PTR(-ENOMEM);
host = mmc_priv(mmc);
host->mmc = mmc;
host->mmc_host_ops = sdhci_ops;
mmc->ops = &host->mmc_host_ops;
host->flags = SDHCI_SIGNALING_330;
host->cqe_ier = SDHCI_CQE_INT_MASK;
host->cqe_err_ier = SDHCI_CQE_INT_ERR_MASK;
host->tuning_delay = -1;
host->tuning_loop_count = MAX_TUNING_LOOP;
host->sdma_boundary = SDHCI_DEFAULT_BOUNDARY_ARG;
/*
* The DMA table descriptor count is calculated as the maximum
* number of segments times 2, to allow for an alignment
* descriptor for each segment, plus 1 for a nop end descriptor.
*/
host->adma_table_cnt = SDHCI_MAX_SEGS * 2 + 1;
return host;
}
EXPORT_SYMBOL_GPL(sdhci_alloc_host);
static int sdhci_set_dma_mask(struct sdhci_host *host)
{
struct mmc_host *mmc = host->mmc;
struct device *dev = mmc_dev(mmc);
int ret = -EINVAL;
if (host->quirks2 & SDHCI_QUIRK2_BROKEN_64_BIT_DMA)
host->flags &= ~SDHCI_USE_64_BIT_DMA;
/* Try 64-bit mask if hardware is capable of it */
if (host->flags & SDHCI_USE_64_BIT_DMA) {
ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
if (ret) {
pr_warn("%s: Failed to set 64-bit DMA mask.\n",
mmc_hostname(mmc));
host->flags &= ~SDHCI_USE_64_BIT_DMA;
}
}
/* 32-bit mask as default & fallback */
if (ret) {
ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
if (ret)
pr_warn("%s: Failed to set 32-bit DMA mask.\n",
mmc_hostname(mmc));
}
return ret;
}
void __sdhci_read_caps(struct sdhci_host *host, u16 *ver, u32 *caps, u32 *caps1)
{
u16 v;
u64 dt_caps_mask = 0;
u64 dt_caps = 0;
if (host->read_caps)
return;
host->read_caps = true;
if (debug_quirks)
host->quirks = debug_quirks;
if (debug_quirks2)
host->quirks2 = debug_quirks2;
sdhci_do_reset(host, SDHCI_RESET_ALL);
if (host->v4_mode)
sdhci_do_enable_v4_mode(host);
of_property_read_u64(mmc_dev(host->mmc)->of_node,
"sdhci-caps-mask", &dt_caps_mask);
of_property_read_u64(mmc_dev(host->mmc)->of_node,
"sdhci-caps", &dt_caps);
v = ver ? *ver : sdhci_readw(host, SDHCI_HOST_VERSION);
host->version = (v & SDHCI_SPEC_VER_MASK) >> SDHCI_SPEC_VER_SHIFT;
if (host->quirks & SDHCI_QUIRK_MISSING_CAPS)
return;
if (caps) {
host->caps = *caps;
} else {
host->caps = sdhci_readl(host, SDHCI_CAPABILITIES);
host->caps &= ~lower_32_bits(dt_caps_mask);
host->caps |= lower_32_bits(dt_caps);
}
if (host->version < SDHCI_SPEC_300)
return;
if (caps1) {
host->caps1 = *caps1;
} else {
host->caps1 = sdhci_readl(host, SDHCI_CAPABILITIES_1);
host->caps1 &= ~upper_32_bits(dt_caps_mask);
host->caps1 |= upper_32_bits(dt_caps);
}
}
EXPORT_SYMBOL_GPL(__sdhci_read_caps);
static void sdhci_allocate_bounce_buffer(struct sdhci_host *host)
{
struct mmc_host *mmc = host->mmc;
unsigned int max_blocks;
unsigned int bounce_size;
int ret;
/*
* Cap the bounce buffer at 64KB. Using a bigger bounce buffer
* has diminishing returns, this is probably because SD/MMC
* cards are usually optimized to handle this size of requests.
*/
bounce_size = SZ_64K;
/*
* Adjust downwards to maximum request size if this is less
* than our segment size, else hammer down the maximum
* request size to the maximum buffer size.
*/
if (mmc->max_req_size < bounce_size)
bounce_size = mmc->max_req_size;
max_blocks = bounce_size / 512;
/*
* When we just support one segment, we can get significant
* speedups by the help of a bounce buffer to group scattered
* reads/writes together.
*/
host->bounce_buffer = devm_kmalloc(mmc->parent,
bounce_size,
GFP_KERNEL);
if (!host->bounce_buffer) {
pr_err("%s: failed to allocate %u bytes for bounce buffer, falling back to single segments\n",
mmc_hostname(mmc),
bounce_size);
/*
* Exiting with zero here makes sure we proceed with
* mmc->max_segs == 1.
*/
return;
}
host->bounce_addr = dma_map_single(mmc->parent,
host->bounce_buffer,
bounce_size,
DMA_BIDIRECTIONAL);
ret = dma_mapping_error(mmc->parent, host->bounce_addr);
if (ret)
/* Again fall back to max_segs == 1 */
return;
host->bounce_buffer_size = bounce_size;
/* Lie about this since we're bouncing */
mmc->max_segs = max_blocks;
mmc->max_seg_size = bounce_size;
mmc->max_req_size = bounce_size;
pr_info("%s bounce up to %u segments into one, max segment size %u bytes\n",
mmc_hostname(mmc), max_blocks, bounce_size);
}
static inline bool sdhci_can_64bit_dma(struct sdhci_host *host)
{
/*
* According to SD Host Controller spec v4.10, bit[27] added from
* version 4.10 in Capabilities Register is used as 64-bit System
* Address support for V4 mode.
*/
if (host->version >= SDHCI_SPEC_410 && host->v4_mode)
return host->caps & SDHCI_CAN_64BIT_V4;
return host->caps & SDHCI_CAN_64BIT;
}
int sdhci_setup_host(struct sdhci_host *host)
{
struct mmc_host *mmc;
u32 max_current_caps;
unsigned int ocr_avail;
unsigned int override_timeout_clk;
u32 max_clk;
int ret;
WARN_ON(host == NULL);
if (host == NULL)
return -EINVAL;
mmc = host->mmc;
/*
* If there are external regulators, get them. Note this must be done
* early before resetting the host and reading the capabilities so that
* the host can take the appropriate action if regulators are not
* available.
*/
ret = mmc_regulator_get_supply(mmc);
if (ret)
return ret;
DBG("Version: 0x%08x | Present: 0x%08x\n",
sdhci_readw(host, SDHCI_HOST_VERSION),
sdhci_readl(host, SDHCI_PRESENT_STATE));
DBG("Caps: 0x%08x | Caps_1: 0x%08x\n",
sdhci_readl(host, SDHCI_CAPABILITIES),
sdhci_readl(host, SDHCI_CAPABILITIES_1));
sdhci_read_caps(host);
override_timeout_clk = host->timeout_clk;
if (host->version > SDHCI_SPEC_420) {
pr_err("%s: Unknown controller version (%d). You may experience problems.\n",
mmc_hostname(mmc), host->version);
}
if (host->quirks & SDHCI_QUIRK_FORCE_DMA)
host->flags |= SDHCI_USE_SDMA;
else if (!(host->caps & SDHCI_CAN_DO_SDMA))
DBG("Controller doesn't have SDMA capability\n");
else
host->flags |= SDHCI_USE_SDMA;
if ((host->quirks & SDHCI_QUIRK_BROKEN_DMA) &&
(host->flags & SDHCI_USE_SDMA)) {
DBG("Disabling DMA as it is marked broken\n");
host->flags &= ~SDHCI_USE_SDMA;
}
if ((host->version >= SDHCI_SPEC_200) &&
(host->caps & SDHCI_CAN_DO_ADMA2))
host->flags |= SDHCI_USE_ADMA;
if ((host->quirks & SDHCI_QUIRK_BROKEN_ADMA) &&
(host->flags & SDHCI_USE_ADMA)) {
DBG("Disabling ADMA as it is marked broken\n");
host->flags &= ~SDHCI_USE_ADMA;
}
/*
* It is assumed that a 64-bit capable device has set a 64-bit DMA mask
* and *must* do 64-bit DMA. A driver has the opportunity to change
* that during the first call to ->enable_dma(). Similarly
* SDHCI_QUIRK2_BROKEN_64_BIT_DMA must be left to the drivers to
* implement.
*/
if (sdhci_can_64bit_dma(host))
host->flags |= SDHCI_USE_64_BIT_DMA;
if (host->flags & (SDHCI_USE_SDMA | SDHCI_USE_ADMA)) {
ret = sdhci_set_dma_mask(host);
if (!ret && host->ops->enable_dma)
ret = host->ops->enable_dma(host);
if (ret) {
pr_warn("%s: No suitable DMA available - falling back to PIO\n",
mmc_hostname(mmc));
host->flags &= ~(SDHCI_USE_SDMA | SDHCI_USE_ADMA);
ret = 0;
}
}
/* SDMA does not support 64-bit DMA if v4 mode not set */
if ((host->flags & SDHCI_USE_64_BIT_DMA) && !host->v4_mode)
host->flags &= ~SDHCI_USE_SDMA;
if (host->flags & SDHCI_USE_ADMA) {
dma_addr_t dma;
void *buf;
if (host->flags & SDHCI_USE_64_BIT_DMA) {
host->adma_table_sz = host->adma_table_cnt *
SDHCI_ADMA2_64_DESC_SZ(host);
host->desc_sz = SDHCI_ADMA2_64_DESC_SZ(host);
} else {
host->adma_table_sz = host->adma_table_cnt *
SDHCI_ADMA2_32_DESC_SZ;
host->desc_sz = SDHCI_ADMA2_32_DESC_SZ;
}
host->align_buffer_sz = SDHCI_MAX_SEGS * SDHCI_ADMA2_ALIGN;
/*
* Use zalloc to zero the reserved high 32-bits of 128-bit
* descriptors so that they never need to be written.
*/
buf = dma_alloc_coherent(mmc_dev(mmc),
host->align_buffer_sz + host->adma_table_sz,
&dma, GFP_KERNEL);
if (!buf) {
pr_warn("%s: Unable to allocate ADMA buffers - falling back to standard DMA\n",
mmc_hostname(mmc));
host->flags &= ~SDHCI_USE_ADMA;
} else if ((dma + host->align_buffer_sz) &
(SDHCI_ADMA2_DESC_ALIGN - 1)) {
pr_warn("%s: unable to allocate aligned ADMA descriptor\n",
mmc_hostname(mmc));
host->flags &= ~SDHCI_USE_ADMA;
dma_free_coherent(mmc_dev(mmc), host->align_buffer_sz +
host->adma_table_sz, buf, dma);
} else {
host->align_buffer = buf;
host->align_addr = dma;
host->adma_table = buf + host->align_buffer_sz;
host->adma_addr = dma + host->align_buffer_sz;
}
}
/*
* If we use DMA, then it's up to the caller to set the DMA
* mask, but PIO does not need the hw shim so we set a new
* mask here in that case.
*/
if (!(host->flags & (SDHCI_USE_SDMA | SDHCI_USE_ADMA))) {
host->dma_mask = DMA_BIT_MASK(64);
mmc_dev(mmc)->dma_mask = &host->dma_mask;
}
if (host->version >= SDHCI_SPEC_300)
host->max_clk = (host->caps & SDHCI_CLOCK_V3_BASE_MASK)
>> SDHCI_CLOCK_BASE_SHIFT;
else
host->max_clk = (host->caps & SDHCI_CLOCK_BASE_MASK)
>> SDHCI_CLOCK_BASE_SHIFT;
host->max_clk *= 1000000;
if (host->max_clk == 0 || host->quirks &
SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN) {
if (!host->ops->get_max_clock) {
pr_err("%s: Hardware doesn't specify base clock frequency.\n",
mmc_hostname(mmc));
ret = -ENODEV;
goto undma;
}
host->max_clk = host->ops->get_max_clock(host);
}
/*
* In case of Host Controller v3.00, find out whether clock
* multiplier is supported.
*/
host->clk_mul = (host->caps1 & SDHCI_CLOCK_MUL_MASK) >>
SDHCI_CLOCK_MUL_SHIFT;
/*
* In case the value in Clock Multiplier is 0, then programmable
* clock mode is not supported, otherwise the actual clock
* multiplier is one more than the value of Clock Multiplier
* in the Capabilities Register.
*/
if (host->clk_mul)
host->clk_mul += 1;
/*
* Set host parameters.
*/
max_clk = host->max_clk;
if (host->ops->get_min_clock)
mmc->f_min = host->ops->get_min_clock(host);
else if (host->version >= SDHCI_SPEC_300) {
if (host->clk_mul) {
mmc->f_min = (host->max_clk * host->clk_mul) / 1024;
max_clk = host->max_clk * host->clk_mul;
} else
mmc->f_min = host->max_clk / SDHCI_MAX_DIV_SPEC_300;
} else
mmc->f_min = host->max_clk / SDHCI_MAX_DIV_SPEC_200;
if (!mmc->f_max || mmc->f_max > max_clk)
mmc->f_max = max_clk;
if (!(host->quirks & SDHCI_QUIRK_DATA_TIMEOUT_USES_SDCLK)) {
host->timeout_clk = (host->caps & SDHCI_TIMEOUT_CLK_MASK) >>
SDHCI_TIMEOUT_CLK_SHIFT;
if (host->caps & SDHCI_TIMEOUT_CLK_UNIT)
host->timeout_clk *= 1000;
if (host->timeout_clk == 0) {
if (!host->ops->get_timeout_clock) {
pr_err("%s: Hardware doesn't specify timeout clock frequency.\n",
mmc_hostname(mmc));
ret = -ENODEV;
goto undma;
}
host->timeout_clk =
DIV_ROUND_UP(host->ops->get_timeout_clock(host),
1000);
}
if (override_timeout_clk)
host->timeout_clk = override_timeout_clk;
mmc->max_busy_timeout = host->ops->get_max_timeout_count ?
host->ops->get_max_timeout_count(host) : 1 << 27;
mmc->max_busy_timeout /= host->timeout_clk;
}
if (host->quirks2 & SDHCI_QUIRK2_DISABLE_HW_TIMEOUT &&
!host->ops->get_max_timeout_count)
mmc->max_busy_timeout = 0;
mmc->caps |= MMC_CAP_SDIO_IRQ | MMC_CAP_ERASE | MMC_CAP_CMD23;
mmc->caps2 |= MMC_CAP2_SDIO_IRQ_NOTHREAD;
if (host->quirks & SDHCI_QUIRK_MULTIBLOCK_READ_ACMD12)
host->flags |= SDHCI_AUTO_CMD12;
/*
* For v3 mode, Auto-CMD23 stuff only works in ADMA or PIO.
* For v4 mode, SDMA may use Auto-CMD23 as well.
*/
if ((host->version >= SDHCI_SPEC_300) &&
((host->flags & SDHCI_USE_ADMA) ||
!(host->flags & SDHCI_USE_SDMA) || host->v4_mode) &&
!(host->quirks2 & SDHCI_QUIRK2_ACMD23_BROKEN)) {
host->flags |= SDHCI_AUTO_CMD23;
DBG("Auto-CMD23 available\n");
} else {
DBG("Auto-CMD23 unavailable\n");
}
/*
* A controller may support 8-bit width, but the board itself
* might not have the pins brought out. Boards that support
* 8-bit width must set "mmc->caps |= MMC_CAP_8_BIT_DATA;" in
* their platform code before calling sdhci_add_host(), and we
* won't assume 8-bit width for hosts without that CAP.
*/
if (!(host->quirks & SDHCI_QUIRK_FORCE_1_BIT_DATA))
mmc->caps |= MMC_CAP_4_BIT_DATA;
if (host->quirks2 & SDHCI_QUIRK2_HOST_NO_CMD23)
mmc->caps &= ~MMC_CAP_CMD23;
if (host->caps & SDHCI_CAN_DO_HISPD)
mmc->caps |= MMC_CAP_SD_HIGHSPEED | MMC_CAP_MMC_HIGHSPEED;
if ((host->quirks & SDHCI_QUIRK_BROKEN_CARD_DETECTION) &&
mmc_card_is_removable(mmc) &&
mmc_gpio_get_cd(host->mmc) < 0)
mmc->caps |= MMC_CAP_NEEDS_POLL;
if (!IS_ERR(mmc->supply.vqmmc)) {
ret = regulator_enable(mmc->supply.vqmmc);
/* If vqmmc provides no 1.8V signalling, then there's no UHS */
if (!regulator_is_supported_voltage(mmc->supply.vqmmc, 1700000,
1950000))
host->caps1 &= ~(SDHCI_SUPPORT_SDR104 |
SDHCI_SUPPORT_SDR50 |
SDHCI_SUPPORT_DDR50);
/* In eMMC case vqmmc might be a fixed 1.8V regulator */
if (!regulator_is_supported_voltage(mmc->supply.vqmmc, 2700000,
3600000))
host->flags &= ~SDHCI_SIGNALING_330;
if (ret) {
pr_warn("%s: Failed to enable vqmmc regulator: %d\n",
mmc_hostname(mmc), ret);
mmc->supply.vqmmc = ERR_PTR(-EINVAL);
}
}
if (host->quirks2 & SDHCI_QUIRK2_NO_1_8_V) {
host->caps1 &= ~(SDHCI_SUPPORT_SDR104 | SDHCI_SUPPORT_SDR50 |
SDHCI_SUPPORT_DDR50);
/*
* The SDHCI controller in a SoC might support HS200/HS400
* (indicated using mmc-hs200-1_8v/mmc-hs400-1_8v dt property),
* but if the board is modeled such that the IO lines are not
* connected to 1.8v then HS200/HS400 cannot be supported.
* Disable HS200/HS400 if the board does not have 1.8v connected
* to the IO lines. (Applicable for other modes in 1.8v)
*/
mmc->caps2 &= ~(MMC_CAP2_HSX00_1_8V | MMC_CAP2_HS400_ES);
mmc->caps &= ~(MMC_CAP_1_8V_DDR | MMC_CAP_UHS);
}
/* Any UHS-I mode in caps implies SDR12 and SDR25 support. */
if (host->caps1 & (SDHCI_SUPPORT_SDR104 | SDHCI_SUPPORT_SDR50 |
SDHCI_SUPPORT_DDR50))
mmc->caps |= MMC_CAP_UHS_SDR12 | MMC_CAP_UHS_SDR25;
/* SDR104 supports also implies SDR50 support */
if (host->caps1 & SDHCI_SUPPORT_SDR104) {
mmc->caps |= MMC_CAP_UHS_SDR104 | MMC_CAP_UHS_SDR50;
/* SD3.0: SDR104 is supported so (for eMMC) the caps2
* field can be promoted to support HS200.
*/
if (!(host->quirks2 & SDHCI_QUIRK2_BROKEN_HS200))
mmc->caps2 |= MMC_CAP2_HS200;
} else if (host->caps1 & SDHCI_SUPPORT_SDR50) {
mmc->caps |= MMC_CAP_UHS_SDR50;
}
if (host->quirks2 & SDHCI_QUIRK2_CAPS_BIT63_FOR_HS400 &&
(host->caps1 & SDHCI_SUPPORT_HS400))
mmc->caps2 |= MMC_CAP2_HS400;
if ((mmc->caps2 & MMC_CAP2_HSX00_1_2V) &&
(IS_ERR(mmc->supply.vqmmc) ||
!regulator_is_supported_voltage(mmc->supply.vqmmc, 1100000,
1300000)))
mmc->caps2 &= ~MMC_CAP2_HSX00_1_2V;
if ((host->caps1 & SDHCI_SUPPORT_DDR50) &&
!(host->quirks2 & SDHCI_QUIRK2_BROKEN_DDR50))
mmc->caps |= MMC_CAP_UHS_DDR50;
/* Does the host need tuning for SDR50? */
if (host->caps1 & SDHCI_USE_SDR50_TUNING)
host->flags |= SDHCI_SDR50_NEEDS_TUNING;
/* Driver Type(s) (A, C, D) supported by the host */
if (host->caps1 & SDHCI_DRIVER_TYPE_A)
mmc->caps |= MMC_CAP_DRIVER_TYPE_A;
if (host->caps1 & SDHCI_DRIVER_TYPE_C)
mmc->caps |= MMC_CAP_DRIVER_TYPE_C;
if (host->caps1 & SDHCI_DRIVER_TYPE_D)
mmc->caps |= MMC_CAP_DRIVER_TYPE_D;
/* Initial value for re-tuning timer count */
host->tuning_count = (host->caps1 & SDHCI_RETUNING_TIMER_COUNT_MASK) >>
SDHCI_RETUNING_TIMER_COUNT_SHIFT;
/*
* In case Re-tuning Timer is not disabled, the actual value of
* re-tuning timer will be 2 ^ (n - 1).
*/
if (host->tuning_count)
host->tuning_count = 1 << (host->tuning_count - 1);
/* Re-tuning mode supported by the Host Controller */
host->tuning_mode = (host->caps1 & SDHCI_RETUNING_MODE_MASK) >>
SDHCI_RETUNING_MODE_SHIFT;
ocr_avail = 0;
/*
* According to SD Host Controller spec v3.00, if the Host System
* can afford more than 150mA, Host Driver should set XPC to 1. Also
* the value is meaningful only if Voltage Support in the Capabilities
* register is set. The actual current value is 4 times the register
* value.
*/
max_current_caps = sdhci_readl(host, SDHCI_MAX_CURRENT);
if (!max_current_caps && !IS_ERR(mmc->supply.vmmc)) {
int curr = regulator_get_current_limit(mmc->supply.vmmc);
if (curr > 0) {
/* convert to SDHCI_MAX_CURRENT format */
curr = curr/1000; /* convert to mA */
curr = curr/SDHCI_MAX_CURRENT_MULTIPLIER;
curr = min_t(u32, curr, SDHCI_MAX_CURRENT_LIMIT);
max_current_caps =
(curr << SDHCI_MAX_CURRENT_330_SHIFT) |
(curr << SDHCI_MAX_CURRENT_300_SHIFT) |
(curr << SDHCI_MAX_CURRENT_180_SHIFT);
}
}
if (host->caps & SDHCI_CAN_VDD_330) {
ocr_avail |= MMC_VDD_32_33 | MMC_VDD_33_34;
mmc->max_current_330 = ((max_current_caps &
SDHCI_MAX_CURRENT_330_MASK) >>
SDHCI_MAX_CURRENT_330_SHIFT) *
SDHCI_MAX_CURRENT_MULTIPLIER;
}
if (host->caps & SDHCI_CAN_VDD_300) {
ocr_avail |= MMC_VDD_29_30 | MMC_VDD_30_31;
mmc->max_current_300 = ((max_current_caps &
SDHCI_MAX_CURRENT_300_MASK) >>
SDHCI_MAX_CURRENT_300_SHIFT) *
SDHCI_MAX_CURRENT_MULTIPLIER;
}
if (host->caps & SDHCI_CAN_VDD_180) {
ocr_avail |= MMC_VDD_165_195;
mmc->max_current_180 = ((max_current_caps &
SDHCI_MAX_CURRENT_180_MASK) >>
SDHCI_MAX_CURRENT_180_SHIFT) *
SDHCI_MAX_CURRENT_MULTIPLIER;
}
/* If OCR set by host, use it instead. */
if (host->ocr_mask)
ocr_avail = host->ocr_mask;
/* If OCR set by external regulators, give it highest prio. */
if (mmc->ocr_avail)
ocr_avail = mmc->ocr_avail;
mmc->ocr_avail = ocr_avail;
mmc->ocr_avail_sdio = ocr_avail;
if (host->ocr_avail_sdio)
mmc->ocr_avail_sdio &= host->ocr_avail_sdio;
mmc->ocr_avail_sd = ocr_avail;
if (host->ocr_avail_sd)
mmc->ocr_avail_sd &= host->ocr_avail_sd;
else /* normal SD controllers don't support 1.8V */
mmc->ocr_avail_sd &= ~MMC_VDD_165_195;
mmc->ocr_avail_mmc = ocr_avail;
if (host->ocr_avail_mmc)
mmc->ocr_avail_mmc &= host->ocr_avail_mmc;
if (mmc->ocr_avail == 0) {
pr_err("%s: Hardware doesn't report any support voltages.\n",
mmc_hostname(mmc));
ret = -ENODEV;
goto unreg;
}
if ((mmc->caps & (MMC_CAP_UHS_SDR12 | MMC_CAP_UHS_SDR25 |
MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR104 |
MMC_CAP_UHS_DDR50 | MMC_CAP_1_8V_DDR)) ||
(mmc->caps2 & (MMC_CAP2_HS200_1_8V_SDR | MMC_CAP2_HS400_1_8V)))
host->flags |= SDHCI_SIGNALING_180;
if (mmc->caps2 & MMC_CAP2_HSX00_1_2V)
host->flags |= SDHCI_SIGNALING_120;
spin_lock_init(&host->lock);
/*
* Maximum number of sectors in one transfer. Limited by SDMA boundary
* size (512KiB). Note some tuning modes impose a 4MiB limit, but this
* is less anyway.
*/
mmc->max_req_size = 524288;
/*
* Maximum number of segments. Depends on if the hardware
* can do scatter/gather or not.
*/
if (host->flags & SDHCI_USE_ADMA) {
mmc->max_segs = SDHCI_MAX_SEGS;
} else if (host->flags & SDHCI_USE_SDMA) {
mmc->max_segs = 1;
if (swiotlb_max_segment()) {
unsigned int max_req_size = (1 << IO_TLB_SHIFT) *
IO_TLB_SEGSIZE;
mmc->max_req_size = min(mmc->max_req_size,
max_req_size);
}
} else { /* PIO */
mmc->max_segs = SDHCI_MAX_SEGS;
}
/*
* Maximum segment size. Could be one segment with the maximum number
* of bytes. When doing hardware scatter/gather, each entry cannot
* be larger than 64 KiB though.
*/
if (host->flags & SDHCI_USE_ADMA) {
if (host->quirks & SDHCI_QUIRK_BROKEN_ADMA_ZEROLEN_DESC)
mmc->max_seg_size = 65535;
else
mmc->max_seg_size = 65536;
} else {
mmc->max_seg_size = mmc->max_req_size;
}
/*
* Maximum block size. This varies from controller to controller and
* is specified in the capabilities register.
*/
if (host->quirks & SDHCI_QUIRK_FORCE_BLK_SZ_2048) {
mmc->max_blk_size = 2;
} else {
mmc->max_blk_size = (host->caps & SDHCI_MAX_BLOCK_MASK) >>
SDHCI_MAX_BLOCK_SHIFT;
if (mmc->max_blk_size >= 3) {
pr_warn("%s: Invalid maximum block size, assuming 512 bytes\n",
mmc_hostname(mmc));
mmc->max_blk_size = 0;
}
}
mmc->max_blk_size = 512 << mmc->max_blk_size;
/*
* Maximum block count.
*/
mmc->max_blk_count = (host->quirks & SDHCI_QUIRK_NO_MULTIBLOCK) ? 1 : 65535;
if (mmc->max_segs == 1)
/* This may alter mmc->*_blk_* parameters */
sdhci_allocate_bounce_buffer(host);
return 0;
unreg:
if (!IS_ERR(mmc->supply.vqmmc))
regulator_disable(mmc->supply.vqmmc);
undma:
if (host->align_buffer)
dma_free_coherent(mmc_dev(mmc), host->align_buffer_sz +
host->adma_table_sz, host->align_buffer,
host->align_addr);
host->adma_table = NULL;
host->align_buffer = NULL;
return ret;
}
EXPORT_SYMBOL_GPL(sdhci_setup_host);
void sdhci_cleanup_host(struct sdhci_host *host)
{
struct mmc_host *mmc = host->mmc;
if (!IS_ERR(mmc->supply.vqmmc))
regulator_disable(mmc->supply.vqmmc);
if (host->align_buffer)
dma_free_coherent(mmc_dev(mmc), host->align_buffer_sz +
host->adma_table_sz, host->align_buffer,
host->align_addr);
host->adma_table = NULL;
host->align_buffer = NULL;
}
EXPORT_SYMBOL_GPL(sdhci_cleanup_host);
int __sdhci_add_host(struct sdhci_host *host)
{
unsigned int flags = WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_HIGHPRI;
struct mmc_host *mmc = host->mmc;
int ret;
host->complete_wq = alloc_workqueue("sdhci", flags, 0);
if (!host->complete_wq)
return -ENOMEM;
INIT_WORK(&host->complete_work, sdhci_complete_work);
timer_setup(&host->timer, sdhci_timeout_timer, 0);
timer_setup(&host->data_timer, sdhci_timeout_data_timer, 0);
init_waitqueue_head(&host->buf_ready_int);
sdhci_init(host, 0);
ret = request_threaded_irq(host->irq, sdhci_irq, sdhci_thread_irq,
IRQF_SHARED, mmc_hostname(mmc), host);
if (ret) {
pr_err("%s: Failed to request IRQ %d: %d\n",
mmc_hostname(mmc), host->irq, ret);
goto unwq;
}
ret = sdhci_led_register(host);
if (ret) {
pr_err("%s: Failed to register LED device: %d\n",
mmc_hostname(mmc), ret);
goto unirq;
}
ret = mmc_add_host(mmc);
if (ret)
goto unled;
pr_info("%s: SDHCI controller on %s [%s] using %s\n",
mmc_hostname(mmc), host->hw_name, dev_name(mmc_dev(mmc)),
(host->flags & SDHCI_USE_ADMA) ?
(host->flags & SDHCI_USE_64_BIT_DMA) ? "ADMA 64-bit" : "ADMA" :
(host->flags & SDHCI_USE_SDMA) ? "DMA" : "PIO");
sdhci_enable_card_detection(host);
return 0;
unled:
sdhci_led_unregister(host);
unirq:
sdhci_do_reset(host, SDHCI_RESET_ALL);
sdhci_writel(host, 0, SDHCI_INT_ENABLE);
sdhci_writel(host, 0, SDHCI_SIGNAL_ENABLE);
free_irq(host->irq, host);
unwq:
destroy_workqueue(host->complete_wq);
return ret;
}
EXPORT_SYMBOL_GPL(__sdhci_add_host);
int sdhci_add_host(struct sdhci_host *host)
{
int ret;
ret = sdhci_setup_host(host);
if (ret)
return ret;
ret = __sdhci_add_host(host);
if (ret)
goto cleanup;
return 0;
cleanup:
sdhci_cleanup_host(host);
return ret;
}
EXPORT_SYMBOL_GPL(sdhci_add_host);
void sdhci_remove_host(struct sdhci_host *host, int dead)
{
struct mmc_host *mmc = host->mmc;
unsigned long flags;
if (dead) {
spin_lock_irqsave(&host->lock, flags);
host->flags |= SDHCI_DEVICE_DEAD;
if (sdhci_has_requests(host)) {
pr_err("%s: Controller removed during "
" transfer!\n", mmc_hostname(mmc));
sdhci_error_out_mrqs(host, -ENOMEDIUM);
}
spin_unlock_irqrestore(&host->lock, flags);
}
sdhci_disable_card_detection(host);
mmc_remove_host(mmc);
sdhci_led_unregister(host);
if (!dead)
sdhci_do_reset(host, SDHCI_RESET_ALL);
sdhci_writel(host, 0, SDHCI_INT_ENABLE);
sdhci_writel(host, 0, SDHCI_SIGNAL_ENABLE);
free_irq(host->irq, host);
del_timer_sync(&host->timer);
del_timer_sync(&host->data_timer);
destroy_workqueue(host->complete_wq);
if (!IS_ERR(mmc->supply.vqmmc))
regulator_disable(mmc->supply.vqmmc);
if (host->align_buffer)
dma_free_coherent(mmc_dev(mmc), host->align_buffer_sz +
host->adma_table_sz, host->align_buffer,
host->align_addr);
host->adma_table = NULL;
host->align_buffer = NULL;
}
EXPORT_SYMBOL_GPL(sdhci_remove_host);
void sdhci_free_host(struct sdhci_host *host)
{
mmc_free_host(host->mmc);
}
EXPORT_SYMBOL_GPL(sdhci_free_host);
/*****************************************************************************\
* *
* Driver init/exit *
* *
\*****************************************************************************/
static int __init sdhci_drv_init(void)
{
pr_info(DRIVER_NAME
": Secure Digital Host Controller Interface driver\n");
pr_info(DRIVER_NAME ": Copyright(c) Pierre Ossman\n");
return 0;
}
static void __exit sdhci_drv_exit(void)
{
}
module_init(sdhci_drv_init);
module_exit(sdhci_drv_exit);
module_param(debug_quirks, uint, 0444);
module_param(debug_quirks2, uint, 0444);
MODULE_AUTHOR("Pierre Ossman <pierre@ossman.eu>");
MODULE_DESCRIPTION("Secure Digital Host Controller Interface core driver");
MODULE_LICENSE("GPL");
MODULE_PARM_DESC(debug_quirks, "Force certain quirks.");
MODULE_PARM_DESC(debug_quirks2, "Force certain other quirks.");