mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-24 01:53:15 +07:00
16c46fd505
As i915_gem_object_unbind() waits on an rcu_barrier() to flush vm releases (and destruction of their bound vma), we have to be careful not to invoke that barrier from beneath the shrinker: <4> [430.222671] WARNING: possible circular locking dependency detected <4> [430.222673] 5.4.0-rc8-CI-CI_DRM_7508+ #1 Tainted: G U <4> [430.222675] ------------------------------------------------------ <4> [430.222677] gem_pwrite/2317 is trying to acquire lock: <4> [430.222678] ffffffff82248218 (rcu_state.barrier_mutex){+.+.}, at: rcu_barrier+0x23/0x190 <4> [430.222685] but task is already holding lock: <4> [430.222687] ffffffff82263a40 (fs_reclaim){+.+.}, at: fs_reclaim_acquire.part.117+0x0/0x30 <4> [430.222691] which lock already depends on the new lock. <4> [430.222693] the existing dependency chain (in reverse order) is: <4> [430.222695] -> #2 (fs_reclaim){+.+.}: <4> [430.222698] fs_reclaim_acquire.part.117+0x24/0x30 <4> [430.222702] kmem_cache_alloc_trace+0x2a/0x2c0 <4> [430.222705] intel_cpuc_prepare+0x37/0x1a0 <4> [430.222709] cpuhp_invoke_callback+0x9b/0x9d0 <4> [430.222712] _cpu_up+0xa2/0x140 <4> [430.222714] do_cpu_up+0x61/0xa0 <4> [430.222718] smp_init+0x57/0x96 <4> [430.222722] kernel_init_freeable+0xac/0x1c7 <4> [430.222725] kernel_init+0x5/0x100 <4> [430.222728] ret_from_fork+0x24/0x50 <4> [430.222729] -> #1 (cpu_hotplug_lock.rw_sem){++++}: <4> [430.222733] cpus_read_lock+0x34/0xd0 <4> [430.222734] rcu_barrier+0xaa/0x190 <4> [430.222736] kernel_init+0x21/0x100 <4> [430.222737] ret_from_fork+0x24/0x50 <4> [430.222739] -> #0 (rcu_state.barrier_mutex){+.+.}: <4> [430.222742] __lock_acquire+0x1328/0x15d0 <4> [430.222743] lock_acquire+0xa7/0x1c0 <4> [430.222746] __mutex_lock+0x9a/0x9d0 <4> [430.222747] rcu_barrier+0x23/0x190 <4> [430.222850] i915_gem_object_unbind+0x264/0x3d0 [i915] <4> [430.222882] i915_gem_shrink+0x297/0x5f0 [i915] <4> [430.222912] i915_gem_shrink_all+0x38/0x60 [i915] <4> [430.222934] i915_drop_caches_set+0x1f0/0x240 [i915] <4> [430.222938] simple_attr_write+0xb0/0xd0 <4> [430.222941] full_proxy_write+0x51/0x80 <4> [430.222943] vfs_write+0xb9/0x1d0 <4> [430.222944] ksys_write+0x9f/0xe0 <4> [430.222946] do_syscall_64+0x4f/0x210 <4> [430.222948] entry_SYSCALL_64_after_hwframe+0x49/0xbe <4> [430.222950] other info that might help us debug this: <4> [430.222952] Chain exists of: rcu_state.barrier_mutex --> cpu_hotplug_lock.rw_sem --> fs_reclaim <4> [430.222955] Possible unsafe locking scenario: <4> [430.222957] CPU0 CPU1 <4> [430.222958] ---- ---- <4> [430.222960] lock(fs_reclaim); <4> [430.222961] lock(cpu_hotplug_lock.rw_sem); <4> [430.222963] lock(fs_reclaim); <4> [430.222964] lock(rcu_state.barrier_mutex); <4> [430.222966] *** DEADLOCK *** <4> [430.222968] 3 locks held by gem_pwrite/2317: <4> [430.222969] #0: ffff88849e2d9408 (sb_writers#14){.+.+}, at: vfs_write+0x1a4/0x1d0 <4> [430.222973] #1: ffff888496976db0 (&attr->mutex){+.+.}, at: simple_attr_write+0x36/0xd0 <4> [430.222976] #2: ffffffff82263a40 (fs_reclaim){+.+.}, at: fs_reclaim_acquire.part.117+0x0/0x30 <4> [430.222980] stack backtrace: <4> [430.222982] CPU: 1 PID: 2317 Comm: gem_pwrite Tainted: G U 5.4.0-rc8-CI-CI_DRM_7508+ #1 <4> [430.222985] Hardware name: Intel Corporation Tiger Lake Client Platform/TigerLake U DDR4 SODIMM RVP, BIOS TGLSFWI1.R00.2321.A08.1909162051 09/16/2019 <4> [430.222989] Call Trace: <4> [430.222992] dump_stack+0x71/0x9b <4> [430.222995] check_noncircular+0x19b/0x1c0 <4> [430.222998] ? __lock_acquire+0x1328/0x15d0 <4> [430.222999] __lock_acquire+0x1328/0x15d0 <4> [430.223001] ? mark_held_locks+0x49/0x70 <4> [430.223003] lock_acquire+0xa7/0x1c0 <4> [430.223005] ? rcu_barrier+0x23/0x190 <4> [430.223008] __mutex_lock+0x9a/0x9d0 <4> [430.223009] ? rcu_barrier+0x23/0x190 <4> [430.223011] ? rcu_barrier+0x23/0x190 <4> [430.223013] ? find_held_lock+0x2d/0x90 <4> [430.223045] ? i915_gem_object_unbind+0x24a/0x3d0 [i915] <4> [430.223048] ? rcu_barrier+0x23/0x190 <4> [430.223049] rcu_barrier+0x23/0x190 <4> [430.223081] i915_gem_object_unbind+0x264/0x3d0 [i915] <4> [430.223119] i915_gem_shrink+0x297/0x5f0 [i915] Closes: https://gitlab.freedesktop.org/drm/intel/issues/743 Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Matthew Auld <matthew.auld@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20191208161252.3015727-1-chris@chris-wilson.co.uk
1568 lines
39 KiB
C
1568 lines
39 KiB
C
/*
|
|
* Copyright © 2008-2015 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
* IN THE SOFTWARE.
|
|
*
|
|
* Authors:
|
|
* Eric Anholt <eric@anholt.net>
|
|
*
|
|
*/
|
|
|
|
#include <drm/drm_vma_manager.h>
|
|
#include <drm/i915_drm.h>
|
|
#include <linux/dma-fence-array.h>
|
|
#include <linux/kthread.h>
|
|
#include <linux/dma-resv.h>
|
|
#include <linux/shmem_fs.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/stop_machine.h>
|
|
#include <linux/swap.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/dma-buf.h>
|
|
#include <linux/mman.h>
|
|
|
|
#include "display/intel_display.h"
|
|
#include "display/intel_frontbuffer.h"
|
|
|
|
#include "gem/i915_gem_clflush.h"
|
|
#include "gem/i915_gem_context.h"
|
|
#include "gem/i915_gem_ioctls.h"
|
|
#include "gem/i915_gem_mman.h"
|
|
#include "gem/i915_gem_pm.h"
|
|
#include "gt/intel_context.h"
|
|
#include "gt/intel_engine_user.h"
|
|
#include "gt/intel_gt.h"
|
|
#include "gt/intel_gt_pm.h"
|
|
#include "gt/intel_gt_requests.h"
|
|
#include "gt/intel_mocs.h"
|
|
#include "gt/intel_reset.h"
|
|
#include "gt/intel_renderstate.h"
|
|
#include "gt/intel_rps.h"
|
|
#include "gt/intel_workarounds.h"
|
|
|
|
#include "i915_drv.h"
|
|
#include "i915_scatterlist.h"
|
|
#include "i915_trace.h"
|
|
#include "i915_vgpu.h"
|
|
|
|
#include "intel_pm.h"
|
|
|
|
static int
|
|
insert_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node, u32 size)
|
|
{
|
|
int err;
|
|
|
|
err = mutex_lock_interruptible(&ggtt->vm.mutex);
|
|
if (err)
|
|
return err;
|
|
|
|
memset(node, 0, sizeof(*node));
|
|
err = drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
|
|
size, 0, I915_COLOR_UNEVICTABLE,
|
|
0, ggtt->mappable_end,
|
|
DRM_MM_INSERT_LOW);
|
|
|
|
mutex_unlock(&ggtt->vm.mutex);
|
|
|
|
return err;
|
|
}
|
|
|
|
static void
|
|
remove_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node)
|
|
{
|
|
mutex_lock(&ggtt->vm.mutex);
|
|
drm_mm_remove_node(node);
|
|
mutex_unlock(&ggtt->vm.mutex);
|
|
}
|
|
|
|
int
|
|
i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file)
|
|
{
|
|
struct i915_ggtt *ggtt = &to_i915(dev)->ggtt;
|
|
struct drm_i915_gem_get_aperture *args = data;
|
|
struct i915_vma *vma;
|
|
u64 pinned;
|
|
|
|
if (mutex_lock_interruptible(&ggtt->vm.mutex))
|
|
return -EINTR;
|
|
|
|
pinned = ggtt->vm.reserved;
|
|
list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link)
|
|
if (i915_vma_is_pinned(vma))
|
|
pinned += vma->node.size;
|
|
|
|
mutex_unlock(&ggtt->vm.mutex);
|
|
|
|
args->aper_size = ggtt->vm.total;
|
|
args->aper_available_size = args->aper_size - pinned;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int i915_gem_object_unbind(struct drm_i915_gem_object *obj,
|
|
unsigned long flags)
|
|
{
|
|
struct intel_runtime_pm *rpm = &to_i915(obj->base.dev)->runtime_pm;
|
|
LIST_HEAD(still_in_list);
|
|
intel_wakeref_t wakeref;
|
|
struct i915_vma *vma;
|
|
int ret;
|
|
|
|
if (!atomic_read(&obj->bind_count))
|
|
return 0;
|
|
|
|
/*
|
|
* As some machines use ACPI to handle runtime-resume callbacks, and
|
|
* ACPI is quite kmalloc happy, we cannot resume beneath the vm->mutex
|
|
* as they are required by the shrinker. Ergo, we wake the device up
|
|
* first just in case.
|
|
*/
|
|
wakeref = intel_runtime_pm_get(rpm);
|
|
|
|
try_again:
|
|
ret = 0;
|
|
spin_lock(&obj->vma.lock);
|
|
while (!ret && (vma = list_first_entry_or_null(&obj->vma.list,
|
|
struct i915_vma,
|
|
obj_link))) {
|
|
struct i915_address_space *vm = vma->vm;
|
|
bool awake = false;
|
|
|
|
ret = -EAGAIN;
|
|
if (!i915_vm_tryopen(vm))
|
|
break;
|
|
|
|
/* Prevent vma being freed by i915_vma_parked as we unbind */
|
|
if (intel_gt_pm_get_if_awake(vm->gt)) {
|
|
awake = true;
|
|
} else {
|
|
if (i915_vma_is_closed(vma)) {
|
|
spin_unlock(&obj->vma.lock);
|
|
i915_vma_parked(vm->gt);
|
|
goto err_vm;
|
|
}
|
|
}
|
|
|
|
list_move_tail(&vma->obj_link, &still_in_list);
|
|
spin_unlock(&obj->vma.lock);
|
|
|
|
ret = -EBUSY;
|
|
if (flags & I915_GEM_OBJECT_UNBIND_ACTIVE ||
|
|
!i915_vma_is_active(vma))
|
|
ret = i915_vma_unbind(vma);
|
|
|
|
if (awake)
|
|
intel_gt_pm_put(vm->gt);
|
|
err_vm:
|
|
i915_vm_close(vm);
|
|
spin_lock(&obj->vma.lock);
|
|
}
|
|
list_splice_init(&still_in_list, &obj->vma.list);
|
|
spin_unlock(&obj->vma.lock);
|
|
|
|
if (ret == -EAGAIN && flags & I915_GEM_OBJECT_UNBIND_BARRIER) {
|
|
rcu_barrier(); /* flush the i915_vm_release() */
|
|
goto try_again;
|
|
}
|
|
|
|
intel_runtime_pm_put(rpm, wakeref);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
|
|
struct drm_i915_gem_pwrite *args,
|
|
struct drm_file *file)
|
|
{
|
|
void *vaddr = obj->phys_handle->vaddr + args->offset;
|
|
char __user *user_data = u64_to_user_ptr(args->data_ptr);
|
|
|
|
/*
|
|
* We manually control the domain here and pretend that it
|
|
* remains coherent i.e. in the GTT domain, like shmem_pwrite.
|
|
*/
|
|
intel_frontbuffer_invalidate(obj->frontbuffer, ORIGIN_CPU);
|
|
|
|
if (copy_from_user(vaddr, user_data, args->size))
|
|
return -EFAULT;
|
|
|
|
drm_clflush_virt_range(vaddr, args->size);
|
|
intel_gt_chipset_flush(&to_i915(obj->base.dev)->gt);
|
|
|
|
intel_frontbuffer_flush(obj->frontbuffer, ORIGIN_CPU);
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
i915_gem_create(struct drm_file *file,
|
|
struct drm_i915_private *dev_priv,
|
|
u64 *size_p,
|
|
u32 *handle_p)
|
|
{
|
|
struct drm_i915_gem_object *obj;
|
|
u32 handle;
|
|
u64 size;
|
|
int ret;
|
|
|
|
size = round_up(*size_p, PAGE_SIZE);
|
|
if (size == 0)
|
|
return -EINVAL;
|
|
|
|
/* Allocate the new object */
|
|
obj = i915_gem_object_create_shmem(dev_priv, size);
|
|
if (IS_ERR(obj))
|
|
return PTR_ERR(obj);
|
|
|
|
ret = drm_gem_handle_create(file, &obj->base, &handle);
|
|
/* drop reference from allocate - handle holds it now */
|
|
i915_gem_object_put(obj);
|
|
if (ret)
|
|
return ret;
|
|
|
|
*handle_p = handle;
|
|
*size_p = size;
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
i915_gem_dumb_create(struct drm_file *file,
|
|
struct drm_device *dev,
|
|
struct drm_mode_create_dumb *args)
|
|
{
|
|
int cpp = DIV_ROUND_UP(args->bpp, 8);
|
|
u32 format;
|
|
|
|
switch (cpp) {
|
|
case 1:
|
|
format = DRM_FORMAT_C8;
|
|
break;
|
|
case 2:
|
|
format = DRM_FORMAT_RGB565;
|
|
break;
|
|
case 4:
|
|
format = DRM_FORMAT_XRGB8888;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* have to work out size/pitch and return them */
|
|
args->pitch = ALIGN(args->width * cpp, 64);
|
|
|
|
/* align stride to page size so that we can remap */
|
|
if (args->pitch > intel_plane_fb_max_stride(to_i915(dev), format,
|
|
DRM_FORMAT_MOD_LINEAR))
|
|
args->pitch = ALIGN(args->pitch, 4096);
|
|
|
|
args->size = args->pitch * args->height;
|
|
return i915_gem_create(file, to_i915(dev),
|
|
&args->size, &args->handle);
|
|
}
|
|
|
|
/**
|
|
* Creates a new mm object and returns a handle to it.
|
|
* @dev: drm device pointer
|
|
* @data: ioctl data blob
|
|
* @file: drm file pointer
|
|
*/
|
|
int
|
|
i915_gem_create_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file)
|
|
{
|
|
struct drm_i915_private *dev_priv = to_i915(dev);
|
|
struct drm_i915_gem_create *args = data;
|
|
|
|
i915_gem_flush_free_objects(dev_priv);
|
|
|
|
return i915_gem_create(file, dev_priv,
|
|
&args->size, &args->handle);
|
|
}
|
|
|
|
static int
|
|
shmem_pread(struct page *page, int offset, int len, char __user *user_data,
|
|
bool needs_clflush)
|
|
{
|
|
char *vaddr;
|
|
int ret;
|
|
|
|
vaddr = kmap(page);
|
|
|
|
if (needs_clflush)
|
|
drm_clflush_virt_range(vaddr + offset, len);
|
|
|
|
ret = __copy_to_user(user_data, vaddr + offset, len);
|
|
|
|
kunmap(page);
|
|
|
|
return ret ? -EFAULT : 0;
|
|
}
|
|
|
|
static int
|
|
i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
|
|
struct drm_i915_gem_pread *args)
|
|
{
|
|
unsigned int needs_clflush;
|
|
unsigned int idx, offset;
|
|
struct dma_fence *fence;
|
|
char __user *user_data;
|
|
u64 remain;
|
|
int ret;
|
|
|
|
ret = i915_gem_object_prepare_read(obj, &needs_clflush);
|
|
if (ret)
|
|
return ret;
|
|
|
|
fence = i915_gem_object_lock_fence(obj);
|
|
i915_gem_object_finish_access(obj);
|
|
if (!fence)
|
|
return -ENOMEM;
|
|
|
|
remain = args->size;
|
|
user_data = u64_to_user_ptr(args->data_ptr);
|
|
offset = offset_in_page(args->offset);
|
|
for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
|
|
struct page *page = i915_gem_object_get_page(obj, idx);
|
|
unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
|
|
|
|
ret = shmem_pread(page, offset, length, user_data,
|
|
needs_clflush);
|
|
if (ret)
|
|
break;
|
|
|
|
remain -= length;
|
|
user_data += length;
|
|
offset = 0;
|
|
}
|
|
|
|
i915_gem_object_unlock_fence(obj, fence);
|
|
return ret;
|
|
}
|
|
|
|
static inline bool
|
|
gtt_user_read(struct io_mapping *mapping,
|
|
loff_t base, int offset,
|
|
char __user *user_data, int length)
|
|
{
|
|
void __iomem *vaddr;
|
|
unsigned long unwritten;
|
|
|
|
/* We can use the cpu mem copy function because this is X86. */
|
|
vaddr = io_mapping_map_atomic_wc(mapping, base);
|
|
unwritten = __copy_to_user_inatomic(user_data,
|
|
(void __force *)vaddr + offset,
|
|
length);
|
|
io_mapping_unmap_atomic(vaddr);
|
|
if (unwritten) {
|
|
vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
|
|
unwritten = copy_to_user(user_data,
|
|
(void __force *)vaddr + offset,
|
|
length);
|
|
io_mapping_unmap(vaddr);
|
|
}
|
|
return unwritten;
|
|
}
|
|
|
|
static int
|
|
i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
|
|
const struct drm_i915_gem_pread *args)
|
|
{
|
|
struct drm_i915_private *i915 = to_i915(obj->base.dev);
|
|
struct i915_ggtt *ggtt = &i915->ggtt;
|
|
intel_wakeref_t wakeref;
|
|
struct drm_mm_node node;
|
|
struct dma_fence *fence;
|
|
void __user *user_data;
|
|
struct i915_vma *vma;
|
|
u64 remain, offset;
|
|
int ret;
|
|
|
|
wakeref = intel_runtime_pm_get(&i915->runtime_pm);
|
|
vma = ERR_PTR(-ENODEV);
|
|
if (!i915_gem_object_is_tiled(obj))
|
|
vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
|
|
PIN_MAPPABLE |
|
|
PIN_NONBLOCK /* NOWARN */ |
|
|
PIN_NOEVICT);
|
|
if (!IS_ERR(vma)) {
|
|
node.start = i915_ggtt_offset(vma);
|
|
node.flags = 0;
|
|
} else {
|
|
ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
|
|
if (ret)
|
|
goto out_rpm;
|
|
GEM_BUG_ON(!drm_mm_node_allocated(&node));
|
|
}
|
|
|
|
ret = i915_gem_object_lock_interruptible(obj);
|
|
if (ret)
|
|
goto out_unpin;
|
|
|
|
ret = i915_gem_object_set_to_gtt_domain(obj, false);
|
|
if (ret) {
|
|
i915_gem_object_unlock(obj);
|
|
goto out_unpin;
|
|
}
|
|
|
|
fence = i915_gem_object_lock_fence(obj);
|
|
i915_gem_object_unlock(obj);
|
|
if (!fence) {
|
|
ret = -ENOMEM;
|
|
goto out_unpin;
|
|
}
|
|
|
|
user_data = u64_to_user_ptr(args->data_ptr);
|
|
remain = args->size;
|
|
offset = args->offset;
|
|
|
|
while (remain > 0) {
|
|
/* Operation in this page
|
|
*
|
|
* page_base = page offset within aperture
|
|
* page_offset = offset within page
|
|
* page_length = bytes to copy for this page
|
|
*/
|
|
u32 page_base = node.start;
|
|
unsigned page_offset = offset_in_page(offset);
|
|
unsigned page_length = PAGE_SIZE - page_offset;
|
|
page_length = remain < page_length ? remain : page_length;
|
|
if (drm_mm_node_allocated(&node)) {
|
|
ggtt->vm.insert_page(&ggtt->vm,
|
|
i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
|
|
node.start, I915_CACHE_NONE, 0);
|
|
} else {
|
|
page_base += offset & PAGE_MASK;
|
|
}
|
|
|
|
if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
|
|
user_data, page_length)) {
|
|
ret = -EFAULT;
|
|
break;
|
|
}
|
|
|
|
remain -= page_length;
|
|
user_data += page_length;
|
|
offset += page_length;
|
|
}
|
|
|
|
i915_gem_object_unlock_fence(obj, fence);
|
|
out_unpin:
|
|
if (drm_mm_node_allocated(&node)) {
|
|
ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
|
|
remove_mappable_node(ggtt, &node);
|
|
} else {
|
|
i915_vma_unpin(vma);
|
|
}
|
|
out_rpm:
|
|
intel_runtime_pm_put(&i915->runtime_pm, wakeref);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* Reads data from the object referenced by handle.
|
|
* @dev: drm device pointer
|
|
* @data: ioctl data blob
|
|
* @file: drm file pointer
|
|
*
|
|
* On error, the contents of *data are undefined.
|
|
*/
|
|
int
|
|
i915_gem_pread_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file)
|
|
{
|
|
struct drm_i915_gem_pread *args = data;
|
|
struct drm_i915_gem_object *obj;
|
|
int ret;
|
|
|
|
if (args->size == 0)
|
|
return 0;
|
|
|
|
if (!access_ok(u64_to_user_ptr(args->data_ptr),
|
|
args->size))
|
|
return -EFAULT;
|
|
|
|
obj = i915_gem_object_lookup(file, args->handle);
|
|
if (!obj)
|
|
return -ENOENT;
|
|
|
|
/* Bounds check source. */
|
|
if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
|
|
ret = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
trace_i915_gem_object_pread(obj, args->offset, args->size);
|
|
|
|
ret = i915_gem_object_wait(obj,
|
|
I915_WAIT_INTERRUPTIBLE,
|
|
MAX_SCHEDULE_TIMEOUT);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = i915_gem_object_pin_pages(obj);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = i915_gem_shmem_pread(obj, args);
|
|
if (ret == -EFAULT || ret == -ENODEV)
|
|
ret = i915_gem_gtt_pread(obj, args);
|
|
|
|
i915_gem_object_unpin_pages(obj);
|
|
out:
|
|
i915_gem_object_put(obj);
|
|
return ret;
|
|
}
|
|
|
|
/* This is the fast write path which cannot handle
|
|
* page faults in the source data
|
|
*/
|
|
|
|
static inline bool
|
|
ggtt_write(struct io_mapping *mapping,
|
|
loff_t base, int offset,
|
|
char __user *user_data, int length)
|
|
{
|
|
void __iomem *vaddr;
|
|
unsigned long unwritten;
|
|
|
|
/* We can use the cpu mem copy function because this is X86. */
|
|
vaddr = io_mapping_map_atomic_wc(mapping, base);
|
|
unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
|
|
user_data, length);
|
|
io_mapping_unmap_atomic(vaddr);
|
|
if (unwritten) {
|
|
vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
|
|
unwritten = copy_from_user((void __force *)vaddr + offset,
|
|
user_data, length);
|
|
io_mapping_unmap(vaddr);
|
|
}
|
|
|
|
return unwritten;
|
|
}
|
|
|
|
/**
|
|
* This is the fast pwrite path, where we copy the data directly from the
|
|
* user into the GTT, uncached.
|
|
* @obj: i915 GEM object
|
|
* @args: pwrite arguments structure
|
|
*/
|
|
static int
|
|
i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
|
|
const struct drm_i915_gem_pwrite *args)
|
|
{
|
|
struct drm_i915_private *i915 = to_i915(obj->base.dev);
|
|
struct i915_ggtt *ggtt = &i915->ggtt;
|
|
struct intel_runtime_pm *rpm = &i915->runtime_pm;
|
|
intel_wakeref_t wakeref;
|
|
struct drm_mm_node node;
|
|
struct dma_fence *fence;
|
|
struct i915_vma *vma;
|
|
u64 remain, offset;
|
|
void __user *user_data;
|
|
int ret;
|
|
|
|
if (i915_gem_object_has_struct_page(obj)) {
|
|
/*
|
|
* Avoid waking the device up if we can fallback, as
|
|
* waking/resuming is very slow (worst-case 10-100 ms
|
|
* depending on PCI sleeps and our own resume time).
|
|
* This easily dwarfs any performance advantage from
|
|
* using the cache bypass of indirect GGTT access.
|
|
*/
|
|
wakeref = intel_runtime_pm_get_if_in_use(rpm);
|
|
if (!wakeref)
|
|
return -EFAULT;
|
|
} else {
|
|
/* No backing pages, no fallback, we must force GGTT access */
|
|
wakeref = intel_runtime_pm_get(rpm);
|
|
}
|
|
|
|
vma = ERR_PTR(-ENODEV);
|
|
if (!i915_gem_object_is_tiled(obj))
|
|
vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
|
|
PIN_MAPPABLE |
|
|
PIN_NONBLOCK /* NOWARN */ |
|
|
PIN_NOEVICT);
|
|
if (!IS_ERR(vma)) {
|
|
node.start = i915_ggtt_offset(vma);
|
|
node.flags = 0;
|
|
} else {
|
|
ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
|
|
if (ret)
|
|
goto out_rpm;
|
|
GEM_BUG_ON(!drm_mm_node_allocated(&node));
|
|
}
|
|
|
|
ret = i915_gem_object_lock_interruptible(obj);
|
|
if (ret)
|
|
goto out_unpin;
|
|
|
|
ret = i915_gem_object_set_to_gtt_domain(obj, true);
|
|
if (ret) {
|
|
i915_gem_object_unlock(obj);
|
|
goto out_unpin;
|
|
}
|
|
|
|
fence = i915_gem_object_lock_fence(obj);
|
|
i915_gem_object_unlock(obj);
|
|
if (!fence) {
|
|
ret = -ENOMEM;
|
|
goto out_unpin;
|
|
}
|
|
|
|
intel_frontbuffer_invalidate(obj->frontbuffer, ORIGIN_CPU);
|
|
|
|
user_data = u64_to_user_ptr(args->data_ptr);
|
|
offset = args->offset;
|
|
remain = args->size;
|
|
while (remain) {
|
|
/* Operation in this page
|
|
*
|
|
* page_base = page offset within aperture
|
|
* page_offset = offset within page
|
|
* page_length = bytes to copy for this page
|
|
*/
|
|
u32 page_base = node.start;
|
|
unsigned int page_offset = offset_in_page(offset);
|
|
unsigned int page_length = PAGE_SIZE - page_offset;
|
|
page_length = remain < page_length ? remain : page_length;
|
|
if (drm_mm_node_allocated(&node)) {
|
|
/* flush the write before we modify the GGTT */
|
|
intel_gt_flush_ggtt_writes(ggtt->vm.gt);
|
|
ggtt->vm.insert_page(&ggtt->vm,
|
|
i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
|
|
node.start, I915_CACHE_NONE, 0);
|
|
wmb(); /* flush modifications to the GGTT (insert_page) */
|
|
} else {
|
|
page_base += offset & PAGE_MASK;
|
|
}
|
|
/* If we get a fault while copying data, then (presumably) our
|
|
* source page isn't available. Return the error and we'll
|
|
* retry in the slow path.
|
|
* If the object is non-shmem backed, we retry again with the
|
|
* path that handles page fault.
|
|
*/
|
|
if (ggtt_write(&ggtt->iomap, page_base, page_offset,
|
|
user_data, page_length)) {
|
|
ret = -EFAULT;
|
|
break;
|
|
}
|
|
|
|
remain -= page_length;
|
|
user_data += page_length;
|
|
offset += page_length;
|
|
}
|
|
|
|
intel_gt_flush_ggtt_writes(ggtt->vm.gt);
|
|
intel_frontbuffer_flush(obj->frontbuffer, ORIGIN_CPU);
|
|
|
|
i915_gem_object_unlock_fence(obj, fence);
|
|
out_unpin:
|
|
if (drm_mm_node_allocated(&node)) {
|
|
ggtt->vm.clear_range(&ggtt->vm, node.start, node.size);
|
|
remove_mappable_node(ggtt, &node);
|
|
} else {
|
|
i915_vma_unpin(vma);
|
|
}
|
|
out_rpm:
|
|
intel_runtime_pm_put(rpm, wakeref);
|
|
return ret;
|
|
}
|
|
|
|
/* Per-page copy function for the shmem pwrite fastpath.
|
|
* Flushes invalid cachelines before writing to the target if
|
|
* needs_clflush_before is set and flushes out any written cachelines after
|
|
* writing if needs_clflush is set.
|
|
*/
|
|
static int
|
|
shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
|
|
bool needs_clflush_before,
|
|
bool needs_clflush_after)
|
|
{
|
|
char *vaddr;
|
|
int ret;
|
|
|
|
vaddr = kmap(page);
|
|
|
|
if (needs_clflush_before)
|
|
drm_clflush_virt_range(vaddr + offset, len);
|
|
|
|
ret = __copy_from_user(vaddr + offset, user_data, len);
|
|
if (!ret && needs_clflush_after)
|
|
drm_clflush_virt_range(vaddr + offset, len);
|
|
|
|
kunmap(page);
|
|
|
|
return ret ? -EFAULT : 0;
|
|
}
|
|
|
|
static int
|
|
i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
|
|
const struct drm_i915_gem_pwrite *args)
|
|
{
|
|
unsigned int partial_cacheline_write;
|
|
unsigned int needs_clflush;
|
|
unsigned int offset, idx;
|
|
struct dma_fence *fence;
|
|
void __user *user_data;
|
|
u64 remain;
|
|
int ret;
|
|
|
|
ret = i915_gem_object_prepare_write(obj, &needs_clflush);
|
|
if (ret)
|
|
return ret;
|
|
|
|
fence = i915_gem_object_lock_fence(obj);
|
|
i915_gem_object_finish_access(obj);
|
|
if (!fence)
|
|
return -ENOMEM;
|
|
|
|
/* If we don't overwrite a cacheline completely we need to be
|
|
* careful to have up-to-date data by first clflushing. Don't
|
|
* overcomplicate things and flush the entire patch.
|
|
*/
|
|
partial_cacheline_write = 0;
|
|
if (needs_clflush & CLFLUSH_BEFORE)
|
|
partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
|
|
|
|
user_data = u64_to_user_ptr(args->data_ptr);
|
|
remain = args->size;
|
|
offset = offset_in_page(args->offset);
|
|
for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
|
|
struct page *page = i915_gem_object_get_page(obj, idx);
|
|
unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
|
|
|
|
ret = shmem_pwrite(page, offset, length, user_data,
|
|
(offset | length) & partial_cacheline_write,
|
|
needs_clflush & CLFLUSH_AFTER);
|
|
if (ret)
|
|
break;
|
|
|
|
remain -= length;
|
|
user_data += length;
|
|
offset = 0;
|
|
}
|
|
|
|
intel_frontbuffer_flush(obj->frontbuffer, ORIGIN_CPU);
|
|
i915_gem_object_unlock_fence(obj, fence);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* Writes data to the object referenced by handle.
|
|
* @dev: drm device
|
|
* @data: ioctl data blob
|
|
* @file: drm file
|
|
*
|
|
* On error, the contents of the buffer that were to be modified are undefined.
|
|
*/
|
|
int
|
|
i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file)
|
|
{
|
|
struct drm_i915_gem_pwrite *args = data;
|
|
struct drm_i915_gem_object *obj;
|
|
int ret;
|
|
|
|
if (args->size == 0)
|
|
return 0;
|
|
|
|
if (!access_ok(u64_to_user_ptr(args->data_ptr), args->size))
|
|
return -EFAULT;
|
|
|
|
obj = i915_gem_object_lookup(file, args->handle);
|
|
if (!obj)
|
|
return -ENOENT;
|
|
|
|
/* Bounds check destination. */
|
|
if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
|
|
ret = -EINVAL;
|
|
goto err;
|
|
}
|
|
|
|
/* Writes not allowed into this read-only object */
|
|
if (i915_gem_object_is_readonly(obj)) {
|
|
ret = -EINVAL;
|
|
goto err;
|
|
}
|
|
|
|
trace_i915_gem_object_pwrite(obj, args->offset, args->size);
|
|
|
|
ret = -ENODEV;
|
|
if (obj->ops->pwrite)
|
|
ret = obj->ops->pwrite(obj, args);
|
|
if (ret != -ENODEV)
|
|
goto err;
|
|
|
|
ret = i915_gem_object_wait(obj,
|
|
I915_WAIT_INTERRUPTIBLE |
|
|
I915_WAIT_ALL,
|
|
MAX_SCHEDULE_TIMEOUT);
|
|
if (ret)
|
|
goto err;
|
|
|
|
ret = i915_gem_object_pin_pages(obj);
|
|
if (ret)
|
|
goto err;
|
|
|
|
ret = -EFAULT;
|
|
/* We can only do the GTT pwrite on untiled buffers, as otherwise
|
|
* it would end up going through the fenced access, and we'll get
|
|
* different detiling behavior between reading and writing.
|
|
* pread/pwrite currently are reading and writing from the CPU
|
|
* perspective, requiring manual detiling by the client.
|
|
*/
|
|
if (!i915_gem_object_has_struct_page(obj) ||
|
|
cpu_write_needs_clflush(obj))
|
|
/* Note that the gtt paths might fail with non-page-backed user
|
|
* pointers (e.g. gtt mappings when moving data between
|
|
* textures). Fallback to the shmem path in that case.
|
|
*/
|
|
ret = i915_gem_gtt_pwrite_fast(obj, args);
|
|
|
|
if (ret == -EFAULT || ret == -ENOSPC) {
|
|
if (obj->phys_handle)
|
|
ret = i915_gem_phys_pwrite(obj, args, file);
|
|
else
|
|
ret = i915_gem_shmem_pwrite(obj, args);
|
|
}
|
|
|
|
i915_gem_object_unpin_pages(obj);
|
|
err:
|
|
i915_gem_object_put(obj);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* Called when user space has done writes to this buffer
|
|
* @dev: drm device
|
|
* @data: ioctl data blob
|
|
* @file: drm file
|
|
*/
|
|
int
|
|
i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file)
|
|
{
|
|
struct drm_i915_gem_sw_finish *args = data;
|
|
struct drm_i915_gem_object *obj;
|
|
|
|
obj = i915_gem_object_lookup(file, args->handle);
|
|
if (!obj)
|
|
return -ENOENT;
|
|
|
|
/*
|
|
* Proxy objects are barred from CPU access, so there is no
|
|
* need to ban sw_finish as it is a nop.
|
|
*/
|
|
|
|
/* Pinned buffers may be scanout, so flush the cache */
|
|
i915_gem_object_flush_if_display(obj);
|
|
i915_gem_object_put(obj);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void i915_gem_runtime_suspend(struct drm_i915_private *i915)
|
|
{
|
|
struct drm_i915_gem_object *obj, *on;
|
|
int i;
|
|
|
|
/*
|
|
* Only called during RPM suspend. All users of the userfault_list
|
|
* must be holding an RPM wakeref to ensure that this can not
|
|
* run concurrently with themselves (and use the struct_mutex for
|
|
* protection between themselves).
|
|
*/
|
|
|
|
list_for_each_entry_safe(obj, on,
|
|
&i915->ggtt.userfault_list, userfault_link)
|
|
__i915_gem_object_release_mmap_gtt(obj);
|
|
|
|
/*
|
|
* The fence will be lost when the device powers down. If any were
|
|
* in use by hardware (i.e. they are pinned), we should not be powering
|
|
* down! All other fences will be reacquired by the user upon waking.
|
|
*/
|
|
for (i = 0; i < i915->ggtt.num_fences; i++) {
|
|
struct i915_fence_reg *reg = &i915->ggtt.fence_regs[i];
|
|
|
|
/*
|
|
* Ideally we want to assert that the fence register is not
|
|
* live at this point (i.e. that no piece of code will be
|
|
* trying to write through fence + GTT, as that both violates
|
|
* our tracking of activity and associated locking/barriers,
|
|
* but also is illegal given that the hw is powered down).
|
|
*
|
|
* Previously we used reg->pin_count as a "liveness" indicator.
|
|
* That is not sufficient, and we need a more fine-grained
|
|
* tool if we want to have a sanity check here.
|
|
*/
|
|
|
|
if (!reg->vma)
|
|
continue;
|
|
|
|
GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
|
|
reg->dirty = true;
|
|
}
|
|
}
|
|
|
|
struct i915_vma *
|
|
i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
|
|
const struct i915_ggtt_view *view,
|
|
u64 size,
|
|
u64 alignment,
|
|
u64 flags)
|
|
{
|
|
struct drm_i915_private *i915 = to_i915(obj->base.dev);
|
|
struct i915_ggtt *ggtt = &i915->ggtt;
|
|
struct i915_vma *vma;
|
|
int ret;
|
|
|
|
if (i915_gem_object_never_bind_ggtt(obj))
|
|
return ERR_PTR(-ENODEV);
|
|
|
|
if (flags & PIN_MAPPABLE &&
|
|
(!view || view->type == I915_GGTT_VIEW_NORMAL)) {
|
|
/*
|
|
* If the required space is larger than the available
|
|
* aperture, we will not able to find a slot for the
|
|
* object and unbinding the object now will be in
|
|
* vain. Worse, doing so may cause us to ping-pong
|
|
* the object in and out of the Global GTT and
|
|
* waste a lot of cycles under the mutex.
|
|
*/
|
|
if (obj->base.size > ggtt->mappable_end)
|
|
return ERR_PTR(-E2BIG);
|
|
|
|
/*
|
|
* If NONBLOCK is set the caller is optimistically
|
|
* trying to cache the full object within the mappable
|
|
* aperture, and *must* have a fallback in place for
|
|
* situations where we cannot bind the object. We
|
|
* can be a little more lax here and use the fallback
|
|
* more often to avoid costly migrations of ourselves
|
|
* and other objects within the aperture.
|
|
*
|
|
* Half-the-aperture is used as a simple heuristic.
|
|
* More interesting would to do search for a free
|
|
* block prior to making the commitment to unbind.
|
|
* That caters for the self-harm case, and with a
|
|
* little more heuristics (e.g. NOFAULT, NOEVICT)
|
|
* we could try to minimise harm to others.
|
|
*/
|
|
if (flags & PIN_NONBLOCK &&
|
|
obj->base.size > ggtt->mappable_end / 2)
|
|
return ERR_PTR(-ENOSPC);
|
|
}
|
|
|
|
vma = i915_vma_instance(obj, &ggtt->vm, view);
|
|
if (IS_ERR(vma))
|
|
return vma;
|
|
|
|
if (i915_vma_misplaced(vma, size, alignment, flags)) {
|
|
if (flags & PIN_NONBLOCK) {
|
|
if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
|
|
return ERR_PTR(-ENOSPC);
|
|
|
|
if (flags & PIN_MAPPABLE &&
|
|
vma->fence_size > ggtt->mappable_end / 2)
|
|
return ERR_PTR(-ENOSPC);
|
|
}
|
|
|
|
ret = i915_vma_unbind(vma);
|
|
if (ret)
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
if (vma->fence && !i915_gem_object_is_tiled(obj)) {
|
|
mutex_lock(&ggtt->vm.mutex);
|
|
ret = i915_vma_revoke_fence(vma);
|
|
mutex_unlock(&ggtt->vm.mutex);
|
|
if (ret)
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
|
|
if (ret)
|
|
return ERR_PTR(ret);
|
|
|
|
return vma;
|
|
}
|
|
|
|
int
|
|
i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
|
|
struct drm_file *file_priv)
|
|
{
|
|
struct drm_i915_private *i915 = to_i915(dev);
|
|
struct drm_i915_gem_madvise *args = data;
|
|
struct drm_i915_gem_object *obj;
|
|
int err;
|
|
|
|
switch (args->madv) {
|
|
case I915_MADV_DONTNEED:
|
|
case I915_MADV_WILLNEED:
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
obj = i915_gem_object_lookup(file_priv, args->handle);
|
|
if (!obj)
|
|
return -ENOENT;
|
|
|
|
err = mutex_lock_interruptible(&obj->mm.lock);
|
|
if (err)
|
|
goto out;
|
|
|
|
if (i915_gem_object_has_pages(obj) &&
|
|
i915_gem_object_is_tiled(obj) &&
|
|
i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
|
|
if (obj->mm.madv == I915_MADV_WILLNEED) {
|
|
GEM_BUG_ON(!obj->mm.quirked);
|
|
__i915_gem_object_unpin_pages(obj);
|
|
obj->mm.quirked = false;
|
|
}
|
|
if (args->madv == I915_MADV_WILLNEED) {
|
|
GEM_BUG_ON(obj->mm.quirked);
|
|
__i915_gem_object_pin_pages(obj);
|
|
obj->mm.quirked = true;
|
|
}
|
|
}
|
|
|
|
if (obj->mm.madv != __I915_MADV_PURGED)
|
|
obj->mm.madv = args->madv;
|
|
|
|
if (i915_gem_object_has_pages(obj)) {
|
|
struct list_head *list;
|
|
|
|
if (i915_gem_object_is_shrinkable(obj)) {
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&i915->mm.obj_lock, flags);
|
|
|
|
if (obj->mm.madv != I915_MADV_WILLNEED)
|
|
list = &i915->mm.purge_list;
|
|
else
|
|
list = &i915->mm.shrink_list;
|
|
list_move_tail(&obj->mm.link, list);
|
|
|
|
spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
|
|
}
|
|
}
|
|
|
|
/* if the object is no longer attached, discard its backing storage */
|
|
if (obj->mm.madv == I915_MADV_DONTNEED &&
|
|
!i915_gem_object_has_pages(obj))
|
|
i915_gem_object_truncate(obj);
|
|
|
|
args->retained = obj->mm.madv != __I915_MADV_PURGED;
|
|
mutex_unlock(&obj->mm.lock);
|
|
|
|
out:
|
|
i915_gem_object_put(obj);
|
|
return err;
|
|
}
|
|
|
|
static int __intel_context_flush_retire(struct intel_context *ce)
|
|
{
|
|
struct intel_timeline *tl;
|
|
|
|
tl = intel_context_timeline_lock(ce);
|
|
if (IS_ERR(tl))
|
|
return PTR_ERR(tl);
|
|
|
|
intel_context_timeline_unlock(tl);
|
|
return 0;
|
|
}
|
|
|
|
static int __intel_engines_record_defaults(struct intel_gt *gt)
|
|
{
|
|
struct i915_request *requests[I915_NUM_ENGINES] = {};
|
|
struct intel_engine_cs *engine;
|
|
enum intel_engine_id id;
|
|
int err = 0;
|
|
|
|
/*
|
|
* As we reset the gpu during very early sanitisation, the current
|
|
* register state on the GPU should reflect its defaults values.
|
|
* We load a context onto the hw (with restore-inhibit), then switch
|
|
* over to a second context to save that default register state. We
|
|
* can then prime every new context with that state so they all start
|
|
* from the same default HW values.
|
|
*/
|
|
|
|
for_each_engine(engine, gt, id) {
|
|
struct intel_renderstate so;
|
|
struct intel_context *ce;
|
|
struct i915_request *rq;
|
|
|
|
err = intel_renderstate_init(&so, engine);
|
|
if (err)
|
|
goto out;
|
|
|
|
/* We must be able to switch to something! */
|
|
GEM_BUG_ON(!engine->kernel_context);
|
|
engine->serial++; /* force the kernel context switch */
|
|
|
|
ce = intel_context_create(engine->kernel_context->gem_context,
|
|
engine);
|
|
if (IS_ERR(ce)) {
|
|
err = PTR_ERR(ce);
|
|
goto out;
|
|
}
|
|
|
|
rq = intel_context_create_request(ce);
|
|
if (IS_ERR(rq)) {
|
|
err = PTR_ERR(rq);
|
|
intel_context_put(ce);
|
|
goto out;
|
|
}
|
|
|
|
err = intel_engine_emit_ctx_wa(rq);
|
|
if (err)
|
|
goto err_rq;
|
|
|
|
err = intel_renderstate_emit(&so, rq);
|
|
if (err)
|
|
goto err_rq;
|
|
|
|
err_rq:
|
|
requests[id] = i915_request_get(rq);
|
|
i915_request_add(rq);
|
|
intel_renderstate_fini(&so);
|
|
if (err)
|
|
goto out;
|
|
}
|
|
|
|
/* Flush the default context image to memory, and enable powersaving. */
|
|
if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME) {
|
|
err = -EIO;
|
|
goto out;
|
|
}
|
|
|
|
for (id = 0; id < ARRAY_SIZE(requests); id++) {
|
|
struct i915_request *rq;
|
|
struct i915_vma *state;
|
|
void *vaddr;
|
|
|
|
rq = requests[id];
|
|
if (!rq)
|
|
continue;
|
|
|
|
GEM_BUG_ON(!test_bit(CONTEXT_ALLOC_BIT,
|
|
&rq->hw_context->flags));
|
|
state = rq->hw_context->state;
|
|
if (!state)
|
|
continue;
|
|
|
|
/* Serialise with retirement on another CPU */
|
|
err = __intel_context_flush_retire(rq->hw_context);
|
|
if (err)
|
|
goto out;
|
|
|
|
/* We want to be able to unbind the state from the GGTT */
|
|
GEM_BUG_ON(intel_context_is_pinned(rq->hw_context));
|
|
|
|
/*
|
|
* As we will hold a reference to the logical state, it will
|
|
* not be torn down with the context, and importantly the
|
|
* object will hold onto its vma (making it possible for a
|
|
* stray GTT write to corrupt our defaults). Unmap the vma
|
|
* from the GTT to prevent such accidents and reclaim the
|
|
* space.
|
|
*/
|
|
err = i915_vma_unbind(state);
|
|
if (err)
|
|
goto out;
|
|
|
|
i915_gem_object_lock(state->obj);
|
|
err = i915_gem_object_set_to_cpu_domain(state->obj, false);
|
|
i915_gem_object_unlock(state->obj);
|
|
if (err)
|
|
goto out;
|
|
|
|
i915_gem_object_set_cache_coherency(state->obj, I915_CACHE_LLC);
|
|
|
|
/* Check we can acquire the image of the context state */
|
|
vaddr = i915_gem_object_pin_map(state->obj, I915_MAP_FORCE_WB);
|
|
if (IS_ERR(vaddr)) {
|
|
err = PTR_ERR(vaddr);
|
|
goto out;
|
|
}
|
|
|
|
rq->engine->default_state = i915_gem_object_get(state->obj);
|
|
i915_gem_object_unpin_map(state->obj);
|
|
}
|
|
|
|
out:
|
|
/*
|
|
* If we have to abandon now, we expect the engines to be idle
|
|
* and ready to be torn-down. The quickest way we can accomplish
|
|
* this is by declaring ourselves wedged.
|
|
*/
|
|
if (err)
|
|
intel_gt_set_wedged(gt);
|
|
|
|
for (id = 0; id < ARRAY_SIZE(requests); id++) {
|
|
struct intel_context *ce;
|
|
struct i915_request *rq;
|
|
|
|
rq = requests[id];
|
|
if (!rq)
|
|
continue;
|
|
|
|
ce = rq->hw_context;
|
|
i915_request_put(rq);
|
|
intel_context_put(ce);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
static int intel_engines_verify_workarounds(struct intel_gt *gt)
|
|
{
|
|
struct intel_engine_cs *engine;
|
|
enum intel_engine_id id;
|
|
int err = 0;
|
|
|
|
if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
|
|
return 0;
|
|
|
|
for_each_engine(engine, gt, id) {
|
|
if (intel_engine_verify_workarounds(engine, "load"))
|
|
err = -EIO;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
int i915_gem_init(struct drm_i915_private *dev_priv)
|
|
{
|
|
int ret;
|
|
|
|
/* We need to fallback to 4K pages if host doesn't support huge gtt. */
|
|
if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
|
|
mkwrite_device_info(dev_priv)->page_sizes =
|
|
I915_GTT_PAGE_SIZE_4K;
|
|
|
|
ret = i915_gem_init_userptr(dev_priv);
|
|
if (ret)
|
|
return ret;
|
|
|
|
intel_uc_fetch_firmwares(&dev_priv->gt.uc);
|
|
intel_wopcm_init(&dev_priv->wopcm);
|
|
|
|
/* This is just a security blanket to placate dragons.
|
|
* On some systems, we very sporadically observe that the first TLBs
|
|
* used by the CS may be stale, despite us poking the TLB reset. If
|
|
* we hold the forcewake during initialisation these problems
|
|
* just magically go away.
|
|
*/
|
|
intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
|
|
|
|
ret = i915_init_ggtt(dev_priv);
|
|
if (ret) {
|
|
GEM_BUG_ON(ret == -EIO);
|
|
goto err_unlock;
|
|
}
|
|
|
|
intel_gt_init(&dev_priv->gt);
|
|
|
|
ret = intel_engines_setup(&dev_priv->gt);
|
|
if (ret) {
|
|
GEM_BUG_ON(ret == -EIO);
|
|
goto err_unlock;
|
|
}
|
|
|
|
ret = i915_gem_init_contexts(dev_priv);
|
|
if (ret) {
|
|
GEM_BUG_ON(ret == -EIO);
|
|
goto err_scratch;
|
|
}
|
|
|
|
ret = intel_engines_init(&dev_priv->gt);
|
|
if (ret) {
|
|
GEM_BUG_ON(ret == -EIO);
|
|
goto err_context;
|
|
}
|
|
|
|
intel_uc_init(&dev_priv->gt.uc);
|
|
|
|
ret = intel_gt_init_hw(&dev_priv->gt);
|
|
if (ret)
|
|
goto err_uc_init;
|
|
|
|
/* Only when the HW is re-initialised, can we replay the requests */
|
|
ret = intel_gt_resume(&dev_priv->gt);
|
|
if (ret)
|
|
goto err_init_hw;
|
|
|
|
/*
|
|
* Despite its name intel_init_clock_gating applies both display
|
|
* clock gating workarounds; GT mmio workarounds and the occasional
|
|
* GT power context workaround. Worse, sometimes it includes a context
|
|
* register workaround which we need to apply before we record the
|
|
* default HW state for all contexts.
|
|
*
|
|
* FIXME: break up the workarounds and apply them at the right time!
|
|
*/
|
|
intel_init_clock_gating(dev_priv);
|
|
|
|
ret = intel_engines_verify_workarounds(&dev_priv->gt);
|
|
if (ret)
|
|
goto err_gt;
|
|
|
|
ret = __intel_engines_record_defaults(&dev_priv->gt);
|
|
if (ret)
|
|
goto err_gt;
|
|
|
|
ret = i915_inject_probe_error(dev_priv, -ENODEV);
|
|
if (ret)
|
|
goto err_gt;
|
|
|
|
ret = i915_inject_probe_error(dev_priv, -EIO);
|
|
if (ret)
|
|
goto err_gt;
|
|
|
|
intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
|
|
|
|
return 0;
|
|
|
|
/*
|
|
* Unwinding is complicated by that we want to handle -EIO to mean
|
|
* disable GPU submission but keep KMS alive. We want to mark the
|
|
* HW as irrevisibly wedged, but keep enough state around that the
|
|
* driver doesn't explode during runtime.
|
|
*/
|
|
err_gt:
|
|
intel_gt_set_wedged_on_init(&dev_priv->gt);
|
|
i915_gem_suspend(dev_priv);
|
|
i915_gem_suspend_late(dev_priv);
|
|
|
|
i915_gem_drain_workqueue(dev_priv);
|
|
err_init_hw:
|
|
intel_uc_fini_hw(&dev_priv->gt.uc);
|
|
err_uc_init:
|
|
if (ret != -EIO) {
|
|
intel_uc_fini(&dev_priv->gt.uc);
|
|
intel_engines_cleanup(&dev_priv->gt);
|
|
}
|
|
err_context:
|
|
if (ret != -EIO)
|
|
i915_gem_driver_release__contexts(dev_priv);
|
|
err_scratch:
|
|
intel_gt_driver_release(&dev_priv->gt);
|
|
err_unlock:
|
|
intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
|
|
|
|
if (ret != -EIO) {
|
|
intel_uc_cleanup_firmwares(&dev_priv->gt.uc);
|
|
i915_gem_cleanup_userptr(dev_priv);
|
|
}
|
|
|
|
if (ret == -EIO) {
|
|
/*
|
|
* Allow engines or uC initialisation to fail by marking the GPU
|
|
* as wedged. But we only want to do this when the GPU is angry,
|
|
* for all other failure, such as an allocation failure, bail.
|
|
*/
|
|
if (!intel_gt_is_wedged(&dev_priv->gt)) {
|
|
i915_probe_error(dev_priv,
|
|
"Failed to initialize GPU, declaring it wedged!\n");
|
|
intel_gt_set_wedged(&dev_priv->gt);
|
|
}
|
|
|
|
/* Minimal basic recovery for KMS */
|
|
ret = i915_ggtt_enable_hw(dev_priv);
|
|
i915_gem_restore_gtt_mappings(dev_priv);
|
|
i915_gem_restore_fences(&dev_priv->ggtt);
|
|
intel_init_clock_gating(dev_priv);
|
|
}
|
|
|
|
i915_gem_drain_freed_objects(dev_priv);
|
|
return ret;
|
|
}
|
|
|
|
void i915_gem_driver_register(struct drm_i915_private *i915)
|
|
{
|
|
i915_gem_driver_register__shrinker(i915);
|
|
|
|
intel_engines_driver_register(i915);
|
|
}
|
|
|
|
void i915_gem_driver_unregister(struct drm_i915_private *i915)
|
|
{
|
|
i915_gem_driver_unregister__shrinker(i915);
|
|
}
|
|
|
|
void i915_gem_driver_remove(struct drm_i915_private *dev_priv)
|
|
{
|
|
intel_wakeref_auto_fini(&dev_priv->ggtt.userfault_wakeref);
|
|
|
|
i915_gem_suspend_late(dev_priv);
|
|
intel_gt_driver_remove(&dev_priv->gt);
|
|
|
|
/* Flush any outstanding unpin_work. */
|
|
i915_gem_drain_workqueue(dev_priv);
|
|
|
|
intel_uc_fini_hw(&dev_priv->gt.uc);
|
|
intel_uc_fini(&dev_priv->gt.uc);
|
|
|
|
i915_gem_drain_freed_objects(dev_priv);
|
|
}
|
|
|
|
void i915_gem_driver_release(struct drm_i915_private *dev_priv)
|
|
{
|
|
intel_engines_cleanup(&dev_priv->gt);
|
|
i915_gem_driver_release__contexts(dev_priv);
|
|
intel_gt_driver_release(&dev_priv->gt);
|
|
|
|
intel_wa_list_free(&dev_priv->gt_wa_list);
|
|
|
|
intel_uc_cleanup_firmwares(&dev_priv->gt.uc);
|
|
i915_gem_cleanup_userptr(dev_priv);
|
|
|
|
i915_gem_drain_freed_objects(dev_priv);
|
|
|
|
WARN_ON(!list_empty(&dev_priv->gem.contexts.list));
|
|
}
|
|
|
|
static void i915_gem_init__mm(struct drm_i915_private *i915)
|
|
{
|
|
spin_lock_init(&i915->mm.obj_lock);
|
|
|
|
init_llist_head(&i915->mm.free_list);
|
|
|
|
INIT_LIST_HEAD(&i915->mm.purge_list);
|
|
INIT_LIST_HEAD(&i915->mm.shrink_list);
|
|
|
|
i915_gem_init__objects(i915);
|
|
}
|
|
|
|
void i915_gem_init_early(struct drm_i915_private *dev_priv)
|
|
{
|
|
i915_gem_init__mm(dev_priv);
|
|
|
|
spin_lock_init(&dev_priv->fb_tracking.lock);
|
|
}
|
|
|
|
void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
|
|
{
|
|
i915_gem_drain_freed_objects(dev_priv);
|
|
GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
|
|
GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
|
|
WARN_ON(dev_priv->mm.shrink_count);
|
|
}
|
|
|
|
int i915_gem_freeze(struct drm_i915_private *dev_priv)
|
|
{
|
|
/* Discard all purgeable objects, let userspace recover those as
|
|
* required after resuming.
|
|
*/
|
|
i915_gem_shrink_all(dev_priv);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int i915_gem_freeze_late(struct drm_i915_private *i915)
|
|
{
|
|
struct drm_i915_gem_object *obj;
|
|
intel_wakeref_t wakeref;
|
|
|
|
/*
|
|
* Called just before we write the hibernation image.
|
|
*
|
|
* We need to update the domain tracking to reflect that the CPU
|
|
* will be accessing all the pages to create and restore from the
|
|
* hibernation, and so upon restoration those pages will be in the
|
|
* CPU domain.
|
|
*
|
|
* To make sure the hibernation image contains the latest state,
|
|
* we update that state just before writing out the image.
|
|
*
|
|
* To try and reduce the hibernation image, we manually shrink
|
|
* the objects as well, see i915_gem_freeze()
|
|
*/
|
|
|
|
wakeref = intel_runtime_pm_get(&i915->runtime_pm);
|
|
|
|
i915_gem_shrink(i915, -1UL, NULL, ~0);
|
|
i915_gem_drain_freed_objects(i915);
|
|
|
|
list_for_each_entry(obj, &i915->mm.shrink_list, mm.link) {
|
|
i915_gem_object_lock(obj);
|
|
WARN_ON(i915_gem_object_set_to_cpu_domain(obj, true));
|
|
i915_gem_object_unlock(obj);
|
|
}
|
|
|
|
intel_runtime_pm_put(&i915->runtime_pm, wakeref);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void i915_gem_release(struct drm_device *dev, struct drm_file *file)
|
|
{
|
|
struct drm_i915_file_private *file_priv = file->driver_priv;
|
|
struct i915_request *request;
|
|
|
|
/* Clean up our request list when the client is going away, so that
|
|
* later retire_requests won't dereference our soon-to-be-gone
|
|
* file_priv.
|
|
*/
|
|
spin_lock(&file_priv->mm.lock);
|
|
list_for_each_entry(request, &file_priv->mm.request_list, client_link)
|
|
request->file_priv = NULL;
|
|
spin_unlock(&file_priv->mm.lock);
|
|
}
|
|
|
|
int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
|
|
{
|
|
struct drm_i915_file_private *file_priv;
|
|
int ret;
|
|
|
|
DRM_DEBUG("\n");
|
|
|
|
file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
|
|
if (!file_priv)
|
|
return -ENOMEM;
|
|
|
|
file->driver_priv = file_priv;
|
|
file_priv->dev_priv = i915;
|
|
file_priv->file = file;
|
|
|
|
spin_lock_init(&file_priv->mm.lock);
|
|
INIT_LIST_HEAD(&file_priv->mm.request_list);
|
|
|
|
file_priv->bsd_engine = -1;
|
|
file_priv->hang_timestamp = jiffies;
|
|
|
|
ret = i915_gem_context_open(i915, file);
|
|
if (ret)
|
|
kfree(file_priv);
|
|
|
|
return ret;
|
|
}
|
|
|
|
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
|
|
#include "selftests/mock_gem_device.c"
|
|
#include "selftests/i915_gem.c"
|
|
#endif
|