linux_dsm_epyc7002/drivers/net/jme.c
Rafael J. Wysocki f4e5bd4f57 Net / jme: Do not use legacy PCI power management
The jme driver uses the legacy PCI power management, so it has to do
some PCI-specific things in its ->suspend() and ->resume() callbacks,
which isn't necessary and should better be done by the PCI
sybsystem-level power management code.  It also doesn't use device
wakeup flags correctly.

Convert jme to the new PCI power management framework and make it
let the PCI subsystem take care of all the PCI-specific aspects of
device handling during system power transitions.

Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Signed-off-by: David S. Miller <davem@davemloft.net>
2011-03-27 23:35:04 -07:00

3285 lines
72 KiB
C

/*
* JMicron JMC2x0 series PCIe Ethernet Linux Device Driver
*
* Copyright 2008 JMicron Technology Corporation
* http://www.jmicron.com/
* Copyright (c) 2009 - 2010 Guo-Fu Tseng <cooldavid@cooldavid.org>
*
* Author: Guo-Fu Tseng <cooldavid@cooldavid.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/ethtool.h>
#include <linux/mii.h>
#include <linux/crc32.h>
#include <linux/delay.h>
#include <linux/spinlock.h>
#include <linux/in.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
#include <linux/tcp.h>
#include <linux/udp.h>
#include <linux/if_vlan.h>
#include <linux/slab.h>
#include <net/ip6_checksum.h>
#include "jme.h"
static int force_pseudohp = -1;
static int no_pseudohp = -1;
static int no_extplug = -1;
module_param(force_pseudohp, int, 0);
MODULE_PARM_DESC(force_pseudohp,
"Enable pseudo hot-plug feature manually by driver instead of BIOS.");
module_param(no_pseudohp, int, 0);
MODULE_PARM_DESC(no_pseudohp, "Disable pseudo hot-plug feature.");
module_param(no_extplug, int, 0);
MODULE_PARM_DESC(no_extplug,
"Do not use external plug signal for pseudo hot-plug.");
static int
jme_mdio_read(struct net_device *netdev, int phy, int reg)
{
struct jme_adapter *jme = netdev_priv(netdev);
int i, val, again = (reg == MII_BMSR) ? 1 : 0;
read_again:
jwrite32(jme, JME_SMI, SMI_OP_REQ |
smi_phy_addr(phy) |
smi_reg_addr(reg));
wmb();
for (i = JME_PHY_TIMEOUT * 50 ; i > 0 ; --i) {
udelay(20);
val = jread32(jme, JME_SMI);
if ((val & SMI_OP_REQ) == 0)
break;
}
if (i == 0) {
pr_err("phy(%d) read timeout : %d\n", phy, reg);
return 0;
}
if (again--)
goto read_again;
return (val & SMI_DATA_MASK) >> SMI_DATA_SHIFT;
}
static void
jme_mdio_write(struct net_device *netdev,
int phy, int reg, int val)
{
struct jme_adapter *jme = netdev_priv(netdev);
int i;
jwrite32(jme, JME_SMI, SMI_OP_WRITE | SMI_OP_REQ |
((val << SMI_DATA_SHIFT) & SMI_DATA_MASK) |
smi_phy_addr(phy) | smi_reg_addr(reg));
wmb();
for (i = JME_PHY_TIMEOUT * 50 ; i > 0 ; --i) {
udelay(20);
if ((jread32(jme, JME_SMI) & SMI_OP_REQ) == 0)
break;
}
if (i == 0)
pr_err("phy(%d) write timeout : %d\n", phy, reg);
}
static inline void
jme_reset_phy_processor(struct jme_adapter *jme)
{
u32 val;
jme_mdio_write(jme->dev,
jme->mii_if.phy_id,
MII_ADVERTISE, ADVERTISE_ALL |
ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
if (jme->pdev->device == PCI_DEVICE_ID_JMICRON_JMC250)
jme_mdio_write(jme->dev,
jme->mii_if.phy_id,
MII_CTRL1000,
ADVERTISE_1000FULL | ADVERTISE_1000HALF);
val = jme_mdio_read(jme->dev,
jme->mii_if.phy_id,
MII_BMCR);
jme_mdio_write(jme->dev,
jme->mii_if.phy_id,
MII_BMCR, val | BMCR_RESET);
}
static void
jme_setup_wakeup_frame(struct jme_adapter *jme,
const u32 *mask, u32 crc, int fnr)
{
int i;
/*
* Setup CRC pattern
*/
jwrite32(jme, JME_WFOI, WFOI_CRC_SEL | (fnr & WFOI_FRAME_SEL));
wmb();
jwrite32(jme, JME_WFODP, crc);
wmb();
/*
* Setup Mask
*/
for (i = 0 ; i < WAKEUP_FRAME_MASK_DWNR ; ++i) {
jwrite32(jme, JME_WFOI,
((i << WFOI_MASK_SHIFT) & WFOI_MASK_SEL) |
(fnr & WFOI_FRAME_SEL));
wmb();
jwrite32(jme, JME_WFODP, mask[i]);
wmb();
}
}
static inline void
jme_mac_rxclk_off(struct jme_adapter *jme)
{
jme->reg_gpreg1 |= GPREG1_RXCLKOFF;
jwrite32f(jme, JME_GPREG1, jme->reg_gpreg1);
}
static inline void
jme_mac_rxclk_on(struct jme_adapter *jme)
{
jme->reg_gpreg1 &= ~GPREG1_RXCLKOFF;
jwrite32f(jme, JME_GPREG1, jme->reg_gpreg1);
}
static inline void
jme_mac_txclk_off(struct jme_adapter *jme)
{
jme->reg_ghc &= ~(GHC_TO_CLK_SRC | GHC_TXMAC_CLK_SRC);
jwrite32f(jme, JME_GHC, jme->reg_ghc);
}
static inline void
jme_mac_txclk_on(struct jme_adapter *jme)
{
u32 speed = jme->reg_ghc & GHC_SPEED;
if (speed == GHC_SPEED_1000M)
jme->reg_ghc |= GHC_TO_CLK_GPHY | GHC_TXMAC_CLK_GPHY;
else
jme->reg_ghc |= GHC_TO_CLK_PCIE | GHC_TXMAC_CLK_PCIE;
jwrite32f(jme, JME_GHC, jme->reg_ghc);
}
static inline void
jme_reset_ghc_speed(struct jme_adapter *jme)
{
jme->reg_ghc &= ~(GHC_SPEED | GHC_DPX);
jwrite32f(jme, JME_GHC, jme->reg_ghc);
}
static inline void
jme_reset_250A2_workaround(struct jme_adapter *jme)
{
jme->reg_gpreg1 &= ~(GPREG1_HALFMODEPATCH |
GPREG1_RSSPATCH);
jwrite32(jme, JME_GPREG1, jme->reg_gpreg1);
}
static inline void
jme_assert_ghc_reset(struct jme_adapter *jme)
{
jme->reg_ghc |= GHC_SWRST;
jwrite32f(jme, JME_GHC, jme->reg_ghc);
}
static inline void
jme_clear_ghc_reset(struct jme_adapter *jme)
{
jme->reg_ghc &= ~GHC_SWRST;
jwrite32f(jme, JME_GHC, jme->reg_ghc);
}
static inline void
jme_reset_mac_processor(struct jme_adapter *jme)
{
static const u32 mask[WAKEUP_FRAME_MASK_DWNR] = {0, 0, 0, 0};
u32 crc = 0xCDCDCDCD;
u32 gpreg0;
int i;
jme_reset_ghc_speed(jme);
jme_reset_250A2_workaround(jme);
jme_mac_rxclk_on(jme);
jme_mac_txclk_on(jme);
udelay(1);
jme_assert_ghc_reset(jme);
udelay(1);
jme_mac_rxclk_off(jme);
jme_mac_txclk_off(jme);
udelay(1);
jme_clear_ghc_reset(jme);
udelay(1);
jme_mac_rxclk_on(jme);
jme_mac_txclk_on(jme);
udelay(1);
jme_mac_rxclk_off(jme);
jme_mac_txclk_off(jme);
jwrite32(jme, JME_RXDBA_LO, 0x00000000);
jwrite32(jme, JME_RXDBA_HI, 0x00000000);
jwrite32(jme, JME_RXQDC, 0x00000000);
jwrite32(jme, JME_RXNDA, 0x00000000);
jwrite32(jme, JME_TXDBA_LO, 0x00000000);
jwrite32(jme, JME_TXDBA_HI, 0x00000000);
jwrite32(jme, JME_TXQDC, 0x00000000);
jwrite32(jme, JME_TXNDA, 0x00000000);
jwrite32(jme, JME_RXMCHT_LO, 0x00000000);
jwrite32(jme, JME_RXMCHT_HI, 0x00000000);
for (i = 0 ; i < WAKEUP_FRAME_NR ; ++i)
jme_setup_wakeup_frame(jme, mask, crc, i);
if (jme->fpgaver)
gpreg0 = GPREG0_DEFAULT | GPREG0_LNKINTPOLL;
else
gpreg0 = GPREG0_DEFAULT;
jwrite32(jme, JME_GPREG0, gpreg0);
}
static inline void
jme_clear_pm(struct jme_adapter *jme)
{
jwrite32(jme, JME_PMCS, 0xFFFF0000 | jme->reg_pmcs);
pci_set_power_state(jme->pdev, PCI_D0);
device_set_wakeup_enable(&jme->pdev->dev, false);
}
static int
jme_reload_eeprom(struct jme_adapter *jme)
{
u32 val;
int i;
val = jread32(jme, JME_SMBCSR);
if (val & SMBCSR_EEPROMD) {
val |= SMBCSR_CNACK;
jwrite32(jme, JME_SMBCSR, val);
val |= SMBCSR_RELOAD;
jwrite32(jme, JME_SMBCSR, val);
mdelay(12);
for (i = JME_EEPROM_RELOAD_TIMEOUT; i > 0; --i) {
mdelay(1);
if ((jread32(jme, JME_SMBCSR) & SMBCSR_RELOAD) == 0)
break;
}
if (i == 0) {
pr_err("eeprom reload timeout\n");
return -EIO;
}
}
return 0;
}
static void
jme_load_macaddr(struct net_device *netdev)
{
struct jme_adapter *jme = netdev_priv(netdev);
unsigned char macaddr[6];
u32 val;
spin_lock_bh(&jme->macaddr_lock);
val = jread32(jme, JME_RXUMA_LO);
macaddr[0] = (val >> 0) & 0xFF;
macaddr[1] = (val >> 8) & 0xFF;
macaddr[2] = (val >> 16) & 0xFF;
macaddr[3] = (val >> 24) & 0xFF;
val = jread32(jme, JME_RXUMA_HI);
macaddr[4] = (val >> 0) & 0xFF;
macaddr[5] = (val >> 8) & 0xFF;
memcpy(netdev->dev_addr, macaddr, 6);
spin_unlock_bh(&jme->macaddr_lock);
}
static inline void
jme_set_rx_pcc(struct jme_adapter *jme, int p)
{
switch (p) {
case PCC_OFF:
jwrite32(jme, JME_PCCRX0,
((PCC_OFF_TO << PCCRXTO_SHIFT) & PCCRXTO_MASK) |
((PCC_OFF_CNT << PCCRX_SHIFT) & PCCRX_MASK));
break;
case PCC_P1:
jwrite32(jme, JME_PCCRX0,
((PCC_P1_TO << PCCRXTO_SHIFT) & PCCRXTO_MASK) |
((PCC_P1_CNT << PCCRX_SHIFT) & PCCRX_MASK));
break;
case PCC_P2:
jwrite32(jme, JME_PCCRX0,
((PCC_P2_TO << PCCRXTO_SHIFT) & PCCRXTO_MASK) |
((PCC_P2_CNT << PCCRX_SHIFT) & PCCRX_MASK));
break;
case PCC_P3:
jwrite32(jme, JME_PCCRX0,
((PCC_P3_TO << PCCRXTO_SHIFT) & PCCRXTO_MASK) |
((PCC_P3_CNT << PCCRX_SHIFT) & PCCRX_MASK));
break;
default:
break;
}
wmb();
if (!(test_bit(JME_FLAG_POLL, &jme->flags)))
netif_info(jme, rx_status, jme->dev, "Switched to PCC_P%d\n", p);
}
static void
jme_start_irq(struct jme_adapter *jme)
{
register struct dynpcc_info *dpi = &(jme->dpi);
jme_set_rx_pcc(jme, PCC_P1);
dpi->cur = PCC_P1;
dpi->attempt = PCC_P1;
dpi->cnt = 0;
jwrite32(jme, JME_PCCTX,
((PCC_TX_TO << PCCTXTO_SHIFT) & PCCTXTO_MASK) |
((PCC_TX_CNT << PCCTX_SHIFT) & PCCTX_MASK) |
PCCTXQ0_EN
);
/*
* Enable Interrupts
*/
jwrite32(jme, JME_IENS, INTR_ENABLE);
}
static inline void
jme_stop_irq(struct jme_adapter *jme)
{
/*
* Disable Interrupts
*/
jwrite32f(jme, JME_IENC, INTR_ENABLE);
}
static u32
jme_linkstat_from_phy(struct jme_adapter *jme)
{
u32 phylink, bmsr;
phylink = jme_mdio_read(jme->dev, jme->mii_if.phy_id, 17);
bmsr = jme_mdio_read(jme->dev, jme->mii_if.phy_id, MII_BMSR);
if (bmsr & BMSR_ANCOMP)
phylink |= PHY_LINK_AUTONEG_COMPLETE;
return phylink;
}
static inline void
jme_set_phyfifo_5level(struct jme_adapter *jme)
{
jme_mdio_write(jme->dev, jme->mii_if.phy_id, 27, 0x0004);
}
static inline void
jme_set_phyfifo_8level(struct jme_adapter *jme)
{
jme_mdio_write(jme->dev, jme->mii_if.phy_id, 27, 0x0000);
}
static int
jme_check_link(struct net_device *netdev, int testonly)
{
struct jme_adapter *jme = netdev_priv(netdev);
u32 phylink, cnt = JME_SPDRSV_TIMEOUT, bmcr;
char linkmsg[64];
int rc = 0;
linkmsg[0] = '\0';
if (jme->fpgaver)
phylink = jme_linkstat_from_phy(jme);
else
phylink = jread32(jme, JME_PHY_LINK);
if (phylink & PHY_LINK_UP) {
if (!(phylink & PHY_LINK_AUTONEG_COMPLETE)) {
/*
* If we did not enable AN
* Speed/Duplex Info should be obtained from SMI
*/
phylink = PHY_LINK_UP;
bmcr = jme_mdio_read(jme->dev,
jme->mii_if.phy_id,
MII_BMCR);
phylink |= ((bmcr & BMCR_SPEED1000) &&
(bmcr & BMCR_SPEED100) == 0) ?
PHY_LINK_SPEED_1000M :
(bmcr & BMCR_SPEED100) ?
PHY_LINK_SPEED_100M :
PHY_LINK_SPEED_10M;
phylink |= (bmcr & BMCR_FULLDPLX) ?
PHY_LINK_DUPLEX : 0;
strcat(linkmsg, "Forced: ");
} else {
/*
* Keep polling for speed/duplex resolve complete
*/
while (!(phylink & PHY_LINK_SPEEDDPU_RESOLVED) &&
--cnt) {
udelay(1);
if (jme->fpgaver)
phylink = jme_linkstat_from_phy(jme);
else
phylink = jread32(jme, JME_PHY_LINK);
}
if (!cnt)
pr_err("Waiting speed resolve timeout\n");
strcat(linkmsg, "ANed: ");
}
if (jme->phylink == phylink) {
rc = 1;
goto out;
}
if (testonly)
goto out;
jme->phylink = phylink;
/*
* The speed/duplex setting of jme->reg_ghc already cleared
* by jme_reset_mac_processor()
*/
switch (phylink & PHY_LINK_SPEED_MASK) {
case PHY_LINK_SPEED_10M:
jme->reg_ghc |= GHC_SPEED_10M;
strcat(linkmsg, "10 Mbps, ");
break;
case PHY_LINK_SPEED_100M:
jme->reg_ghc |= GHC_SPEED_100M;
strcat(linkmsg, "100 Mbps, ");
break;
case PHY_LINK_SPEED_1000M:
jme->reg_ghc |= GHC_SPEED_1000M;
strcat(linkmsg, "1000 Mbps, ");
break;
default:
break;
}
if (phylink & PHY_LINK_DUPLEX) {
jwrite32(jme, JME_TXMCS, TXMCS_DEFAULT);
jwrite32(jme, JME_TXTRHD, TXTRHD_FULLDUPLEX);
jme->reg_ghc |= GHC_DPX;
} else {
jwrite32(jme, JME_TXMCS, TXMCS_DEFAULT |
TXMCS_BACKOFF |
TXMCS_CARRIERSENSE |
TXMCS_COLLISION);
jwrite32(jme, JME_TXTRHD, TXTRHD_HALFDUPLEX);
}
jwrite32(jme, JME_GHC, jme->reg_ghc);
if (is_buggy250(jme->pdev->device, jme->chiprev)) {
jme->reg_gpreg1 &= ~(GPREG1_HALFMODEPATCH |
GPREG1_RSSPATCH);
if (!(phylink & PHY_LINK_DUPLEX))
jme->reg_gpreg1 |= GPREG1_HALFMODEPATCH;
switch (phylink & PHY_LINK_SPEED_MASK) {
case PHY_LINK_SPEED_10M:
jme_set_phyfifo_8level(jme);
jme->reg_gpreg1 |= GPREG1_RSSPATCH;
break;
case PHY_LINK_SPEED_100M:
jme_set_phyfifo_5level(jme);
jme->reg_gpreg1 |= GPREG1_RSSPATCH;
break;
case PHY_LINK_SPEED_1000M:
jme_set_phyfifo_8level(jme);
break;
default:
break;
}
}
jwrite32(jme, JME_GPREG1, jme->reg_gpreg1);
strcat(linkmsg, (phylink & PHY_LINK_DUPLEX) ?
"Full-Duplex, " :
"Half-Duplex, ");
strcat(linkmsg, (phylink & PHY_LINK_MDI_STAT) ?
"MDI-X" :
"MDI");
netif_info(jme, link, jme->dev, "Link is up at %s\n", linkmsg);
netif_carrier_on(netdev);
} else {
if (testonly)
goto out;
netif_info(jme, link, jme->dev, "Link is down\n");
jme->phylink = 0;
netif_carrier_off(netdev);
}
out:
return rc;
}
static int
jme_setup_tx_resources(struct jme_adapter *jme)
{
struct jme_ring *txring = &(jme->txring[0]);
txring->alloc = dma_alloc_coherent(&(jme->pdev->dev),
TX_RING_ALLOC_SIZE(jme->tx_ring_size),
&(txring->dmaalloc),
GFP_ATOMIC);
if (!txring->alloc)
goto err_set_null;
/*
* 16 Bytes align
*/
txring->desc = (void *)ALIGN((unsigned long)(txring->alloc),
RING_DESC_ALIGN);
txring->dma = ALIGN(txring->dmaalloc, RING_DESC_ALIGN);
txring->next_to_use = 0;
atomic_set(&txring->next_to_clean, 0);
atomic_set(&txring->nr_free, jme->tx_ring_size);
txring->bufinf = kmalloc(sizeof(struct jme_buffer_info) *
jme->tx_ring_size, GFP_ATOMIC);
if (unlikely(!(txring->bufinf)))
goto err_free_txring;
/*
* Initialize Transmit Descriptors
*/
memset(txring->alloc, 0, TX_RING_ALLOC_SIZE(jme->tx_ring_size));
memset(txring->bufinf, 0,
sizeof(struct jme_buffer_info) * jme->tx_ring_size);
return 0;
err_free_txring:
dma_free_coherent(&(jme->pdev->dev),
TX_RING_ALLOC_SIZE(jme->tx_ring_size),
txring->alloc,
txring->dmaalloc);
err_set_null:
txring->desc = NULL;
txring->dmaalloc = 0;
txring->dma = 0;
txring->bufinf = NULL;
return -ENOMEM;
}
static void
jme_free_tx_resources(struct jme_adapter *jme)
{
int i;
struct jme_ring *txring = &(jme->txring[0]);
struct jme_buffer_info *txbi;
if (txring->alloc) {
if (txring->bufinf) {
for (i = 0 ; i < jme->tx_ring_size ; ++i) {
txbi = txring->bufinf + i;
if (txbi->skb) {
dev_kfree_skb(txbi->skb);
txbi->skb = NULL;
}
txbi->mapping = 0;
txbi->len = 0;
txbi->nr_desc = 0;
txbi->start_xmit = 0;
}
kfree(txring->bufinf);
}
dma_free_coherent(&(jme->pdev->dev),
TX_RING_ALLOC_SIZE(jme->tx_ring_size),
txring->alloc,
txring->dmaalloc);
txring->alloc = NULL;
txring->desc = NULL;
txring->dmaalloc = 0;
txring->dma = 0;
txring->bufinf = NULL;
}
txring->next_to_use = 0;
atomic_set(&txring->next_to_clean, 0);
atomic_set(&txring->nr_free, 0);
}
static inline void
jme_enable_tx_engine(struct jme_adapter *jme)
{
/*
* Select Queue 0
*/
jwrite32(jme, JME_TXCS, TXCS_DEFAULT | TXCS_SELECT_QUEUE0);
wmb();
/*
* Setup TX Queue 0 DMA Bass Address
*/
jwrite32(jme, JME_TXDBA_LO, (__u64)jme->txring[0].dma & 0xFFFFFFFFUL);
jwrite32(jme, JME_TXDBA_HI, (__u64)(jme->txring[0].dma) >> 32);
jwrite32(jme, JME_TXNDA, (__u64)jme->txring[0].dma & 0xFFFFFFFFUL);
/*
* Setup TX Descptor Count
*/
jwrite32(jme, JME_TXQDC, jme->tx_ring_size);
/*
* Enable TX Engine
*/
wmb();
jwrite32f(jme, JME_TXCS, jme->reg_txcs |
TXCS_SELECT_QUEUE0 |
TXCS_ENABLE);
/*
* Start clock for TX MAC Processor
*/
jme_mac_txclk_on(jme);
}
static inline void
jme_restart_tx_engine(struct jme_adapter *jme)
{
/*
* Restart TX Engine
*/
jwrite32(jme, JME_TXCS, jme->reg_txcs |
TXCS_SELECT_QUEUE0 |
TXCS_ENABLE);
}
static inline void
jme_disable_tx_engine(struct jme_adapter *jme)
{
int i;
u32 val;
/*
* Disable TX Engine
*/
jwrite32(jme, JME_TXCS, jme->reg_txcs | TXCS_SELECT_QUEUE0);
wmb();
val = jread32(jme, JME_TXCS);
for (i = JME_TX_DISABLE_TIMEOUT ; (val & TXCS_ENABLE) && i > 0 ; --i) {
mdelay(1);
val = jread32(jme, JME_TXCS);
rmb();
}
if (!i)
pr_err("Disable TX engine timeout\n");
/*
* Stop clock for TX MAC Processor
*/
jme_mac_txclk_off(jme);
}
static void
jme_set_clean_rxdesc(struct jme_adapter *jme, int i)
{
struct jme_ring *rxring = &(jme->rxring[0]);
register struct rxdesc *rxdesc = rxring->desc;
struct jme_buffer_info *rxbi = rxring->bufinf;
rxdesc += i;
rxbi += i;
rxdesc->dw[0] = 0;
rxdesc->dw[1] = 0;
rxdesc->desc1.bufaddrh = cpu_to_le32((__u64)rxbi->mapping >> 32);
rxdesc->desc1.bufaddrl = cpu_to_le32(
(__u64)rxbi->mapping & 0xFFFFFFFFUL);
rxdesc->desc1.datalen = cpu_to_le16(rxbi->len);
if (jme->dev->features & NETIF_F_HIGHDMA)
rxdesc->desc1.flags = RXFLAG_64BIT;
wmb();
rxdesc->desc1.flags |= RXFLAG_OWN | RXFLAG_INT;
}
static int
jme_make_new_rx_buf(struct jme_adapter *jme, int i)
{
struct jme_ring *rxring = &(jme->rxring[0]);
struct jme_buffer_info *rxbi = rxring->bufinf + i;
struct sk_buff *skb;
skb = netdev_alloc_skb(jme->dev,
jme->dev->mtu + RX_EXTRA_LEN);
if (unlikely(!skb))
return -ENOMEM;
rxbi->skb = skb;
rxbi->len = skb_tailroom(skb);
rxbi->mapping = pci_map_page(jme->pdev,
virt_to_page(skb->data),
offset_in_page(skb->data),
rxbi->len,
PCI_DMA_FROMDEVICE);
return 0;
}
static void
jme_free_rx_buf(struct jme_adapter *jme, int i)
{
struct jme_ring *rxring = &(jme->rxring[0]);
struct jme_buffer_info *rxbi = rxring->bufinf;
rxbi += i;
if (rxbi->skb) {
pci_unmap_page(jme->pdev,
rxbi->mapping,
rxbi->len,
PCI_DMA_FROMDEVICE);
dev_kfree_skb(rxbi->skb);
rxbi->skb = NULL;
rxbi->mapping = 0;
rxbi->len = 0;
}
}
static void
jme_free_rx_resources(struct jme_adapter *jme)
{
int i;
struct jme_ring *rxring = &(jme->rxring[0]);
if (rxring->alloc) {
if (rxring->bufinf) {
for (i = 0 ; i < jme->rx_ring_size ; ++i)
jme_free_rx_buf(jme, i);
kfree(rxring->bufinf);
}
dma_free_coherent(&(jme->pdev->dev),
RX_RING_ALLOC_SIZE(jme->rx_ring_size),
rxring->alloc,
rxring->dmaalloc);
rxring->alloc = NULL;
rxring->desc = NULL;
rxring->dmaalloc = 0;
rxring->dma = 0;
rxring->bufinf = NULL;
}
rxring->next_to_use = 0;
atomic_set(&rxring->next_to_clean, 0);
}
static int
jme_setup_rx_resources(struct jme_adapter *jme)
{
int i;
struct jme_ring *rxring = &(jme->rxring[0]);
rxring->alloc = dma_alloc_coherent(&(jme->pdev->dev),
RX_RING_ALLOC_SIZE(jme->rx_ring_size),
&(rxring->dmaalloc),
GFP_ATOMIC);
if (!rxring->alloc)
goto err_set_null;
/*
* 16 Bytes align
*/
rxring->desc = (void *)ALIGN((unsigned long)(rxring->alloc),
RING_DESC_ALIGN);
rxring->dma = ALIGN(rxring->dmaalloc, RING_DESC_ALIGN);
rxring->next_to_use = 0;
atomic_set(&rxring->next_to_clean, 0);
rxring->bufinf = kmalloc(sizeof(struct jme_buffer_info) *
jme->rx_ring_size, GFP_ATOMIC);
if (unlikely(!(rxring->bufinf)))
goto err_free_rxring;
/*
* Initiallize Receive Descriptors
*/
memset(rxring->bufinf, 0,
sizeof(struct jme_buffer_info) * jme->rx_ring_size);
for (i = 0 ; i < jme->rx_ring_size ; ++i) {
if (unlikely(jme_make_new_rx_buf(jme, i))) {
jme_free_rx_resources(jme);
return -ENOMEM;
}
jme_set_clean_rxdesc(jme, i);
}
return 0;
err_free_rxring:
dma_free_coherent(&(jme->pdev->dev),
RX_RING_ALLOC_SIZE(jme->rx_ring_size),
rxring->alloc,
rxring->dmaalloc);
err_set_null:
rxring->desc = NULL;
rxring->dmaalloc = 0;
rxring->dma = 0;
rxring->bufinf = NULL;
return -ENOMEM;
}
static inline void
jme_enable_rx_engine(struct jme_adapter *jme)
{
/*
* Select Queue 0
*/
jwrite32(jme, JME_RXCS, jme->reg_rxcs |
RXCS_QUEUESEL_Q0);
wmb();
/*
* Setup RX DMA Bass Address
*/
jwrite32(jme, JME_RXDBA_LO, (__u64)(jme->rxring[0].dma) & 0xFFFFFFFFUL);
jwrite32(jme, JME_RXDBA_HI, (__u64)(jme->rxring[0].dma) >> 32);
jwrite32(jme, JME_RXNDA, (__u64)(jme->rxring[0].dma) & 0xFFFFFFFFUL);
/*
* Setup RX Descriptor Count
*/
jwrite32(jme, JME_RXQDC, jme->rx_ring_size);
/*
* Setup Unicast Filter
*/
jme_set_unicastaddr(jme->dev);
jme_set_multi(jme->dev);
/*
* Enable RX Engine
*/
wmb();
jwrite32f(jme, JME_RXCS, jme->reg_rxcs |
RXCS_QUEUESEL_Q0 |
RXCS_ENABLE |
RXCS_QST);
/*
* Start clock for RX MAC Processor
*/
jme_mac_rxclk_on(jme);
}
static inline void
jme_restart_rx_engine(struct jme_adapter *jme)
{
/*
* Start RX Engine
*/
jwrite32(jme, JME_RXCS, jme->reg_rxcs |
RXCS_QUEUESEL_Q0 |
RXCS_ENABLE |
RXCS_QST);
}
static inline void
jme_disable_rx_engine(struct jme_adapter *jme)
{
int i;
u32 val;
/*
* Disable RX Engine
*/
jwrite32(jme, JME_RXCS, jme->reg_rxcs);
wmb();
val = jread32(jme, JME_RXCS);
for (i = JME_RX_DISABLE_TIMEOUT ; (val & RXCS_ENABLE) && i > 0 ; --i) {
mdelay(1);
val = jread32(jme, JME_RXCS);
rmb();
}
if (!i)
pr_err("Disable RX engine timeout\n");
/*
* Stop clock for RX MAC Processor
*/
jme_mac_rxclk_off(jme);
}
static u16
jme_udpsum(struct sk_buff *skb)
{
u16 csum = 0xFFFFu;
if (skb->len < (ETH_HLEN + sizeof(struct iphdr)))
return csum;
if (skb->protocol != htons(ETH_P_IP))
return csum;
skb_set_network_header(skb, ETH_HLEN);
if ((ip_hdr(skb)->protocol != IPPROTO_UDP) ||
(skb->len < (ETH_HLEN +
(ip_hdr(skb)->ihl << 2) +
sizeof(struct udphdr)))) {
skb_reset_network_header(skb);
return csum;
}
skb_set_transport_header(skb,
ETH_HLEN + (ip_hdr(skb)->ihl << 2));
csum = udp_hdr(skb)->check;
skb_reset_transport_header(skb);
skb_reset_network_header(skb);
return csum;
}
static int
jme_rxsum_ok(struct jme_adapter *jme, u16 flags, struct sk_buff *skb)
{
if (!(flags & (RXWBFLAG_TCPON | RXWBFLAG_UDPON | RXWBFLAG_IPV4)))
return false;
if (unlikely((flags & (RXWBFLAG_MF | RXWBFLAG_TCPON | RXWBFLAG_TCPCS))
== RXWBFLAG_TCPON)) {
if (flags & RXWBFLAG_IPV4)
netif_err(jme, rx_err, jme->dev, "TCP Checksum error\n");
return false;
}
if (unlikely((flags & (RXWBFLAG_MF | RXWBFLAG_UDPON | RXWBFLAG_UDPCS))
== RXWBFLAG_UDPON) && jme_udpsum(skb)) {
if (flags & RXWBFLAG_IPV4)
netif_err(jme, rx_err, jme->dev, "UDP Checksum error\n");
return false;
}
if (unlikely((flags & (RXWBFLAG_IPV4 | RXWBFLAG_IPCS))
== RXWBFLAG_IPV4)) {
netif_err(jme, rx_err, jme->dev, "IPv4 Checksum error\n");
return false;
}
return true;
}
static void
jme_alloc_and_feed_skb(struct jme_adapter *jme, int idx)
{
struct jme_ring *rxring = &(jme->rxring[0]);
struct rxdesc *rxdesc = rxring->desc;
struct jme_buffer_info *rxbi = rxring->bufinf;
struct sk_buff *skb;
int framesize;
rxdesc += idx;
rxbi += idx;
skb = rxbi->skb;
pci_dma_sync_single_for_cpu(jme->pdev,
rxbi->mapping,
rxbi->len,
PCI_DMA_FROMDEVICE);
if (unlikely(jme_make_new_rx_buf(jme, idx))) {
pci_dma_sync_single_for_device(jme->pdev,
rxbi->mapping,
rxbi->len,
PCI_DMA_FROMDEVICE);
++(NET_STAT(jme).rx_dropped);
} else {
framesize = le16_to_cpu(rxdesc->descwb.framesize)
- RX_PREPAD_SIZE;
skb_reserve(skb, RX_PREPAD_SIZE);
skb_put(skb, framesize);
skb->protocol = eth_type_trans(skb, jme->dev);
if (jme_rxsum_ok(jme, le16_to_cpu(rxdesc->descwb.flags), skb))
skb->ip_summed = CHECKSUM_UNNECESSARY;
else
skb_checksum_none_assert(skb);
if (rxdesc->descwb.flags & cpu_to_le16(RXWBFLAG_TAGON)) {
if (jme->vlgrp) {
jme->jme_vlan_rx(skb, jme->vlgrp,
le16_to_cpu(rxdesc->descwb.vlan));
NET_STAT(jme).rx_bytes += 4;
} else {
dev_kfree_skb(skb);
}
} else {
jme->jme_rx(skb);
}
if ((rxdesc->descwb.flags & cpu_to_le16(RXWBFLAG_DEST)) ==
cpu_to_le16(RXWBFLAG_DEST_MUL))
++(NET_STAT(jme).multicast);
NET_STAT(jme).rx_bytes += framesize;
++(NET_STAT(jme).rx_packets);
}
jme_set_clean_rxdesc(jme, idx);
}
static int
jme_process_receive(struct jme_adapter *jme, int limit)
{
struct jme_ring *rxring = &(jme->rxring[0]);
struct rxdesc *rxdesc = rxring->desc;
int i, j, ccnt, desccnt, mask = jme->rx_ring_mask;
if (unlikely(!atomic_dec_and_test(&jme->rx_cleaning)))
goto out_inc;
if (unlikely(atomic_read(&jme->link_changing) != 1))
goto out_inc;
if (unlikely(!netif_carrier_ok(jme->dev)))
goto out_inc;
i = atomic_read(&rxring->next_to_clean);
while (limit > 0) {
rxdesc = rxring->desc;
rxdesc += i;
if ((rxdesc->descwb.flags & cpu_to_le16(RXWBFLAG_OWN)) ||
!(rxdesc->descwb.desccnt & RXWBDCNT_WBCPL))
goto out;
--limit;
rmb();
desccnt = rxdesc->descwb.desccnt & RXWBDCNT_DCNT;
if (unlikely(desccnt > 1 ||
rxdesc->descwb.errstat & RXWBERR_ALLERR)) {
if (rxdesc->descwb.errstat & RXWBERR_CRCERR)
++(NET_STAT(jme).rx_crc_errors);
else if (rxdesc->descwb.errstat & RXWBERR_OVERUN)
++(NET_STAT(jme).rx_fifo_errors);
else
++(NET_STAT(jme).rx_errors);
if (desccnt > 1)
limit -= desccnt - 1;
for (j = i, ccnt = desccnt ; ccnt-- ; ) {
jme_set_clean_rxdesc(jme, j);
j = (j + 1) & (mask);
}
} else {
jme_alloc_and_feed_skb(jme, i);
}
i = (i + desccnt) & (mask);
}
out:
atomic_set(&rxring->next_to_clean, i);
out_inc:
atomic_inc(&jme->rx_cleaning);
return limit > 0 ? limit : 0;
}
static void
jme_attempt_pcc(struct dynpcc_info *dpi, int atmp)
{
if (likely(atmp == dpi->cur)) {
dpi->cnt = 0;
return;
}
if (dpi->attempt == atmp) {
++(dpi->cnt);
} else {
dpi->attempt = atmp;
dpi->cnt = 0;
}
}
static void
jme_dynamic_pcc(struct jme_adapter *jme)
{
register struct dynpcc_info *dpi = &(jme->dpi);
if ((NET_STAT(jme).rx_bytes - dpi->last_bytes) > PCC_P3_THRESHOLD)
jme_attempt_pcc(dpi, PCC_P3);
else if ((NET_STAT(jme).rx_packets - dpi->last_pkts) > PCC_P2_THRESHOLD ||
dpi->intr_cnt > PCC_INTR_THRESHOLD)
jme_attempt_pcc(dpi, PCC_P2);
else
jme_attempt_pcc(dpi, PCC_P1);
if (unlikely(dpi->attempt != dpi->cur && dpi->cnt > 5)) {
if (dpi->attempt < dpi->cur)
tasklet_schedule(&jme->rxclean_task);
jme_set_rx_pcc(jme, dpi->attempt);
dpi->cur = dpi->attempt;
dpi->cnt = 0;
}
}
static void
jme_start_pcc_timer(struct jme_adapter *jme)
{
struct dynpcc_info *dpi = &(jme->dpi);
dpi->last_bytes = NET_STAT(jme).rx_bytes;
dpi->last_pkts = NET_STAT(jme).rx_packets;
dpi->intr_cnt = 0;
jwrite32(jme, JME_TMCSR,
TMCSR_EN | ((0xFFFFFF - PCC_INTERVAL_US) & TMCSR_CNT));
}
static inline void
jme_stop_pcc_timer(struct jme_adapter *jme)
{
jwrite32(jme, JME_TMCSR, 0);
}
static void
jme_shutdown_nic(struct jme_adapter *jme)
{
u32 phylink;
phylink = jme_linkstat_from_phy(jme);
if (!(phylink & PHY_LINK_UP)) {
/*
* Disable all interrupt before issue timer
*/
jme_stop_irq(jme);
jwrite32(jme, JME_TIMER2, TMCSR_EN | 0xFFFFFE);
}
}
static void
jme_pcc_tasklet(unsigned long arg)
{
struct jme_adapter *jme = (struct jme_adapter *)arg;
struct net_device *netdev = jme->dev;
if (unlikely(test_bit(JME_FLAG_SHUTDOWN, &jme->flags))) {
jme_shutdown_nic(jme);
return;
}
if (unlikely(!netif_carrier_ok(netdev) ||
(atomic_read(&jme->link_changing) != 1)
)) {
jme_stop_pcc_timer(jme);
return;
}
if (!(test_bit(JME_FLAG_POLL, &jme->flags)))
jme_dynamic_pcc(jme);
jme_start_pcc_timer(jme);
}
static inline void
jme_polling_mode(struct jme_adapter *jme)
{
jme_set_rx_pcc(jme, PCC_OFF);
}
static inline void
jme_interrupt_mode(struct jme_adapter *jme)
{
jme_set_rx_pcc(jme, PCC_P1);
}
static inline int
jme_pseudo_hotplug_enabled(struct jme_adapter *jme)
{
u32 apmc;
apmc = jread32(jme, JME_APMC);
return apmc & JME_APMC_PSEUDO_HP_EN;
}
static void
jme_start_shutdown_timer(struct jme_adapter *jme)
{
u32 apmc;
apmc = jread32(jme, JME_APMC) | JME_APMC_PCIE_SD_EN;
apmc &= ~JME_APMC_EPIEN_CTRL;
if (!no_extplug) {
jwrite32f(jme, JME_APMC, apmc | JME_APMC_EPIEN_CTRL_EN);
wmb();
}
jwrite32f(jme, JME_APMC, apmc);
jwrite32f(jme, JME_TIMER2, 0);
set_bit(JME_FLAG_SHUTDOWN, &jme->flags);
jwrite32(jme, JME_TMCSR,
TMCSR_EN | ((0xFFFFFF - APMC_PHP_SHUTDOWN_DELAY) & TMCSR_CNT));
}
static void
jme_stop_shutdown_timer(struct jme_adapter *jme)
{
u32 apmc;
jwrite32f(jme, JME_TMCSR, 0);
jwrite32f(jme, JME_TIMER2, 0);
clear_bit(JME_FLAG_SHUTDOWN, &jme->flags);
apmc = jread32(jme, JME_APMC);
apmc &= ~(JME_APMC_PCIE_SD_EN | JME_APMC_EPIEN_CTRL);
jwrite32f(jme, JME_APMC, apmc | JME_APMC_EPIEN_CTRL_DIS);
wmb();
jwrite32f(jme, JME_APMC, apmc);
}
static void
jme_link_change_tasklet(unsigned long arg)
{
struct jme_adapter *jme = (struct jme_adapter *)arg;
struct net_device *netdev = jme->dev;
int rc;
while (!atomic_dec_and_test(&jme->link_changing)) {
atomic_inc(&jme->link_changing);
netif_info(jme, intr, jme->dev, "Get link change lock failed\n");
while (atomic_read(&jme->link_changing) != 1)
netif_info(jme, intr, jme->dev, "Waiting link change lock\n");
}
if (jme_check_link(netdev, 1) && jme->old_mtu == netdev->mtu)
goto out;
jme->old_mtu = netdev->mtu;
netif_stop_queue(netdev);
if (jme_pseudo_hotplug_enabled(jme))
jme_stop_shutdown_timer(jme);
jme_stop_pcc_timer(jme);
tasklet_disable(&jme->txclean_task);
tasklet_disable(&jme->rxclean_task);
tasklet_disable(&jme->rxempty_task);
if (netif_carrier_ok(netdev)) {
jme_disable_rx_engine(jme);
jme_disable_tx_engine(jme);
jme_reset_mac_processor(jme);
jme_free_rx_resources(jme);
jme_free_tx_resources(jme);
if (test_bit(JME_FLAG_POLL, &jme->flags))
jme_polling_mode(jme);
netif_carrier_off(netdev);
}
jme_check_link(netdev, 0);
if (netif_carrier_ok(netdev)) {
rc = jme_setup_rx_resources(jme);
if (rc) {
pr_err("Allocating resources for RX error, Device STOPPED!\n");
goto out_enable_tasklet;
}
rc = jme_setup_tx_resources(jme);
if (rc) {
pr_err("Allocating resources for TX error, Device STOPPED!\n");
goto err_out_free_rx_resources;
}
jme_enable_rx_engine(jme);
jme_enable_tx_engine(jme);
netif_start_queue(netdev);
if (test_bit(JME_FLAG_POLL, &jme->flags))
jme_interrupt_mode(jme);
jme_start_pcc_timer(jme);
} else if (jme_pseudo_hotplug_enabled(jme)) {
jme_start_shutdown_timer(jme);
}
goto out_enable_tasklet;
err_out_free_rx_resources:
jme_free_rx_resources(jme);
out_enable_tasklet:
tasklet_enable(&jme->txclean_task);
tasklet_hi_enable(&jme->rxclean_task);
tasklet_hi_enable(&jme->rxempty_task);
out:
atomic_inc(&jme->link_changing);
}
static void
jme_rx_clean_tasklet(unsigned long arg)
{
struct jme_adapter *jme = (struct jme_adapter *)arg;
struct dynpcc_info *dpi = &(jme->dpi);
jme_process_receive(jme, jme->rx_ring_size);
++(dpi->intr_cnt);
}
static int
jme_poll(JME_NAPI_HOLDER(holder), JME_NAPI_WEIGHT(budget))
{
struct jme_adapter *jme = jme_napi_priv(holder);
int rest;
rest = jme_process_receive(jme, JME_NAPI_WEIGHT_VAL(budget));
while (atomic_read(&jme->rx_empty) > 0) {
atomic_dec(&jme->rx_empty);
++(NET_STAT(jme).rx_dropped);
jme_restart_rx_engine(jme);
}
atomic_inc(&jme->rx_empty);
if (rest) {
JME_RX_COMPLETE(netdev, holder);
jme_interrupt_mode(jme);
}
JME_NAPI_WEIGHT_SET(budget, rest);
return JME_NAPI_WEIGHT_VAL(budget) - rest;
}
static void
jme_rx_empty_tasklet(unsigned long arg)
{
struct jme_adapter *jme = (struct jme_adapter *)arg;
if (unlikely(atomic_read(&jme->link_changing) != 1))
return;
if (unlikely(!netif_carrier_ok(jme->dev)))
return;
netif_info(jme, rx_status, jme->dev, "RX Queue Full!\n");
jme_rx_clean_tasklet(arg);
while (atomic_read(&jme->rx_empty) > 0) {
atomic_dec(&jme->rx_empty);
++(NET_STAT(jme).rx_dropped);
jme_restart_rx_engine(jme);
}
atomic_inc(&jme->rx_empty);
}
static void
jme_wake_queue_if_stopped(struct jme_adapter *jme)
{
struct jme_ring *txring = &(jme->txring[0]);
smp_wmb();
if (unlikely(netif_queue_stopped(jme->dev) &&
atomic_read(&txring->nr_free) >= (jme->tx_wake_threshold))) {
netif_info(jme, tx_done, jme->dev, "TX Queue Waked\n");
netif_wake_queue(jme->dev);
}
}
static void
jme_tx_clean_tasklet(unsigned long arg)
{
struct jme_adapter *jme = (struct jme_adapter *)arg;
struct jme_ring *txring = &(jme->txring[0]);
struct txdesc *txdesc = txring->desc;
struct jme_buffer_info *txbi = txring->bufinf, *ctxbi, *ttxbi;
int i, j, cnt = 0, max, err, mask;
tx_dbg(jme, "Into txclean\n");
if (unlikely(!atomic_dec_and_test(&jme->tx_cleaning)))
goto out;
if (unlikely(atomic_read(&jme->link_changing) != 1))
goto out;
if (unlikely(!netif_carrier_ok(jme->dev)))
goto out;
max = jme->tx_ring_size - atomic_read(&txring->nr_free);
mask = jme->tx_ring_mask;
for (i = atomic_read(&txring->next_to_clean) ; cnt < max ; ) {
ctxbi = txbi + i;
if (likely(ctxbi->skb &&
!(txdesc[i].descwb.flags & TXWBFLAG_OWN))) {
tx_dbg(jme, "txclean: %d+%d@%lu\n",
i, ctxbi->nr_desc, jiffies);
err = txdesc[i].descwb.flags & TXWBFLAG_ALLERR;
for (j = 1 ; j < ctxbi->nr_desc ; ++j) {
ttxbi = txbi + ((i + j) & (mask));
txdesc[(i + j) & (mask)].dw[0] = 0;
pci_unmap_page(jme->pdev,
ttxbi->mapping,
ttxbi->len,
PCI_DMA_TODEVICE);
ttxbi->mapping = 0;
ttxbi->len = 0;
}
dev_kfree_skb(ctxbi->skb);
cnt += ctxbi->nr_desc;
if (unlikely(err)) {
++(NET_STAT(jme).tx_carrier_errors);
} else {
++(NET_STAT(jme).tx_packets);
NET_STAT(jme).tx_bytes += ctxbi->len;
}
ctxbi->skb = NULL;
ctxbi->len = 0;
ctxbi->start_xmit = 0;
} else {
break;
}
i = (i + ctxbi->nr_desc) & mask;
ctxbi->nr_desc = 0;
}
tx_dbg(jme, "txclean: done %d@%lu\n", i, jiffies);
atomic_set(&txring->next_to_clean, i);
atomic_add(cnt, &txring->nr_free);
jme_wake_queue_if_stopped(jme);
out:
atomic_inc(&jme->tx_cleaning);
}
static void
jme_intr_msi(struct jme_adapter *jme, u32 intrstat)
{
/*
* Disable interrupt
*/
jwrite32f(jme, JME_IENC, INTR_ENABLE);
if (intrstat & (INTR_LINKCH | INTR_SWINTR)) {
/*
* Link change event is critical
* all other events are ignored
*/
jwrite32(jme, JME_IEVE, intrstat);
tasklet_schedule(&jme->linkch_task);
goto out_reenable;
}
if (intrstat & INTR_TMINTR) {
jwrite32(jme, JME_IEVE, INTR_TMINTR);
tasklet_schedule(&jme->pcc_task);
}
if (intrstat & (INTR_PCCTXTO | INTR_PCCTX)) {
jwrite32(jme, JME_IEVE, INTR_PCCTXTO | INTR_PCCTX | INTR_TX0);
tasklet_schedule(&jme->txclean_task);
}
if ((intrstat & (INTR_PCCRX0TO | INTR_PCCRX0 | INTR_RX0EMP))) {
jwrite32(jme, JME_IEVE, (intrstat & (INTR_PCCRX0TO |
INTR_PCCRX0 |
INTR_RX0EMP)) |
INTR_RX0);
}
if (test_bit(JME_FLAG_POLL, &jme->flags)) {
if (intrstat & INTR_RX0EMP)
atomic_inc(&jme->rx_empty);
if ((intrstat & (INTR_PCCRX0TO | INTR_PCCRX0 | INTR_RX0EMP))) {
if (likely(JME_RX_SCHEDULE_PREP(jme))) {
jme_polling_mode(jme);
JME_RX_SCHEDULE(jme);
}
}
} else {
if (intrstat & INTR_RX0EMP) {
atomic_inc(&jme->rx_empty);
tasklet_hi_schedule(&jme->rxempty_task);
} else if (intrstat & (INTR_PCCRX0TO | INTR_PCCRX0)) {
tasklet_hi_schedule(&jme->rxclean_task);
}
}
out_reenable:
/*
* Re-enable interrupt
*/
jwrite32f(jme, JME_IENS, INTR_ENABLE);
}
static irqreturn_t
jme_intr(int irq, void *dev_id)
{
struct net_device *netdev = dev_id;
struct jme_adapter *jme = netdev_priv(netdev);
u32 intrstat;
intrstat = jread32(jme, JME_IEVE);
/*
* Check if it's really an interrupt for us
*/
if (unlikely((intrstat & INTR_ENABLE) == 0))
return IRQ_NONE;
/*
* Check if the device still exist
*/
if (unlikely(intrstat == ~((typeof(intrstat))0)))
return IRQ_NONE;
jme_intr_msi(jme, intrstat);
return IRQ_HANDLED;
}
static irqreturn_t
jme_msi(int irq, void *dev_id)
{
struct net_device *netdev = dev_id;
struct jme_adapter *jme = netdev_priv(netdev);
u32 intrstat;
intrstat = jread32(jme, JME_IEVE);
jme_intr_msi(jme, intrstat);
return IRQ_HANDLED;
}
static void
jme_reset_link(struct jme_adapter *jme)
{
jwrite32(jme, JME_TMCSR, TMCSR_SWIT);
}
static void
jme_restart_an(struct jme_adapter *jme)
{
u32 bmcr;
spin_lock_bh(&jme->phy_lock);
bmcr = jme_mdio_read(jme->dev, jme->mii_if.phy_id, MII_BMCR);
bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART);
jme_mdio_write(jme->dev, jme->mii_if.phy_id, MII_BMCR, bmcr);
spin_unlock_bh(&jme->phy_lock);
}
static int
jme_request_irq(struct jme_adapter *jme)
{
int rc;
struct net_device *netdev = jme->dev;
irq_handler_t handler = jme_intr;
int irq_flags = IRQF_SHARED;
if (!pci_enable_msi(jme->pdev)) {
set_bit(JME_FLAG_MSI, &jme->flags);
handler = jme_msi;
irq_flags = 0;
}
rc = request_irq(jme->pdev->irq, handler, irq_flags, netdev->name,
netdev);
if (rc) {
netdev_err(netdev,
"Unable to request %s interrupt (return: %d)\n",
test_bit(JME_FLAG_MSI, &jme->flags) ? "MSI" : "INTx",
rc);
if (test_bit(JME_FLAG_MSI, &jme->flags)) {
pci_disable_msi(jme->pdev);
clear_bit(JME_FLAG_MSI, &jme->flags);
}
} else {
netdev->irq = jme->pdev->irq;
}
return rc;
}
static void
jme_free_irq(struct jme_adapter *jme)
{
free_irq(jme->pdev->irq, jme->dev);
if (test_bit(JME_FLAG_MSI, &jme->flags)) {
pci_disable_msi(jme->pdev);
clear_bit(JME_FLAG_MSI, &jme->flags);
jme->dev->irq = jme->pdev->irq;
}
}
static inline void
jme_new_phy_on(struct jme_adapter *jme)
{
u32 reg;
reg = jread32(jme, JME_PHY_PWR);
reg &= ~(PHY_PWR_DWN1SEL | PHY_PWR_DWN1SW |
PHY_PWR_DWN2 | PHY_PWR_CLKSEL);
jwrite32(jme, JME_PHY_PWR, reg);
pci_read_config_dword(jme->pdev, PCI_PRIV_PE1, &reg);
reg &= ~PE1_GPREG0_PBG;
reg |= PE1_GPREG0_ENBG;
pci_write_config_dword(jme->pdev, PCI_PRIV_PE1, reg);
}
static inline void
jme_new_phy_off(struct jme_adapter *jme)
{
u32 reg;
reg = jread32(jme, JME_PHY_PWR);
reg |= PHY_PWR_DWN1SEL | PHY_PWR_DWN1SW |
PHY_PWR_DWN2 | PHY_PWR_CLKSEL;
jwrite32(jme, JME_PHY_PWR, reg);
pci_read_config_dword(jme->pdev, PCI_PRIV_PE1, &reg);
reg &= ~PE1_GPREG0_PBG;
reg |= PE1_GPREG0_PDD3COLD;
pci_write_config_dword(jme->pdev, PCI_PRIV_PE1, reg);
}
static inline void
jme_phy_on(struct jme_adapter *jme)
{
u32 bmcr;
bmcr = jme_mdio_read(jme->dev, jme->mii_if.phy_id, MII_BMCR);
bmcr &= ~BMCR_PDOWN;
jme_mdio_write(jme->dev, jme->mii_if.phy_id, MII_BMCR, bmcr);
if (new_phy_power_ctrl(jme->chip_main_rev))
jme_new_phy_on(jme);
}
static inline void
jme_phy_off(struct jme_adapter *jme)
{
u32 bmcr;
bmcr = jme_mdio_read(jme->dev, jme->mii_if.phy_id, MII_BMCR);
bmcr |= BMCR_PDOWN;
jme_mdio_write(jme->dev, jme->mii_if.phy_id, MII_BMCR, bmcr);
if (new_phy_power_ctrl(jme->chip_main_rev))
jme_new_phy_off(jme);
}
static int
jme_open(struct net_device *netdev)
{
struct jme_adapter *jme = netdev_priv(netdev);
int rc;
jme_clear_pm(jme);
JME_NAPI_ENABLE(jme);
tasklet_enable(&jme->linkch_task);
tasklet_enable(&jme->txclean_task);
tasklet_hi_enable(&jme->rxclean_task);
tasklet_hi_enable(&jme->rxempty_task);
rc = jme_request_irq(jme);
if (rc)
goto err_out;
jme_start_irq(jme);
jme_phy_on(jme);
if (test_bit(JME_FLAG_SSET, &jme->flags))
jme_set_settings(netdev, &jme->old_ecmd);
else
jme_reset_phy_processor(jme);
jme_reset_link(jme);
return 0;
err_out:
netif_stop_queue(netdev);
netif_carrier_off(netdev);
return rc;
}
static void
jme_set_100m_half(struct jme_adapter *jme)
{
u32 bmcr, tmp;
jme_phy_on(jme);
bmcr = jme_mdio_read(jme->dev, jme->mii_if.phy_id, MII_BMCR);
tmp = bmcr & ~(BMCR_ANENABLE | BMCR_SPEED100 |
BMCR_SPEED1000 | BMCR_FULLDPLX);
tmp |= BMCR_SPEED100;
if (bmcr != tmp)
jme_mdio_write(jme->dev, jme->mii_if.phy_id, MII_BMCR, tmp);
if (jme->fpgaver)
jwrite32(jme, JME_GHC, GHC_SPEED_100M | GHC_LINK_POLL);
else
jwrite32(jme, JME_GHC, GHC_SPEED_100M);
}
#define JME_WAIT_LINK_TIME 2000 /* 2000ms */
static void
jme_wait_link(struct jme_adapter *jme)
{
u32 phylink, to = JME_WAIT_LINK_TIME;
mdelay(1000);
phylink = jme_linkstat_from_phy(jme);
while (!(phylink & PHY_LINK_UP) && (to -= 10) > 0) {
mdelay(10);
phylink = jme_linkstat_from_phy(jme);
}
}
static void
jme_powersave_phy(struct jme_adapter *jme)
{
if (jme->reg_pmcs) {
jme_set_100m_half(jme);
if (jme->reg_pmcs & (PMCS_LFEN | PMCS_LREN))
jme_wait_link(jme);
jwrite32(jme, JME_PMCS, jme->reg_pmcs);
} else {
jme_phy_off(jme);
}
}
static int
jme_close(struct net_device *netdev)
{
struct jme_adapter *jme = netdev_priv(netdev);
netif_stop_queue(netdev);
netif_carrier_off(netdev);
jme_stop_irq(jme);
jme_free_irq(jme);
JME_NAPI_DISABLE(jme);
tasklet_disable(&jme->linkch_task);
tasklet_disable(&jme->txclean_task);
tasklet_disable(&jme->rxclean_task);
tasklet_disable(&jme->rxempty_task);
jme_disable_rx_engine(jme);
jme_disable_tx_engine(jme);
jme_reset_mac_processor(jme);
jme_free_rx_resources(jme);
jme_free_tx_resources(jme);
jme->phylink = 0;
jme_phy_off(jme);
return 0;
}
static int
jme_alloc_txdesc(struct jme_adapter *jme,
struct sk_buff *skb)
{
struct jme_ring *txring = &(jme->txring[0]);
int idx, nr_alloc, mask = jme->tx_ring_mask;
idx = txring->next_to_use;
nr_alloc = skb_shinfo(skb)->nr_frags + 2;
if (unlikely(atomic_read(&txring->nr_free) < nr_alloc))
return -1;
atomic_sub(nr_alloc, &txring->nr_free);
txring->next_to_use = (txring->next_to_use + nr_alloc) & mask;
return idx;
}
static void
jme_fill_tx_map(struct pci_dev *pdev,
struct txdesc *txdesc,
struct jme_buffer_info *txbi,
struct page *page,
u32 page_offset,
u32 len,
u8 hidma)
{
dma_addr_t dmaaddr;
dmaaddr = pci_map_page(pdev,
page,
page_offset,
len,
PCI_DMA_TODEVICE);
pci_dma_sync_single_for_device(pdev,
dmaaddr,
len,
PCI_DMA_TODEVICE);
txdesc->dw[0] = 0;
txdesc->dw[1] = 0;
txdesc->desc2.flags = TXFLAG_OWN;
txdesc->desc2.flags |= (hidma) ? TXFLAG_64BIT : 0;
txdesc->desc2.datalen = cpu_to_le16(len);
txdesc->desc2.bufaddrh = cpu_to_le32((__u64)dmaaddr >> 32);
txdesc->desc2.bufaddrl = cpu_to_le32(
(__u64)dmaaddr & 0xFFFFFFFFUL);
txbi->mapping = dmaaddr;
txbi->len = len;
}
static void
jme_map_tx_skb(struct jme_adapter *jme, struct sk_buff *skb, int idx)
{
struct jme_ring *txring = &(jme->txring[0]);
struct txdesc *txdesc = txring->desc, *ctxdesc;
struct jme_buffer_info *txbi = txring->bufinf, *ctxbi;
u8 hidma = jme->dev->features & NETIF_F_HIGHDMA;
int i, nr_frags = skb_shinfo(skb)->nr_frags;
int mask = jme->tx_ring_mask;
struct skb_frag_struct *frag;
u32 len;
for (i = 0 ; i < nr_frags ; ++i) {
frag = &skb_shinfo(skb)->frags[i];
ctxdesc = txdesc + ((idx + i + 2) & (mask));
ctxbi = txbi + ((idx + i + 2) & (mask));
jme_fill_tx_map(jme->pdev, ctxdesc, ctxbi, frag->page,
frag->page_offset, frag->size, hidma);
}
len = skb_is_nonlinear(skb) ? skb_headlen(skb) : skb->len;
ctxdesc = txdesc + ((idx + 1) & (mask));
ctxbi = txbi + ((idx + 1) & (mask));
jme_fill_tx_map(jme->pdev, ctxdesc, ctxbi, virt_to_page(skb->data),
offset_in_page(skb->data), len, hidma);
}
static int
jme_expand_header(struct jme_adapter *jme, struct sk_buff *skb)
{
if (unlikely(skb_shinfo(skb)->gso_size &&
skb_header_cloned(skb) &&
pskb_expand_head(skb, 0, 0, GFP_ATOMIC))) {
dev_kfree_skb(skb);
return -1;
}
return 0;
}
static int
jme_tx_tso(struct sk_buff *skb, __le16 *mss, u8 *flags)
{
*mss = cpu_to_le16(skb_shinfo(skb)->gso_size << TXDESC_MSS_SHIFT);
if (*mss) {
*flags |= TXFLAG_LSEN;
if (skb->protocol == htons(ETH_P_IP)) {
struct iphdr *iph = ip_hdr(skb);
iph->check = 0;
tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
iph->daddr, 0,
IPPROTO_TCP,
0);
} else {
struct ipv6hdr *ip6h = ipv6_hdr(skb);
tcp_hdr(skb)->check = ~csum_ipv6_magic(&ip6h->saddr,
&ip6h->daddr, 0,
IPPROTO_TCP,
0);
}
return 0;
}
return 1;
}
static void
jme_tx_csum(struct jme_adapter *jme, struct sk_buff *skb, u8 *flags)
{
if (skb->ip_summed == CHECKSUM_PARTIAL) {
u8 ip_proto;
switch (skb->protocol) {
case htons(ETH_P_IP):
ip_proto = ip_hdr(skb)->protocol;
break;
case htons(ETH_P_IPV6):
ip_proto = ipv6_hdr(skb)->nexthdr;
break;
default:
ip_proto = 0;
break;
}
switch (ip_proto) {
case IPPROTO_TCP:
*flags |= TXFLAG_TCPCS;
break;
case IPPROTO_UDP:
*flags |= TXFLAG_UDPCS;
break;
default:
netif_err(jme, tx_err, jme->dev, "Error upper layer protocol\n");
break;
}
}
}
static inline void
jme_tx_vlan(struct sk_buff *skb, __le16 *vlan, u8 *flags)
{
if (vlan_tx_tag_present(skb)) {
*flags |= TXFLAG_TAGON;
*vlan = cpu_to_le16(vlan_tx_tag_get(skb));
}
}
static int
jme_fill_tx_desc(struct jme_adapter *jme, struct sk_buff *skb, int idx)
{
struct jme_ring *txring = &(jme->txring[0]);
struct txdesc *txdesc;
struct jme_buffer_info *txbi;
u8 flags;
txdesc = (struct txdesc *)txring->desc + idx;
txbi = txring->bufinf + idx;
txdesc->dw[0] = 0;
txdesc->dw[1] = 0;
txdesc->dw[2] = 0;
txdesc->dw[3] = 0;
txdesc->desc1.pktsize = cpu_to_le16(skb->len);
/*
* Set OWN bit at final.
* When kernel transmit faster than NIC.
* And NIC trying to send this descriptor before we tell
* it to start sending this TX queue.
* Other fields are already filled correctly.
*/
wmb();
flags = TXFLAG_OWN | TXFLAG_INT;
/*
* Set checksum flags while not tso
*/
if (jme_tx_tso(skb, &txdesc->desc1.mss, &flags))
jme_tx_csum(jme, skb, &flags);
jme_tx_vlan(skb, &txdesc->desc1.vlan, &flags);
jme_map_tx_skb(jme, skb, idx);
txdesc->desc1.flags = flags;
/*
* Set tx buffer info after telling NIC to send
* For better tx_clean timing
*/
wmb();
txbi->nr_desc = skb_shinfo(skb)->nr_frags + 2;
txbi->skb = skb;
txbi->len = skb->len;
txbi->start_xmit = jiffies;
if (!txbi->start_xmit)
txbi->start_xmit = (0UL-1);
return 0;
}
static void
jme_stop_queue_if_full(struct jme_adapter *jme)
{
struct jme_ring *txring = &(jme->txring[0]);
struct jme_buffer_info *txbi = txring->bufinf;
int idx = atomic_read(&txring->next_to_clean);
txbi += idx;
smp_wmb();
if (unlikely(atomic_read(&txring->nr_free) < (MAX_SKB_FRAGS+2))) {
netif_stop_queue(jme->dev);
netif_info(jme, tx_queued, jme->dev, "TX Queue Paused\n");
smp_wmb();
if (atomic_read(&txring->nr_free)
>= (jme->tx_wake_threshold)) {
netif_wake_queue(jme->dev);
netif_info(jme, tx_queued, jme->dev, "TX Queue Fast Waked\n");
}
}
if (unlikely(txbi->start_xmit &&
(jiffies - txbi->start_xmit) >= TX_TIMEOUT &&
txbi->skb)) {
netif_stop_queue(jme->dev);
netif_info(jme, tx_queued, jme->dev,
"TX Queue Stopped %d@%lu\n", idx, jiffies);
}
}
/*
* This function is already protected by netif_tx_lock()
*/
static netdev_tx_t
jme_start_xmit(struct sk_buff *skb, struct net_device *netdev)
{
struct jme_adapter *jme = netdev_priv(netdev);
int idx;
if (unlikely(jme_expand_header(jme, skb))) {
++(NET_STAT(jme).tx_dropped);
return NETDEV_TX_OK;
}
idx = jme_alloc_txdesc(jme, skb);
if (unlikely(idx < 0)) {
netif_stop_queue(netdev);
netif_err(jme, tx_err, jme->dev,
"BUG! Tx ring full when queue awake!\n");
return NETDEV_TX_BUSY;
}
jme_fill_tx_desc(jme, skb, idx);
jwrite32(jme, JME_TXCS, jme->reg_txcs |
TXCS_SELECT_QUEUE0 |
TXCS_QUEUE0S |
TXCS_ENABLE);
tx_dbg(jme, "xmit: %d+%d@%lu\n",
idx, skb_shinfo(skb)->nr_frags + 2, jiffies);
jme_stop_queue_if_full(jme);
return NETDEV_TX_OK;
}
static void
jme_set_unicastaddr(struct net_device *netdev)
{
struct jme_adapter *jme = netdev_priv(netdev);
u32 val;
val = (netdev->dev_addr[3] & 0xff) << 24 |
(netdev->dev_addr[2] & 0xff) << 16 |
(netdev->dev_addr[1] & 0xff) << 8 |
(netdev->dev_addr[0] & 0xff);
jwrite32(jme, JME_RXUMA_LO, val);
val = (netdev->dev_addr[5] & 0xff) << 8 |
(netdev->dev_addr[4] & 0xff);
jwrite32(jme, JME_RXUMA_HI, val);
}
static int
jme_set_macaddr(struct net_device *netdev, void *p)
{
struct jme_adapter *jme = netdev_priv(netdev);
struct sockaddr *addr = p;
if (netif_running(netdev))
return -EBUSY;
spin_lock_bh(&jme->macaddr_lock);
memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
jme_set_unicastaddr(netdev);
spin_unlock_bh(&jme->macaddr_lock);
return 0;
}
static void
jme_set_multi(struct net_device *netdev)
{
struct jme_adapter *jme = netdev_priv(netdev);
u32 mc_hash[2] = {};
spin_lock_bh(&jme->rxmcs_lock);
jme->reg_rxmcs |= RXMCS_BRDFRAME | RXMCS_UNIFRAME;
if (netdev->flags & IFF_PROMISC) {
jme->reg_rxmcs |= RXMCS_ALLFRAME;
} else if (netdev->flags & IFF_ALLMULTI) {
jme->reg_rxmcs |= RXMCS_ALLMULFRAME;
} else if (netdev->flags & IFF_MULTICAST) {
struct netdev_hw_addr *ha;
int bit_nr;
jme->reg_rxmcs |= RXMCS_MULFRAME | RXMCS_MULFILTERED;
netdev_for_each_mc_addr(ha, netdev) {
bit_nr = ether_crc(ETH_ALEN, ha->addr) & 0x3F;
mc_hash[bit_nr >> 5] |= 1 << (bit_nr & 0x1F);
}
jwrite32(jme, JME_RXMCHT_LO, mc_hash[0]);
jwrite32(jme, JME_RXMCHT_HI, mc_hash[1]);
}
wmb();
jwrite32(jme, JME_RXMCS, jme->reg_rxmcs);
spin_unlock_bh(&jme->rxmcs_lock);
}
static int
jme_change_mtu(struct net_device *netdev, int new_mtu)
{
struct jme_adapter *jme = netdev_priv(netdev);
if (new_mtu == jme->old_mtu)
return 0;
if (((new_mtu + ETH_HLEN) > MAX_ETHERNET_JUMBO_PACKET_SIZE) ||
((new_mtu) < IPV6_MIN_MTU))
return -EINVAL;
if (new_mtu > 4000) {
jme->reg_rxcs &= ~RXCS_FIFOTHNP;
jme->reg_rxcs |= RXCS_FIFOTHNP_64QW;
jme_restart_rx_engine(jme);
} else {
jme->reg_rxcs &= ~RXCS_FIFOTHNP;
jme->reg_rxcs |= RXCS_FIFOTHNP_128QW;
jme_restart_rx_engine(jme);
}
if (new_mtu > 1900) {
netdev->features &= ~(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
NETIF_F_TSO | NETIF_F_TSO6);
} else {
if (test_bit(JME_FLAG_TXCSUM, &jme->flags))
netdev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
if (test_bit(JME_FLAG_TSO, &jme->flags))
netdev->features |= NETIF_F_TSO | NETIF_F_TSO6;
}
netdev->mtu = new_mtu;
jme_reset_link(jme);
return 0;
}
static void
jme_tx_timeout(struct net_device *netdev)
{
struct jme_adapter *jme = netdev_priv(netdev);
jme->phylink = 0;
jme_reset_phy_processor(jme);
if (test_bit(JME_FLAG_SSET, &jme->flags))
jme_set_settings(netdev, &jme->old_ecmd);
/*
* Force to Reset the link again
*/
jme_reset_link(jme);
}
static inline void jme_pause_rx(struct jme_adapter *jme)
{
atomic_dec(&jme->link_changing);
jme_set_rx_pcc(jme, PCC_OFF);
if (test_bit(JME_FLAG_POLL, &jme->flags)) {
JME_NAPI_DISABLE(jme);
} else {
tasklet_disable(&jme->rxclean_task);
tasklet_disable(&jme->rxempty_task);
}
}
static inline void jme_resume_rx(struct jme_adapter *jme)
{
struct dynpcc_info *dpi = &(jme->dpi);
if (test_bit(JME_FLAG_POLL, &jme->flags)) {
JME_NAPI_ENABLE(jme);
} else {
tasklet_hi_enable(&jme->rxclean_task);
tasklet_hi_enable(&jme->rxempty_task);
}
dpi->cur = PCC_P1;
dpi->attempt = PCC_P1;
dpi->cnt = 0;
jme_set_rx_pcc(jme, PCC_P1);
atomic_inc(&jme->link_changing);
}
static void
jme_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
{
struct jme_adapter *jme = netdev_priv(netdev);
jme_pause_rx(jme);
jme->vlgrp = grp;
jme_resume_rx(jme);
}
static void
jme_get_drvinfo(struct net_device *netdev,
struct ethtool_drvinfo *info)
{
struct jme_adapter *jme = netdev_priv(netdev);
strcpy(info->driver, DRV_NAME);
strcpy(info->version, DRV_VERSION);
strcpy(info->bus_info, pci_name(jme->pdev));
}
static int
jme_get_regs_len(struct net_device *netdev)
{
return JME_REG_LEN;
}
static void
mmapio_memcpy(struct jme_adapter *jme, u32 *p, u32 reg, int len)
{
int i;
for (i = 0 ; i < len ; i += 4)
p[i >> 2] = jread32(jme, reg + i);
}
static void
mdio_memcpy(struct jme_adapter *jme, u32 *p, int reg_nr)
{
int i;
u16 *p16 = (u16 *)p;
for (i = 0 ; i < reg_nr ; ++i)
p16[i] = jme_mdio_read(jme->dev, jme->mii_if.phy_id, i);
}
static void
jme_get_regs(struct net_device *netdev, struct ethtool_regs *regs, void *p)
{
struct jme_adapter *jme = netdev_priv(netdev);
u32 *p32 = (u32 *)p;
memset(p, 0xFF, JME_REG_LEN);
regs->version = 1;
mmapio_memcpy(jme, p32, JME_MAC, JME_MAC_LEN);
p32 += 0x100 >> 2;
mmapio_memcpy(jme, p32, JME_PHY, JME_PHY_LEN);
p32 += 0x100 >> 2;
mmapio_memcpy(jme, p32, JME_MISC, JME_MISC_LEN);
p32 += 0x100 >> 2;
mmapio_memcpy(jme, p32, JME_RSS, JME_RSS_LEN);
p32 += 0x100 >> 2;
mdio_memcpy(jme, p32, JME_PHY_REG_NR);
}
static int
jme_get_coalesce(struct net_device *netdev, struct ethtool_coalesce *ecmd)
{
struct jme_adapter *jme = netdev_priv(netdev);
ecmd->tx_coalesce_usecs = PCC_TX_TO;
ecmd->tx_max_coalesced_frames = PCC_TX_CNT;
if (test_bit(JME_FLAG_POLL, &jme->flags)) {
ecmd->use_adaptive_rx_coalesce = false;
ecmd->rx_coalesce_usecs = 0;
ecmd->rx_max_coalesced_frames = 0;
return 0;
}
ecmd->use_adaptive_rx_coalesce = true;
switch (jme->dpi.cur) {
case PCC_P1:
ecmd->rx_coalesce_usecs = PCC_P1_TO;
ecmd->rx_max_coalesced_frames = PCC_P1_CNT;
break;
case PCC_P2:
ecmd->rx_coalesce_usecs = PCC_P2_TO;
ecmd->rx_max_coalesced_frames = PCC_P2_CNT;
break;
case PCC_P3:
ecmd->rx_coalesce_usecs = PCC_P3_TO;
ecmd->rx_max_coalesced_frames = PCC_P3_CNT;
break;
default:
break;
}
return 0;
}
static int
jme_set_coalesce(struct net_device *netdev, struct ethtool_coalesce *ecmd)
{
struct jme_adapter *jme = netdev_priv(netdev);
struct dynpcc_info *dpi = &(jme->dpi);
if (netif_running(netdev))
return -EBUSY;
if (ecmd->use_adaptive_rx_coalesce &&
test_bit(JME_FLAG_POLL, &jme->flags)) {
clear_bit(JME_FLAG_POLL, &jme->flags);
jme->jme_rx = netif_rx;
jme->jme_vlan_rx = vlan_hwaccel_rx;
dpi->cur = PCC_P1;
dpi->attempt = PCC_P1;
dpi->cnt = 0;
jme_set_rx_pcc(jme, PCC_P1);
jme_interrupt_mode(jme);
} else if (!(ecmd->use_adaptive_rx_coalesce) &&
!(test_bit(JME_FLAG_POLL, &jme->flags))) {
set_bit(JME_FLAG_POLL, &jme->flags);
jme->jme_rx = netif_receive_skb;
jme->jme_vlan_rx = vlan_hwaccel_receive_skb;
jme_interrupt_mode(jme);
}
return 0;
}
static void
jme_get_pauseparam(struct net_device *netdev,
struct ethtool_pauseparam *ecmd)
{
struct jme_adapter *jme = netdev_priv(netdev);
u32 val;
ecmd->tx_pause = (jme->reg_txpfc & TXPFC_PF_EN) != 0;
ecmd->rx_pause = (jme->reg_rxmcs & RXMCS_FLOWCTRL) != 0;
spin_lock_bh(&jme->phy_lock);
val = jme_mdio_read(jme->dev, jme->mii_if.phy_id, MII_ADVERTISE);
spin_unlock_bh(&jme->phy_lock);
ecmd->autoneg =
(val & (ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM)) != 0;
}
static int
jme_set_pauseparam(struct net_device *netdev,
struct ethtool_pauseparam *ecmd)
{
struct jme_adapter *jme = netdev_priv(netdev);
u32 val;
if (((jme->reg_txpfc & TXPFC_PF_EN) != 0) ^
(ecmd->tx_pause != 0)) {
if (ecmd->tx_pause)
jme->reg_txpfc |= TXPFC_PF_EN;
else
jme->reg_txpfc &= ~TXPFC_PF_EN;
jwrite32(jme, JME_TXPFC, jme->reg_txpfc);
}
spin_lock_bh(&jme->rxmcs_lock);
if (((jme->reg_rxmcs & RXMCS_FLOWCTRL) != 0) ^
(ecmd->rx_pause != 0)) {
if (ecmd->rx_pause)
jme->reg_rxmcs |= RXMCS_FLOWCTRL;
else
jme->reg_rxmcs &= ~RXMCS_FLOWCTRL;
jwrite32(jme, JME_RXMCS, jme->reg_rxmcs);
}
spin_unlock_bh(&jme->rxmcs_lock);
spin_lock_bh(&jme->phy_lock);
val = jme_mdio_read(jme->dev, jme->mii_if.phy_id, MII_ADVERTISE);
if (((val & (ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM)) != 0) ^
(ecmd->autoneg != 0)) {
if (ecmd->autoneg)
val |= (ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
else
val &= ~(ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
jme_mdio_write(jme->dev, jme->mii_if.phy_id,
MII_ADVERTISE, val);
}
spin_unlock_bh(&jme->phy_lock);
return 0;
}
static void
jme_get_wol(struct net_device *netdev,
struct ethtool_wolinfo *wol)
{
struct jme_adapter *jme = netdev_priv(netdev);
wol->supported = WAKE_MAGIC | WAKE_PHY;
wol->wolopts = 0;
if (jme->reg_pmcs & (PMCS_LFEN | PMCS_LREN))
wol->wolopts |= WAKE_PHY;
if (jme->reg_pmcs & PMCS_MFEN)
wol->wolopts |= WAKE_MAGIC;
}
static int
jme_set_wol(struct net_device *netdev,
struct ethtool_wolinfo *wol)
{
struct jme_adapter *jme = netdev_priv(netdev);
if (wol->wolopts & (WAKE_MAGICSECURE |
WAKE_UCAST |
WAKE_MCAST |
WAKE_BCAST |
WAKE_ARP))
return -EOPNOTSUPP;
jme->reg_pmcs = 0;
if (wol->wolopts & WAKE_PHY)
jme->reg_pmcs |= PMCS_LFEN | PMCS_LREN;
if (wol->wolopts & WAKE_MAGIC)
jme->reg_pmcs |= PMCS_MFEN;
jwrite32(jme, JME_PMCS, jme->reg_pmcs);
device_set_wakeup_enable(&jme->pdev->dev, jme->reg_pmcs);
return 0;
}
static int
jme_get_settings(struct net_device *netdev,
struct ethtool_cmd *ecmd)
{
struct jme_adapter *jme = netdev_priv(netdev);
int rc;
spin_lock_bh(&jme->phy_lock);
rc = mii_ethtool_gset(&(jme->mii_if), ecmd);
spin_unlock_bh(&jme->phy_lock);
return rc;
}
static int
jme_set_settings(struct net_device *netdev,
struct ethtool_cmd *ecmd)
{
struct jme_adapter *jme = netdev_priv(netdev);
int rc, fdc = 0;
if (ecmd->speed == SPEED_1000 && ecmd->autoneg != AUTONEG_ENABLE)
return -EINVAL;
/*
* Check If user changed duplex only while force_media.
* Hardware would not generate link change interrupt.
*/
if (jme->mii_if.force_media &&
ecmd->autoneg != AUTONEG_ENABLE &&
(jme->mii_if.full_duplex != ecmd->duplex))
fdc = 1;
spin_lock_bh(&jme->phy_lock);
rc = mii_ethtool_sset(&(jme->mii_if), ecmd);
spin_unlock_bh(&jme->phy_lock);
if (!rc) {
if (fdc)
jme_reset_link(jme);
jme->old_ecmd = *ecmd;
set_bit(JME_FLAG_SSET, &jme->flags);
}
return rc;
}
static int
jme_ioctl(struct net_device *netdev, struct ifreq *rq, int cmd)
{
int rc;
struct jme_adapter *jme = netdev_priv(netdev);
struct mii_ioctl_data *mii_data = if_mii(rq);
unsigned int duplex_chg;
if (cmd == SIOCSMIIREG) {
u16 val = mii_data->val_in;
if (!(val & (BMCR_RESET|BMCR_ANENABLE)) &&
(val & BMCR_SPEED1000))
return -EINVAL;
}
spin_lock_bh(&jme->phy_lock);
rc = generic_mii_ioctl(&jme->mii_if, mii_data, cmd, &duplex_chg);
spin_unlock_bh(&jme->phy_lock);
if (!rc && (cmd == SIOCSMIIREG)) {
if (duplex_chg)
jme_reset_link(jme);
jme_get_settings(netdev, &jme->old_ecmd);
set_bit(JME_FLAG_SSET, &jme->flags);
}
return rc;
}
static u32
jme_get_link(struct net_device *netdev)
{
struct jme_adapter *jme = netdev_priv(netdev);
return jread32(jme, JME_PHY_LINK) & PHY_LINK_UP;
}
static u32
jme_get_msglevel(struct net_device *netdev)
{
struct jme_adapter *jme = netdev_priv(netdev);
return jme->msg_enable;
}
static void
jme_set_msglevel(struct net_device *netdev, u32 value)
{
struct jme_adapter *jme = netdev_priv(netdev);
jme->msg_enable = value;
}
static u32
jme_get_rx_csum(struct net_device *netdev)
{
struct jme_adapter *jme = netdev_priv(netdev);
return jme->reg_rxmcs & RXMCS_CHECKSUM;
}
static int
jme_set_rx_csum(struct net_device *netdev, u32 on)
{
struct jme_adapter *jme = netdev_priv(netdev);
spin_lock_bh(&jme->rxmcs_lock);
if (on)
jme->reg_rxmcs |= RXMCS_CHECKSUM;
else
jme->reg_rxmcs &= ~RXMCS_CHECKSUM;
jwrite32(jme, JME_RXMCS, jme->reg_rxmcs);
spin_unlock_bh(&jme->rxmcs_lock);
return 0;
}
static int
jme_set_tx_csum(struct net_device *netdev, u32 on)
{
struct jme_adapter *jme = netdev_priv(netdev);
if (on) {
set_bit(JME_FLAG_TXCSUM, &jme->flags);
if (netdev->mtu <= 1900)
netdev->features |=
NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM;
} else {
clear_bit(JME_FLAG_TXCSUM, &jme->flags);
netdev->features &=
~(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
}
return 0;
}
static int
jme_set_tso(struct net_device *netdev, u32 on)
{
struct jme_adapter *jme = netdev_priv(netdev);
if (on) {
set_bit(JME_FLAG_TSO, &jme->flags);
if (netdev->mtu <= 1900)
netdev->features |= NETIF_F_TSO | NETIF_F_TSO6;
} else {
clear_bit(JME_FLAG_TSO, &jme->flags);
netdev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
}
return 0;
}
static int
jme_nway_reset(struct net_device *netdev)
{
struct jme_adapter *jme = netdev_priv(netdev);
jme_restart_an(jme);
return 0;
}
static u8
jme_smb_read(struct jme_adapter *jme, unsigned int addr)
{
u32 val;
int to;
val = jread32(jme, JME_SMBCSR);
to = JME_SMB_BUSY_TIMEOUT;
while ((val & SMBCSR_BUSY) && --to) {
msleep(1);
val = jread32(jme, JME_SMBCSR);
}
if (!to) {
netif_err(jme, hw, jme->dev, "SMB Bus Busy\n");
return 0xFF;
}
jwrite32(jme, JME_SMBINTF,
((addr << SMBINTF_HWADDR_SHIFT) & SMBINTF_HWADDR) |
SMBINTF_HWRWN_READ |
SMBINTF_HWCMD);
val = jread32(jme, JME_SMBINTF);
to = JME_SMB_BUSY_TIMEOUT;
while ((val & SMBINTF_HWCMD) && --to) {
msleep(1);
val = jread32(jme, JME_SMBINTF);
}
if (!to) {
netif_err(jme, hw, jme->dev, "SMB Bus Busy\n");
return 0xFF;
}
return (val & SMBINTF_HWDATR) >> SMBINTF_HWDATR_SHIFT;
}
static void
jme_smb_write(struct jme_adapter *jme, unsigned int addr, u8 data)
{
u32 val;
int to;
val = jread32(jme, JME_SMBCSR);
to = JME_SMB_BUSY_TIMEOUT;
while ((val & SMBCSR_BUSY) && --to) {
msleep(1);
val = jread32(jme, JME_SMBCSR);
}
if (!to) {
netif_err(jme, hw, jme->dev, "SMB Bus Busy\n");
return;
}
jwrite32(jme, JME_SMBINTF,
((data << SMBINTF_HWDATW_SHIFT) & SMBINTF_HWDATW) |
((addr << SMBINTF_HWADDR_SHIFT) & SMBINTF_HWADDR) |
SMBINTF_HWRWN_WRITE |
SMBINTF_HWCMD);
val = jread32(jme, JME_SMBINTF);
to = JME_SMB_BUSY_TIMEOUT;
while ((val & SMBINTF_HWCMD) && --to) {
msleep(1);
val = jread32(jme, JME_SMBINTF);
}
if (!to) {
netif_err(jme, hw, jme->dev, "SMB Bus Busy\n");
return;
}
mdelay(2);
}
static int
jme_get_eeprom_len(struct net_device *netdev)
{
struct jme_adapter *jme = netdev_priv(netdev);
u32 val;
val = jread32(jme, JME_SMBCSR);
return (val & SMBCSR_EEPROMD) ? JME_SMB_LEN : 0;
}
static int
jme_get_eeprom(struct net_device *netdev,
struct ethtool_eeprom *eeprom, u8 *data)
{
struct jme_adapter *jme = netdev_priv(netdev);
int i, offset = eeprom->offset, len = eeprom->len;
/*
* ethtool will check the boundary for us
*/
eeprom->magic = JME_EEPROM_MAGIC;
for (i = 0 ; i < len ; ++i)
data[i] = jme_smb_read(jme, i + offset);
return 0;
}
static int
jme_set_eeprom(struct net_device *netdev,
struct ethtool_eeprom *eeprom, u8 *data)
{
struct jme_adapter *jme = netdev_priv(netdev);
int i, offset = eeprom->offset, len = eeprom->len;
if (eeprom->magic != JME_EEPROM_MAGIC)
return -EINVAL;
/*
* ethtool will check the boundary for us
*/
for (i = 0 ; i < len ; ++i)
jme_smb_write(jme, i + offset, data[i]);
return 0;
}
static const struct ethtool_ops jme_ethtool_ops = {
.get_drvinfo = jme_get_drvinfo,
.get_regs_len = jme_get_regs_len,
.get_regs = jme_get_regs,
.get_coalesce = jme_get_coalesce,
.set_coalesce = jme_set_coalesce,
.get_pauseparam = jme_get_pauseparam,
.set_pauseparam = jme_set_pauseparam,
.get_wol = jme_get_wol,
.set_wol = jme_set_wol,
.get_settings = jme_get_settings,
.set_settings = jme_set_settings,
.get_link = jme_get_link,
.get_msglevel = jme_get_msglevel,
.set_msglevel = jme_set_msglevel,
.get_rx_csum = jme_get_rx_csum,
.set_rx_csum = jme_set_rx_csum,
.set_tx_csum = jme_set_tx_csum,
.set_tso = jme_set_tso,
.set_sg = ethtool_op_set_sg,
.nway_reset = jme_nway_reset,
.get_eeprom_len = jme_get_eeprom_len,
.get_eeprom = jme_get_eeprom,
.set_eeprom = jme_set_eeprom,
};
static int
jme_pci_dma64(struct pci_dev *pdev)
{
if (pdev->device == PCI_DEVICE_ID_JMICRON_JMC250 &&
!pci_set_dma_mask(pdev, DMA_BIT_MASK(64)))
if (!pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)))
return 1;
if (pdev->device == PCI_DEVICE_ID_JMICRON_JMC250 &&
!pci_set_dma_mask(pdev, DMA_BIT_MASK(40)))
if (!pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40)))
return 1;
if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))
if (!pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))
return 0;
return -1;
}
static inline void
jme_phy_init(struct jme_adapter *jme)
{
u16 reg26;
reg26 = jme_mdio_read(jme->dev, jme->mii_if.phy_id, 26);
jme_mdio_write(jme->dev, jme->mii_if.phy_id, 26, reg26 | 0x1000);
}
static inline void
jme_check_hw_ver(struct jme_adapter *jme)
{
u32 chipmode;
chipmode = jread32(jme, JME_CHIPMODE);
jme->fpgaver = (chipmode & CM_FPGAVER_MASK) >> CM_FPGAVER_SHIFT;
jme->chiprev = (chipmode & CM_CHIPREV_MASK) >> CM_CHIPREV_SHIFT;
jme->chip_main_rev = jme->chiprev & 0xF;
jme->chip_sub_rev = (jme->chiprev >> 4) & 0xF;
}
static const struct net_device_ops jme_netdev_ops = {
.ndo_open = jme_open,
.ndo_stop = jme_close,
.ndo_validate_addr = eth_validate_addr,
.ndo_do_ioctl = jme_ioctl,
.ndo_start_xmit = jme_start_xmit,
.ndo_set_mac_address = jme_set_macaddr,
.ndo_set_multicast_list = jme_set_multi,
.ndo_change_mtu = jme_change_mtu,
.ndo_tx_timeout = jme_tx_timeout,
.ndo_vlan_rx_register = jme_vlan_rx_register,
};
static int __devinit
jme_init_one(struct pci_dev *pdev,
const struct pci_device_id *ent)
{
int rc = 0, using_dac, i;
struct net_device *netdev;
struct jme_adapter *jme;
u16 bmcr, bmsr;
u32 apmc;
/*
* set up PCI device basics
*/
rc = pci_enable_device(pdev);
if (rc) {
pr_err("Cannot enable PCI device\n");
goto err_out;
}
using_dac = jme_pci_dma64(pdev);
if (using_dac < 0) {
pr_err("Cannot set PCI DMA Mask\n");
rc = -EIO;
goto err_out_disable_pdev;
}
if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
pr_err("No PCI resource region found\n");
rc = -ENOMEM;
goto err_out_disable_pdev;
}
rc = pci_request_regions(pdev, DRV_NAME);
if (rc) {
pr_err("Cannot obtain PCI resource region\n");
goto err_out_disable_pdev;
}
pci_set_master(pdev);
/*
* alloc and init net device
*/
netdev = alloc_etherdev(sizeof(*jme));
if (!netdev) {
pr_err("Cannot allocate netdev structure\n");
rc = -ENOMEM;
goto err_out_release_regions;
}
netdev->netdev_ops = &jme_netdev_ops;
netdev->ethtool_ops = &jme_ethtool_ops;
netdev->watchdog_timeo = TX_TIMEOUT;
netdev->features = NETIF_F_IP_CSUM |
NETIF_F_IPV6_CSUM |
NETIF_F_SG |
NETIF_F_TSO |
NETIF_F_TSO6 |
NETIF_F_HW_VLAN_TX |
NETIF_F_HW_VLAN_RX;
if (using_dac)
netdev->features |= NETIF_F_HIGHDMA;
SET_NETDEV_DEV(netdev, &pdev->dev);
pci_set_drvdata(pdev, netdev);
/*
* init adapter info
*/
jme = netdev_priv(netdev);
jme->pdev = pdev;
jme->dev = netdev;
jme->jme_rx = netif_rx;
jme->jme_vlan_rx = vlan_hwaccel_rx;
jme->old_mtu = netdev->mtu = 1500;
jme->phylink = 0;
jme->tx_ring_size = 1 << 10;
jme->tx_ring_mask = jme->tx_ring_size - 1;
jme->tx_wake_threshold = 1 << 9;
jme->rx_ring_size = 1 << 9;
jme->rx_ring_mask = jme->rx_ring_size - 1;
jme->msg_enable = JME_DEF_MSG_ENABLE;
jme->regs = ioremap(pci_resource_start(pdev, 0),
pci_resource_len(pdev, 0));
if (!(jme->regs)) {
pr_err("Mapping PCI resource region error\n");
rc = -ENOMEM;
goto err_out_free_netdev;
}
if (no_pseudohp) {
apmc = jread32(jme, JME_APMC) & ~JME_APMC_PSEUDO_HP_EN;
jwrite32(jme, JME_APMC, apmc);
} else if (force_pseudohp) {
apmc = jread32(jme, JME_APMC) | JME_APMC_PSEUDO_HP_EN;
jwrite32(jme, JME_APMC, apmc);
}
NETIF_NAPI_SET(netdev, &jme->napi, jme_poll, jme->rx_ring_size >> 2)
spin_lock_init(&jme->phy_lock);
spin_lock_init(&jme->macaddr_lock);
spin_lock_init(&jme->rxmcs_lock);
atomic_set(&jme->link_changing, 1);
atomic_set(&jme->rx_cleaning, 1);
atomic_set(&jme->tx_cleaning, 1);
atomic_set(&jme->rx_empty, 1);
tasklet_init(&jme->pcc_task,
jme_pcc_tasklet,
(unsigned long) jme);
tasklet_init(&jme->linkch_task,
jme_link_change_tasklet,
(unsigned long) jme);
tasklet_init(&jme->txclean_task,
jme_tx_clean_tasklet,
(unsigned long) jme);
tasklet_init(&jme->rxclean_task,
jme_rx_clean_tasklet,
(unsigned long) jme);
tasklet_init(&jme->rxempty_task,
jme_rx_empty_tasklet,
(unsigned long) jme);
tasklet_disable_nosync(&jme->linkch_task);
tasklet_disable_nosync(&jme->txclean_task);
tasklet_disable_nosync(&jme->rxclean_task);
tasklet_disable_nosync(&jme->rxempty_task);
jme->dpi.cur = PCC_P1;
jme->reg_ghc = 0;
jme->reg_rxcs = RXCS_DEFAULT;
jme->reg_rxmcs = RXMCS_DEFAULT;
jme->reg_txpfc = 0;
jme->reg_pmcs = PMCS_MFEN;
jme->reg_gpreg1 = GPREG1_DEFAULT;
set_bit(JME_FLAG_TXCSUM, &jme->flags);
set_bit(JME_FLAG_TSO, &jme->flags);
/*
* Get Max Read Req Size from PCI Config Space
*/
pci_read_config_byte(pdev, PCI_DCSR_MRRS, &jme->mrrs);
jme->mrrs &= PCI_DCSR_MRRS_MASK;
switch (jme->mrrs) {
case MRRS_128B:
jme->reg_txcs = TXCS_DEFAULT | TXCS_DMASIZE_128B;
break;
case MRRS_256B:
jme->reg_txcs = TXCS_DEFAULT | TXCS_DMASIZE_256B;
break;
default:
jme->reg_txcs = TXCS_DEFAULT | TXCS_DMASIZE_512B;
break;
}
/*
* Must check before reset_mac_processor
*/
jme_check_hw_ver(jme);
jme->mii_if.dev = netdev;
if (jme->fpgaver) {
jme->mii_if.phy_id = 0;
for (i = 1 ; i < 32 ; ++i) {
bmcr = jme_mdio_read(netdev, i, MII_BMCR);
bmsr = jme_mdio_read(netdev, i, MII_BMSR);
if (bmcr != 0xFFFFU && (bmcr != 0 || bmsr != 0)) {
jme->mii_if.phy_id = i;
break;
}
}
if (!jme->mii_if.phy_id) {
rc = -EIO;
pr_err("Can not find phy_id\n");
goto err_out_unmap;
}
jme->reg_ghc |= GHC_LINK_POLL;
} else {
jme->mii_if.phy_id = 1;
}
if (pdev->device == PCI_DEVICE_ID_JMICRON_JMC250)
jme->mii_if.supports_gmii = true;
else
jme->mii_if.supports_gmii = false;
jme->mii_if.phy_id_mask = 0x1F;
jme->mii_if.reg_num_mask = 0x1F;
jme->mii_if.mdio_read = jme_mdio_read;
jme->mii_if.mdio_write = jme_mdio_write;
jme_clear_pm(jme);
jme_set_phyfifo_5level(jme);
jme->pcirev = pdev->revision;
if (!jme->fpgaver)
jme_phy_init(jme);
jme_phy_off(jme);
/*
* Reset MAC processor and reload EEPROM for MAC Address
*/
jme_reset_mac_processor(jme);
rc = jme_reload_eeprom(jme);
if (rc) {
pr_err("Reload eeprom for reading MAC Address error\n");
goto err_out_unmap;
}
jme_load_macaddr(netdev);
/*
* Tell stack that we are not ready to work until open()
*/
netif_carrier_off(netdev);
rc = register_netdev(netdev);
if (rc) {
pr_err("Cannot register net device\n");
goto err_out_unmap;
}
netif_info(jme, probe, jme->dev, "%s%s chiprev:%x pcirev:%x macaddr:%pM\n",
(jme->pdev->device == PCI_DEVICE_ID_JMICRON_JMC250) ?
"JMC250 Gigabit Ethernet" :
(jme->pdev->device == PCI_DEVICE_ID_JMICRON_JMC260) ?
"JMC260 Fast Ethernet" : "Unknown",
(jme->fpgaver != 0) ? " (FPGA)" : "",
(jme->fpgaver != 0) ? jme->fpgaver : jme->chiprev,
jme->pcirev, netdev->dev_addr);
return 0;
err_out_unmap:
iounmap(jme->regs);
err_out_free_netdev:
pci_set_drvdata(pdev, NULL);
free_netdev(netdev);
err_out_release_regions:
pci_release_regions(pdev);
err_out_disable_pdev:
pci_disable_device(pdev);
err_out:
return rc;
}
static void __devexit
jme_remove_one(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct jme_adapter *jme = netdev_priv(netdev);
unregister_netdev(netdev);
iounmap(jme->regs);
pci_set_drvdata(pdev, NULL);
free_netdev(netdev);
pci_release_regions(pdev);
pci_disable_device(pdev);
}
static void
jme_shutdown(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct jme_adapter *jme = netdev_priv(netdev);
jme_powersave_phy(jme);
pci_pme_active(pdev, true);
}
#ifdef CONFIG_PM
static int jme_suspend(struct device *dev)
{
struct pci_dev *pdev = to_pci_dev(dev);
struct net_device *netdev = pci_get_drvdata(pdev);
struct jme_adapter *jme = netdev_priv(netdev);
atomic_dec(&jme->link_changing);
netif_device_detach(netdev);
netif_stop_queue(netdev);
jme_stop_irq(jme);
tasklet_disable(&jme->txclean_task);
tasklet_disable(&jme->rxclean_task);
tasklet_disable(&jme->rxempty_task);
if (netif_carrier_ok(netdev)) {
if (test_bit(JME_FLAG_POLL, &jme->flags))
jme_polling_mode(jme);
jme_stop_pcc_timer(jme);
jme_disable_rx_engine(jme);
jme_disable_tx_engine(jme);
jme_reset_mac_processor(jme);
jme_free_rx_resources(jme);
jme_free_tx_resources(jme);
netif_carrier_off(netdev);
jme->phylink = 0;
}
tasklet_enable(&jme->txclean_task);
tasklet_hi_enable(&jme->rxclean_task);
tasklet_hi_enable(&jme->rxempty_task);
jme_powersave_phy(jme);
return 0;
}
static int jme_resume(struct device *dev)
{
struct pci_dev *pdev = to_pci_dev(dev);
struct net_device *netdev = pci_get_drvdata(pdev);
struct jme_adapter *jme = netdev_priv(netdev);
jwrite32(jme, JME_PMCS, 0xFFFF0000 | jme->reg_pmcs);
jme_phy_on(jme);
if (test_bit(JME_FLAG_SSET, &jme->flags))
jme_set_settings(netdev, &jme->old_ecmd);
else
jme_reset_phy_processor(jme);
jme_start_irq(jme);
netif_device_attach(netdev);
atomic_inc(&jme->link_changing);
jme_reset_link(jme);
return 0;
}
static SIMPLE_DEV_PM_OPS(jme_pm_ops, jme_suspend, jme_resume);
#define JME_PM_OPS (&jme_pm_ops)
#else
#define JME_PM_OPS NULL
#endif
static DEFINE_PCI_DEVICE_TABLE(jme_pci_tbl) = {
{ PCI_VDEVICE(JMICRON, PCI_DEVICE_ID_JMICRON_JMC250) },
{ PCI_VDEVICE(JMICRON, PCI_DEVICE_ID_JMICRON_JMC260) },
{ }
};
static struct pci_driver jme_driver = {
.name = DRV_NAME,
.id_table = jme_pci_tbl,
.probe = jme_init_one,
.remove = __devexit_p(jme_remove_one),
.shutdown = jme_shutdown,
.driver.pm = JME_PM_OPS,
};
static int __init
jme_init_module(void)
{
pr_info("JMicron JMC2XX ethernet driver version %s\n", DRV_VERSION);
return pci_register_driver(&jme_driver);
}
static void __exit
jme_cleanup_module(void)
{
pci_unregister_driver(&jme_driver);
}
module_init(jme_init_module);
module_exit(jme_cleanup_module);
MODULE_AUTHOR("Guo-Fu Tseng <cooldavid@cooldavid.org>");
MODULE_DESCRIPTION("JMicron JMC2x0 PCI Express Ethernet driver");
MODULE_LICENSE("GPL");
MODULE_VERSION(DRV_VERSION);
MODULE_DEVICE_TABLE(pci, jme_pci_tbl);