mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
b24413180f
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
697 lines
18 KiB
C
697 lines
18 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* NFS server file handle treatment.
|
|
*
|
|
* Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
|
|
* Portions Copyright (C) 1999 G. Allen Morris III <gam3@acm.org>
|
|
* Extensive rewrite by Neil Brown <neilb@cse.unsw.edu.au> Southern-Spring 1999
|
|
* ... and again Southern-Winter 2001 to support export_operations
|
|
*/
|
|
|
|
#include <linux/exportfs.h>
|
|
|
|
#include <linux/sunrpc/svcauth_gss.h>
|
|
#include "nfsd.h"
|
|
#include "vfs.h"
|
|
#include "auth.h"
|
|
|
|
#define NFSDDBG_FACILITY NFSDDBG_FH
|
|
|
|
|
|
/*
|
|
* our acceptability function.
|
|
* if NOSUBTREECHECK, accept anything
|
|
* if not, require that we can walk up to exp->ex_dentry
|
|
* doing some checks on the 'x' bits
|
|
*/
|
|
static int nfsd_acceptable(void *expv, struct dentry *dentry)
|
|
{
|
|
struct svc_export *exp = expv;
|
|
int rv;
|
|
struct dentry *tdentry;
|
|
struct dentry *parent;
|
|
|
|
if (exp->ex_flags & NFSEXP_NOSUBTREECHECK)
|
|
return 1;
|
|
|
|
tdentry = dget(dentry);
|
|
while (tdentry != exp->ex_path.dentry && !IS_ROOT(tdentry)) {
|
|
/* make sure parents give x permission to user */
|
|
int err;
|
|
parent = dget_parent(tdentry);
|
|
err = inode_permission(d_inode(parent), MAY_EXEC);
|
|
if (err < 0) {
|
|
dput(parent);
|
|
break;
|
|
}
|
|
dput(tdentry);
|
|
tdentry = parent;
|
|
}
|
|
if (tdentry != exp->ex_path.dentry)
|
|
dprintk("nfsd_acceptable failed at %p %pd\n", tdentry, tdentry);
|
|
rv = (tdentry == exp->ex_path.dentry);
|
|
dput(tdentry);
|
|
return rv;
|
|
}
|
|
|
|
/* Type check. The correct error return for type mismatches does not seem to be
|
|
* generally agreed upon. SunOS seems to use EISDIR if file isn't S_IFREG; a
|
|
* comment in the NFSv3 spec says this is incorrect (implementation notes for
|
|
* the write call).
|
|
*/
|
|
static inline __be32
|
|
nfsd_mode_check(struct svc_rqst *rqstp, struct dentry *dentry,
|
|
umode_t requested)
|
|
{
|
|
umode_t mode = d_inode(dentry)->i_mode & S_IFMT;
|
|
|
|
if (requested == 0) /* the caller doesn't care */
|
|
return nfs_ok;
|
|
if (mode == requested) {
|
|
if (mode == S_IFDIR && !d_can_lookup(dentry)) {
|
|
WARN_ON_ONCE(1);
|
|
return nfserr_notdir;
|
|
}
|
|
return nfs_ok;
|
|
}
|
|
/*
|
|
* v4 has an error more specific than err_notdir which we should
|
|
* return in preference to err_notdir:
|
|
*/
|
|
if (rqstp->rq_vers == 4 && mode == S_IFLNK)
|
|
return nfserr_symlink;
|
|
if (requested == S_IFDIR)
|
|
return nfserr_notdir;
|
|
if (mode == S_IFDIR)
|
|
return nfserr_isdir;
|
|
return nfserr_inval;
|
|
}
|
|
|
|
static __be32 nfsd_setuser_and_check_port(struct svc_rqst *rqstp,
|
|
struct svc_export *exp)
|
|
{
|
|
int flags = nfsexp_flags(rqstp, exp);
|
|
|
|
/* Check if the request originated from a secure port. */
|
|
if (!test_bit(RQ_SECURE, &rqstp->rq_flags) && !(flags & NFSEXP_INSECURE_PORT)) {
|
|
RPC_IFDEBUG(char buf[RPC_MAX_ADDRBUFLEN]);
|
|
dprintk("nfsd: request from insecure port %s!\n",
|
|
svc_print_addr(rqstp, buf, sizeof(buf)));
|
|
return nfserr_perm;
|
|
}
|
|
|
|
/* Set user creds for this exportpoint */
|
|
return nfserrno(nfsd_setuser(rqstp, exp));
|
|
}
|
|
|
|
static inline __be32 check_pseudo_root(struct svc_rqst *rqstp,
|
|
struct dentry *dentry, struct svc_export *exp)
|
|
{
|
|
if (!(exp->ex_flags & NFSEXP_V4ROOT))
|
|
return nfs_ok;
|
|
/*
|
|
* v2/v3 clients have no need for the V4ROOT export--they use
|
|
* the mount protocl instead; also, further V4ROOT checks may be
|
|
* in v4-specific code, in which case v2/v3 clients could bypass
|
|
* them.
|
|
*/
|
|
if (!nfsd_v4client(rqstp))
|
|
return nfserr_stale;
|
|
/*
|
|
* We're exposing only the directories and symlinks that have to be
|
|
* traversed on the way to real exports:
|
|
*/
|
|
if (unlikely(!d_is_dir(dentry) &&
|
|
!d_is_symlink(dentry)))
|
|
return nfserr_stale;
|
|
/*
|
|
* A pseudoroot export gives permission to access only one
|
|
* single directory; the kernel has to make another upcall
|
|
* before granting access to anything else under it:
|
|
*/
|
|
if (unlikely(dentry != exp->ex_path.dentry))
|
|
return nfserr_stale;
|
|
return nfs_ok;
|
|
}
|
|
|
|
/*
|
|
* Use the given filehandle to look up the corresponding export and
|
|
* dentry. On success, the results are used to set fh_export and
|
|
* fh_dentry.
|
|
*/
|
|
static __be32 nfsd_set_fh_dentry(struct svc_rqst *rqstp, struct svc_fh *fhp)
|
|
{
|
|
struct knfsd_fh *fh = &fhp->fh_handle;
|
|
struct fid *fid = NULL, sfid;
|
|
struct svc_export *exp;
|
|
struct dentry *dentry;
|
|
int fileid_type;
|
|
int data_left = fh->fh_size/4;
|
|
__be32 error;
|
|
|
|
error = nfserr_stale;
|
|
if (rqstp->rq_vers > 2)
|
|
error = nfserr_badhandle;
|
|
if (rqstp->rq_vers == 4 && fh->fh_size == 0)
|
|
return nfserr_nofilehandle;
|
|
|
|
if (fh->fh_version == 1) {
|
|
int len;
|
|
|
|
if (--data_left < 0)
|
|
return error;
|
|
if (fh->fh_auth_type != 0)
|
|
return error;
|
|
len = key_len(fh->fh_fsid_type) / 4;
|
|
if (len == 0)
|
|
return error;
|
|
if (fh->fh_fsid_type == FSID_MAJOR_MINOR) {
|
|
/* deprecated, convert to type 3 */
|
|
len = key_len(FSID_ENCODE_DEV)/4;
|
|
fh->fh_fsid_type = FSID_ENCODE_DEV;
|
|
/*
|
|
* struct knfsd_fh uses host-endian fields, which are
|
|
* sometimes used to hold net-endian values. This
|
|
* confuses sparse, so we must use __force here to
|
|
* keep it from complaining.
|
|
*/
|
|
fh->fh_fsid[0] = new_encode_dev(MKDEV(ntohl((__force __be32)fh->fh_fsid[0]),
|
|
ntohl((__force __be32)fh->fh_fsid[1])));
|
|
fh->fh_fsid[1] = fh->fh_fsid[2];
|
|
}
|
|
data_left -= len;
|
|
if (data_left < 0)
|
|
return error;
|
|
exp = rqst_exp_find(rqstp, fh->fh_fsid_type, fh->fh_fsid);
|
|
fid = (struct fid *)(fh->fh_fsid + len);
|
|
} else {
|
|
__u32 tfh[2];
|
|
dev_t xdev;
|
|
ino_t xino;
|
|
|
|
if (fh->fh_size != NFS_FHSIZE)
|
|
return error;
|
|
/* assume old filehandle format */
|
|
xdev = old_decode_dev(fh->ofh_xdev);
|
|
xino = u32_to_ino_t(fh->ofh_xino);
|
|
mk_fsid(FSID_DEV, tfh, xdev, xino, 0, NULL);
|
|
exp = rqst_exp_find(rqstp, FSID_DEV, tfh);
|
|
}
|
|
|
|
error = nfserr_stale;
|
|
if (PTR_ERR(exp) == -ENOENT)
|
|
return error;
|
|
|
|
if (IS_ERR(exp))
|
|
return nfserrno(PTR_ERR(exp));
|
|
|
|
if (exp->ex_flags & NFSEXP_NOSUBTREECHECK) {
|
|
/* Elevate privileges so that the lack of 'r' or 'x'
|
|
* permission on some parent directory will
|
|
* not stop exportfs_decode_fh from being able
|
|
* to reconnect a directory into the dentry cache.
|
|
* The same problem can affect "SUBTREECHECK" exports,
|
|
* but as nfsd_acceptable depends on correct
|
|
* access control settings being in effect, we cannot
|
|
* fix that case easily.
|
|
*/
|
|
struct cred *new = prepare_creds();
|
|
if (!new) {
|
|
error = nfserrno(-ENOMEM);
|
|
goto out;
|
|
}
|
|
new->cap_effective =
|
|
cap_raise_nfsd_set(new->cap_effective,
|
|
new->cap_permitted);
|
|
put_cred(override_creds(new));
|
|
put_cred(new);
|
|
} else {
|
|
error = nfsd_setuser_and_check_port(rqstp, exp);
|
|
if (error)
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Look up the dentry using the NFS file handle.
|
|
*/
|
|
error = nfserr_stale;
|
|
if (rqstp->rq_vers > 2)
|
|
error = nfserr_badhandle;
|
|
|
|
if (fh->fh_version != 1) {
|
|
sfid.i32.ino = fh->ofh_ino;
|
|
sfid.i32.gen = fh->ofh_generation;
|
|
sfid.i32.parent_ino = fh->ofh_dirino;
|
|
fid = &sfid;
|
|
data_left = 3;
|
|
if (fh->ofh_dirino == 0)
|
|
fileid_type = FILEID_INO32_GEN;
|
|
else
|
|
fileid_type = FILEID_INO32_GEN_PARENT;
|
|
} else
|
|
fileid_type = fh->fh_fileid_type;
|
|
|
|
if (fileid_type == FILEID_ROOT)
|
|
dentry = dget(exp->ex_path.dentry);
|
|
else {
|
|
dentry = exportfs_decode_fh(exp->ex_path.mnt, fid,
|
|
data_left, fileid_type,
|
|
nfsd_acceptable, exp);
|
|
}
|
|
if (dentry == NULL)
|
|
goto out;
|
|
if (IS_ERR(dentry)) {
|
|
if (PTR_ERR(dentry) != -EINVAL)
|
|
error = nfserrno(PTR_ERR(dentry));
|
|
goto out;
|
|
}
|
|
|
|
if (d_is_dir(dentry) &&
|
|
(dentry->d_flags & DCACHE_DISCONNECTED)) {
|
|
printk("nfsd: find_fh_dentry returned a DISCONNECTED directory: %pd2\n",
|
|
dentry);
|
|
}
|
|
|
|
fhp->fh_dentry = dentry;
|
|
fhp->fh_export = exp;
|
|
return 0;
|
|
out:
|
|
exp_put(exp);
|
|
return error;
|
|
}
|
|
|
|
/**
|
|
* fh_verify - filehandle lookup and access checking
|
|
* @rqstp: pointer to current rpc request
|
|
* @fhp: filehandle to be verified
|
|
* @type: expected type of object pointed to by filehandle
|
|
* @access: type of access needed to object
|
|
*
|
|
* Look up a dentry from the on-the-wire filehandle, check the client's
|
|
* access to the export, and set the current task's credentials.
|
|
*
|
|
* Regardless of success or failure of fh_verify(), fh_put() should be
|
|
* called on @fhp when the caller is finished with the filehandle.
|
|
*
|
|
* fh_verify() may be called multiple times on a given filehandle, for
|
|
* example, when processing an NFSv4 compound. The first call will look
|
|
* up a dentry using the on-the-wire filehandle. Subsequent calls will
|
|
* skip the lookup and just perform the other checks and possibly change
|
|
* the current task's credentials.
|
|
*
|
|
* @type specifies the type of object expected using one of the S_IF*
|
|
* constants defined in include/linux/stat.h. The caller may use zero
|
|
* to indicate that it doesn't care, or a negative integer to indicate
|
|
* that it expects something not of the given type.
|
|
*
|
|
* @access is formed from the NFSD_MAY_* constants defined in
|
|
* fs/nfsd/vfs.h.
|
|
*/
|
|
__be32
|
|
fh_verify(struct svc_rqst *rqstp, struct svc_fh *fhp, umode_t type, int access)
|
|
{
|
|
struct svc_export *exp;
|
|
struct dentry *dentry;
|
|
__be32 error;
|
|
|
|
dprintk("nfsd: fh_verify(%s)\n", SVCFH_fmt(fhp));
|
|
|
|
if (!fhp->fh_dentry) {
|
|
error = nfsd_set_fh_dentry(rqstp, fhp);
|
|
if (error)
|
|
goto out;
|
|
}
|
|
dentry = fhp->fh_dentry;
|
|
exp = fhp->fh_export;
|
|
/*
|
|
* We still have to do all these permission checks, even when
|
|
* fh_dentry is already set:
|
|
* - fh_verify may be called multiple times with different
|
|
* "access" arguments (e.g. nfsd_proc_create calls
|
|
* fh_verify(...,NFSD_MAY_EXEC) first, then later (in
|
|
* nfsd_create) calls fh_verify(...,NFSD_MAY_CREATE).
|
|
* - in the NFSv4 case, the filehandle may have been filled
|
|
* in by fh_compose, and given a dentry, but further
|
|
* compound operations performed with that filehandle
|
|
* still need permissions checks. In the worst case, a
|
|
* mountpoint crossing may have changed the export
|
|
* options, and we may now need to use a different uid
|
|
* (for example, if different id-squashing options are in
|
|
* effect on the new filesystem).
|
|
*/
|
|
error = check_pseudo_root(rqstp, dentry, exp);
|
|
if (error)
|
|
goto out;
|
|
|
|
error = nfsd_setuser_and_check_port(rqstp, exp);
|
|
if (error)
|
|
goto out;
|
|
|
|
error = nfsd_mode_check(rqstp, dentry, type);
|
|
if (error)
|
|
goto out;
|
|
|
|
/*
|
|
* pseudoflavor restrictions are not enforced on NLM,
|
|
* which clients virtually always use auth_sys for,
|
|
* even while using RPCSEC_GSS for NFS.
|
|
*/
|
|
if (access & NFSD_MAY_LOCK || access & NFSD_MAY_BYPASS_GSS)
|
|
goto skip_pseudoflavor_check;
|
|
/*
|
|
* Clients may expect to be able to use auth_sys during mount,
|
|
* even if they use gss for everything else; see section 2.3.2
|
|
* of rfc 2623.
|
|
*/
|
|
if (access & NFSD_MAY_BYPASS_GSS_ON_ROOT
|
|
&& exp->ex_path.dentry == dentry)
|
|
goto skip_pseudoflavor_check;
|
|
|
|
error = check_nfsd_access(exp, rqstp);
|
|
if (error)
|
|
goto out;
|
|
|
|
skip_pseudoflavor_check:
|
|
/* Finally, check access permissions. */
|
|
error = nfsd_permission(rqstp, exp, dentry, access);
|
|
|
|
if (error) {
|
|
dprintk("fh_verify: %pd2 permission failure, "
|
|
"acc=%x, error=%d\n",
|
|
dentry,
|
|
access, ntohl(error));
|
|
}
|
|
out:
|
|
if (error == nfserr_stale)
|
|
nfsdstats.fh_stale++;
|
|
return error;
|
|
}
|
|
|
|
|
|
/*
|
|
* Compose a file handle for an NFS reply.
|
|
*
|
|
* Note that when first composed, the dentry may not yet have
|
|
* an inode. In this case a call to fh_update should be made
|
|
* before the fh goes out on the wire ...
|
|
*/
|
|
static void _fh_update(struct svc_fh *fhp, struct svc_export *exp,
|
|
struct dentry *dentry)
|
|
{
|
|
if (dentry != exp->ex_path.dentry) {
|
|
struct fid *fid = (struct fid *)
|
|
(fhp->fh_handle.fh_fsid + fhp->fh_handle.fh_size/4 - 1);
|
|
int maxsize = (fhp->fh_maxsize - fhp->fh_handle.fh_size)/4;
|
|
int subtreecheck = !(exp->ex_flags & NFSEXP_NOSUBTREECHECK);
|
|
|
|
fhp->fh_handle.fh_fileid_type =
|
|
exportfs_encode_fh(dentry, fid, &maxsize, subtreecheck);
|
|
fhp->fh_handle.fh_size += maxsize * 4;
|
|
} else {
|
|
fhp->fh_handle.fh_fileid_type = FILEID_ROOT;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* for composing old style file handles
|
|
*/
|
|
static inline void _fh_update_old(struct dentry *dentry,
|
|
struct svc_export *exp,
|
|
struct knfsd_fh *fh)
|
|
{
|
|
fh->ofh_ino = ino_t_to_u32(d_inode(dentry)->i_ino);
|
|
fh->ofh_generation = d_inode(dentry)->i_generation;
|
|
if (d_is_dir(dentry) ||
|
|
(exp->ex_flags & NFSEXP_NOSUBTREECHECK))
|
|
fh->ofh_dirino = 0;
|
|
}
|
|
|
|
static bool is_root_export(struct svc_export *exp)
|
|
{
|
|
return exp->ex_path.dentry == exp->ex_path.dentry->d_sb->s_root;
|
|
}
|
|
|
|
static struct super_block *exp_sb(struct svc_export *exp)
|
|
{
|
|
return exp->ex_path.dentry->d_sb;
|
|
}
|
|
|
|
static bool fsid_type_ok_for_exp(u8 fsid_type, struct svc_export *exp)
|
|
{
|
|
switch (fsid_type) {
|
|
case FSID_DEV:
|
|
if (!old_valid_dev(exp_sb(exp)->s_dev))
|
|
return 0;
|
|
/* FALL THROUGH */
|
|
case FSID_MAJOR_MINOR:
|
|
case FSID_ENCODE_DEV:
|
|
return exp_sb(exp)->s_type->fs_flags & FS_REQUIRES_DEV;
|
|
case FSID_NUM:
|
|
return exp->ex_flags & NFSEXP_FSID;
|
|
case FSID_UUID8:
|
|
case FSID_UUID16:
|
|
if (!is_root_export(exp))
|
|
return 0;
|
|
/* fall through */
|
|
case FSID_UUID4_INUM:
|
|
case FSID_UUID16_INUM:
|
|
return exp->ex_uuid != NULL;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
|
|
static void set_version_and_fsid_type(struct svc_fh *fhp, struct svc_export *exp, struct svc_fh *ref_fh)
|
|
{
|
|
u8 version;
|
|
u8 fsid_type;
|
|
retry:
|
|
version = 1;
|
|
if (ref_fh && ref_fh->fh_export == exp) {
|
|
version = ref_fh->fh_handle.fh_version;
|
|
fsid_type = ref_fh->fh_handle.fh_fsid_type;
|
|
|
|
ref_fh = NULL;
|
|
|
|
switch (version) {
|
|
case 0xca:
|
|
fsid_type = FSID_DEV;
|
|
break;
|
|
case 1:
|
|
break;
|
|
default:
|
|
goto retry;
|
|
}
|
|
|
|
/*
|
|
* As the fsid -> filesystem mapping was guided by
|
|
* user-space, there is no guarantee that the filesystem
|
|
* actually supports that fsid type. If it doesn't we
|
|
* loop around again without ref_fh set.
|
|
*/
|
|
if (!fsid_type_ok_for_exp(fsid_type, exp))
|
|
goto retry;
|
|
} else if (exp->ex_flags & NFSEXP_FSID) {
|
|
fsid_type = FSID_NUM;
|
|
} else if (exp->ex_uuid) {
|
|
if (fhp->fh_maxsize >= 64) {
|
|
if (is_root_export(exp))
|
|
fsid_type = FSID_UUID16;
|
|
else
|
|
fsid_type = FSID_UUID16_INUM;
|
|
} else {
|
|
if (is_root_export(exp))
|
|
fsid_type = FSID_UUID8;
|
|
else
|
|
fsid_type = FSID_UUID4_INUM;
|
|
}
|
|
} else if (!old_valid_dev(exp_sb(exp)->s_dev))
|
|
/* for newer device numbers, we must use a newer fsid format */
|
|
fsid_type = FSID_ENCODE_DEV;
|
|
else
|
|
fsid_type = FSID_DEV;
|
|
fhp->fh_handle.fh_version = version;
|
|
if (version)
|
|
fhp->fh_handle.fh_fsid_type = fsid_type;
|
|
}
|
|
|
|
__be32
|
|
fh_compose(struct svc_fh *fhp, struct svc_export *exp, struct dentry *dentry,
|
|
struct svc_fh *ref_fh)
|
|
{
|
|
/* ref_fh is a reference file handle.
|
|
* if it is non-null and for the same filesystem, then we should compose
|
|
* a filehandle which is of the same version, where possible.
|
|
* Currently, that means that if ref_fh->fh_handle.fh_version == 0xca
|
|
* Then create a 32byte filehandle using nfs_fhbase_old
|
|
*
|
|
*/
|
|
|
|
struct inode * inode = d_inode(dentry);
|
|
dev_t ex_dev = exp_sb(exp)->s_dev;
|
|
|
|
dprintk("nfsd: fh_compose(exp %02x:%02x/%ld %pd2, ino=%ld)\n",
|
|
MAJOR(ex_dev), MINOR(ex_dev),
|
|
(long) d_inode(exp->ex_path.dentry)->i_ino,
|
|
dentry,
|
|
(inode ? inode->i_ino : 0));
|
|
|
|
/* Choose filehandle version and fsid type based on
|
|
* the reference filehandle (if it is in the same export)
|
|
* or the export options.
|
|
*/
|
|
set_version_and_fsid_type(fhp, exp, ref_fh);
|
|
|
|
if (ref_fh == fhp)
|
|
fh_put(ref_fh);
|
|
|
|
if (fhp->fh_locked || fhp->fh_dentry) {
|
|
printk(KERN_ERR "fh_compose: fh %pd2 not initialized!\n",
|
|
dentry);
|
|
}
|
|
if (fhp->fh_maxsize < NFS_FHSIZE)
|
|
printk(KERN_ERR "fh_compose: called with maxsize %d! %pd2\n",
|
|
fhp->fh_maxsize,
|
|
dentry);
|
|
|
|
fhp->fh_dentry = dget(dentry); /* our internal copy */
|
|
fhp->fh_export = exp_get(exp);
|
|
|
|
if (fhp->fh_handle.fh_version == 0xca) {
|
|
/* old style filehandle please */
|
|
memset(&fhp->fh_handle.fh_base, 0, NFS_FHSIZE);
|
|
fhp->fh_handle.fh_size = NFS_FHSIZE;
|
|
fhp->fh_handle.ofh_dcookie = 0xfeebbaca;
|
|
fhp->fh_handle.ofh_dev = old_encode_dev(ex_dev);
|
|
fhp->fh_handle.ofh_xdev = fhp->fh_handle.ofh_dev;
|
|
fhp->fh_handle.ofh_xino =
|
|
ino_t_to_u32(d_inode(exp->ex_path.dentry)->i_ino);
|
|
fhp->fh_handle.ofh_dirino = ino_t_to_u32(parent_ino(dentry));
|
|
if (inode)
|
|
_fh_update_old(dentry, exp, &fhp->fh_handle);
|
|
} else {
|
|
fhp->fh_handle.fh_size =
|
|
key_len(fhp->fh_handle.fh_fsid_type) + 4;
|
|
fhp->fh_handle.fh_auth_type = 0;
|
|
|
|
mk_fsid(fhp->fh_handle.fh_fsid_type,
|
|
fhp->fh_handle.fh_fsid,
|
|
ex_dev,
|
|
d_inode(exp->ex_path.dentry)->i_ino,
|
|
exp->ex_fsid, exp->ex_uuid);
|
|
|
|
if (inode)
|
|
_fh_update(fhp, exp, dentry);
|
|
if (fhp->fh_handle.fh_fileid_type == FILEID_INVALID) {
|
|
fh_put(fhp);
|
|
return nfserr_opnotsupp;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Update file handle information after changing a dentry.
|
|
* This is only called by nfsd_create, nfsd_create_v3 and nfsd_proc_create
|
|
*/
|
|
__be32
|
|
fh_update(struct svc_fh *fhp)
|
|
{
|
|
struct dentry *dentry;
|
|
|
|
if (!fhp->fh_dentry)
|
|
goto out_bad;
|
|
|
|
dentry = fhp->fh_dentry;
|
|
if (d_really_is_negative(dentry))
|
|
goto out_negative;
|
|
if (fhp->fh_handle.fh_version != 1) {
|
|
_fh_update_old(dentry, fhp->fh_export, &fhp->fh_handle);
|
|
} else {
|
|
if (fhp->fh_handle.fh_fileid_type != FILEID_ROOT)
|
|
return 0;
|
|
|
|
_fh_update(fhp, fhp->fh_export, dentry);
|
|
if (fhp->fh_handle.fh_fileid_type == FILEID_INVALID)
|
|
return nfserr_opnotsupp;
|
|
}
|
|
return 0;
|
|
out_bad:
|
|
printk(KERN_ERR "fh_update: fh not verified!\n");
|
|
return nfserr_serverfault;
|
|
out_negative:
|
|
printk(KERN_ERR "fh_update: %pd2 still negative!\n",
|
|
dentry);
|
|
return nfserr_serverfault;
|
|
}
|
|
|
|
/*
|
|
* Release a file handle.
|
|
*/
|
|
void
|
|
fh_put(struct svc_fh *fhp)
|
|
{
|
|
struct dentry * dentry = fhp->fh_dentry;
|
|
struct svc_export * exp = fhp->fh_export;
|
|
if (dentry) {
|
|
fh_unlock(fhp);
|
|
fhp->fh_dentry = NULL;
|
|
dput(dentry);
|
|
fh_clear_wcc(fhp);
|
|
}
|
|
fh_drop_write(fhp);
|
|
if (exp) {
|
|
exp_put(exp);
|
|
fhp->fh_export = NULL;
|
|
}
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Shorthand for dprintk()'s
|
|
*/
|
|
char * SVCFH_fmt(struct svc_fh *fhp)
|
|
{
|
|
struct knfsd_fh *fh = &fhp->fh_handle;
|
|
|
|
static char buf[80];
|
|
sprintf(buf, "%d: %08x %08x %08x %08x %08x %08x",
|
|
fh->fh_size,
|
|
fh->fh_base.fh_pad[0],
|
|
fh->fh_base.fh_pad[1],
|
|
fh->fh_base.fh_pad[2],
|
|
fh->fh_base.fh_pad[3],
|
|
fh->fh_base.fh_pad[4],
|
|
fh->fh_base.fh_pad[5]);
|
|
return buf;
|
|
}
|
|
|
|
enum fsid_source fsid_source(struct svc_fh *fhp)
|
|
{
|
|
if (fhp->fh_handle.fh_version != 1)
|
|
return FSIDSOURCE_DEV;
|
|
switch(fhp->fh_handle.fh_fsid_type) {
|
|
case FSID_DEV:
|
|
case FSID_ENCODE_DEV:
|
|
case FSID_MAJOR_MINOR:
|
|
if (exp_sb(fhp->fh_export)->s_type->fs_flags & FS_REQUIRES_DEV)
|
|
return FSIDSOURCE_DEV;
|
|
break;
|
|
case FSID_NUM:
|
|
if (fhp->fh_export->ex_flags & NFSEXP_FSID)
|
|
return FSIDSOURCE_FSID;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
/* either a UUID type filehandle, or the filehandle doesn't
|
|
* match the export.
|
|
*/
|
|
if (fhp->fh_export->ex_flags & NFSEXP_FSID)
|
|
return FSIDSOURCE_FSID;
|
|
if (fhp->fh_export->ex_uuid)
|
|
return FSIDSOURCE_UUID;
|
|
return FSIDSOURCE_DEV;
|
|
}
|