mirror of
https://github.com/AuxXxilium/linux_dsm_epyc7002.git
synced 2024-12-28 11:18:45 +07:00
d38d351555
In blk_mq_sched_dispatch_requests(), we call blk_mq_sched_mark_restart() after we dispatch requests left over on our hardware queue dispatch list. This is so we'll go back and dispatch requests from the scheduler. In this case, it's only necessary to restart the hardware queue that we are running; there's no reason to run other hardware queues just because we are using shared tags. So, split out blk_mq_sched_mark_restart() into two operations, one for just the hardware queue and one for the whole request queue. The core code only needs the hctx variant, but I/O schedulers will want to use both. This also requires adjusting blk_mq_sched_restart_queues() to always check the queue restart flag, not just when using shared tags. Signed-off-by: Omar Sandoval <osandov@fb.com> Signed-off-by: Jens Axboe <axboe@fb.com>
503 lines
12 KiB
C
503 lines
12 KiB
C
/*
|
|
* blk-mq scheduling framework
|
|
*
|
|
* Copyright (C) 2016 Jens Axboe
|
|
*/
|
|
#include <linux/kernel.h>
|
|
#include <linux/module.h>
|
|
#include <linux/blk-mq.h>
|
|
|
|
#include <trace/events/block.h>
|
|
|
|
#include "blk.h"
|
|
#include "blk-mq.h"
|
|
#include "blk-mq-sched.h"
|
|
#include "blk-mq-tag.h"
|
|
#include "blk-wbt.h"
|
|
|
|
void blk_mq_sched_free_hctx_data(struct request_queue *q,
|
|
void (*exit)(struct blk_mq_hw_ctx *))
|
|
{
|
|
struct blk_mq_hw_ctx *hctx;
|
|
int i;
|
|
|
|
queue_for_each_hw_ctx(q, hctx, i) {
|
|
if (exit && hctx->sched_data)
|
|
exit(hctx);
|
|
kfree(hctx->sched_data);
|
|
hctx->sched_data = NULL;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(blk_mq_sched_free_hctx_data);
|
|
|
|
int blk_mq_sched_init_hctx_data(struct request_queue *q, size_t size,
|
|
int (*init)(struct blk_mq_hw_ctx *),
|
|
void (*exit)(struct blk_mq_hw_ctx *))
|
|
{
|
|
struct blk_mq_hw_ctx *hctx;
|
|
int ret;
|
|
int i;
|
|
|
|
queue_for_each_hw_ctx(q, hctx, i) {
|
|
hctx->sched_data = kmalloc_node(size, GFP_KERNEL, hctx->numa_node);
|
|
if (!hctx->sched_data) {
|
|
ret = -ENOMEM;
|
|
goto error;
|
|
}
|
|
|
|
if (init) {
|
|
ret = init(hctx);
|
|
if (ret) {
|
|
/*
|
|
* We don't want to give exit() a partially
|
|
* initialized sched_data. init() must clean up
|
|
* if it fails.
|
|
*/
|
|
kfree(hctx->sched_data);
|
|
hctx->sched_data = NULL;
|
|
goto error;
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
error:
|
|
blk_mq_sched_free_hctx_data(q, exit);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(blk_mq_sched_init_hctx_data);
|
|
|
|
static void __blk_mq_sched_assign_ioc(struct request_queue *q,
|
|
struct request *rq,
|
|
struct bio *bio,
|
|
struct io_context *ioc)
|
|
{
|
|
struct io_cq *icq;
|
|
|
|
spin_lock_irq(q->queue_lock);
|
|
icq = ioc_lookup_icq(ioc, q);
|
|
spin_unlock_irq(q->queue_lock);
|
|
|
|
if (!icq) {
|
|
icq = ioc_create_icq(ioc, q, GFP_ATOMIC);
|
|
if (!icq)
|
|
return;
|
|
}
|
|
|
|
rq->elv.icq = icq;
|
|
if (!blk_mq_sched_get_rq_priv(q, rq, bio)) {
|
|
rq->rq_flags |= RQF_ELVPRIV;
|
|
get_io_context(icq->ioc);
|
|
return;
|
|
}
|
|
|
|
rq->elv.icq = NULL;
|
|
}
|
|
|
|
static void blk_mq_sched_assign_ioc(struct request_queue *q,
|
|
struct request *rq, struct bio *bio)
|
|
{
|
|
struct io_context *ioc;
|
|
|
|
ioc = rq_ioc(bio);
|
|
if (ioc)
|
|
__blk_mq_sched_assign_ioc(q, rq, bio, ioc);
|
|
}
|
|
|
|
struct request *blk_mq_sched_get_request(struct request_queue *q,
|
|
struct bio *bio,
|
|
unsigned int op,
|
|
struct blk_mq_alloc_data *data)
|
|
{
|
|
struct elevator_queue *e = q->elevator;
|
|
struct blk_mq_hw_ctx *hctx;
|
|
struct blk_mq_ctx *ctx;
|
|
struct request *rq;
|
|
|
|
blk_queue_enter_live(q);
|
|
ctx = blk_mq_get_ctx(q);
|
|
hctx = blk_mq_map_queue(q, ctx->cpu);
|
|
|
|
blk_mq_set_alloc_data(data, q, data->flags, ctx, hctx);
|
|
|
|
if (e) {
|
|
data->flags |= BLK_MQ_REQ_INTERNAL;
|
|
|
|
/*
|
|
* Flush requests are special and go directly to the
|
|
* dispatch list.
|
|
*/
|
|
if (!op_is_flush(op) && e->type->ops.mq.get_request) {
|
|
rq = e->type->ops.mq.get_request(q, op, data);
|
|
if (rq)
|
|
rq->rq_flags |= RQF_QUEUED;
|
|
} else
|
|
rq = __blk_mq_alloc_request(data, op);
|
|
} else {
|
|
rq = __blk_mq_alloc_request(data, op);
|
|
if (rq)
|
|
data->hctx->tags->rqs[rq->tag] = rq;
|
|
}
|
|
|
|
if (rq) {
|
|
if (!op_is_flush(op)) {
|
|
rq->elv.icq = NULL;
|
|
if (e && e->type->icq_cache)
|
|
blk_mq_sched_assign_ioc(q, rq, bio);
|
|
}
|
|
data->hctx->queued++;
|
|
return rq;
|
|
}
|
|
|
|
blk_queue_exit(q);
|
|
return NULL;
|
|
}
|
|
|
|
void blk_mq_sched_put_request(struct request *rq)
|
|
{
|
|
struct request_queue *q = rq->q;
|
|
struct elevator_queue *e = q->elevator;
|
|
|
|
if (rq->rq_flags & RQF_ELVPRIV) {
|
|
blk_mq_sched_put_rq_priv(rq->q, rq);
|
|
if (rq->elv.icq) {
|
|
put_io_context(rq->elv.icq->ioc);
|
|
rq->elv.icq = NULL;
|
|
}
|
|
}
|
|
|
|
if ((rq->rq_flags & RQF_QUEUED) && e && e->type->ops.mq.put_request)
|
|
e->type->ops.mq.put_request(rq);
|
|
else
|
|
blk_mq_finish_request(rq);
|
|
}
|
|
|
|
void blk_mq_sched_dispatch_requests(struct blk_mq_hw_ctx *hctx)
|
|
{
|
|
struct elevator_queue *e = hctx->queue->elevator;
|
|
const bool has_sched_dispatch = e && e->type->ops.mq.dispatch_request;
|
|
bool did_work = false;
|
|
LIST_HEAD(rq_list);
|
|
|
|
if (unlikely(blk_mq_hctx_stopped(hctx)))
|
|
return;
|
|
|
|
hctx->run++;
|
|
|
|
/*
|
|
* If we have previous entries on our dispatch list, grab them first for
|
|
* more fair dispatch.
|
|
*/
|
|
if (!list_empty_careful(&hctx->dispatch)) {
|
|
spin_lock(&hctx->lock);
|
|
if (!list_empty(&hctx->dispatch))
|
|
list_splice_init(&hctx->dispatch, &rq_list);
|
|
spin_unlock(&hctx->lock);
|
|
}
|
|
|
|
/*
|
|
* Only ask the scheduler for requests, if we didn't have residual
|
|
* requests from the dispatch list. This is to avoid the case where
|
|
* we only ever dispatch a fraction of the requests available because
|
|
* of low device queue depth. Once we pull requests out of the IO
|
|
* scheduler, we can no longer merge or sort them. So it's best to
|
|
* leave them there for as long as we can. Mark the hw queue as
|
|
* needing a restart in that case.
|
|
*/
|
|
if (!list_empty(&rq_list)) {
|
|
blk_mq_sched_mark_restart_hctx(hctx);
|
|
did_work = blk_mq_dispatch_rq_list(hctx, &rq_list);
|
|
} else if (!has_sched_dispatch) {
|
|
blk_mq_flush_busy_ctxs(hctx, &rq_list);
|
|
blk_mq_dispatch_rq_list(hctx, &rq_list);
|
|
}
|
|
|
|
/*
|
|
* We want to dispatch from the scheduler if we had no work left
|
|
* on the dispatch list, OR if we did have work but weren't able
|
|
* to make progress.
|
|
*/
|
|
if (!did_work && has_sched_dispatch) {
|
|
do {
|
|
struct request *rq;
|
|
|
|
rq = e->type->ops.mq.dispatch_request(hctx);
|
|
if (!rq)
|
|
break;
|
|
list_add(&rq->queuelist, &rq_list);
|
|
} while (blk_mq_dispatch_rq_list(hctx, &rq_list));
|
|
}
|
|
}
|
|
|
|
void blk_mq_sched_move_to_dispatch(struct blk_mq_hw_ctx *hctx,
|
|
struct list_head *rq_list,
|
|
struct request *(*get_rq)(struct blk_mq_hw_ctx *))
|
|
{
|
|
do {
|
|
struct request *rq;
|
|
|
|
rq = get_rq(hctx);
|
|
if (!rq)
|
|
break;
|
|
|
|
list_add_tail(&rq->queuelist, rq_list);
|
|
} while (1);
|
|
}
|
|
EXPORT_SYMBOL_GPL(blk_mq_sched_move_to_dispatch);
|
|
|
|
bool blk_mq_sched_try_merge(struct request_queue *q, struct bio *bio,
|
|
struct request **merged_request)
|
|
{
|
|
struct request *rq;
|
|
|
|
switch (elv_merge(q, &rq, bio)) {
|
|
case ELEVATOR_BACK_MERGE:
|
|
if (!blk_mq_sched_allow_merge(q, rq, bio))
|
|
return false;
|
|
if (!bio_attempt_back_merge(q, rq, bio))
|
|
return false;
|
|
*merged_request = attempt_back_merge(q, rq);
|
|
if (!*merged_request)
|
|
elv_merged_request(q, rq, ELEVATOR_BACK_MERGE);
|
|
return true;
|
|
case ELEVATOR_FRONT_MERGE:
|
|
if (!blk_mq_sched_allow_merge(q, rq, bio))
|
|
return false;
|
|
if (!bio_attempt_front_merge(q, rq, bio))
|
|
return false;
|
|
*merged_request = attempt_front_merge(q, rq);
|
|
if (!*merged_request)
|
|
elv_merged_request(q, rq, ELEVATOR_FRONT_MERGE);
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(blk_mq_sched_try_merge);
|
|
|
|
bool __blk_mq_sched_bio_merge(struct request_queue *q, struct bio *bio)
|
|
{
|
|
struct elevator_queue *e = q->elevator;
|
|
|
|
if (e->type->ops.mq.bio_merge) {
|
|
struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
|
|
struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
|
|
|
|
blk_mq_put_ctx(ctx);
|
|
return e->type->ops.mq.bio_merge(hctx, bio);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool blk_mq_sched_try_insert_merge(struct request_queue *q, struct request *rq)
|
|
{
|
|
return rq_mergeable(rq) && elv_attempt_insert_merge(q, rq);
|
|
}
|
|
EXPORT_SYMBOL_GPL(blk_mq_sched_try_insert_merge);
|
|
|
|
void blk_mq_sched_request_inserted(struct request *rq)
|
|
{
|
|
trace_block_rq_insert(rq->q, rq);
|
|
}
|
|
EXPORT_SYMBOL_GPL(blk_mq_sched_request_inserted);
|
|
|
|
static bool blk_mq_sched_bypass_insert(struct blk_mq_hw_ctx *hctx,
|
|
struct request *rq)
|
|
{
|
|
if (rq->tag == -1) {
|
|
rq->rq_flags |= RQF_SORTED;
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* If we already have a real request tag, send directly to
|
|
* the dispatch list.
|
|
*/
|
|
spin_lock(&hctx->lock);
|
|
list_add(&rq->queuelist, &hctx->dispatch);
|
|
spin_unlock(&hctx->lock);
|
|
return true;
|
|
}
|
|
|
|
static void blk_mq_sched_restart_hctx(struct blk_mq_hw_ctx *hctx)
|
|
{
|
|
if (test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state)) {
|
|
clear_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
|
|
if (blk_mq_hctx_has_pending(hctx))
|
|
blk_mq_run_hw_queue(hctx, true);
|
|
}
|
|
}
|
|
|
|
void blk_mq_sched_restart_queues(struct blk_mq_hw_ctx *hctx)
|
|
{
|
|
struct request_queue *q = hctx->queue;
|
|
unsigned int i;
|
|
|
|
if (test_bit(QUEUE_FLAG_RESTART, &q->queue_flags)) {
|
|
if (test_and_clear_bit(QUEUE_FLAG_RESTART, &q->queue_flags)) {
|
|
queue_for_each_hw_ctx(q, hctx, i)
|
|
blk_mq_sched_restart_hctx(hctx);
|
|
}
|
|
} else {
|
|
blk_mq_sched_restart_hctx(hctx);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Add flush/fua to the queue. If we fail getting a driver tag, then
|
|
* punt to the requeue list. Requeue will re-invoke us from a context
|
|
* that's safe to block from.
|
|
*/
|
|
static void blk_mq_sched_insert_flush(struct blk_mq_hw_ctx *hctx,
|
|
struct request *rq, bool can_block)
|
|
{
|
|
if (blk_mq_get_driver_tag(rq, &hctx, can_block)) {
|
|
blk_insert_flush(rq);
|
|
blk_mq_run_hw_queue(hctx, true);
|
|
} else
|
|
blk_mq_add_to_requeue_list(rq, false, true);
|
|
}
|
|
|
|
void blk_mq_sched_insert_request(struct request *rq, bool at_head,
|
|
bool run_queue, bool async, bool can_block)
|
|
{
|
|
struct request_queue *q = rq->q;
|
|
struct elevator_queue *e = q->elevator;
|
|
struct blk_mq_ctx *ctx = rq->mq_ctx;
|
|
struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
|
|
|
|
if (rq->tag == -1 && op_is_flush(rq->cmd_flags)) {
|
|
blk_mq_sched_insert_flush(hctx, rq, can_block);
|
|
return;
|
|
}
|
|
|
|
if (e && blk_mq_sched_bypass_insert(hctx, rq))
|
|
goto run;
|
|
|
|
if (e && e->type->ops.mq.insert_requests) {
|
|
LIST_HEAD(list);
|
|
|
|
list_add(&rq->queuelist, &list);
|
|
e->type->ops.mq.insert_requests(hctx, &list, at_head);
|
|
} else {
|
|
spin_lock(&ctx->lock);
|
|
__blk_mq_insert_request(hctx, rq, at_head);
|
|
spin_unlock(&ctx->lock);
|
|
}
|
|
|
|
run:
|
|
if (run_queue)
|
|
blk_mq_run_hw_queue(hctx, async);
|
|
}
|
|
|
|
void blk_mq_sched_insert_requests(struct request_queue *q,
|
|
struct blk_mq_ctx *ctx,
|
|
struct list_head *list, bool run_queue_async)
|
|
{
|
|
struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
|
|
struct elevator_queue *e = hctx->queue->elevator;
|
|
|
|
if (e) {
|
|
struct request *rq, *next;
|
|
|
|
/*
|
|
* We bypass requests that already have a driver tag assigned,
|
|
* which should only be flushes. Flushes are only ever inserted
|
|
* as single requests, so we shouldn't ever hit the
|
|
* WARN_ON_ONCE() below (but let's handle it just in case).
|
|
*/
|
|
list_for_each_entry_safe(rq, next, list, queuelist) {
|
|
if (WARN_ON_ONCE(rq->tag != -1)) {
|
|
list_del_init(&rq->queuelist);
|
|
blk_mq_sched_bypass_insert(hctx, rq);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (e && e->type->ops.mq.insert_requests)
|
|
e->type->ops.mq.insert_requests(hctx, list, false);
|
|
else
|
|
blk_mq_insert_requests(hctx, ctx, list);
|
|
|
|
blk_mq_run_hw_queue(hctx, run_queue_async);
|
|
}
|
|
|
|
static void blk_mq_sched_free_tags(struct blk_mq_tag_set *set,
|
|
struct blk_mq_hw_ctx *hctx,
|
|
unsigned int hctx_idx)
|
|
{
|
|
if (hctx->sched_tags) {
|
|
blk_mq_free_rqs(set, hctx->sched_tags, hctx_idx);
|
|
blk_mq_free_rq_map(hctx->sched_tags);
|
|
hctx->sched_tags = NULL;
|
|
}
|
|
}
|
|
|
|
int blk_mq_sched_setup(struct request_queue *q)
|
|
{
|
|
struct blk_mq_tag_set *set = q->tag_set;
|
|
struct blk_mq_hw_ctx *hctx;
|
|
int ret, i;
|
|
|
|
/*
|
|
* Default to 256, since we don't split into sync/async like the
|
|
* old code did. Additionally, this is a per-hw queue depth.
|
|
*/
|
|
q->nr_requests = 2 * BLKDEV_MAX_RQ;
|
|
|
|
/*
|
|
* We're switching to using an IO scheduler, so setup the hctx
|
|
* scheduler tags and switch the request map from the regular
|
|
* tags to scheduler tags. First allocate what we need, so we
|
|
* can safely fail and fallback, if needed.
|
|
*/
|
|
ret = 0;
|
|
queue_for_each_hw_ctx(q, hctx, i) {
|
|
hctx->sched_tags = blk_mq_alloc_rq_map(set, i, q->nr_requests, 0);
|
|
if (!hctx->sched_tags) {
|
|
ret = -ENOMEM;
|
|
break;
|
|
}
|
|
ret = blk_mq_alloc_rqs(set, hctx->sched_tags, i, q->nr_requests);
|
|
if (ret)
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If we failed, free what we did allocate
|
|
*/
|
|
if (ret) {
|
|
queue_for_each_hw_ctx(q, hctx, i) {
|
|
if (!hctx->sched_tags)
|
|
continue;
|
|
blk_mq_sched_free_tags(set, hctx, i);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void blk_mq_sched_teardown(struct request_queue *q)
|
|
{
|
|
struct blk_mq_tag_set *set = q->tag_set;
|
|
struct blk_mq_hw_ctx *hctx;
|
|
int i;
|
|
|
|
queue_for_each_hw_ctx(q, hctx, i)
|
|
blk_mq_sched_free_tags(set, hctx, i);
|
|
}
|
|
|
|
int blk_mq_sched_init(struct request_queue *q)
|
|
{
|
|
int ret;
|
|
|
|
mutex_lock(&q->sysfs_lock);
|
|
ret = elevator_init(q, NULL);
|
|
mutex_unlock(&q->sysfs_lock);
|
|
|
|
return ret;
|
|
}
|