linux_dsm_epyc7002/drivers/gpu/drm/i915/i915_gem_gtt.c
Matthew Auld 0a4a6e74e7 drm/i915/gtt: grab wakeref in gen6_alloc_va_range
Some steps in gen6_alloc_va_range require the HW to be awake, so ideally
we should be grabbing the wakeref ourselves and not relying on the
caller already holding it for us.

Suggested-by: Chris Wilson <chris@chris-wilson.co.uk>
Signed-off-by: Matthew Auld <matthew.auld@intel.com>
Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk>
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Link: https://patchwork.freedesktop.org/patch/msgid/20190529123108.24422-1-matthew.auld@intel.com
2019-05-30 12:00:41 +01:00

4083 lines
105 KiB
C

/*
* Copyright © 2010 Daniel Vetter
* Copyright © 2011-2014 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
*/
#include <linux/slab.h> /* fault-inject.h is not standalone! */
#include <linux/fault-inject.h>
#include <linux/log2.h>
#include <linux/random.h>
#include <linux/seq_file.h>
#include <linux/stop_machine.h>
#include <asm/set_memory.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
#include "i915_scatterlist.h"
#include "i915_trace.h"
#include "i915_vgpu.h"
#include "intel_drv.h"
#include "intel_frontbuffer.h"
#define I915_GFP_ALLOW_FAIL (GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN)
/**
* DOC: Global GTT views
*
* Background and previous state
*
* Historically objects could exists (be bound) in global GTT space only as
* singular instances with a view representing all of the object's backing pages
* in a linear fashion. This view will be called a normal view.
*
* To support multiple views of the same object, where the number of mapped
* pages is not equal to the backing store, or where the layout of the pages
* is not linear, concept of a GGTT view was added.
*
* One example of an alternative view is a stereo display driven by a single
* image. In this case we would have a framebuffer looking like this
* (2x2 pages):
*
* 12
* 34
*
* Above would represent a normal GGTT view as normally mapped for GPU or CPU
* rendering. In contrast, fed to the display engine would be an alternative
* view which could look something like this:
*
* 1212
* 3434
*
* In this example both the size and layout of pages in the alternative view is
* different from the normal view.
*
* Implementation and usage
*
* GGTT views are implemented using VMAs and are distinguished via enum
* i915_ggtt_view_type and struct i915_ggtt_view.
*
* A new flavour of core GEM functions which work with GGTT bound objects were
* added with the _ggtt_ infix, and sometimes with _view postfix to avoid
* renaming in large amounts of code. They take the struct i915_ggtt_view
* parameter encapsulating all metadata required to implement a view.
*
* As a helper for callers which are only interested in the normal view,
* globally const i915_ggtt_view_normal singleton instance exists. All old core
* GEM API functions, the ones not taking the view parameter, are operating on,
* or with the normal GGTT view.
*
* Code wanting to add or use a new GGTT view needs to:
*
* 1. Add a new enum with a suitable name.
* 2. Extend the metadata in the i915_ggtt_view structure if required.
* 3. Add support to i915_get_vma_pages().
*
* New views are required to build a scatter-gather table from within the
* i915_get_vma_pages function. This table is stored in the vma.ggtt_view and
* exists for the lifetime of an VMA.
*
* Core API is designed to have copy semantics which means that passed in
* struct i915_ggtt_view does not need to be persistent (left around after
* calling the core API functions).
*
*/
static int
i915_get_ggtt_vma_pages(struct i915_vma *vma);
static void gen6_ggtt_invalidate(struct drm_i915_private *dev_priv)
{
/*
* Note that as an uncached mmio write, this will flush the
* WCB of the writes into the GGTT before it triggers the invalidate.
*/
I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
}
static void guc_ggtt_invalidate(struct drm_i915_private *dev_priv)
{
gen6_ggtt_invalidate(dev_priv);
I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
}
static void gmch_ggtt_invalidate(struct drm_i915_private *dev_priv)
{
intel_gtt_chipset_flush();
}
static inline void i915_ggtt_invalidate(struct drm_i915_private *i915)
{
i915->ggtt.invalidate(i915);
}
static int ppgtt_bind_vma(struct i915_vma *vma,
enum i915_cache_level cache_level,
u32 unused)
{
u32 pte_flags;
int err;
if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
err = vma->vm->allocate_va_range(vma->vm,
vma->node.start, vma->size);
if (err)
return err;
}
/* Applicable to VLV, and gen8+ */
pte_flags = 0;
if (i915_gem_object_is_readonly(vma->obj))
pte_flags |= PTE_READ_ONLY;
vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
return 0;
}
static void ppgtt_unbind_vma(struct i915_vma *vma)
{
vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
}
static int ppgtt_set_pages(struct i915_vma *vma)
{
GEM_BUG_ON(vma->pages);
vma->pages = vma->obj->mm.pages;
vma->page_sizes = vma->obj->mm.page_sizes;
return 0;
}
static void clear_pages(struct i915_vma *vma)
{
GEM_BUG_ON(!vma->pages);
if (vma->pages != vma->obj->mm.pages) {
sg_free_table(vma->pages);
kfree(vma->pages);
}
vma->pages = NULL;
memset(&vma->page_sizes, 0, sizeof(vma->page_sizes));
}
static u64 gen8_pte_encode(dma_addr_t addr,
enum i915_cache_level level,
u32 flags)
{
gen8_pte_t pte = addr | _PAGE_PRESENT | _PAGE_RW;
if (unlikely(flags & PTE_READ_ONLY))
pte &= ~_PAGE_RW;
switch (level) {
case I915_CACHE_NONE:
pte |= PPAT_UNCACHED;
break;
case I915_CACHE_WT:
pte |= PPAT_DISPLAY_ELLC;
break;
default:
pte |= PPAT_CACHED;
break;
}
return pte;
}
static gen8_pde_t gen8_pde_encode(const dma_addr_t addr,
const enum i915_cache_level level)
{
gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
pde |= addr;
if (level != I915_CACHE_NONE)
pde |= PPAT_CACHED_PDE;
else
pde |= PPAT_UNCACHED;
return pde;
}
#define gen8_pdpe_encode gen8_pde_encode
#define gen8_pml4e_encode gen8_pde_encode
static u64 snb_pte_encode(dma_addr_t addr,
enum i915_cache_level level,
u32 flags)
{
gen6_pte_t pte = GEN6_PTE_VALID;
pte |= GEN6_PTE_ADDR_ENCODE(addr);
switch (level) {
case I915_CACHE_L3_LLC:
case I915_CACHE_LLC:
pte |= GEN6_PTE_CACHE_LLC;
break;
case I915_CACHE_NONE:
pte |= GEN6_PTE_UNCACHED;
break;
default:
MISSING_CASE(level);
}
return pte;
}
static u64 ivb_pte_encode(dma_addr_t addr,
enum i915_cache_level level,
u32 flags)
{
gen6_pte_t pte = GEN6_PTE_VALID;
pte |= GEN6_PTE_ADDR_ENCODE(addr);
switch (level) {
case I915_CACHE_L3_LLC:
pte |= GEN7_PTE_CACHE_L3_LLC;
break;
case I915_CACHE_LLC:
pte |= GEN6_PTE_CACHE_LLC;
break;
case I915_CACHE_NONE:
pte |= GEN6_PTE_UNCACHED;
break;
default:
MISSING_CASE(level);
}
return pte;
}
static u64 byt_pte_encode(dma_addr_t addr,
enum i915_cache_level level,
u32 flags)
{
gen6_pte_t pte = GEN6_PTE_VALID;
pte |= GEN6_PTE_ADDR_ENCODE(addr);
if (!(flags & PTE_READ_ONLY))
pte |= BYT_PTE_WRITEABLE;
if (level != I915_CACHE_NONE)
pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
return pte;
}
static u64 hsw_pte_encode(dma_addr_t addr,
enum i915_cache_level level,
u32 flags)
{
gen6_pte_t pte = GEN6_PTE_VALID;
pte |= HSW_PTE_ADDR_ENCODE(addr);
if (level != I915_CACHE_NONE)
pte |= HSW_WB_LLC_AGE3;
return pte;
}
static u64 iris_pte_encode(dma_addr_t addr,
enum i915_cache_level level,
u32 flags)
{
gen6_pte_t pte = GEN6_PTE_VALID;
pte |= HSW_PTE_ADDR_ENCODE(addr);
switch (level) {
case I915_CACHE_NONE:
break;
case I915_CACHE_WT:
pte |= HSW_WT_ELLC_LLC_AGE3;
break;
default:
pte |= HSW_WB_ELLC_LLC_AGE3;
break;
}
return pte;
}
static void stash_init(struct pagestash *stash)
{
pagevec_init(&stash->pvec);
spin_lock_init(&stash->lock);
}
static struct page *stash_pop_page(struct pagestash *stash)
{
struct page *page = NULL;
spin_lock(&stash->lock);
if (likely(stash->pvec.nr))
page = stash->pvec.pages[--stash->pvec.nr];
spin_unlock(&stash->lock);
return page;
}
static void stash_push_pagevec(struct pagestash *stash, struct pagevec *pvec)
{
unsigned int nr;
spin_lock_nested(&stash->lock, SINGLE_DEPTH_NESTING);
nr = min_t(typeof(nr), pvec->nr, pagevec_space(&stash->pvec));
memcpy(stash->pvec.pages + stash->pvec.nr,
pvec->pages + pvec->nr - nr,
sizeof(pvec->pages[0]) * nr);
stash->pvec.nr += nr;
spin_unlock(&stash->lock);
pvec->nr -= nr;
}
static struct page *vm_alloc_page(struct i915_address_space *vm, gfp_t gfp)
{
struct pagevec stack;
struct page *page;
if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
i915_gem_shrink_all(vm->i915);
page = stash_pop_page(&vm->free_pages);
if (page)
return page;
if (!vm->pt_kmap_wc)
return alloc_page(gfp);
/* Look in our global stash of WC pages... */
page = stash_pop_page(&vm->i915->mm.wc_stash);
if (page)
return page;
/*
* Otherwise batch allocate pages to amortize cost of set_pages_wc.
*
* We have to be careful as page allocation may trigger the shrinker
* (via direct reclaim) which will fill up the WC stash underneath us.
* So we add our WB pages into a temporary pvec on the stack and merge
* them into the WC stash after all the allocations are complete.
*/
pagevec_init(&stack);
do {
struct page *page;
page = alloc_page(gfp);
if (unlikely(!page))
break;
stack.pages[stack.nr++] = page;
} while (pagevec_space(&stack));
if (stack.nr && !set_pages_array_wc(stack.pages, stack.nr)) {
page = stack.pages[--stack.nr];
/* Merge spare WC pages to the global stash */
if (stack.nr)
stash_push_pagevec(&vm->i915->mm.wc_stash, &stack);
/* Push any surplus WC pages onto the local VM stash */
if (stack.nr)
stash_push_pagevec(&vm->free_pages, &stack);
}
/* Return unwanted leftovers */
if (unlikely(stack.nr)) {
WARN_ON_ONCE(set_pages_array_wb(stack.pages, stack.nr));
__pagevec_release(&stack);
}
return page;
}
static void vm_free_pages_release(struct i915_address_space *vm,
bool immediate)
{
struct pagevec *pvec = &vm->free_pages.pvec;
struct pagevec stack;
lockdep_assert_held(&vm->free_pages.lock);
GEM_BUG_ON(!pagevec_count(pvec));
if (vm->pt_kmap_wc) {
/*
* When we use WC, first fill up the global stash and then
* only if full immediately free the overflow.
*/
stash_push_pagevec(&vm->i915->mm.wc_stash, pvec);
/*
* As we have made some room in the VM's free_pages,
* we can wait for it to fill again. Unless we are
* inside i915_address_space_fini() and must
* immediately release the pages!
*/
if (pvec->nr <= (immediate ? 0 : PAGEVEC_SIZE - 1))
return;
/*
* We have to drop the lock to allow ourselves to sleep,
* so take a copy of the pvec and clear the stash for
* others to use it as we sleep.
*/
stack = *pvec;
pagevec_reinit(pvec);
spin_unlock(&vm->free_pages.lock);
pvec = &stack;
set_pages_array_wb(pvec->pages, pvec->nr);
spin_lock(&vm->free_pages.lock);
}
__pagevec_release(pvec);
}
static void vm_free_page(struct i915_address_space *vm, struct page *page)
{
/*
* On !llc, we need to change the pages back to WB. We only do so
* in bulk, so we rarely need to change the page attributes here,
* but doing so requires a stop_machine() from deep inside arch/x86/mm.
* To make detection of the possible sleep more likely, use an
* unconditional might_sleep() for everybody.
*/
might_sleep();
spin_lock(&vm->free_pages.lock);
while (!pagevec_space(&vm->free_pages.pvec))
vm_free_pages_release(vm, false);
GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec) >= PAGEVEC_SIZE);
pagevec_add(&vm->free_pages.pvec, page);
spin_unlock(&vm->free_pages.lock);
}
static void i915_address_space_init(struct i915_address_space *vm, int subclass)
{
/*
* The vm->mutex must be reclaim safe (for use in the shrinker).
* Do a dummy acquire now under fs_reclaim so that any allocation
* attempt holding the lock is immediately reported by lockdep.
*/
mutex_init(&vm->mutex);
lockdep_set_subclass(&vm->mutex, subclass);
i915_gem_shrinker_taints_mutex(vm->i915, &vm->mutex);
GEM_BUG_ON(!vm->total);
drm_mm_init(&vm->mm, 0, vm->total);
vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;
stash_init(&vm->free_pages);
INIT_LIST_HEAD(&vm->unbound_list);
INIT_LIST_HEAD(&vm->bound_list);
}
static void i915_address_space_fini(struct i915_address_space *vm)
{
spin_lock(&vm->free_pages.lock);
if (pagevec_count(&vm->free_pages.pvec))
vm_free_pages_release(vm, true);
GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec));
spin_unlock(&vm->free_pages.lock);
drm_mm_takedown(&vm->mm);
mutex_destroy(&vm->mutex);
}
static int __setup_page_dma(struct i915_address_space *vm,
struct i915_page_dma *p,
gfp_t gfp)
{
p->page = vm_alloc_page(vm, gfp | I915_GFP_ALLOW_FAIL);
if (unlikely(!p->page))
return -ENOMEM;
p->daddr = dma_map_page_attrs(vm->dma,
p->page, 0, PAGE_SIZE,
PCI_DMA_BIDIRECTIONAL,
DMA_ATTR_SKIP_CPU_SYNC |
DMA_ATTR_NO_WARN);
if (unlikely(dma_mapping_error(vm->dma, p->daddr))) {
vm_free_page(vm, p->page);
return -ENOMEM;
}
return 0;
}
static int setup_page_dma(struct i915_address_space *vm,
struct i915_page_dma *p)
{
return __setup_page_dma(vm, p, __GFP_HIGHMEM);
}
static void cleanup_page_dma(struct i915_address_space *vm,
struct i915_page_dma *p)
{
dma_unmap_page(vm->dma, p->daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
vm_free_page(vm, p->page);
}
#define kmap_atomic_px(px) kmap_atomic(px_base(px)->page)
#define setup_px(vm, px) setup_page_dma((vm), px_base(px))
#define cleanup_px(vm, px) cleanup_page_dma((vm), px_base(px))
#define fill_px(vm, px, v) fill_page_dma((vm), px_base(px), (v))
#define fill32_px(vm, px, v) fill_page_dma_32((vm), px_base(px), (v))
static void fill_page_dma(struct i915_address_space *vm,
struct i915_page_dma *p,
const u64 val)
{
u64 * const vaddr = kmap_atomic(p->page);
memset64(vaddr, val, PAGE_SIZE / sizeof(val));
kunmap_atomic(vaddr);
}
static void fill_page_dma_32(struct i915_address_space *vm,
struct i915_page_dma *p,
const u32 v)
{
fill_page_dma(vm, p, (u64)v << 32 | v);
}
static int
setup_scratch_page(struct i915_address_space *vm, gfp_t gfp)
{
unsigned long size;
/*
* In order to utilize 64K pages for an object with a size < 2M, we will
* need to support a 64K scratch page, given that every 16th entry for a
* page-table operating in 64K mode must point to a properly aligned 64K
* region, including any PTEs which happen to point to scratch.
*
* This is only relevant for the 48b PPGTT where we support
* huge-gtt-pages, see also i915_vma_insert(). However, as we share the
* scratch (read-only) between all vm, we create one 64k scratch page
* for all.
*/
size = I915_GTT_PAGE_SIZE_4K;
if (i915_vm_is_4lvl(vm) &&
HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K)) {
size = I915_GTT_PAGE_SIZE_64K;
gfp |= __GFP_NOWARN;
}
gfp |= __GFP_ZERO | __GFP_RETRY_MAYFAIL;
do {
int order = get_order(size);
struct page *page;
dma_addr_t addr;
page = alloc_pages(gfp, order);
if (unlikely(!page))
goto skip;
addr = dma_map_page_attrs(vm->dma,
page, 0, size,
PCI_DMA_BIDIRECTIONAL,
DMA_ATTR_SKIP_CPU_SYNC |
DMA_ATTR_NO_WARN);
if (unlikely(dma_mapping_error(vm->dma, addr)))
goto free_page;
if (unlikely(!IS_ALIGNED(addr, size)))
goto unmap_page;
vm->scratch_page.page = page;
vm->scratch_page.daddr = addr;
vm->scratch_order = order;
return 0;
unmap_page:
dma_unmap_page(vm->dma, addr, size, PCI_DMA_BIDIRECTIONAL);
free_page:
__free_pages(page, order);
skip:
if (size == I915_GTT_PAGE_SIZE_4K)
return -ENOMEM;
size = I915_GTT_PAGE_SIZE_4K;
gfp &= ~__GFP_NOWARN;
} while (1);
}
static void cleanup_scratch_page(struct i915_address_space *vm)
{
struct i915_page_dma *p = &vm->scratch_page;
int order = vm->scratch_order;
dma_unmap_page(vm->dma, p->daddr, BIT(order) << PAGE_SHIFT,
PCI_DMA_BIDIRECTIONAL);
__free_pages(p->page, order);
}
static struct i915_page_table *alloc_pt(struct i915_address_space *vm)
{
struct i915_page_table *pt;
pt = kmalloc(sizeof(*pt), I915_GFP_ALLOW_FAIL);
if (unlikely(!pt))
return ERR_PTR(-ENOMEM);
if (unlikely(setup_px(vm, pt))) {
kfree(pt);
return ERR_PTR(-ENOMEM);
}
pt->used_ptes = 0;
return pt;
}
static void free_pt(struct i915_address_space *vm, struct i915_page_table *pt)
{
cleanup_px(vm, pt);
kfree(pt);
}
static void gen8_initialize_pt(struct i915_address_space *vm,
struct i915_page_table *pt)
{
fill_px(vm, pt, vm->scratch_pte);
}
static void gen6_initialize_pt(struct i915_address_space *vm,
struct i915_page_table *pt)
{
fill32_px(vm, pt, vm->scratch_pte);
}
static struct i915_page_directory *alloc_pd(struct i915_address_space *vm)
{
struct i915_page_directory *pd;
pd = kzalloc(sizeof(*pd), I915_GFP_ALLOW_FAIL);
if (unlikely(!pd))
return ERR_PTR(-ENOMEM);
if (unlikely(setup_px(vm, pd))) {
kfree(pd);
return ERR_PTR(-ENOMEM);
}
pd->used_pdes = 0;
return pd;
}
static void free_pd(struct i915_address_space *vm,
struct i915_page_directory *pd)
{
cleanup_px(vm, pd);
kfree(pd);
}
static void gen8_initialize_pd(struct i915_address_space *vm,
struct i915_page_directory *pd)
{
fill_px(vm, pd,
gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC));
memset_p((void **)pd->page_table, vm->scratch_pt, I915_PDES);
}
static int __pdp_init(struct i915_address_space *vm,
struct i915_page_directory_pointer *pdp)
{
const unsigned int pdpes = i915_pdpes_per_pdp(vm);
pdp->page_directory = kmalloc_array(pdpes, sizeof(*pdp->page_directory),
I915_GFP_ALLOW_FAIL);
if (unlikely(!pdp->page_directory))
return -ENOMEM;
memset_p((void **)pdp->page_directory, vm->scratch_pd, pdpes);
return 0;
}
static void __pdp_fini(struct i915_page_directory_pointer *pdp)
{
kfree(pdp->page_directory);
pdp->page_directory = NULL;
}
static struct i915_page_directory_pointer *
alloc_pdp(struct i915_address_space *vm)
{
struct i915_page_directory_pointer *pdp;
int ret = -ENOMEM;
GEM_BUG_ON(!i915_vm_is_4lvl(vm));
pdp = kzalloc(sizeof(*pdp), GFP_KERNEL);
if (!pdp)
return ERR_PTR(-ENOMEM);
ret = __pdp_init(vm, pdp);
if (ret)
goto fail_bitmap;
ret = setup_px(vm, pdp);
if (ret)
goto fail_page_m;
return pdp;
fail_page_m:
__pdp_fini(pdp);
fail_bitmap:
kfree(pdp);
return ERR_PTR(ret);
}
static void free_pdp(struct i915_address_space *vm,
struct i915_page_directory_pointer *pdp)
{
__pdp_fini(pdp);
if (!i915_vm_is_4lvl(vm))
return;
cleanup_px(vm, pdp);
kfree(pdp);
}
static void gen8_initialize_pdp(struct i915_address_space *vm,
struct i915_page_directory_pointer *pdp)
{
gen8_ppgtt_pdpe_t scratch_pdpe;
scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC);
fill_px(vm, pdp, scratch_pdpe);
}
static void gen8_initialize_pml4(struct i915_address_space *vm,
struct i915_pml4 *pml4)
{
fill_px(vm, pml4,
gen8_pml4e_encode(px_dma(vm->scratch_pdp), I915_CACHE_LLC));
memset_p((void **)pml4->pdps, vm->scratch_pdp, GEN8_PML4ES_PER_PML4);
}
/*
* PDE TLBs are a pain to invalidate on GEN8+. When we modify
* the page table structures, we mark them dirty so that
* context switching/execlist queuing code takes extra steps
* to ensure that tlbs are flushed.
*/
static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt)
{
ppgtt->pd_dirty_engines = ALL_ENGINES;
}
/* Removes entries from a single page table, releasing it if it's empty.
* Caller can use the return value to update higher-level entries.
*/
static bool gen8_ppgtt_clear_pt(const struct i915_address_space *vm,
struct i915_page_table *pt,
u64 start, u64 length)
{
unsigned int num_entries = gen8_pte_count(start, length);
gen8_pte_t *vaddr;
GEM_BUG_ON(num_entries > pt->used_ptes);
pt->used_ptes -= num_entries;
if (!pt->used_ptes)
return true;
vaddr = kmap_atomic_px(pt);
memset64(vaddr + gen8_pte_index(start), vm->scratch_pte, num_entries);
kunmap_atomic(vaddr);
return false;
}
static void gen8_ppgtt_set_pde(struct i915_address_space *vm,
struct i915_page_directory *pd,
struct i915_page_table *pt,
unsigned int pde)
{
gen8_pde_t *vaddr;
pd->page_table[pde] = pt;
vaddr = kmap_atomic_px(pd);
vaddr[pde] = gen8_pde_encode(px_dma(pt), I915_CACHE_LLC);
kunmap_atomic(vaddr);
}
static bool gen8_ppgtt_clear_pd(struct i915_address_space *vm,
struct i915_page_directory *pd,
u64 start, u64 length)
{
struct i915_page_table *pt;
u32 pde;
gen8_for_each_pde(pt, pd, start, length, pde) {
GEM_BUG_ON(pt == vm->scratch_pt);
if (!gen8_ppgtt_clear_pt(vm, pt, start, length))
continue;
gen8_ppgtt_set_pde(vm, pd, vm->scratch_pt, pde);
GEM_BUG_ON(!pd->used_pdes);
pd->used_pdes--;
free_pt(vm, pt);
}
return !pd->used_pdes;
}
static void gen8_ppgtt_set_pdpe(struct i915_address_space *vm,
struct i915_page_directory_pointer *pdp,
struct i915_page_directory *pd,
unsigned int pdpe)
{
gen8_ppgtt_pdpe_t *vaddr;
pdp->page_directory[pdpe] = pd;
if (!i915_vm_is_4lvl(vm))
return;
vaddr = kmap_atomic_px(pdp);
vaddr[pdpe] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC);
kunmap_atomic(vaddr);
}
/* Removes entries from a single page dir pointer, releasing it if it's empty.
* Caller can use the return value to update higher-level entries
*/
static bool gen8_ppgtt_clear_pdp(struct i915_address_space *vm,
struct i915_page_directory_pointer *pdp,
u64 start, u64 length)
{
struct i915_page_directory *pd;
unsigned int pdpe;
gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
GEM_BUG_ON(pd == vm->scratch_pd);
if (!gen8_ppgtt_clear_pd(vm, pd, start, length))
continue;
gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
GEM_BUG_ON(!pdp->used_pdpes);
pdp->used_pdpes--;
free_pd(vm, pd);
}
return !pdp->used_pdpes;
}
static void gen8_ppgtt_clear_3lvl(struct i915_address_space *vm,
u64 start, u64 length)
{
gen8_ppgtt_clear_pdp(vm, &i915_vm_to_ppgtt(vm)->pdp, start, length);
}
static void gen8_ppgtt_set_pml4e(struct i915_pml4 *pml4,
struct i915_page_directory_pointer *pdp,
unsigned int pml4e)
{
gen8_ppgtt_pml4e_t *vaddr;
pml4->pdps[pml4e] = pdp;
vaddr = kmap_atomic_px(pml4);
vaddr[pml4e] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC);
kunmap_atomic(vaddr);
}
/* Removes entries from a single pml4.
* This is the top-level structure in 4-level page tables used on gen8+.
* Empty entries are always scratch pml4e.
*/
static void gen8_ppgtt_clear_4lvl(struct i915_address_space *vm,
u64 start, u64 length)
{
struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
struct i915_pml4 *pml4 = &ppgtt->pml4;
struct i915_page_directory_pointer *pdp;
unsigned int pml4e;
GEM_BUG_ON(!i915_vm_is_4lvl(vm));
gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
GEM_BUG_ON(pdp == vm->scratch_pdp);
if (!gen8_ppgtt_clear_pdp(vm, pdp, start, length))
continue;
gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
free_pdp(vm, pdp);
}
}
static inline struct sgt_dma {
struct scatterlist *sg;
dma_addr_t dma, max;
} sgt_dma(struct i915_vma *vma) {
struct scatterlist *sg = vma->pages->sgl;
dma_addr_t addr = sg_dma_address(sg);
return (struct sgt_dma) { sg, addr, addr + sg->length };
}
struct gen8_insert_pte {
u16 pml4e;
u16 pdpe;
u16 pde;
u16 pte;
};
static __always_inline struct gen8_insert_pte gen8_insert_pte(u64 start)
{
return (struct gen8_insert_pte) {
gen8_pml4e_index(start),
gen8_pdpe_index(start),
gen8_pde_index(start),
gen8_pte_index(start),
};
}
static __always_inline bool
gen8_ppgtt_insert_pte_entries(struct i915_hw_ppgtt *ppgtt,
struct i915_page_directory_pointer *pdp,
struct sgt_dma *iter,
struct gen8_insert_pte *idx,
enum i915_cache_level cache_level,
u32 flags)
{
struct i915_page_directory *pd;
const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags);
gen8_pte_t *vaddr;
bool ret;
GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->vm));
pd = pdp->page_directory[idx->pdpe];
vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
do {
vaddr[idx->pte] = pte_encode | iter->dma;
iter->dma += I915_GTT_PAGE_SIZE;
if (iter->dma >= iter->max) {
iter->sg = __sg_next(iter->sg);
if (!iter->sg) {
ret = false;
break;
}
iter->dma = sg_dma_address(iter->sg);
iter->max = iter->dma + iter->sg->length;
}
if (++idx->pte == GEN8_PTES) {
idx->pte = 0;
if (++idx->pde == I915_PDES) {
idx->pde = 0;
/* Limited by sg length for 3lvl */
if (++idx->pdpe == GEN8_PML4ES_PER_PML4) {
idx->pdpe = 0;
ret = true;
break;
}
GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->vm));
pd = pdp->page_directory[idx->pdpe];
}
kunmap_atomic(vaddr);
vaddr = kmap_atomic_px(pd->page_table[idx->pde]);
}
} while (1);
kunmap_atomic(vaddr);
return ret;
}
static void gen8_ppgtt_insert_3lvl(struct i915_address_space *vm,
struct i915_vma *vma,
enum i915_cache_level cache_level,
u32 flags)
{
struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
struct sgt_dma iter = sgt_dma(vma);
struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);
gen8_ppgtt_insert_pte_entries(ppgtt, &ppgtt->pdp, &iter, &idx,
cache_level, flags);
vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
}
static void gen8_ppgtt_insert_huge_entries(struct i915_vma *vma,
struct i915_page_directory_pointer **pdps,
struct sgt_dma *iter,
enum i915_cache_level cache_level,
u32 flags)
{
const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags);
u64 start = vma->node.start;
dma_addr_t rem = iter->sg->length;
do {
struct gen8_insert_pte idx = gen8_insert_pte(start);
struct i915_page_directory_pointer *pdp = pdps[idx.pml4e];
struct i915_page_directory *pd = pdp->page_directory[idx.pdpe];
unsigned int page_size;
bool maybe_64K = false;
gen8_pte_t encode = pte_encode;
gen8_pte_t *vaddr;
u16 index, max;
if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_2M &&
IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_2M) &&
rem >= I915_GTT_PAGE_SIZE_2M && !idx.pte) {
index = idx.pde;
max = I915_PDES;
page_size = I915_GTT_PAGE_SIZE_2M;
encode |= GEN8_PDE_PS_2M;
vaddr = kmap_atomic_px(pd);
} else {
struct i915_page_table *pt = pd->page_table[idx.pde];
index = idx.pte;
max = GEN8_PTES;
page_size = I915_GTT_PAGE_SIZE;
if (!index &&
vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K &&
IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
(IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
rem >= (max - index) * I915_GTT_PAGE_SIZE))
maybe_64K = true;
vaddr = kmap_atomic_px(pt);
}
do {
GEM_BUG_ON(iter->sg->length < page_size);
vaddr[index++] = encode | iter->dma;
start += page_size;
iter->dma += page_size;
rem -= page_size;
if (iter->dma >= iter->max) {
iter->sg = __sg_next(iter->sg);
if (!iter->sg)
break;
rem = iter->sg->length;
iter->dma = sg_dma_address(iter->sg);
iter->max = iter->dma + rem;
if (maybe_64K && index < max &&
!(IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) &&
(IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) ||
rem >= (max - index) * I915_GTT_PAGE_SIZE)))
maybe_64K = false;
if (unlikely(!IS_ALIGNED(iter->dma, page_size)))
break;
}
} while (rem >= page_size && index < max);
kunmap_atomic(vaddr);
/*
* Is it safe to mark the 2M block as 64K? -- Either we have
* filled whole page-table with 64K entries, or filled part of
* it and have reached the end of the sg table and we have
* enough padding.
*/
if (maybe_64K &&
(index == max ||
(i915_vm_has_scratch_64K(vma->vm) &&
!iter->sg && IS_ALIGNED(vma->node.start +
vma->node.size,
I915_GTT_PAGE_SIZE_2M)))) {
vaddr = kmap_atomic_px(pd);
vaddr[idx.pde] |= GEN8_PDE_IPS_64K;
kunmap_atomic(vaddr);
page_size = I915_GTT_PAGE_SIZE_64K;
/*
* We write all 4K page entries, even when using 64K
* pages. In order to verify that the HW isn't cheating
* by using the 4K PTE instead of the 64K PTE, we want
* to remove all the surplus entries. If the HW skipped
* the 64K PTE, it will read/write into the scratch page
* instead - which we detect as missing results during
* selftests.
*/
if (I915_SELFTEST_ONLY(vma->vm->scrub_64K)) {
u16 i;
encode = vma->vm->scratch_pte;
vaddr = kmap_atomic_px(pd->page_table[idx.pde]);
for (i = 1; i < index; i += 16)
memset64(vaddr + i, encode, 15);
kunmap_atomic(vaddr);
}
}
vma->page_sizes.gtt |= page_size;
} while (iter->sg);
}
static void gen8_ppgtt_insert_4lvl(struct i915_address_space *vm,
struct i915_vma *vma,
enum i915_cache_level cache_level,
u32 flags)
{
struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
struct sgt_dma iter = sgt_dma(vma);
struct i915_page_directory_pointer **pdps = ppgtt->pml4.pdps;
if (vma->page_sizes.sg > I915_GTT_PAGE_SIZE) {
gen8_ppgtt_insert_huge_entries(vma, pdps, &iter, cache_level,
flags);
} else {
struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start);
while (gen8_ppgtt_insert_pte_entries(ppgtt, pdps[idx.pml4e++],
&iter, &idx, cache_level,
flags))
GEM_BUG_ON(idx.pml4e >= GEN8_PML4ES_PER_PML4);
vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
}
}
static void gen8_free_page_tables(struct i915_address_space *vm,
struct i915_page_directory *pd)
{
int i;
for (i = 0; i < I915_PDES; i++) {
if (pd->page_table[i] != vm->scratch_pt)
free_pt(vm, pd->page_table[i]);
}
}
static int gen8_init_scratch(struct i915_address_space *vm)
{
int ret;
/*
* If everybody agrees to not to write into the scratch page,
* we can reuse it for all vm, keeping contexts and processes separate.
*/
if (vm->has_read_only &&
vm->i915->kernel_context &&
vm->i915->kernel_context->ppgtt) {
struct i915_address_space *clone =
&vm->i915->kernel_context->ppgtt->vm;
GEM_BUG_ON(!clone->has_read_only);
vm->scratch_order = clone->scratch_order;
vm->scratch_pte = clone->scratch_pte;
vm->scratch_pt = clone->scratch_pt;
vm->scratch_pd = clone->scratch_pd;
vm->scratch_pdp = clone->scratch_pdp;
return 0;
}
ret = setup_scratch_page(vm, __GFP_HIGHMEM);
if (ret)
return ret;
vm->scratch_pte =
gen8_pte_encode(vm->scratch_page.daddr,
I915_CACHE_LLC,
vm->has_read_only);
vm->scratch_pt = alloc_pt(vm);
if (IS_ERR(vm->scratch_pt)) {
ret = PTR_ERR(vm->scratch_pt);
goto free_scratch_page;
}
vm->scratch_pd = alloc_pd(vm);
if (IS_ERR(vm->scratch_pd)) {
ret = PTR_ERR(vm->scratch_pd);
goto free_pt;
}
if (i915_vm_is_4lvl(vm)) {
vm->scratch_pdp = alloc_pdp(vm);
if (IS_ERR(vm->scratch_pdp)) {
ret = PTR_ERR(vm->scratch_pdp);
goto free_pd;
}
}
gen8_initialize_pt(vm, vm->scratch_pt);
gen8_initialize_pd(vm, vm->scratch_pd);
if (i915_vm_is_4lvl(vm))
gen8_initialize_pdp(vm, vm->scratch_pdp);
return 0;
free_pd:
free_pd(vm, vm->scratch_pd);
free_pt:
free_pt(vm, vm->scratch_pt);
free_scratch_page:
cleanup_scratch_page(vm);
return ret;
}
static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create)
{
struct i915_address_space *vm = &ppgtt->vm;
struct drm_i915_private *dev_priv = vm->i915;
enum vgt_g2v_type msg;
int i;
if (i915_vm_is_4lvl(vm)) {
const u64 daddr = px_dma(&ppgtt->pml4);
I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr));
I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr));
msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE :
VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY);
} else {
for (i = 0; i < GEN8_3LVL_PDPES; i++) {
const u64 daddr = i915_page_dir_dma_addr(ppgtt, i);
I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr));
I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr));
}
msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE :
VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY);
}
I915_WRITE(vgtif_reg(g2v_notify), msg);
return 0;
}
static void gen8_free_scratch(struct i915_address_space *vm)
{
if (!vm->scratch_page.daddr)
return;
if (i915_vm_is_4lvl(vm))
free_pdp(vm, vm->scratch_pdp);
free_pd(vm, vm->scratch_pd);
free_pt(vm, vm->scratch_pt);
cleanup_scratch_page(vm);
}
static void gen8_ppgtt_cleanup_3lvl(struct i915_address_space *vm,
struct i915_page_directory_pointer *pdp)
{
const unsigned int pdpes = i915_pdpes_per_pdp(vm);
int i;
for (i = 0; i < pdpes; i++) {
if (pdp->page_directory[i] == vm->scratch_pd)
continue;
gen8_free_page_tables(vm, pdp->page_directory[i]);
free_pd(vm, pdp->page_directory[i]);
}
free_pdp(vm, pdp);
}
static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt)
{
int i;
for (i = 0; i < GEN8_PML4ES_PER_PML4; i++) {
if (ppgtt->pml4.pdps[i] == ppgtt->vm.scratch_pdp)
continue;
gen8_ppgtt_cleanup_3lvl(&ppgtt->vm, ppgtt->pml4.pdps[i]);
}
cleanup_px(&ppgtt->vm, &ppgtt->pml4);
}
static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
{
struct drm_i915_private *dev_priv = vm->i915;
struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
if (intel_vgpu_active(dev_priv))
gen8_ppgtt_notify_vgt(ppgtt, false);
if (i915_vm_is_4lvl(vm))
gen8_ppgtt_cleanup_4lvl(ppgtt);
else
gen8_ppgtt_cleanup_3lvl(&ppgtt->vm, &ppgtt->pdp);
gen8_free_scratch(vm);
}
static int gen8_ppgtt_alloc_pd(struct i915_address_space *vm,
struct i915_page_directory *pd,
u64 start, u64 length)
{
struct i915_page_table *pt;
u64 from = start;
unsigned int pde;
gen8_for_each_pde(pt, pd, start, length, pde) {
int count = gen8_pte_count(start, length);
if (pt == vm->scratch_pt) {
pd->used_pdes++;
pt = alloc_pt(vm);
if (IS_ERR(pt)) {
pd->used_pdes--;
goto unwind;
}
if (count < GEN8_PTES || intel_vgpu_active(vm->i915))
gen8_initialize_pt(vm, pt);
gen8_ppgtt_set_pde(vm, pd, pt, pde);
GEM_BUG_ON(pd->used_pdes > I915_PDES);
}
pt->used_ptes += count;
}
return 0;
unwind:
gen8_ppgtt_clear_pd(vm, pd, from, start - from);
return -ENOMEM;
}
static int gen8_ppgtt_alloc_pdp(struct i915_address_space *vm,
struct i915_page_directory_pointer *pdp,
u64 start, u64 length)
{
struct i915_page_directory *pd;
u64 from = start;
unsigned int pdpe;
int ret;
gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
if (pd == vm->scratch_pd) {
pdp->used_pdpes++;
pd = alloc_pd(vm);
if (IS_ERR(pd)) {
pdp->used_pdpes--;
goto unwind;
}
gen8_initialize_pd(vm, pd);
gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
GEM_BUG_ON(pdp->used_pdpes > i915_pdpes_per_pdp(vm));
}
ret = gen8_ppgtt_alloc_pd(vm, pd, start, length);
if (unlikely(ret))
goto unwind_pd;
}
return 0;
unwind_pd:
if (!pd->used_pdes) {
gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
GEM_BUG_ON(!pdp->used_pdpes);
pdp->used_pdpes--;
free_pd(vm, pd);
}
unwind:
gen8_ppgtt_clear_pdp(vm, pdp, from, start - from);
return -ENOMEM;
}
static int gen8_ppgtt_alloc_3lvl(struct i915_address_space *vm,
u64 start, u64 length)
{
return gen8_ppgtt_alloc_pdp(vm,
&i915_vm_to_ppgtt(vm)->pdp, start, length);
}
static int gen8_ppgtt_alloc_4lvl(struct i915_address_space *vm,
u64 start, u64 length)
{
struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
struct i915_pml4 *pml4 = &ppgtt->pml4;
struct i915_page_directory_pointer *pdp;
u64 from = start;
u32 pml4e;
int ret;
gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) {
if (pml4->pdps[pml4e] == vm->scratch_pdp) {
pdp = alloc_pdp(vm);
if (IS_ERR(pdp))
goto unwind;
gen8_initialize_pdp(vm, pdp);
gen8_ppgtt_set_pml4e(pml4, pdp, pml4e);
}
ret = gen8_ppgtt_alloc_pdp(vm, pdp, start, length);
if (unlikely(ret))
goto unwind_pdp;
}
return 0;
unwind_pdp:
if (!pdp->used_pdpes) {
gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e);
free_pdp(vm, pdp);
}
unwind:
gen8_ppgtt_clear_4lvl(vm, from, start - from);
return -ENOMEM;
}
static int gen8_preallocate_top_level_pdp(struct i915_hw_ppgtt *ppgtt)
{
struct i915_address_space *vm = &ppgtt->vm;
struct i915_page_directory_pointer *pdp = &ppgtt->pdp;
struct i915_page_directory *pd;
u64 start = 0, length = ppgtt->vm.total;
u64 from = start;
unsigned int pdpe;
gen8_for_each_pdpe(pd, pdp, start, length, pdpe) {
pd = alloc_pd(vm);
if (IS_ERR(pd))
goto unwind;
gen8_initialize_pd(vm, pd);
gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe);
pdp->used_pdpes++;
}
pdp->used_pdpes++; /* never remove */
return 0;
unwind:
start -= from;
gen8_for_each_pdpe(pd, pdp, from, start, pdpe) {
gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe);
free_pd(vm, pd);
}
pdp->used_pdpes = 0;
return -ENOMEM;
}
static void ppgtt_init(struct drm_i915_private *i915,
struct i915_hw_ppgtt *ppgtt)
{
kref_init(&ppgtt->ref);
ppgtt->vm.i915 = i915;
ppgtt->vm.dma = &i915->drm.pdev->dev;
ppgtt->vm.total = BIT_ULL(INTEL_INFO(i915)->ppgtt_size);
i915_address_space_init(&ppgtt->vm, VM_CLASS_PPGTT);
ppgtt->vm.vma_ops.bind_vma = ppgtt_bind_vma;
ppgtt->vm.vma_ops.unbind_vma = ppgtt_unbind_vma;
ppgtt->vm.vma_ops.set_pages = ppgtt_set_pages;
ppgtt->vm.vma_ops.clear_pages = clear_pages;
}
/*
* GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers
* with a net effect resembling a 2-level page table in normal x86 terms. Each
* PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address
* space.
*
*/
static struct i915_hw_ppgtt *gen8_ppgtt_create(struct drm_i915_private *i915)
{
struct i915_hw_ppgtt *ppgtt;
int err;
ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
if (!ppgtt)
return ERR_PTR(-ENOMEM);
ppgtt_init(i915, ppgtt);
/*
* From bdw, there is hw support for read-only pages in the PPGTT.
*
* Gen11 has HSDES#:1807136187 unresolved. Disable ro support
* for now.
*/
ppgtt->vm.has_read_only = INTEL_GEN(i915) != 11;
/* There are only few exceptions for gen >=6. chv and bxt.
* And we are not sure about the latter so play safe for now.
*/
if (IS_CHERRYVIEW(i915) || IS_BROXTON(i915))
ppgtt->vm.pt_kmap_wc = true;
err = gen8_init_scratch(&ppgtt->vm);
if (err)
goto err_free;
if (i915_vm_is_4lvl(&ppgtt->vm)) {
err = setup_px(&ppgtt->vm, &ppgtt->pml4);
if (err)
goto err_scratch;
gen8_initialize_pml4(&ppgtt->vm, &ppgtt->pml4);
ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc_4lvl;
ppgtt->vm.insert_entries = gen8_ppgtt_insert_4lvl;
ppgtt->vm.clear_range = gen8_ppgtt_clear_4lvl;
} else {
err = __pdp_init(&ppgtt->vm, &ppgtt->pdp);
if (err)
goto err_scratch;
if (intel_vgpu_active(i915)) {
err = gen8_preallocate_top_level_pdp(ppgtt);
if (err) {
__pdp_fini(&ppgtt->pdp);
goto err_scratch;
}
}
ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc_3lvl;
ppgtt->vm.insert_entries = gen8_ppgtt_insert_3lvl;
ppgtt->vm.clear_range = gen8_ppgtt_clear_3lvl;
}
if (intel_vgpu_active(i915))
gen8_ppgtt_notify_vgt(ppgtt, true);
ppgtt->vm.cleanup = gen8_ppgtt_cleanup;
return ppgtt;
err_scratch:
gen8_free_scratch(&ppgtt->vm);
err_free:
kfree(ppgtt);
return ERR_PTR(err);
}
/* Write pde (index) from the page directory @pd to the page table @pt */
static inline void gen6_write_pde(const struct gen6_hw_ppgtt *ppgtt,
const unsigned int pde,
const struct i915_page_table *pt)
{
/* Caller needs to make sure the write completes if necessary */
iowrite32(GEN6_PDE_ADDR_ENCODE(px_dma(pt)) | GEN6_PDE_VALID,
ppgtt->pd_addr + pde);
}
static void gen7_ppgtt_enable(struct drm_i915_private *dev_priv)
{
struct intel_engine_cs *engine;
u32 ecochk, ecobits;
enum intel_engine_id id;
ecobits = I915_READ(GAC_ECO_BITS);
I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
ecochk = I915_READ(GAM_ECOCHK);
if (IS_HASWELL(dev_priv)) {
ecochk |= ECOCHK_PPGTT_WB_HSW;
} else {
ecochk |= ECOCHK_PPGTT_LLC_IVB;
ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
}
I915_WRITE(GAM_ECOCHK, ecochk);
for_each_engine(engine, dev_priv, id) {
/* GFX_MODE is per-ring on gen7+ */
I915_WRITE(RING_MODE_GEN7(engine),
_MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
}
}
static void gen6_ppgtt_enable(struct drm_i915_private *dev_priv)
{
u32 ecochk, gab_ctl, ecobits;
ecobits = I915_READ(GAC_ECO_BITS);
I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
ECOBITS_PPGTT_CACHE64B);
gab_ctl = I915_READ(GAB_CTL);
I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
ecochk = I915_READ(GAM_ECOCHK);
I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
if (HAS_PPGTT(dev_priv)) /* may be disabled for VT-d */
I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
}
/* PPGTT support for Sandybdrige/Gen6 and later */
static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
u64 start, u64 length)
{
struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
unsigned int first_entry = start / I915_GTT_PAGE_SIZE;
unsigned int pde = first_entry / GEN6_PTES;
unsigned int pte = first_entry % GEN6_PTES;
unsigned int num_entries = length / I915_GTT_PAGE_SIZE;
const gen6_pte_t scratch_pte = vm->scratch_pte;
while (num_entries) {
struct i915_page_table *pt = ppgtt->base.pd.page_table[pde++];
const unsigned int count = min(num_entries, GEN6_PTES - pte);
gen6_pte_t *vaddr;
GEM_BUG_ON(pt == vm->scratch_pt);
num_entries -= count;
GEM_BUG_ON(count > pt->used_ptes);
pt->used_ptes -= count;
if (!pt->used_ptes)
ppgtt->scan_for_unused_pt = true;
/*
* Note that the hw doesn't support removing PDE on the fly
* (they are cached inside the context with no means to
* invalidate the cache), so we can only reset the PTE
* entries back to scratch.
*/
vaddr = kmap_atomic_px(pt);
memset32(vaddr + pte, scratch_pte, count);
kunmap_atomic(vaddr);
pte = 0;
}
}
static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
struct i915_vma *vma,
enum i915_cache_level cache_level,
u32 flags)
{
struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
unsigned first_entry = vma->node.start / I915_GTT_PAGE_SIZE;
unsigned act_pt = first_entry / GEN6_PTES;
unsigned act_pte = first_entry % GEN6_PTES;
const u32 pte_encode = vm->pte_encode(0, cache_level, flags);
struct sgt_dma iter = sgt_dma(vma);
gen6_pte_t *vaddr;
GEM_BUG_ON(ppgtt->pd.page_table[act_pt] == vm->scratch_pt);
vaddr = kmap_atomic_px(ppgtt->pd.page_table[act_pt]);
do {
vaddr[act_pte] = pte_encode | GEN6_PTE_ADDR_ENCODE(iter.dma);
iter.dma += I915_GTT_PAGE_SIZE;
if (iter.dma == iter.max) {
iter.sg = __sg_next(iter.sg);
if (!iter.sg)
break;
iter.dma = sg_dma_address(iter.sg);
iter.max = iter.dma + iter.sg->length;
}
if (++act_pte == GEN6_PTES) {
kunmap_atomic(vaddr);
vaddr = kmap_atomic_px(ppgtt->pd.page_table[++act_pt]);
act_pte = 0;
}
} while (1);
kunmap_atomic(vaddr);
vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
}
static int gen6_alloc_va_range(struct i915_address_space *vm,
u64 start, u64 length)
{
struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
struct i915_page_table *pt;
intel_wakeref_t wakeref;
u64 from = start;
unsigned int pde;
bool flush = false;
wakeref = intel_runtime_pm_get(vm->i915);
gen6_for_each_pde(pt, &ppgtt->base.pd, start, length, pde) {
const unsigned int count = gen6_pte_count(start, length);
if (pt == vm->scratch_pt) {
pt = alloc_pt(vm);
if (IS_ERR(pt))
goto unwind_out;
gen6_initialize_pt(vm, pt);
ppgtt->base.pd.page_table[pde] = pt;
if (i915_vma_is_bound(ppgtt->vma,
I915_VMA_GLOBAL_BIND)) {
gen6_write_pde(ppgtt, pde, pt);
flush = true;
}
GEM_BUG_ON(pt->used_ptes);
}
pt->used_ptes += count;
}
if (flush) {
mark_tlbs_dirty(&ppgtt->base);
gen6_ggtt_invalidate(vm->i915);
}
intel_runtime_pm_put(vm->i915, wakeref);
return 0;
unwind_out:
intel_runtime_pm_put(vm->i915, wakeref);
gen6_ppgtt_clear_range(vm, from, start - from);
return -ENOMEM;
}
static int gen6_ppgtt_init_scratch(struct gen6_hw_ppgtt *ppgtt)
{
struct i915_address_space * const vm = &ppgtt->base.vm;
struct i915_page_table *unused;
u32 pde;
int ret;
ret = setup_scratch_page(vm, __GFP_HIGHMEM);
if (ret)
return ret;
vm->scratch_pte = vm->pte_encode(vm->scratch_page.daddr,
I915_CACHE_NONE,
PTE_READ_ONLY);
vm->scratch_pt = alloc_pt(vm);
if (IS_ERR(vm->scratch_pt)) {
cleanup_scratch_page(vm);
return PTR_ERR(vm->scratch_pt);
}
gen6_initialize_pt(vm, vm->scratch_pt);
gen6_for_all_pdes(unused, &ppgtt->base.pd, pde)
ppgtt->base.pd.page_table[pde] = vm->scratch_pt;
return 0;
}
static void gen6_ppgtt_free_scratch(struct i915_address_space *vm)
{
free_pt(vm, vm->scratch_pt);
cleanup_scratch_page(vm);
}
static void gen6_ppgtt_free_pd(struct gen6_hw_ppgtt *ppgtt)
{
struct i915_page_table *pt;
u32 pde;
gen6_for_all_pdes(pt, &ppgtt->base.pd, pde)
if (pt != ppgtt->base.vm.scratch_pt)
free_pt(&ppgtt->base.vm, pt);
}
struct gen6_ppgtt_cleanup_work {
struct work_struct base;
struct i915_vma *vma;
};
static void gen6_ppgtt_cleanup_work(struct work_struct *wrk)
{
struct gen6_ppgtt_cleanup_work *work =
container_of(wrk, typeof(*work), base);
/* Side note, vma->vm is the GGTT not the ppgtt we just destroyed! */
struct drm_i915_private *i915 = work->vma->vm->i915;
mutex_lock(&i915->drm.struct_mutex);
i915_vma_destroy(work->vma);
mutex_unlock(&i915->drm.struct_mutex);
kfree(work);
}
static int nop_set_pages(struct i915_vma *vma)
{
return -ENODEV;
}
static void nop_clear_pages(struct i915_vma *vma)
{
}
static int nop_bind(struct i915_vma *vma,
enum i915_cache_level cache_level,
u32 unused)
{
return -ENODEV;
}
static void nop_unbind(struct i915_vma *vma)
{
}
static const struct i915_vma_ops nop_vma_ops = {
.set_pages = nop_set_pages,
.clear_pages = nop_clear_pages,
.bind_vma = nop_bind,
.unbind_vma = nop_unbind,
};
static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
{
struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm));
struct gen6_ppgtt_cleanup_work *work = ppgtt->work;
/* FIXME remove the struct_mutex to bring the locking under control */
INIT_WORK(&work->base, gen6_ppgtt_cleanup_work);
work->vma = ppgtt->vma;
work->vma->ops = &nop_vma_ops;
schedule_work(&work->base);
gen6_ppgtt_free_pd(ppgtt);
gen6_ppgtt_free_scratch(vm);
}
static int pd_vma_set_pages(struct i915_vma *vma)
{
vma->pages = ERR_PTR(-ENODEV);
return 0;
}
static void pd_vma_clear_pages(struct i915_vma *vma)
{
GEM_BUG_ON(!vma->pages);
vma->pages = NULL;
}
static int pd_vma_bind(struct i915_vma *vma,
enum i915_cache_level cache_level,
u32 unused)
{
struct i915_ggtt *ggtt = i915_vm_to_ggtt(vma->vm);
struct gen6_hw_ppgtt *ppgtt = vma->private;
u32 ggtt_offset = i915_ggtt_offset(vma) / I915_GTT_PAGE_SIZE;
struct i915_page_table *pt;
unsigned int pde;
ppgtt->base.pd.base.ggtt_offset = ggtt_offset * sizeof(gen6_pte_t);
ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm + ggtt_offset;
gen6_for_all_pdes(pt, &ppgtt->base.pd, pde)
gen6_write_pde(ppgtt, pde, pt);
mark_tlbs_dirty(&ppgtt->base);
gen6_ggtt_invalidate(ppgtt->base.vm.i915);
return 0;
}
static void pd_vma_unbind(struct i915_vma *vma)
{
struct gen6_hw_ppgtt *ppgtt = vma->private;
struct i915_page_table * const scratch_pt = ppgtt->base.vm.scratch_pt;
struct i915_page_table *pt;
unsigned int pde;
if (!ppgtt->scan_for_unused_pt)
return;
/* Free all no longer used page tables */
gen6_for_all_pdes(pt, &ppgtt->base.pd, pde) {
if (pt->used_ptes || pt == scratch_pt)
continue;
free_pt(&ppgtt->base.vm, pt);
ppgtt->base.pd.page_table[pde] = scratch_pt;
}
ppgtt->scan_for_unused_pt = false;
}
static const struct i915_vma_ops pd_vma_ops = {
.set_pages = pd_vma_set_pages,
.clear_pages = pd_vma_clear_pages,
.bind_vma = pd_vma_bind,
.unbind_vma = pd_vma_unbind,
};
static struct i915_vma *pd_vma_create(struct gen6_hw_ppgtt *ppgtt, int size)
{
struct drm_i915_private *i915 = ppgtt->base.vm.i915;
struct i915_ggtt *ggtt = &i915->ggtt;
struct i915_vma *vma;
GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
GEM_BUG_ON(size > ggtt->vm.total);
vma = i915_vma_alloc();
if (!vma)
return ERR_PTR(-ENOMEM);
i915_active_init(i915, &vma->active, NULL);
INIT_ACTIVE_REQUEST(&vma->last_fence);
vma->vm = &ggtt->vm;
vma->ops = &pd_vma_ops;
vma->private = ppgtt;
vma->size = size;
vma->fence_size = size;
vma->flags = I915_VMA_GGTT;
vma->ggtt_view.type = I915_GGTT_VIEW_ROTATED; /* prevent fencing */
INIT_LIST_HEAD(&vma->obj_link);
mutex_lock(&vma->vm->mutex);
list_add(&vma->vm_link, &vma->vm->unbound_list);
mutex_unlock(&vma->vm->mutex);
return vma;
}
int gen6_ppgtt_pin(struct i915_hw_ppgtt *base)
{
struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base);
int err;
GEM_BUG_ON(ppgtt->base.vm.closed);
/*
* Workaround the limited maximum vma->pin_count and the aliasing_ppgtt
* which will be pinned into every active context.
* (When vma->pin_count becomes atomic, I expect we will naturally
* need a larger, unpacked, type and kill this redundancy.)
*/
if (ppgtt->pin_count++)
return 0;
/*
* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
* allocator works in address space sizes, so it's multiplied by page
* size. We allocate at the top of the GTT to avoid fragmentation.
*/
err = i915_vma_pin(ppgtt->vma,
0, GEN6_PD_ALIGN,
PIN_GLOBAL | PIN_HIGH);
if (err)
goto unpin;
return 0;
unpin:
ppgtt->pin_count = 0;
return err;
}
void gen6_ppgtt_unpin(struct i915_hw_ppgtt *base)
{
struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base);
GEM_BUG_ON(!ppgtt->pin_count);
if (--ppgtt->pin_count)
return;
i915_vma_unpin(ppgtt->vma);
}
void gen6_ppgtt_unpin_all(struct i915_hw_ppgtt *base)
{
struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base);
if (!ppgtt->pin_count)
return;
ppgtt->pin_count = 0;
i915_vma_unpin(ppgtt->vma);
}
static struct i915_hw_ppgtt *gen6_ppgtt_create(struct drm_i915_private *i915)
{
struct i915_ggtt * const ggtt = &i915->ggtt;
struct gen6_hw_ppgtt *ppgtt;
int err;
ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL);
if (!ppgtt)
return ERR_PTR(-ENOMEM);
ppgtt_init(i915, &ppgtt->base);
ppgtt->base.vm.allocate_va_range = gen6_alloc_va_range;
ppgtt->base.vm.clear_range = gen6_ppgtt_clear_range;
ppgtt->base.vm.insert_entries = gen6_ppgtt_insert_entries;
ppgtt->base.vm.cleanup = gen6_ppgtt_cleanup;
ppgtt->base.vm.pte_encode = ggtt->vm.pte_encode;
ppgtt->work = kmalloc(sizeof(*ppgtt->work), GFP_KERNEL);
if (!ppgtt->work) {
err = -ENOMEM;
goto err_free;
}
err = gen6_ppgtt_init_scratch(ppgtt);
if (err)
goto err_work;
ppgtt->vma = pd_vma_create(ppgtt, GEN6_PD_SIZE);
if (IS_ERR(ppgtt->vma)) {
err = PTR_ERR(ppgtt->vma);
goto err_scratch;
}
return &ppgtt->base;
err_scratch:
gen6_ppgtt_free_scratch(&ppgtt->base.vm);
err_work:
kfree(ppgtt->work);
err_free:
kfree(ppgtt);
return ERR_PTR(err);
}
static void gtt_write_workarounds(struct drm_i915_private *dev_priv)
{
/* This function is for gtt related workarounds. This function is
* called on driver load and after a GPU reset, so you can place
* workarounds here even if they get overwritten by GPU reset.
*/
/* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */
if (IS_BROADWELL(dev_priv))
I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
else if (IS_CHERRYVIEW(dev_priv))
I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
else if (IS_GEN9_LP(dev_priv))
I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
else if (INTEL_GEN(dev_priv) >= 9)
I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
/*
* To support 64K PTEs we need to first enable the use of the
* Intermediate-Page-Size(IPS) bit of the PDE field via some magical
* mmio, otherwise the page-walker will simply ignore the IPS bit. This
* shouldn't be needed after GEN10.
*
* 64K pages were first introduced from BDW+, although technically they
* only *work* from gen9+. For pre-BDW we instead have the option for
* 32K pages, but we don't currently have any support for it in our
* driver.
*/
if (HAS_PAGE_SIZES(dev_priv, I915_GTT_PAGE_SIZE_64K) &&
INTEL_GEN(dev_priv) <= 10)
I915_WRITE(GEN8_GAMW_ECO_DEV_RW_IA,
I915_READ(GEN8_GAMW_ECO_DEV_RW_IA) |
GAMW_ECO_ENABLE_64K_IPS_FIELD);
}
int i915_ppgtt_init_hw(struct drm_i915_private *dev_priv)
{
gtt_write_workarounds(dev_priv);
if (IS_GEN(dev_priv, 6))
gen6_ppgtt_enable(dev_priv);
else if (IS_GEN(dev_priv, 7))
gen7_ppgtt_enable(dev_priv);
return 0;
}
static struct i915_hw_ppgtt *
__hw_ppgtt_create(struct drm_i915_private *i915)
{
if (INTEL_GEN(i915) < 8)
return gen6_ppgtt_create(i915);
else
return gen8_ppgtt_create(i915);
}
struct i915_hw_ppgtt *
i915_ppgtt_create(struct drm_i915_private *i915)
{
struct i915_hw_ppgtt *ppgtt;
ppgtt = __hw_ppgtt_create(i915);
if (IS_ERR(ppgtt))
return ppgtt;
trace_i915_ppgtt_create(&ppgtt->vm);
return ppgtt;
}
static void ppgtt_destroy_vma(struct i915_address_space *vm)
{
struct list_head *phases[] = {
&vm->bound_list,
&vm->unbound_list,
NULL,
}, **phase;
vm->closed = true;
for (phase = phases; *phase; phase++) {
struct i915_vma *vma, *vn;
list_for_each_entry_safe(vma, vn, *phase, vm_link)
i915_vma_destroy(vma);
}
}
void i915_ppgtt_release(struct kref *kref)
{
struct i915_hw_ppgtt *ppgtt =
container_of(kref, struct i915_hw_ppgtt, ref);
trace_i915_ppgtt_release(&ppgtt->vm);
ppgtt_destroy_vma(&ppgtt->vm);
GEM_BUG_ON(!list_empty(&ppgtt->vm.bound_list));
GEM_BUG_ON(!list_empty(&ppgtt->vm.unbound_list));
ppgtt->vm.cleanup(&ppgtt->vm);
i915_address_space_fini(&ppgtt->vm);
kfree(ppgtt);
}
/* Certain Gen5 chipsets require require idling the GPU before
* unmapping anything from the GTT when VT-d is enabled.
*/
static bool needs_idle_maps(struct drm_i915_private *dev_priv)
{
/* Query intel_iommu to see if we need the workaround. Presumably that
* was loaded first.
*/
return IS_GEN(dev_priv, 5) && IS_MOBILE(dev_priv) && intel_vtd_active();
}
static void gen6_check_faults(struct drm_i915_private *dev_priv)
{
struct intel_engine_cs *engine;
enum intel_engine_id id;
u32 fault;
for_each_engine(engine, dev_priv, id) {
fault = I915_READ(RING_FAULT_REG(engine));
if (fault & RING_FAULT_VALID) {
DRM_DEBUG_DRIVER("Unexpected fault\n"
"\tAddr: 0x%08lx\n"
"\tAddress space: %s\n"
"\tSource ID: %d\n"
"\tType: %d\n",
fault & PAGE_MASK,
fault & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
RING_FAULT_SRCID(fault),
RING_FAULT_FAULT_TYPE(fault));
}
}
}
static void gen8_check_faults(struct drm_i915_private *dev_priv)
{
u32 fault = I915_READ(GEN8_RING_FAULT_REG);
if (fault & RING_FAULT_VALID) {
u32 fault_data0, fault_data1;
u64 fault_addr;
fault_data0 = I915_READ(GEN8_FAULT_TLB_DATA0);
fault_data1 = I915_READ(GEN8_FAULT_TLB_DATA1);
fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) |
((u64)fault_data0 << 12);
DRM_DEBUG_DRIVER("Unexpected fault\n"
"\tAddr: 0x%08x_%08x\n"
"\tAddress space: %s\n"
"\tEngine ID: %d\n"
"\tSource ID: %d\n"
"\tType: %d\n",
upper_32_bits(fault_addr),
lower_32_bits(fault_addr),
fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT",
GEN8_RING_FAULT_ENGINE_ID(fault),
RING_FAULT_SRCID(fault),
RING_FAULT_FAULT_TYPE(fault));
}
}
void i915_check_and_clear_faults(struct drm_i915_private *dev_priv)
{
/* From GEN8 onwards we only have one 'All Engine Fault Register' */
if (INTEL_GEN(dev_priv) >= 8)
gen8_check_faults(dev_priv);
else if (INTEL_GEN(dev_priv) >= 6)
gen6_check_faults(dev_priv);
else
return;
i915_clear_error_registers(dev_priv);
}
void i915_gem_suspend_gtt_mappings(struct drm_i915_private *dev_priv)
{
struct i915_ggtt *ggtt = &dev_priv->ggtt;
/* Don't bother messing with faults pre GEN6 as we have little
* documentation supporting that it's a good idea.
*/
if (INTEL_GEN(dev_priv) < 6)
return;
i915_check_and_clear_faults(dev_priv);
ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
i915_ggtt_invalidate(dev_priv);
}
int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj,
struct sg_table *pages)
{
do {
if (dma_map_sg_attrs(&obj->base.dev->pdev->dev,
pages->sgl, pages->nents,
PCI_DMA_BIDIRECTIONAL,
DMA_ATTR_NO_WARN))
return 0;
/*
* If the DMA remap fails, one cause can be that we have
* too many objects pinned in a small remapping table,
* such as swiotlb. Incrementally purge all other objects and
* try again - if there are no more pages to remove from
* the DMA remapper, i915_gem_shrink will return 0.
*/
GEM_BUG_ON(obj->mm.pages == pages);
} while (i915_gem_shrink(to_i915(obj->base.dev),
obj->base.size >> PAGE_SHIFT, NULL,
I915_SHRINK_BOUND |
I915_SHRINK_UNBOUND));
return -ENOSPC;
}
static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte)
{
writeq(pte, addr);
}
static void gen8_ggtt_insert_page(struct i915_address_space *vm,
dma_addr_t addr,
u64 offset,
enum i915_cache_level level,
u32 unused)
{
struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
gen8_pte_t __iomem *pte =
(gen8_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
gen8_set_pte(pte, gen8_pte_encode(addr, level, 0));
ggtt->invalidate(vm->i915);
}
static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
struct i915_vma *vma,
enum i915_cache_level level,
u32 flags)
{
struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
struct sgt_iter sgt_iter;
gen8_pte_t __iomem *gtt_entries;
const gen8_pte_t pte_encode = gen8_pte_encode(0, level, 0);
dma_addr_t addr;
/*
* Note that we ignore PTE_READ_ONLY here. The caller must be careful
* not to allow the user to override access to a read only page.
*/
gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm;
gtt_entries += vma->node.start / I915_GTT_PAGE_SIZE;
for_each_sgt_dma(addr, sgt_iter, vma->pages)
gen8_set_pte(gtt_entries++, pte_encode | addr);
/*
* We want to flush the TLBs only after we're certain all the PTE
* updates have finished.
*/
ggtt->invalidate(vm->i915);
}
static void gen6_ggtt_insert_page(struct i915_address_space *vm,
dma_addr_t addr,
u64 offset,
enum i915_cache_level level,
u32 flags)
{
struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
gen6_pte_t __iomem *pte =
(gen6_pte_t __iomem *)ggtt->gsm + offset / I915_GTT_PAGE_SIZE;
iowrite32(vm->pte_encode(addr, level, flags), pte);
ggtt->invalidate(vm->i915);
}
/*
* Binds an object into the global gtt with the specified cache level. The object
* will be accessible to the GPU via commands whose operands reference offsets
* within the global GTT as well as accessible by the GPU through the GMADR
* mapped BAR (dev_priv->mm.gtt->gtt).
*/
static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
struct i915_vma *vma,
enum i915_cache_level level,
u32 flags)
{
struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
gen6_pte_t __iomem *entries = (gen6_pte_t __iomem *)ggtt->gsm;
unsigned int i = vma->node.start / I915_GTT_PAGE_SIZE;
struct sgt_iter iter;
dma_addr_t addr;
for_each_sgt_dma(addr, iter, vma->pages)
iowrite32(vm->pte_encode(addr, level, flags), &entries[i++]);
/*
* We want to flush the TLBs only after we're certain all the PTE
* updates have finished.
*/
ggtt->invalidate(vm->i915);
}
static void nop_clear_range(struct i915_address_space *vm,
u64 start, u64 length)
{
}
static void gen8_ggtt_clear_range(struct i915_address_space *vm,
u64 start, u64 length)
{
struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
unsigned first_entry = start / I915_GTT_PAGE_SIZE;
unsigned num_entries = length / I915_GTT_PAGE_SIZE;
const gen8_pte_t scratch_pte = vm->scratch_pte;
gen8_pte_t __iomem *gtt_base =
(gen8_pte_t __iomem *)ggtt->gsm + first_entry;
const int max_entries = ggtt_total_entries(ggtt) - first_entry;
int i;
if (WARN(num_entries > max_entries,
"First entry = %d; Num entries = %d (max=%d)\n",
first_entry, num_entries, max_entries))
num_entries = max_entries;
for (i = 0; i < num_entries; i++)
gen8_set_pte(&gtt_base[i], scratch_pte);
}
static void bxt_vtd_ggtt_wa(struct i915_address_space *vm)
{
struct drm_i915_private *dev_priv = vm->i915;
/*
* Make sure the internal GAM fifo has been cleared of all GTT
* writes before exiting stop_machine(). This guarantees that
* any aperture accesses waiting to start in another process
* cannot back up behind the GTT writes causing a hang.
* The register can be any arbitrary GAM register.
*/
POSTING_READ(GFX_FLSH_CNTL_GEN6);
}
struct insert_page {
struct i915_address_space *vm;
dma_addr_t addr;
u64 offset;
enum i915_cache_level level;
};
static int bxt_vtd_ggtt_insert_page__cb(void *_arg)
{
struct insert_page *arg = _arg;
gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0);
bxt_vtd_ggtt_wa(arg->vm);
return 0;
}
static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm,
dma_addr_t addr,
u64 offset,
enum i915_cache_level level,
u32 unused)
{
struct insert_page arg = { vm, addr, offset, level };
stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL);
}
struct insert_entries {
struct i915_address_space *vm;
struct i915_vma *vma;
enum i915_cache_level level;
u32 flags;
};
static int bxt_vtd_ggtt_insert_entries__cb(void *_arg)
{
struct insert_entries *arg = _arg;
gen8_ggtt_insert_entries(arg->vm, arg->vma, arg->level, arg->flags);
bxt_vtd_ggtt_wa(arg->vm);
return 0;
}
static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm,
struct i915_vma *vma,
enum i915_cache_level level,
u32 flags)
{
struct insert_entries arg = { vm, vma, level, flags };
stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL);
}
struct clear_range {
struct i915_address_space *vm;
u64 start;
u64 length;
};
static int bxt_vtd_ggtt_clear_range__cb(void *_arg)
{
struct clear_range *arg = _arg;
gen8_ggtt_clear_range(arg->vm, arg->start, arg->length);
bxt_vtd_ggtt_wa(arg->vm);
return 0;
}
static void bxt_vtd_ggtt_clear_range__BKL(struct i915_address_space *vm,
u64 start,
u64 length)
{
struct clear_range arg = { vm, start, length };
stop_machine(bxt_vtd_ggtt_clear_range__cb, &arg, NULL);
}
static void gen6_ggtt_clear_range(struct i915_address_space *vm,
u64 start, u64 length)
{
struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
unsigned first_entry = start / I915_GTT_PAGE_SIZE;
unsigned num_entries = length / I915_GTT_PAGE_SIZE;
gen6_pte_t scratch_pte, __iomem *gtt_base =
(gen6_pte_t __iomem *)ggtt->gsm + first_entry;
const int max_entries = ggtt_total_entries(ggtt) - first_entry;
int i;
if (WARN(num_entries > max_entries,
"First entry = %d; Num entries = %d (max=%d)\n",
first_entry, num_entries, max_entries))
num_entries = max_entries;
scratch_pte = vm->scratch_pte;
for (i = 0; i < num_entries; i++)
iowrite32(scratch_pte, &gtt_base[i]);
}
static void i915_ggtt_insert_page(struct i915_address_space *vm,
dma_addr_t addr,
u64 offset,
enum i915_cache_level cache_level,
u32 unused)
{
unsigned int flags = (cache_level == I915_CACHE_NONE) ?
AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags);
}
static void i915_ggtt_insert_entries(struct i915_address_space *vm,
struct i915_vma *vma,
enum i915_cache_level cache_level,
u32 unused)
{
unsigned int flags = (cache_level == I915_CACHE_NONE) ?
AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
intel_gtt_insert_sg_entries(vma->pages, vma->node.start >> PAGE_SHIFT,
flags);
}
static void i915_ggtt_clear_range(struct i915_address_space *vm,
u64 start, u64 length)
{
intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT);
}
static int ggtt_bind_vma(struct i915_vma *vma,
enum i915_cache_level cache_level,
u32 flags)
{
struct drm_i915_private *i915 = vma->vm->i915;
struct drm_i915_gem_object *obj = vma->obj;
intel_wakeref_t wakeref;
u32 pte_flags;
/* Applicable to VLV (gen8+ do not support RO in the GGTT) */
pte_flags = 0;
if (i915_gem_object_is_readonly(obj))
pte_flags |= PTE_READ_ONLY;
with_intel_runtime_pm(i915, wakeref)
vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags);
vma->page_sizes.gtt = I915_GTT_PAGE_SIZE;
/*
* Without aliasing PPGTT there's no difference between
* GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally
* upgrade to both bound if we bind either to avoid double-binding.
*/
vma->flags |= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND;
return 0;
}
static void ggtt_unbind_vma(struct i915_vma *vma)
{
struct drm_i915_private *i915 = vma->vm->i915;
intel_wakeref_t wakeref;
with_intel_runtime_pm(i915, wakeref)
vma->vm->clear_range(vma->vm, vma->node.start, vma->size);
}
static int aliasing_gtt_bind_vma(struct i915_vma *vma,
enum i915_cache_level cache_level,
u32 flags)
{
struct drm_i915_private *i915 = vma->vm->i915;
u32 pte_flags;
int ret;
/* Currently applicable only to VLV */
pte_flags = 0;
if (i915_gem_object_is_readonly(vma->obj))
pte_flags |= PTE_READ_ONLY;
if (flags & I915_VMA_LOCAL_BIND) {
struct i915_hw_ppgtt *appgtt = i915->mm.aliasing_ppgtt;
if (!(vma->flags & I915_VMA_LOCAL_BIND)) {
ret = appgtt->vm.allocate_va_range(&appgtt->vm,
vma->node.start,
vma->size);
if (ret)
return ret;
}
appgtt->vm.insert_entries(&appgtt->vm, vma, cache_level,
pte_flags);
}
if (flags & I915_VMA_GLOBAL_BIND) {
intel_wakeref_t wakeref;
with_intel_runtime_pm(i915, wakeref) {
vma->vm->insert_entries(vma->vm, vma,
cache_level, pte_flags);
}
}
return 0;
}
static void aliasing_gtt_unbind_vma(struct i915_vma *vma)
{
struct drm_i915_private *i915 = vma->vm->i915;
if (vma->flags & I915_VMA_GLOBAL_BIND) {
struct i915_address_space *vm = vma->vm;
intel_wakeref_t wakeref;
with_intel_runtime_pm(i915, wakeref)
vm->clear_range(vm, vma->node.start, vma->size);
}
if (vma->flags & I915_VMA_LOCAL_BIND) {
struct i915_address_space *vm = &i915->mm.aliasing_ppgtt->vm;
vm->clear_range(vm, vma->node.start, vma->size);
}
}
void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj,
struct sg_table *pages)
{
struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
struct device *kdev = &dev_priv->drm.pdev->dev;
struct i915_ggtt *ggtt = &dev_priv->ggtt;
if (unlikely(ggtt->do_idle_maps)) {
if (i915_gem_wait_for_idle(dev_priv, 0, MAX_SCHEDULE_TIMEOUT)) {
DRM_ERROR("Failed to wait for idle; VT'd may hang.\n");
/* Wait a bit, in hopes it avoids the hang */
udelay(10);
}
}
dma_unmap_sg(kdev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL);
}
static int ggtt_set_pages(struct i915_vma *vma)
{
int ret;
GEM_BUG_ON(vma->pages);
ret = i915_get_ggtt_vma_pages(vma);
if (ret)
return ret;
vma->page_sizes = vma->obj->mm.page_sizes;
return 0;
}
static void i915_gtt_color_adjust(const struct drm_mm_node *node,
unsigned long color,
u64 *start,
u64 *end)
{
if (node->allocated && node->color != color)
*start += I915_GTT_PAGE_SIZE;
/* Also leave a space between the unallocated reserved node after the
* GTT and any objects within the GTT, i.e. we use the color adjustment
* to insert a guard page to prevent prefetches crossing over the
* GTT boundary.
*/
node = list_next_entry(node, node_list);
if (node->color != color)
*end -= I915_GTT_PAGE_SIZE;
}
int i915_gem_init_aliasing_ppgtt(struct drm_i915_private *i915)
{
struct i915_ggtt *ggtt = &i915->ggtt;
struct i915_hw_ppgtt *ppgtt;
int err;
ppgtt = i915_ppgtt_create(i915);
if (IS_ERR(ppgtt))
return PTR_ERR(ppgtt);
if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) {
err = -ENODEV;
goto err_ppgtt;
}
/*
* Note we only pre-allocate as far as the end of the global
* GTT. On 48b / 4-level page-tables, the difference is very,
* very significant! We have to preallocate as GVT/vgpu does
* not like the page directory disappearing.
*/
err = ppgtt->vm.allocate_va_range(&ppgtt->vm, 0, ggtt->vm.total);
if (err)
goto err_ppgtt;
i915->mm.aliasing_ppgtt = ppgtt;
GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != ggtt_bind_vma);
ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma;
GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != ggtt_unbind_vma);
ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma;
return 0;
err_ppgtt:
i915_ppgtt_put(ppgtt);
return err;
}
void i915_gem_fini_aliasing_ppgtt(struct drm_i915_private *i915)
{
struct i915_ggtt *ggtt = &i915->ggtt;
struct i915_hw_ppgtt *ppgtt;
ppgtt = fetch_and_zero(&i915->mm.aliasing_ppgtt);
if (!ppgtt)
return;
i915_ppgtt_put(ppgtt);
ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma;
ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
}
int i915_gem_init_ggtt(struct drm_i915_private *dev_priv)
{
/* Let GEM Manage all of the aperture.
*
* However, leave one page at the end still bound to the scratch page.
* There are a number of places where the hardware apparently prefetches
* past the end of the object, and we've seen multiple hangs with the
* GPU head pointer stuck in a batchbuffer bound at the last page of the
* aperture. One page should be enough to keep any prefetching inside
* of the aperture.
*/
struct i915_ggtt *ggtt = &dev_priv->ggtt;
unsigned long hole_start, hole_end;
struct drm_mm_node *entry;
int ret;
/*
* GuC requires all resources that we're sharing with it to be placed in
* non-WOPCM memory. If GuC is not present or not in use we still need a
* small bias as ring wraparound at offset 0 sometimes hangs. No idea
* why.
*/
ggtt->pin_bias = max_t(u32, I915_GTT_PAGE_SIZE,
intel_guc_reserved_gtt_size(&dev_priv->guc));
ret = intel_vgt_balloon(dev_priv);
if (ret)
return ret;
/* Reserve a mappable slot for our lockless error capture */
ret = drm_mm_insert_node_in_range(&ggtt->vm.mm, &ggtt->error_capture,
PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
0, ggtt->mappable_end,
DRM_MM_INSERT_LOW);
if (ret)
return ret;
if (USES_GUC(dev_priv)) {
ret = intel_guc_reserve_ggtt_top(&dev_priv->guc);
if (ret)
goto err_reserve;
}
/* Clear any non-preallocated blocks */
drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) {
DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
hole_start, hole_end);
ggtt->vm.clear_range(&ggtt->vm, hole_start,
hole_end - hole_start);
}
/* And finally clear the reserved guard page */
ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE);
if (INTEL_PPGTT(dev_priv) == INTEL_PPGTT_ALIASING) {
ret = i915_gem_init_aliasing_ppgtt(dev_priv);
if (ret)
goto err_appgtt;
}
return 0;
err_appgtt:
intel_guc_release_ggtt_top(&dev_priv->guc);
err_reserve:
drm_mm_remove_node(&ggtt->error_capture);
return ret;
}
/**
* i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization
* @dev_priv: i915 device
*/
void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv)
{
struct i915_ggtt *ggtt = &dev_priv->ggtt;
struct i915_vma *vma, *vn;
struct pagevec *pvec;
ggtt->vm.closed = true;
mutex_lock(&dev_priv->drm.struct_mutex);
i915_gem_fini_aliasing_ppgtt(dev_priv);
list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link)
WARN_ON(i915_vma_unbind(vma));
if (drm_mm_node_allocated(&ggtt->error_capture))
drm_mm_remove_node(&ggtt->error_capture);
intel_guc_release_ggtt_top(&dev_priv->guc);
if (drm_mm_initialized(&ggtt->vm.mm)) {
intel_vgt_deballoon(dev_priv);
i915_address_space_fini(&ggtt->vm);
}
ggtt->vm.cleanup(&ggtt->vm);
pvec = &dev_priv->mm.wc_stash.pvec;
if (pvec->nr) {
set_pages_array_wb(pvec->pages, pvec->nr);
__pagevec_release(pvec);
}
mutex_unlock(&dev_priv->drm.struct_mutex);
arch_phys_wc_del(ggtt->mtrr);
io_mapping_fini(&ggtt->iomap);
i915_gem_cleanup_stolen(dev_priv);
}
static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
{
snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
return snb_gmch_ctl << 20;
}
static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
{
bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
if (bdw_gmch_ctl)
bdw_gmch_ctl = 1 << bdw_gmch_ctl;
#ifdef CONFIG_X86_32
/* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * I915_GTT_PAGE_SIZE */
if (bdw_gmch_ctl > 4)
bdw_gmch_ctl = 4;
#endif
return bdw_gmch_ctl << 20;
}
static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl)
{
gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT;
gmch_ctrl &= SNB_GMCH_GGMS_MASK;
if (gmch_ctrl)
return 1 << (20 + gmch_ctrl);
return 0;
}
static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size)
{
struct drm_i915_private *dev_priv = ggtt->vm.i915;
struct pci_dev *pdev = dev_priv->drm.pdev;
phys_addr_t phys_addr;
int ret;
/* For Modern GENs the PTEs and register space are split in the BAR */
phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2;
/*
* On BXT+/CNL+ writes larger than 64 bit to the GTT pagetable range
* will be dropped. For WC mappings in general we have 64 byte burst
* writes when the WC buffer is flushed, so we can't use it, but have to
* resort to an uncached mapping. The WC issue is easily caught by the
* readback check when writing GTT PTE entries.
*/
if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10)
ggtt->gsm = ioremap_nocache(phys_addr, size);
else
ggtt->gsm = ioremap_wc(phys_addr, size);
if (!ggtt->gsm) {
DRM_ERROR("Failed to map the ggtt page table\n");
return -ENOMEM;
}
ret = setup_scratch_page(&ggtt->vm, GFP_DMA32);
if (ret) {
DRM_ERROR("Scratch setup failed\n");
/* iounmap will also get called at remove, but meh */
iounmap(ggtt->gsm);
return ret;
}
ggtt->vm.scratch_pte =
ggtt->vm.pte_encode(ggtt->vm.scratch_page.daddr,
I915_CACHE_NONE, 0);
return 0;
}
static struct intel_ppat_entry *
__alloc_ppat_entry(struct intel_ppat *ppat, unsigned int index, u8 value)
{
struct intel_ppat_entry *entry = &ppat->entries[index];
GEM_BUG_ON(index >= ppat->max_entries);
GEM_BUG_ON(test_bit(index, ppat->used));
entry->ppat = ppat;
entry->value = value;
kref_init(&entry->ref);
set_bit(index, ppat->used);
set_bit(index, ppat->dirty);
return entry;
}
static void __free_ppat_entry(struct intel_ppat_entry *entry)
{
struct intel_ppat *ppat = entry->ppat;
unsigned int index = entry - ppat->entries;
GEM_BUG_ON(index >= ppat->max_entries);
GEM_BUG_ON(!test_bit(index, ppat->used));
entry->value = ppat->clear_value;
clear_bit(index, ppat->used);
set_bit(index, ppat->dirty);
}
/**
* intel_ppat_get - get a usable PPAT entry
* @i915: i915 device instance
* @value: the PPAT value required by the caller
*
* The function tries to search if there is an existing PPAT entry which
* matches with the required value. If perfectly matched, the existing PPAT
* entry will be used. If only partially matched, it will try to check if
* there is any available PPAT index. If yes, it will allocate a new PPAT
* index for the required entry and update the HW. If not, the partially
* matched entry will be used.
*/
const struct intel_ppat_entry *
intel_ppat_get(struct drm_i915_private *i915, u8 value)
{
struct intel_ppat *ppat = &i915->ppat;
struct intel_ppat_entry *entry = NULL;
unsigned int scanned, best_score;
int i;
GEM_BUG_ON(!ppat->max_entries);
scanned = best_score = 0;
for_each_set_bit(i, ppat->used, ppat->max_entries) {
unsigned int score;
score = ppat->match(ppat->entries[i].value, value);
if (score > best_score) {
entry = &ppat->entries[i];
if (score == INTEL_PPAT_PERFECT_MATCH) {
kref_get(&entry->ref);
return entry;
}
best_score = score;
}
scanned++;
}
if (scanned == ppat->max_entries) {
if (!entry)
return ERR_PTR(-ENOSPC);
kref_get(&entry->ref);
return entry;
}
i = find_first_zero_bit(ppat->used, ppat->max_entries);
entry = __alloc_ppat_entry(ppat, i, value);
ppat->update_hw(i915);
return entry;
}
static void release_ppat(struct kref *kref)
{
struct intel_ppat_entry *entry =
container_of(kref, struct intel_ppat_entry, ref);
struct drm_i915_private *i915 = entry->ppat->i915;
__free_ppat_entry(entry);
entry->ppat->update_hw(i915);
}
/**
* intel_ppat_put - put back the PPAT entry got from intel_ppat_get()
* @entry: an intel PPAT entry
*
* Put back the PPAT entry got from intel_ppat_get(). If the PPAT index of the
* entry is dynamically allocated, its reference count will be decreased. Once
* the reference count becomes into zero, the PPAT index becomes free again.
*/
void intel_ppat_put(const struct intel_ppat_entry *entry)
{
struct intel_ppat *ppat = entry->ppat;
unsigned int index = entry - ppat->entries;
GEM_BUG_ON(!ppat->max_entries);
kref_put(&ppat->entries[index].ref, release_ppat);
}
static void cnl_private_pat_update_hw(struct drm_i915_private *dev_priv)
{
struct intel_ppat *ppat = &dev_priv->ppat;
int i;
for_each_set_bit(i, ppat->dirty, ppat->max_entries) {
I915_WRITE(GEN10_PAT_INDEX(i), ppat->entries[i].value);
clear_bit(i, ppat->dirty);
}
}
static void bdw_private_pat_update_hw(struct drm_i915_private *dev_priv)
{
struct intel_ppat *ppat = &dev_priv->ppat;
u64 pat = 0;
int i;
for (i = 0; i < ppat->max_entries; i++)
pat |= GEN8_PPAT(i, ppat->entries[i].value);
bitmap_clear(ppat->dirty, 0, ppat->max_entries);
I915_WRITE(GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
I915_WRITE(GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
}
static unsigned int bdw_private_pat_match(u8 src, u8 dst)
{
unsigned int score = 0;
enum {
AGE_MATCH = BIT(0),
TC_MATCH = BIT(1),
CA_MATCH = BIT(2),
};
/* Cache attribute has to be matched. */
if (GEN8_PPAT_GET_CA(src) != GEN8_PPAT_GET_CA(dst))
return 0;
score |= CA_MATCH;
if (GEN8_PPAT_GET_TC(src) == GEN8_PPAT_GET_TC(dst))
score |= TC_MATCH;
if (GEN8_PPAT_GET_AGE(src) == GEN8_PPAT_GET_AGE(dst))
score |= AGE_MATCH;
if (score == (AGE_MATCH | TC_MATCH | CA_MATCH))
return INTEL_PPAT_PERFECT_MATCH;
return score;
}
static unsigned int chv_private_pat_match(u8 src, u8 dst)
{
return (CHV_PPAT_GET_SNOOP(src) == CHV_PPAT_GET_SNOOP(dst)) ?
INTEL_PPAT_PERFECT_MATCH : 0;
}
static void cnl_setup_private_ppat(struct intel_ppat *ppat)
{
ppat->max_entries = 8;
ppat->update_hw = cnl_private_pat_update_hw;
ppat->match = bdw_private_pat_match;
ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);
__alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC);
__alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);
__alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);
__alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC);
__alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
__alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
__alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
__alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
}
/* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
* bits. When using advanced contexts each context stores its own PAT, but
* writing this data shouldn't be harmful even in those cases. */
static void bdw_setup_private_ppat(struct intel_ppat *ppat)
{
ppat->max_entries = 8;
ppat->update_hw = bdw_private_pat_update_hw;
ppat->match = bdw_private_pat_match;
ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3);
if (!HAS_PPGTT(ppat->i915)) {
/* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry,
* so RTL will always use the value corresponding to
* pat_sel = 000".
* So let's disable cache for GGTT to avoid screen corruptions.
* MOCS still can be used though.
* - System agent ggtt writes (i.e. cpu gtt mmaps) already work
* before this patch, i.e. the same uncached + snooping access
* like on gen6/7 seems to be in effect.
* - So this just fixes blitter/render access. Again it looks
* like it's not just uncached access, but uncached + snooping.
* So we can still hold onto all our assumptions wrt cpu
* clflushing on LLC machines.
*/
__alloc_ppat_entry(ppat, 0, GEN8_PPAT_UC);
return;
}
__alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC); /* for normal objects, no eLLC */
__alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC); /* for something pointing to ptes? */
__alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC); /* for scanout with eLLC */
__alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC); /* Uncached objects, mostly for scanout */
__alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
__alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
__alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
__alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
}
static void chv_setup_private_ppat(struct intel_ppat *ppat)
{
ppat->max_entries = 8;
ppat->update_hw = bdw_private_pat_update_hw;
ppat->match = chv_private_pat_match;
ppat->clear_value = CHV_PPAT_SNOOP;
/*
* Map WB on BDW to snooped on CHV.
*
* Only the snoop bit has meaning for CHV, the rest is
* ignored.
*
* The hardware will never snoop for certain types of accesses:
* - CPU GTT (GMADR->GGTT->no snoop->memory)
* - PPGTT page tables
* - some other special cycles
*
* As with BDW, we also need to consider the following for GT accesses:
* "For GGTT, there is NO pat_sel[2:0] from the entry,
* so RTL will always use the value corresponding to
* pat_sel = 000".
* Which means we must set the snoop bit in PAT entry 0
* in order to keep the global status page working.
*/
__alloc_ppat_entry(ppat, 0, CHV_PPAT_SNOOP);
__alloc_ppat_entry(ppat, 1, 0);
__alloc_ppat_entry(ppat, 2, 0);
__alloc_ppat_entry(ppat, 3, 0);
__alloc_ppat_entry(ppat, 4, CHV_PPAT_SNOOP);
__alloc_ppat_entry(ppat, 5, CHV_PPAT_SNOOP);
__alloc_ppat_entry(ppat, 6, CHV_PPAT_SNOOP);
__alloc_ppat_entry(ppat, 7, CHV_PPAT_SNOOP);
}
static void gen6_gmch_remove(struct i915_address_space *vm)
{
struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm);
iounmap(ggtt->gsm);
cleanup_scratch_page(vm);
}
static void setup_private_pat(struct drm_i915_private *dev_priv)
{
struct intel_ppat *ppat = &dev_priv->ppat;
int i;
ppat->i915 = dev_priv;
if (INTEL_GEN(dev_priv) >= 10)
cnl_setup_private_ppat(ppat);
else if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv))
chv_setup_private_ppat(ppat);
else
bdw_setup_private_ppat(ppat);
GEM_BUG_ON(ppat->max_entries > INTEL_MAX_PPAT_ENTRIES);
for_each_clear_bit(i, ppat->used, ppat->max_entries) {
ppat->entries[i].value = ppat->clear_value;
ppat->entries[i].ppat = ppat;
set_bit(i, ppat->dirty);
}
ppat->update_hw(dev_priv);
}
static int gen8_gmch_probe(struct i915_ggtt *ggtt)
{
struct drm_i915_private *dev_priv = ggtt->vm.i915;
struct pci_dev *pdev = dev_priv->drm.pdev;
unsigned int size;
u16 snb_gmch_ctl;
int err;
/* TODO: We're not aware of mappable constraints on gen8 yet */
ggtt->gmadr =
(struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
pci_resource_len(pdev, 2));
ggtt->mappable_end = resource_size(&ggtt->gmadr);
err = pci_set_dma_mask(pdev, DMA_BIT_MASK(39));
if (!err)
err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39));
if (err)
DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
if (IS_CHERRYVIEW(dev_priv))
size = chv_get_total_gtt_size(snb_gmch_ctl);
else
size = gen8_get_total_gtt_size(snb_gmch_ctl);
ggtt->vm.total = (size / sizeof(gen8_pte_t)) * I915_GTT_PAGE_SIZE;
ggtt->vm.cleanup = gen6_gmch_remove;
ggtt->vm.insert_page = gen8_ggtt_insert_page;
ggtt->vm.clear_range = nop_clear_range;
if (intel_scanout_needs_vtd_wa(dev_priv))
ggtt->vm.clear_range = gen8_ggtt_clear_range;
ggtt->vm.insert_entries = gen8_ggtt_insert_entries;
/* Serialize GTT updates with aperture access on BXT if VT-d is on. */
if (intel_ggtt_update_needs_vtd_wa(dev_priv) ||
IS_CHERRYVIEW(dev_priv) /* fails with concurrent use/update */) {
ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL;
ggtt->vm.insert_page = bxt_vtd_ggtt_insert_page__BKL;
if (ggtt->vm.clear_range != nop_clear_range)
ggtt->vm.clear_range = bxt_vtd_ggtt_clear_range__BKL;
/* Prevent recursively calling stop_machine() and deadlocks. */
dev_info(dev_priv->drm.dev,
"Disabling error capture for VT-d workaround\n");
i915_disable_error_state(dev_priv, -ENODEV);
}
ggtt->invalidate = gen6_ggtt_invalidate;
ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma;
ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
ggtt->vm.vma_ops.set_pages = ggtt_set_pages;
ggtt->vm.vma_ops.clear_pages = clear_pages;
ggtt->vm.pte_encode = gen8_pte_encode;
setup_private_pat(dev_priv);
return ggtt_probe_common(ggtt, size);
}
static int gen6_gmch_probe(struct i915_ggtt *ggtt)
{
struct drm_i915_private *dev_priv = ggtt->vm.i915;
struct pci_dev *pdev = dev_priv->drm.pdev;
unsigned int size;
u16 snb_gmch_ctl;
int err;
ggtt->gmadr =
(struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2),
pci_resource_len(pdev, 2));
ggtt->mappable_end = resource_size(&ggtt->gmadr);
/* 64/512MB is the current min/max we actually know of, but this is just
* a coarse sanity check.
*/
if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) {
DRM_ERROR("Unknown GMADR size (%pa)\n", &ggtt->mappable_end);
return -ENXIO;
}
err = pci_set_dma_mask(pdev, DMA_BIT_MASK(40));
if (!err)
err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40));
if (err)
DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err);
pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
size = gen6_get_total_gtt_size(snb_gmch_ctl);
ggtt->vm.total = (size / sizeof(gen6_pte_t)) * I915_GTT_PAGE_SIZE;
ggtt->vm.clear_range = nop_clear_range;
if (!HAS_FULL_PPGTT(dev_priv) || intel_scanout_needs_vtd_wa(dev_priv))
ggtt->vm.clear_range = gen6_ggtt_clear_range;
ggtt->vm.insert_page = gen6_ggtt_insert_page;
ggtt->vm.insert_entries = gen6_ggtt_insert_entries;
ggtt->vm.cleanup = gen6_gmch_remove;
ggtt->invalidate = gen6_ggtt_invalidate;
if (HAS_EDRAM(dev_priv))
ggtt->vm.pte_encode = iris_pte_encode;
else if (IS_HASWELL(dev_priv))
ggtt->vm.pte_encode = hsw_pte_encode;
else if (IS_VALLEYVIEW(dev_priv))
ggtt->vm.pte_encode = byt_pte_encode;
else if (INTEL_GEN(dev_priv) >= 7)
ggtt->vm.pte_encode = ivb_pte_encode;
else
ggtt->vm.pte_encode = snb_pte_encode;
ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma;
ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
ggtt->vm.vma_ops.set_pages = ggtt_set_pages;
ggtt->vm.vma_ops.clear_pages = clear_pages;
return ggtt_probe_common(ggtt, size);
}
static void i915_gmch_remove(struct i915_address_space *vm)
{
intel_gmch_remove();
}
static int i915_gmch_probe(struct i915_ggtt *ggtt)
{
struct drm_i915_private *dev_priv = ggtt->vm.i915;
phys_addr_t gmadr_base;
int ret;
ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL);
if (!ret) {
DRM_ERROR("failed to set up gmch\n");
return -EIO;
}
intel_gtt_get(&ggtt->vm.total, &gmadr_base, &ggtt->mappable_end);
ggtt->gmadr =
(struct resource) DEFINE_RES_MEM(gmadr_base,
ggtt->mappable_end);
ggtt->do_idle_maps = needs_idle_maps(dev_priv);
ggtt->vm.insert_page = i915_ggtt_insert_page;
ggtt->vm.insert_entries = i915_ggtt_insert_entries;
ggtt->vm.clear_range = i915_ggtt_clear_range;
ggtt->vm.cleanup = i915_gmch_remove;
ggtt->invalidate = gmch_ggtt_invalidate;
ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma;
ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma;
ggtt->vm.vma_ops.set_pages = ggtt_set_pages;
ggtt->vm.vma_ops.clear_pages = clear_pages;
if (unlikely(ggtt->do_idle_maps))
DRM_INFO("applying Ironlake quirks for intel_iommu\n");
return 0;
}
/**
* i915_ggtt_probe_hw - Probe GGTT hardware location
* @dev_priv: i915 device
*/
int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv)
{
struct i915_ggtt *ggtt = &dev_priv->ggtt;
int ret;
ggtt->vm.i915 = dev_priv;
ggtt->vm.dma = &dev_priv->drm.pdev->dev;
if (INTEL_GEN(dev_priv) <= 5)
ret = i915_gmch_probe(ggtt);
else if (INTEL_GEN(dev_priv) < 8)
ret = gen6_gmch_probe(ggtt);
else
ret = gen8_gmch_probe(ggtt);
if (ret)
return ret;
if ((ggtt->vm.total - 1) >> 32) {
DRM_ERROR("We never expected a Global GTT with more than 32bits"
" of address space! Found %lldM!\n",
ggtt->vm.total >> 20);
ggtt->vm.total = 1ULL << 32;
ggtt->mappable_end =
min_t(u64, ggtt->mappable_end, ggtt->vm.total);
}
if (ggtt->mappable_end > ggtt->vm.total) {
DRM_ERROR("mappable aperture extends past end of GGTT,"
" aperture=%pa, total=%llx\n",
&ggtt->mappable_end, ggtt->vm.total);
ggtt->mappable_end = ggtt->vm.total;
}
/* GMADR is the PCI mmio aperture into the global GTT. */
DRM_DEBUG_DRIVER("GGTT size = %lluM\n", ggtt->vm.total >> 20);
DRM_DEBUG_DRIVER("GMADR size = %lluM\n", (u64)ggtt->mappable_end >> 20);
DRM_DEBUG_DRIVER("DSM size = %lluM\n",
(u64)resource_size(&intel_graphics_stolen_res) >> 20);
if (intel_vtd_active())
DRM_INFO("VT-d active for gfx access\n");
return 0;
}
/**
* i915_ggtt_init_hw - Initialize GGTT hardware
* @dev_priv: i915 device
*/
int i915_ggtt_init_hw(struct drm_i915_private *dev_priv)
{
struct i915_ggtt *ggtt = &dev_priv->ggtt;
int ret;
stash_init(&dev_priv->mm.wc_stash);
/* Note that we use page colouring to enforce a guard page at the
* end of the address space. This is required as the CS may prefetch
* beyond the end of the batch buffer, across the page boundary,
* and beyond the end of the GTT if we do not provide a guard.
*/
mutex_lock(&dev_priv->drm.struct_mutex);
i915_address_space_init(&ggtt->vm, VM_CLASS_GGTT);
ggtt->vm.is_ggtt = true;
/* Only VLV supports read-only GGTT mappings */
ggtt->vm.has_read_only = IS_VALLEYVIEW(dev_priv);
if (!HAS_LLC(dev_priv) && !HAS_PPGTT(dev_priv))
ggtt->vm.mm.color_adjust = i915_gtt_color_adjust;
mutex_unlock(&dev_priv->drm.struct_mutex);
if (!io_mapping_init_wc(&dev_priv->ggtt.iomap,
dev_priv->ggtt.gmadr.start,
dev_priv->ggtt.mappable_end)) {
ret = -EIO;
goto out_gtt_cleanup;
}
ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start, ggtt->mappable_end);
/*
* Initialise stolen early so that we may reserve preallocated
* objects for the BIOS to KMS transition.
*/
ret = i915_gem_init_stolen(dev_priv);
if (ret)
goto out_gtt_cleanup;
return 0;
out_gtt_cleanup:
ggtt->vm.cleanup(&ggtt->vm);
return ret;
}
int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv)
{
if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt())
return -EIO;
return 0;
}
void i915_ggtt_enable_guc(struct drm_i915_private *i915)
{
GEM_BUG_ON(i915->ggtt.invalidate != gen6_ggtt_invalidate);
i915->ggtt.invalidate = guc_ggtt_invalidate;
i915_ggtt_invalidate(i915);
}
void i915_ggtt_disable_guc(struct drm_i915_private *i915)
{
/* XXX Temporary pardon for error unload */
if (i915->ggtt.invalidate == gen6_ggtt_invalidate)
return;
/* We should only be called after i915_ggtt_enable_guc() */
GEM_BUG_ON(i915->ggtt.invalidate != guc_ggtt_invalidate);
i915->ggtt.invalidate = gen6_ggtt_invalidate;
i915_ggtt_invalidate(i915);
}
void i915_gem_restore_gtt_mappings(struct drm_i915_private *dev_priv)
{
struct i915_ggtt *ggtt = &dev_priv->ggtt;
struct i915_vma *vma, *vn;
i915_check_and_clear_faults(dev_priv);
mutex_lock(&ggtt->vm.mutex);
/* First fill our portion of the GTT with scratch pages */
ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total);
ggtt->vm.closed = true; /* skip rewriting PTE on VMA unbind */
/* clflush objects bound into the GGTT and rebind them. */
list_for_each_entry_safe(vma, vn, &ggtt->vm.bound_list, vm_link) {
struct drm_i915_gem_object *obj = vma->obj;
if (!(vma->flags & I915_VMA_GLOBAL_BIND))
continue;
mutex_unlock(&ggtt->vm.mutex);
if (!i915_vma_unbind(vma))
goto lock;
WARN_ON(i915_vma_bind(vma,
obj ? obj->cache_level : 0,
PIN_UPDATE));
if (obj) {
i915_gem_object_lock(obj);
WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false));
i915_gem_object_unlock(obj);
}
lock:
mutex_lock(&ggtt->vm.mutex);
}
ggtt->vm.closed = false;
i915_ggtt_invalidate(dev_priv);
mutex_unlock(&ggtt->vm.mutex);
if (INTEL_GEN(dev_priv) >= 8) {
struct intel_ppat *ppat = &dev_priv->ppat;
bitmap_set(ppat->dirty, 0, ppat->max_entries);
dev_priv->ppat.update_hw(dev_priv);
return;
}
}
static struct scatterlist *
rotate_pages(struct drm_i915_gem_object *obj, unsigned int offset,
unsigned int width, unsigned int height,
unsigned int stride,
struct sg_table *st, struct scatterlist *sg)
{
unsigned int column, row;
unsigned int src_idx;
for (column = 0; column < width; column++) {
src_idx = stride * (height - 1) + column + offset;
for (row = 0; row < height; row++) {
st->nents++;
/* We don't need the pages, but need to initialize
* the entries so the sg list can be happily traversed.
* The only thing we need are DMA addresses.
*/
sg_set_page(sg, NULL, I915_GTT_PAGE_SIZE, 0);
sg_dma_address(sg) =
i915_gem_object_get_dma_address(obj, src_idx);
sg_dma_len(sg) = I915_GTT_PAGE_SIZE;
sg = sg_next(sg);
src_idx -= stride;
}
}
return sg;
}
static noinline struct sg_table *
intel_rotate_pages(struct intel_rotation_info *rot_info,
struct drm_i915_gem_object *obj)
{
unsigned int size = intel_rotation_info_size(rot_info);
struct sg_table *st;
struct scatterlist *sg;
int ret = -ENOMEM;
int i;
/* Allocate target SG list. */
st = kmalloc(sizeof(*st), GFP_KERNEL);
if (!st)
goto err_st_alloc;
ret = sg_alloc_table(st, size, GFP_KERNEL);
if (ret)
goto err_sg_alloc;
st->nents = 0;
sg = st->sgl;
for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) {
sg = rotate_pages(obj, rot_info->plane[i].offset,
rot_info->plane[i].width, rot_info->plane[i].height,
rot_info->plane[i].stride, st, sg);
}
return st;
err_sg_alloc:
kfree(st);
err_st_alloc:
DRM_DEBUG_DRIVER("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n",
obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size);
return ERR_PTR(ret);
}
static struct scatterlist *
remap_pages(struct drm_i915_gem_object *obj, unsigned int offset,
unsigned int width, unsigned int height,
unsigned int stride,
struct sg_table *st, struct scatterlist *sg)
{
unsigned int row;
for (row = 0; row < height; row++) {
unsigned int left = width * I915_GTT_PAGE_SIZE;
while (left) {
dma_addr_t addr;
unsigned int length;
/* We don't need the pages, but need to initialize
* the entries so the sg list can be happily traversed.
* The only thing we need are DMA addresses.
*/
addr = i915_gem_object_get_dma_address_len(obj, offset, &length);
length = min(left, length);
st->nents++;
sg_set_page(sg, NULL, length, 0);
sg_dma_address(sg) = addr;
sg_dma_len(sg) = length;
sg = sg_next(sg);
offset += length / I915_GTT_PAGE_SIZE;
left -= length;
}
offset += stride - width;
}
return sg;
}
static noinline struct sg_table *
intel_remap_pages(struct intel_remapped_info *rem_info,
struct drm_i915_gem_object *obj)
{
unsigned int size = intel_remapped_info_size(rem_info);
struct sg_table *st;
struct scatterlist *sg;
int ret = -ENOMEM;
int i;
/* Allocate target SG list. */
st = kmalloc(sizeof(*st), GFP_KERNEL);
if (!st)
goto err_st_alloc;
ret = sg_alloc_table(st, size, GFP_KERNEL);
if (ret)
goto err_sg_alloc;
st->nents = 0;
sg = st->sgl;
for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++) {
sg = remap_pages(obj, rem_info->plane[i].offset,
rem_info->plane[i].width, rem_info->plane[i].height,
rem_info->plane[i].stride, st, sg);
}
i915_sg_trim(st);
return st;
err_sg_alloc:
kfree(st);
err_st_alloc:
DRM_DEBUG_DRIVER("Failed to create remapped mapping for object size %zu! (%ux%u tiles, %u pages)\n",
obj->base.size, rem_info->plane[0].width, rem_info->plane[0].height, size);
return ERR_PTR(ret);
}
static noinline struct sg_table *
intel_partial_pages(const struct i915_ggtt_view *view,
struct drm_i915_gem_object *obj)
{
struct sg_table *st;
struct scatterlist *sg, *iter;
unsigned int count = view->partial.size;
unsigned int offset;
int ret = -ENOMEM;
st = kmalloc(sizeof(*st), GFP_KERNEL);
if (!st)
goto err_st_alloc;
ret = sg_alloc_table(st, count, GFP_KERNEL);
if (ret)
goto err_sg_alloc;
iter = i915_gem_object_get_sg(obj, view->partial.offset, &offset);
GEM_BUG_ON(!iter);
sg = st->sgl;
st->nents = 0;
do {
unsigned int len;
len = min(iter->length - (offset << PAGE_SHIFT),
count << PAGE_SHIFT);
sg_set_page(sg, NULL, len, 0);
sg_dma_address(sg) =
sg_dma_address(iter) + (offset << PAGE_SHIFT);
sg_dma_len(sg) = len;
st->nents++;
count -= len >> PAGE_SHIFT;
if (count == 0) {
sg_mark_end(sg);
i915_sg_trim(st); /* Drop any unused tail entries. */
return st;
}
sg = __sg_next(sg);
iter = __sg_next(iter);
offset = 0;
} while (1);
err_sg_alloc:
kfree(st);
err_st_alloc:
return ERR_PTR(ret);
}
static int
i915_get_ggtt_vma_pages(struct i915_vma *vma)
{
int ret;
/* The vma->pages are only valid within the lifespan of the borrowed
* obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so
* must be the vma->pages. A simple rule is that vma->pages must only
* be accessed when the obj->mm.pages are pinned.
*/
GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj));
switch (vma->ggtt_view.type) {
default:
GEM_BUG_ON(vma->ggtt_view.type);
/* fall through */
case I915_GGTT_VIEW_NORMAL:
vma->pages = vma->obj->mm.pages;
return 0;
case I915_GGTT_VIEW_ROTATED:
vma->pages =
intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj);
break;
case I915_GGTT_VIEW_REMAPPED:
vma->pages =
intel_remap_pages(&vma->ggtt_view.remapped, vma->obj);
break;
case I915_GGTT_VIEW_PARTIAL:
vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj);
break;
}
ret = 0;
if (IS_ERR(vma->pages)) {
ret = PTR_ERR(vma->pages);
vma->pages = NULL;
DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n",
vma->ggtt_view.type, ret);
}
return ret;
}
/**
* i915_gem_gtt_reserve - reserve a node in an address_space (GTT)
* @vm: the &struct i915_address_space
* @node: the &struct drm_mm_node (typically i915_vma.mode)
* @size: how much space to allocate inside the GTT,
* must be #I915_GTT_PAGE_SIZE aligned
* @offset: where to insert inside the GTT,
* must be #I915_GTT_MIN_ALIGNMENT aligned, and the node
* (@offset + @size) must fit within the address space
* @color: color to apply to node, if this node is not from a VMA,
* color must be #I915_COLOR_UNEVICTABLE
* @flags: control search and eviction behaviour
*
* i915_gem_gtt_reserve() tries to insert the @node at the exact @offset inside
* the address space (using @size and @color). If the @node does not fit, it
* tries to evict any overlapping nodes from the GTT, including any
* neighbouring nodes if the colors do not match (to ensure guard pages between
* differing domains). See i915_gem_evict_for_node() for the gory details
* on the eviction algorithm. #PIN_NONBLOCK may used to prevent waiting on
* evicting active overlapping objects, and any overlapping node that is pinned
* or marked as unevictable will also result in failure.
*
* Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
* asked to wait for eviction and interrupted.
*/
int i915_gem_gtt_reserve(struct i915_address_space *vm,
struct drm_mm_node *node,
u64 size, u64 offset, unsigned long color,
unsigned int flags)
{
int err;
GEM_BUG_ON(!size);
GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
GEM_BUG_ON(!IS_ALIGNED(offset, I915_GTT_MIN_ALIGNMENT));
GEM_BUG_ON(range_overflows(offset, size, vm->total));
GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->vm);
GEM_BUG_ON(drm_mm_node_allocated(node));
node->size = size;
node->start = offset;
node->color = color;
err = drm_mm_reserve_node(&vm->mm, node);
if (err != -ENOSPC)
return err;
if (flags & PIN_NOEVICT)
return -ENOSPC;
err = i915_gem_evict_for_node(vm, node, flags);
if (err == 0)
err = drm_mm_reserve_node(&vm->mm, node);
return err;
}
static u64 random_offset(u64 start, u64 end, u64 len, u64 align)
{
u64 range, addr;
GEM_BUG_ON(range_overflows(start, len, end));
GEM_BUG_ON(round_up(start, align) > round_down(end - len, align));
range = round_down(end - len, align) - round_up(start, align);
if (range) {
if (sizeof(unsigned long) == sizeof(u64)) {
addr = get_random_long();
} else {
addr = get_random_int();
if (range > U32_MAX) {
addr <<= 32;
addr |= get_random_int();
}
}
div64_u64_rem(addr, range, &addr);
start += addr;
}
return round_up(start, align);
}
/**
* i915_gem_gtt_insert - insert a node into an address_space (GTT)
* @vm: the &struct i915_address_space
* @node: the &struct drm_mm_node (typically i915_vma.node)
* @size: how much space to allocate inside the GTT,
* must be #I915_GTT_PAGE_SIZE aligned
* @alignment: required alignment of starting offset, may be 0 but
* if specified, this must be a power-of-two and at least
* #I915_GTT_MIN_ALIGNMENT
* @color: color to apply to node
* @start: start of any range restriction inside GTT (0 for all),
* must be #I915_GTT_PAGE_SIZE aligned
* @end: end of any range restriction inside GTT (U64_MAX for all),
* must be #I915_GTT_PAGE_SIZE aligned if not U64_MAX
* @flags: control search and eviction behaviour
*
* i915_gem_gtt_insert() first searches for an available hole into which
* is can insert the node. The hole address is aligned to @alignment and
* its @size must then fit entirely within the [@start, @end] bounds. The
* nodes on either side of the hole must match @color, or else a guard page
* will be inserted between the two nodes (or the node evicted). If no
* suitable hole is found, first a victim is randomly selected and tested
* for eviction, otherwise then the LRU list of objects within the GTT
* is scanned to find the first set of replacement nodes to create the hole.
* Those old overlapping nodes are evicted from the GTT (and so must be
* rebound before any future use). Any node that is currently pinned cannot
* be evicted (see i915_vma_pin()). Similar if the node's VMA is currently
* active and #PIN_NONBLOCK is specified, that node is also skipped when
* searching for an eviction candidate. See i915_gem_evict_something() for
* the gory details on the eviction algorithm.
*
* Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if
* asked to wait for eviction and interrupted.
*/
int i915_gem_gtt_insert(struct i915_address_space *vm,
struct drm_mm_node *node,
u64 size, u64 alignment, unsigned long color,
u64 start, u64 end, unsigned int flags)
{
enum drm_mm_insert_mode mode;
u64 offset;
int err;
lockdep_assert_held(&vm->i915->drm.struct_mutex);
GEM_BUG_ON(!size);
GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE));
GEM_BUG_ON(alignment && !is_power_of_2(alignment));
GEM_BUG_ON(alignment && !IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT));
GEM_BUG_ON(start >= end);
GEM_BUG_ON(start > 0 && !IS_ALIGNED(start, I915_GTT_PAGE_SIZE));
GEM_BUG_ON(end < U64_MAX && !IS_ALIGNED(end, I915_GTT_PAGE_SIZE));
GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->vm);
GEM_BUG_ON(drm_mm_node_allocated(node));
if (unlikely(range_overflows(start, size, end)))
return -ENOSPC;
if (unlikely(round_up(start, alignment) > round_down(end - size, alignment)))
return -ENOSPC;
mode = DRM_MM_INSERT_BEST;
if (flags & PIN_HIGH)
mode = DRM_MM_INSERT_HIGHEST;
if (flags & PIN_MAPPABLE)
mode = DRM_MM_INSERT_LOW;
/* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks,
* so we know that we always have a minimum alignment of 4096.
* The drm_mm range manager is optimised to return results
* with zero alignment, so where possible use the optimal
* path.
*/
BUILD_BUG_ON(I915_GTT_MIN_ALIGNMENT > I915_GTT_PAGE_SIZE);
if (alignment <= I915_GTT_MIN_ALIGNMENT)
alignment = 0;
err = drm_mm_insert_node_in_range(&vm->mm, node,
size, alignment, color,
start, end, mode);
if (err != -ENOSPC)
return err;
if (mode & DRM_MM_INSERT_ONCE) {
err = drm_mm_insert_node_in_range(&vm->mm, node,
size, alignment, color,
start, end,
DRM_MM_INSERT_BEST);
if (err != -ENOSPC)
return err;
}
if (flags & PIN_NOEVICT)
return -ENOSPC;
/* No free space, pick a slot at random.
*
* There is a pathological case here using a GTT shared between
* mmap and GPU (i.e. ggtt/aliasing_ppgtt but not full-ppgtt):
*
* |<-- 256 MiB aperture -->||<-- 1792 MiB unmappable -->|
* (64k objects) (448k objects)
*
* Now imagine that the eviction LRU is ordered top-down (just because
* pathology meets real life), and that we need to evict an object to
* make room inside the aperture. The eviction scan then has to walk
* the 448k list before it finds one within range. And now imagine that
* it has to search for a new hole between every byte inside the memcpy,
* for several simultaneous clients.
*
* On a full-ppgtt system, if we have run out of available space, there
* will be lots and lots of objects in the eviction list! Again,
* searching that LRU list may be slow if we are also applying any
* range restrictions (e.g. restriction to low 4GiB) and so, for
* simplicity and similarilty between different GTT, try the single
* random replacement first.
*/
offset = random_offset(start, end,
size, alignment ?: I915_GTT_MIN_ALIGNMENT);
err = i915_gem_gtt_reserve(vm, node, size, offset, color, flags);
if (err != -ENOSPC)
return err;
/* Randomly selected placement is pinned, do a search */
err = i915_gem_evict_something(vm, size, alignment, color,
start, end, flags);
if (err)
return err;
return drm_mm_insert_node_in_range(&vm->mm, node,
size, alignment, color,
start, end, DRM_MM_INSERT_EVICT);
}
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/mock_gtt.c"
#include "selftests/i915_gem_gtt.c"
#endif